HW 5 (to be tested on April 15)

1. If A, B are square matrices, then prove that $\operatorname{tr}(A+B)=\operatorname{tr}(A)+\operatorname{tr}(B), \operatorname{tr}(c A)=$ $\operatorname{ctr}(A)$, and $\operatorname{tr}(A B)=\operatorname{tr}(B A)$. Also prove that similar matrices have the same trace. Also prove that there are no $n \times n$ complex matrices X and P such that $X P-P X=\sqrt{-1} \hbar I$.
2. If A is a square matrix, then prove that $p_{A}(\lambda)=\operatorname{det}(\lambda I-A)$ is a polynomial of degree n such that the coefficient of λ^{n-1} is $-\operatorname{tr}(A)$. Prove that $\sum_{i} \lambda_{i}=\operatorname{tr}(A)$ and that $\operatorname{det}(A)=\lambda_{1} \lambda_{2} \ldots$.
3. If A, B are invertible square matrices, prove that $A B$ and $B A$ have the same characteristic polynomial.
4. If $T: V \rightarrow V$ has the property that T^{2} has a nonnegative eigenvalue λ^{2} prove that either λ or $-\lambda$ is an eigenvalue of T.
5. Let $M=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$. Find a formula for M^{n}.
6. Determine whether $A=\left[\begin{array}{ccc}0 & -1 & 0 \\ 0 & 0 & 1 \\ -1 & -3 & 3\end{array}\right]$ is diagonalisable or not. Find the eigenvalues and eigenspaces. If it is diagonalisable, find a matrix P such that $P^{-1} A P$ is diagonal.
7. Let V be the inner product space of degree ≤ 3 real polynomials with the inner product $\langle f, g\rangle=\int_{-1}^{1} f(t) g(t) d t$. Determine which of the following functions T : $V \rightarrow V$ is a symmetric or skew-symmetric linear map.
(a) $T(f)=f(x) f(-x)$.
(b) $T(f)=f(-x)$
(c) $T(f)=f(x)+f(-x)$
(d) $T(f)=f(x)-f(-x)$
