HW 2(to be tested on March 25)

- 1. Prove that an onto function $T: V \to W$ has a left inverse if and only if it is 1-1.
- 2. Let W be a vector space over a field \mathbb{F} . Let V be a finite-dimensional vector space over \mathbb{F} with $\dim(V) = n$, and $T: V \to W$ be an onto linear map. Then prove that the following statements are equivalent to one another.
 - (a) T is 1-1.
 - (b) If e_1, \ldots, e_p are linearly independent in V, then $T(e_1), \ldots, T(e_p)$ are so in W.
 - (c) $\dim(W) = n$.
 - (d) If e_1, \ldots, e_n is a basis for V, then $T(e_1), \ldots, T(e_n)$ is so for W.
- 3. Let V be a vector space and $S \subseteq V$ be a subset. Prove that S^{\perp} is a subspace.
- 4. Consider \mathbb{R}^3 with the usual inner product. Find an orthonormal basis for the subspace spanned by u=(1,1,1),v=(1,0,-1),w=(3,2,1).
- 5. Consider the real vector space of real-valued continuous functions on [-1,1]. Define the inner product $\langle f,g\rangle=\int_{-1}^1 x^2 f(x)g(x)dx$.
 - (a) Consider the subspace S spanned by the set $\{1, x, x^2, x^2 + x\}$. Find an orthonormal basis for S.
 - (b) Find the best approximation of e^x from S.