HW 3 (to be tested on April 1)

- 1. Prove that there for any positive integer $n \ge 3$, there is no triple of positive integers a, b, c such that $a^n + b^n = c^n$. (Hint: You might find the answer in a margin.)
- 2. Prove that row-reduction does not change the row space. (A part of this problem is to make this statement rigorous.)
- 3. Let A be an $m \times n$ matrix. Prove the following properties.
 - (a) $(A^T)^T = A$.
 - (b) If $c \in \mathbb{F}$, $(cA)^T = cA^T$.
 - (c) $(A+B)^T = A^T + B^T$ if B is an $m \times n$ matrix.
 - (d) If C is an $n \times p$ matrix, then $(AC)^T = C^T A^T$.
 - (e) If A is an invertible $n \times n$ matrix, then $(A^{-1})^T = (A^T)^{-1}$.
- 4. Prove that the dimension of the row space equals the dimension of the column space of an $m \times n$ matrix. (Hint: Consider the matrix as a linear map, use the idea of free variables, as well as the nullity-rank theorem.)
- 5. Prove that if F is a multilinear function, then $F(\ldots, v_k + c_1w_1 + \ldots + c_mw_m, \ldots) = F(\ldots, v_k, \ldots) + c_1F(\ldots, w_1, \ldots) + c_2F(\ldots, w_2, \ldots) + \ldots$
- 6. Prove that the system x + y + 2z = 2, 2x y + 3z = 2, 5x y + az = 6 has a unique solution if $a \neq 8$. Find all solutions when a = 8.
- 7. For each of the following, give a proof or a counterexample.
 - If A and B are $n \times n$ invertible matrices, then AB is invertible.
 - If A and B are $n \times n$ invertible matrices, then A + B is invertible.
 - If the product of k square matrices A_i , i.e., $A_1A_2...A_k$ is invertible, then each of them is invertible (without using determinants).