HW 7 (to be tested on May 13)

1. Let $\lambda(\vec{x}): S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}, \vec{f}: S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be functions. If $\lim _{\vec{x} \rightarrow \vec{a}} \lambda(x)=a$ and $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{b}$ exist, then prove using the $\delta-\epsilon$ definition that $\lim _{\vec{x} \rightarrow \vec{a}} \lambda(\vec{x}) \vec{f}(\vec{x})$ exists and equals $a \vec{b}$.
2. In each of the following cases, prove (or disprove):
(a) If A_{i} are infinitely many open sets, then their intersection $\cap_{i} A_{i}$ is open.
(b) If A_{i} are infinitely many closed sets, then their intersection $\cap_{i} A_{i}$ is closed.
(c) The set $\left\{(x, y, z) \in \mathbb{R}^{3}| | x+y|<1,|z|<1\}\right.$ is open.
3. Prove that a set S is closed if and only if $S=\operatorname{Int}(S) \cup \partial S$.
4. If $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=L$ exists, and $\lim _{x \rightarrow a} f(x, y), \lim _{y \rightarrow b} f(x, y)$ exist, then prove that $\lim _{x \rightarrow a} \lim _{y \rightarrow b} f(x, y)=\lim _{y \rightarrow b} \lim _{x \rightarrow a} f(x, y)=L$.
5. Let $f(x, y)=x \sin (1 / y)$ if $y \neq 0$ and $f(x, 0)=0$. Show that $f(x, y) \rightarrow 0$ as $(x, y) \rightarrow(0,0)$ but $\lim _{x \rightarrow 0} \lim _{y \rightarrow 0} f(x, y) \neq \lim _{y \rightarrow 0} \lim _{x \rightarrow 0} f(x, y)$. Why does this not contradict the earlier result?
6. Find the limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-y^{2}}{x^{2}+y^{2}}$ or prove that it does not exist.
7. (a) Prove that there is no scalar field f such that $\nabla_{\vec{v}} f(\vec{a})>0$ for a fixed vector \vec{a} and every non-zero vector \vec{v}.
(b) Give an example of a scalar field f such that $\nabla_{\vec{v}} f(\vec{a})>0$ for a fixed vector \vec{v} and every vector \vec{a}.
