HW 10 (to be tested on June 3)

1. Complete the proof in the class of the second derivative test for local minima and saddle points.
2. Let $f(x, y)=(3-x)(3-y)(x+y-3)$ on all of \mathbb{R}^{2}. Find its local extrema and classify them (if the second derivative test is applicable). Does f have global extrema?
3. Verify that $f(x, y, z)=x^{4}+y^{4}+z^{4}-4 x y z$ has a critical point at $(1,1,1)$ and determine the nature of this critical point and determine its nature.
4. Parametrise the curve formed by the intersection of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ and the cylinder $x^{2}+y^{2}=a x$ where $z \geq 0$ and $a>0$, i.e., give a piecewise C^{1} path traversing the curve in a $1-1$ manner (except possibly at finitely many values of t) such that it appears clockwise when viewed from high above the $x y$-plane. Calculate the work done by $\left(y^{2}, z^{2}, x^{2}\right)$ along this curve.
