HW 5 (to be tested on April 15)

- 1. If A, B are square matrices, then prove that tr(A + B) = tr(A) + tr(B), tr(cA) = ctr(A), and tr(AB) = tr(BA). Also prove that similar matrices have the same trace. Also prove that there are no $n \times n$ complex matrices X and P such that $XP PX = \sqrt{-1}\hbar I$.
- 2. If A is a square matrix, then prove that $p_A(\lambda) = \det(\lambda I A)$ is a polynomial of degree n such that the coefficient of λ^{n-1} is -tr(A). Prove that $\sum_i \lambda_i = tr(A)$ and that $\det(A) = \lambda_1 \lambda_2 \dots$
- 3. If A, B are invertible square matrices, prove that AB and BA have the same characteristic polynomial.
- 4. If $T: V \to V$ has the property that T^2 has a nonnegative eigenvalue λ^2 prove that either λ or $-\lambda$ is an eigenvalue of T.
- 5. Let $M = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$. Find a formula for M^n .
- 6. Determine whether $A = \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & 1 \\ -1 & -3 & 3 \end{bmatrix}$ is diagonalisable or not. Find the eigenvalues and eigenspaces. If it is diagonalisable, find a matrix P such that $P^{-1}AP$ is diagonal.
- 7. Let V be the inner product space of degree ≤ 3 real polynomials with the inner product $\langle f, g \rangle = \int_{-1}^{1} f(t)g(t)dt$. Determine which of the following functions $T: V \to V$ is a symmetric or skew-symmetric linear map.
 - (a) T(f) = f(x)f(-x).
 - (b) T(f) = f(-x)
 - (c) T(f) = f(x) + f(-x)
 - (d) T(f) = f(x) f(-x)