Erratum - Notes on the Wronskian

The Wronskian of two differentiable functions $u_{1}, u_{2}:(a, b) \rightarrow \mathbb{R}$ is defined as $W(x)=$ $u_{1} u_{2}^{\prime}-u_{1}^{\prime} u_{2}$.

If u_{1}, u_{2} are linearly dependent, then $W(x)=0$ for all x (as can be easily checked), i.e., if $W(x)$ is not identically zero, then u_{1}, u_{2} are linearly independent. So to prove linear independence, the Wronskian is a useful tool.

Unfortunately, I was wrong in the class when I asserted the converse. It is not true that just because $W(x)$ is identically zero, u_{1}, u_{2} are linearly dependent, i.e., if u_{1}, u_{2} are linearly independent, $W(x)$ can still be identically zero. The counterexample due to Peano is as follows: $x^{2}, x|x|$ are linearly independent and yet their Wronskian vanishes identically.

However, if u_{1}, u_{2} form a basis of solutions of

$$
y^{\prime \prime}+P y^{\prime}+Q y=0
$$

on \mathbb{R} (anyway these exist on all of \mathbb{R}), then
Lemma 0.1. $W(x)$ is nowhere 0 in this case.
Proof. We calculate as follows.

$$
\begin{gather*}
W^{\prime}=u_{1} u_{2}^{\prime \prime}-u_{1}^{\prime \prime} u_{2}=u_{1}\left(-P u_{2}^{\prime}-Q u_{2}\right)-\left(-P u_{1}^{\prime}-Q u_{1}\right) u_{2} \\
=-P\left(u_{1} u_{2}^{\prime}-u_{2} u_{1}^{\prime}\right)=-P W . \tag{1}
\end{gather*}
$$

Thus $W(x)=W\left(x_{0}\right) e^{-P\left(x-x_{0}\right)}$. Therefore, if $W\left(x_{0}\right)=0$ for a single point $x_{0}, W(x)=0$ identically. Moreover, neither u_{1} nor u_{2} can be identically 0 (because they have been assumed to form a basis of solutions). Suppose x_{0} is a point where $u_{1}\left(x_{0}\right) \neq 0$. Define $c=-\frac{u_{2}\left(x_{0}\right)}{u_{1}\left(x_{0}\right)}$. We claim that if $W\left(x_{1}\right)=0$ for any x_{1} (and thus $W(x)=0$ identically), then $y(x):=u_{2}(x)+c u_{1}(x)=0$ identically.

Indeed, $y\left(x_{0}\right)=u_{2}\left(x_{0}\right)+c u_{1}\left(x_{0}\right)=0$ by definition of c. Also, $W\left(x_{0}\right)=0$ (because $W\left(x_{1}\right)=0$ implies that $W(x)$ vanishes everywhere) implies that $y^{\prime}\left(x_{0}\right)=u_{2}^{\prime}\left(x_{0}\right)-$ $\frac{u_{2}\left(x_{0}\right)}{u_{1}\left(x_{0}\right)} u_{1}^{\prime}\left(x_{0}\right)=0$. Moreover, y satisfies the homogeneous equation. Thus $y(x)=0$ identically by uniqueness of solutions with given initial conditions. (How does one prove this particular statement of uniqueness again? One recasts this second-order ODE as a first order system, brings the matrix to an upper triangular form, etc.)

