HW 3 (to be tested on April 1)

1. Prove that there for any positive integer $n \geq 3$, there is no triple of positive integers a, b, c such that $a^{n}+b^{n}=c^{n}$. (Hint: You might find the answer in a margin.)
2. Prove that row-reduction does not change the row space. (A part of this problem is to make this statement rigorous.)
3. Let A be an $m \times n$ matrix. Prove the following properties.
(a) $\left(A^{T}\right)^{T}=A$.
(b) If $c \in \mathbb{F},(c A)^{T}=c A^{T}$.
(c) $(A+B)^{T}=A^{T}+B^{T}$ if B is an $m \times n$ matrix.
(d) If C is an $n \times p$ matrix, then $(A C)^{T}=C^{T} A^{T}$.
(e) If A is an invertible $n \times n$ matrix, then $\left(A^{-1}\right)^{T}=\left(A^{T}\right)^{-1}$.
4. Prove that the dimension of the row space equals the dimension of the column space of an $m \times n$ matrix. (Hint: Consider the matrix as a linear map, use the idea of free variables, as well as the nullity-rank theorem.)
5. Prove that if F is a multilinear function, then $F\left(\ldots, v_{k}+c_{1} w_{1}+\ldots+c_{m} w_{m}, \ldots\right)=$ $F\left(\ldots, v_{k}, \ldots\right)+c_{1} F\left(\ldots, w_{1}, \ldots\right)+c_{2} F\left(\ldots, w_{2}, \ldots\right)+\ldots$.
6. Prove that the system $x+y+2 z=2,2 x-y+3 z=2,5 x-y+a z=6$ has a unique solution if $a \neq 8$. Find all solutions when $a=8$.
7. For each of the following, give a proof or a counterexample.

- If A and B are $n \times n$ invertible matrices, then $A B$ is invertible.
- If A and B are $n \times n$ invertible matrices, then $A+B$ is invertible.
- If the product of k square matrices A_{i}, i.e., $A_{1} A_{2} \ldots A_{k}$ is invertible, then each of them is invertible (without using determinants).

