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Recap

Reparametrisation invariance of scalar surface integrals.

Flux and its reparametrisation “invariance” (upto sign).

A 1D prelude to Stokes’ theorem - generalisation of FTC to
curves and a consequence for conservative vector fields.

Stokes’ theorem, curl and circulation, and proof using Green.
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Example

Let ~F = (z2,−3xy , x3y3) and S be a part of z = 5− x2 − y2

above z = 1 with the upwards orientation. Calculate∫ ∫
S(∇× ~F ). ~dA.

By the way, we did not prove that if the same set is regularly
parametrised in two different ways, then they are
reparametrisations of each other. This fact is true and
requires stuff that is beyond the current scope.

Parametrise S as (x , y , 5− x2 − y2) where x2 + y2 ≤ 4. This
has the right orientation. Indeed, ~rx × ~ry = (2x , 2y , 1) which
points upward. The boundary is a circle x2 + y2 = 4. A
correct oriented parametrisation is (2 cos(t), 2 sin(t), 1). Thus
by Stokes, the desired integral is∫ 2π
0 (4 sin2(t),−12 sin(t) cos(t), 64 sin3(t) cos3(t)).(−2 sin(t), 2 cos(t), 1)dt =

0.
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Example

We can verify Stokes by calculating the given thing
directly:∇× ~F = (3x3y2,−(3x2y3 − 2z),−3y).

Thus ∇× ~F . ~dA = dxdy(6x4y2 − 2y(3x2y3 − 2z)− 3y) =
dxdy(6x4y2 − 6x2y4 + 6y(5− x2 − y2)− 3y).

Its integral over x2 + y2 ≤ 4 is (in polar coordinates)∫ 2
0

∫ 2π
0 (32 r

6 sin( 2θ) cos(2θ)+27r sin(θ)−6r3 sin(θ))dθrdr = 0.
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Interpretation of curl

The curl does not simply measure how much a vector field
swirls around. For instance, if ~F = (− y

x2+y2 ,
x

x2+y2 , 0), then

∇× ~F = ~0 (away from the origin of course). However, the
picture of the vector field tells a different story. Likewise, if
~F = (x2 − y2)(x , y , 0), despite pointing radially outward (in
the x − y plane) ∇× ~F 6= ~0.

It measures the infinitesimal circulation near a point. For
instance, in the first example above, As we go outward, the
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Curl, Divergence

Unfortunately, it is not sufficient. For instance,
~F = (− y

x2+y2 ,
x

x2+y2 ) in R2 has zero curl, but
∫
C
~F .d~r over

the unit circle is 2π 6= 0. So the shape of the region is
important. In fact, it turns out that it is sufficient on simply
connected regions.
Akin to ∇× ~F , one can naively define the “dot product”, i.e.,
∇. ~F = ∂P

∂x + ∂Q
∂y + ∂R

∂z . This quantity is called the divergence.

Indeed, if ~F = (x , y , z), then ∇. ~F = 3 whereas if
~F = (−y , x , 0), then ∇. ~F = 0. Again, these examples are too
naive. The divergence is more subtle as we shall see later on.
Just as ∇×∇f = ~0, one can easily prove (HW) that
∇.(∇× ~F ) = 0. This “easy” observation lead Maxwell to add
a corection term (called the displacement current) to
Ampere’s law.
∆f (or ∇2f ) defined by ∆f = ∇.(∇f ) = fxx + fyy + fzz is
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∂z . This quantity is called the divergence.

Indeed, if ~F = (x , y , z), then ∇. ~F = 3 whereas if
~F = (−y , x , 0), then ∇. ~F = 0. Again, these examples are too
naive. The divergence is more subtle as we shall see later on.
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Gauss/Divergence theorem

Akin to Stokes’ theorem, we have a generalisation of FTC to
three-space.

Theorem: Let V be a solid in R3 bounded by a closed regular
surface S parametrised with the outward unit normal. If ~F is a
C 1 vector field on V , then

∫ ∫ ∫
V ∇. ~Fdxdydz =

∫ ∫
S
~F .d ~A.

So the flux integral can be written as a triple integral.

Proof: Again, it suffices to prove it for ~F = (P, 0, 0).
However, the proof is quite tricky in general. We shall prove it
only for a cuboid. (The same proof works for Type-III regions.)∫ f
e

∫ d
c

∫ b
a Pxdxdydz =

∫ ∫
(P(b, y , z)− P(a, y , z))dydz . Now

~F . ~dA = 0 for the boundary sides that are not parallel to the
y − z plane. Thus, the flux is

∫ ∫
Pî .d ~A. The boundaries are

oriented in opposite directions and hence we are done.

Vamsi Pritham Pingali Lecture 39 7/9



Gauss/Divergence theorem

Akin to Stokes’ theorem,

we have a generalisation of FTC to
three-space.

Theorem: Let V be a solid in R3 bounded by a closed regular
surface S parametrised with the outward unit normal. If ~F is a
C 1 vector field on V , then

∫ ∫ ∫
V ∇. ~Fdxdydz =

∫ ∫
S
~F .d ~A.

So the flux integral can be written as a triple integral.

Proof: Again, it suffices to prove it for ~F = (P, 0, 0).
However, the proof is quite tricky in general. We shall prove it
only for a cuboid. (The same proof works for Type-III regions.)∫ f
e

∫ d
c

∫ b
a Pxdxdydz =

∫ ∫
(P(b, y , z)− P(a, y , z))dydz . Now

~F . ~dA = 0 for the boundary sides that are not parallel to the
y − z plane. Thus, the flux is

∫ ∫
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Example

Compute the outward flux of ~F = (x , y , z) across the ellipsoid
x2

a2
+ y2

b2
+ z2

c2
= 1: One way is to take

(a sin(θ) cos(φ), b sin(θ) sin(φ), c cos(θ)), compute
~dA = ~rθ × ~rφdθdφ which equals

(bc sin2(θ) cos(φ), ac sin2(θ) sin(φ), ab sin θ cos θ)dθdφ,
compute ~F .d ~A = abc sin(θ) and integrate.

The smart way is to use the divergence theorem: ∇. ~F = 3.
Hence the answer is 4πabc.

Another example: Let ~F = e−(x2+y2+z2)6(x , y , z). Compute∫ ∫ ∫
V ∇. ~FdV where V is the unit ball. It is of course quite

painful to do directly. However, using the divergence theorem,
it is the flux of a radial vector field over the unit sphere. Thus
it is 4πe−1.
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Interpretation of Divergence

The divergence is the flux density, i.e., near a point p, ∇. ~F (p)
is approximately the ratio of the outward flux through a small
closed surface divided by its volume.

Because of this subtle interpretation, counterintuitive things
like the following can happen:

Example: The divergence of ~F = (−y(x2 − y2), x(x2 − y2), 0)
is non-zero.

Example: The divergence of ~F = 1
(x2+y2+z2)3/2

(x , y , z) is zero.
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