HW 6 (to be tested on April 22)

- 1. Let $w(t) : (a, b) \to \mathbb{C}$ be a function such that $w(t) = u(t) + \sqrt{-1}v(t)$ where $u, v : (a, b) \to \mathbb{R}$ are differentiable. We then say that w(t) is differentiable and $w' = u' + \sqrt{-1}v'$. Prove that if $w_1(t), w_2(t)$ are two such differentiable complex-valued functions, then so is $w_1(t)w_2(t)$ and its derivative is $w'_1w_2 + w_1w'_2$. Prove that if $w_2 \neq 0$, then $\frac{w_1}{w_2}$ is differentiable and its derivative is $\frac{w'_1w_2 w'_2w_1}{w_2^2}$. If $g : (a, b) \to (a, b)$ is differentiable, then prove that w(g(t)) is also differentiable and its derivative is w'(g(t))g'(t).
- 2. Prove that $w(t) = w_0 e^{\alpha t} (\cos(\beta t) + \sqrt{-1} \sin(\beta) t)$ is the solution of $w' = (\alpha + \sqrt{-1}\beta)w$ and $w(0) = w_0$.
- 3. Prove that the roots of $D^2 + PD + Q = 0$ are eigenvalues of $A = \begin{bmatrix} -P & -Q \\ 1 & 0 \end{bmatrix}$.
- 4. Let $P \in \mathbb{R}$ be a constant. Let $A = \begin{bmatrix} -P & \frac{-P^2}{4} \\ 1 & 0 \end{bmatrix}$.
 - (a) Prove that $\lambda = -\frac{P}{2}$ is the only eigenvalue and its eigenspace is one-dimensional.
 - (b) Let u be an eigenvector of $-\frac{P}{2}$ and let v be one of e_1, e_2 such that u, v form a basis. Prove that in this basis, A is upper-triangular.
 - (c) Now solve $\frac{d\vec{y}}{dt} = A\vec{y}$ on \mathbb{R} and prove that the solution space is a two-dimensional real vector space spanned by $e^{\lambda t}$ and $te^{\lambda t}$.
- 5. Solve y'' 2y' + 2y = 0 with y(0) = 1 and $y(\frac{\pi}{2}) = e^{\frac{\pi}{2}}$.