HW 1(to be tested on March 18)

1. Let V be a real vector space and $S \subseteq V$ be a subset. Suppose $S \subseteq T \subseteq V$ where T is a subspace. Prove that $L(S) \subseteq T$ where $L(S)$ is the span of V.
2. Let $a<b$ be real numbers. Suppose $w:[a, b] \rightarrow \mathbb{R}$ is a continuous function such that $w(t)>0$ for all $t \in[a, b]$. Verify that $\langle f, g\rangle=\int_{a}^{b} w(t) f(t) \bar{g}(t) d t$ is an inner product on the vector space of continuous complex-valued functions on $[a, b]$.
3. Let H be a symmetric positive-definite real $n \times n$ matrix. Let V be a finitedimensional real vector space with an ordered basis e_{1}, \ldots, e_{n}. Prove that $\langle v, w\rangle=$ $v^{T} H w$ is an inner product.
4. Let V be the vector space of complex polynomials of degree ≤ 3. Let $T: V \rightarrow V$ be the map $T(p)=p(x+1)$. Let $D: V \rightarrow V$ be the differentiation map. Consider the two ordered bases (the first one for the domain and the second one for the target) $: 1, x, x^{2}, x^{3}$ and $1, x+1, x^{2}+2 x, x^{3}$.
(a) Prove that $1, x+1, x^{2}+2 x, x^{3}$ is indeed a basis.
(b) Prove that T is a linear map.
(c) What is the matrix representing $T D-D^{2}$ in these bases ?
(d) Find a basis for the null space of $T D-D^{2}$. What is the dimension of the null space of $T D-D^{2}$?
(e) What about the dimension of its range?
5. Let V, W be vector spaces over the same field. Let $T: V \rightarrow W$ be a linear map. If V is infinite-dimensional, then prove that at least one of $N(T)$ or $R(T)$ is infinitedimensional.
