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Recap

Interpretation of curl, conservative vector fields.

Divergence theorem, examples.

Interpretation of divergence.
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Constrained optimisation

Most real world problems require the “best answer” subject to
some constraints.

A pure maths example: Find the maximum possible value of
x + y + z subject to x2 + y2 + z2 = 1.

Firstly, the constraining set is closed (it is a sphere) and
bounded. x + y + z being a continuous function attains its
maximum and minimum somewhere. So the question makes
sense.

One way to solve it: Solve for z = ±
√

1− x2 − y2 and
x2 + y2 ≤ 1. Since we want the maximum of x + y + z , we
choose f (x , y) = x + y +

√
1− x2 − y2 over x2 + y2 ≤ 1.

This is an unconstrained problem. We look at critical points
on the interior:fx = 1− x√

1−x2−y2
= 0 = fy = 1− y√

1−x2−y2
.

Thus x = y = 1√
3

. f ( 1√
3

) =
√

3. We now look at the

maximum of the function f (x , y) on the boundary
x2 + y2 = 1.
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Constrained optimisation

This is another constrained problem. Again, y =
√

1− x2 and
g(x) = x +

√
1− x2 on −1 ≤ x ≤ 1. Its interior critical

points correspond to g ′(x) = 1− x√
1−x2 = 0 and hence

x = 1√
2

. g( 1√
2

) =
√

2. The boundary values are

g(1) = 1, g(−1) = −1. Thus the maximum possible value of
x + y + z subject to x2 + y2 + z2 = 1 occurs at
x = y = z = 1√

3
and equals

√
3.

This strategy (besides being the equivalent of self-flagellation)
cannot work if we cannot solve for z explicitly.

Here is a geometric picture: x + y + z = c is a plane at a
distance of c√

3
from the origin. So we want to find a plane

with a given normal that is farthest from the origin but
intersects the sphere somewhere. Clearly the tangent plane at
some point is answer.
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The set up of the problem

Def: Let f be a function from a neighbourhood of the
level-set g(x , y , z) = 0 of a C 1 function to R. It is said to
achieve a local maximum at a point (x0, y0, z0) lying on the
level set, subject to the constraint g = 0 if g is defined on a
neighbourhood of (x0, y0, z0), ∇g(x0, y0, z0) 6= 0, and
f (x , y , z) ≤ f (x0, y0, z0) for all (x , y , z) in a neighbourhood of
(x0, y0, z0) lying on the level set. Likewise for a local
minimum.

The point of ∇g(x0, y0, z0) 6= 0 is the implicit function
theorem: If ∂g

∂z (x0, y0, z0), then near this point, z = f (x , y) for
some C 1 function f , i.e., the level set is a regular
parametrised surface near this point.

As a consequence, if g(x , y , z) = 0 is a regular closed surface
that is a bounded set, then a C 1 function f attains a global
max/min and does so at local extrema. On the other hand, if
the level set has a boundary, then the global extrema can
occur on the boundary too.
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Lagrange’s multipliers

Theorem: Suppose g(x1, x2, . . .) = 0 is a level set of a C 1

function g : U ⊂ Rn → R. Let ~r0 be a point on g−1(0) such
that ∇g(~r0) 6= ~0. Let f : U ⊂ Rn → R be another C 1

function. If f attains a local extremum subject to the
constraint g = 0 at the point ~r0, then ∇f (~r0) = λ∇g(~r0) for
some constant λ ∈ R.

Geometrically, at the place where a local extremum is
achieved, the direction of fastest change of f is along a
normal to g = 0. Indeed, roughly speaking, if f could
increase/decrease along g = 0, then we are not at a local
extremum!

One can generalise the theorem to more than one constraint
by demanding ∇f = λ1∇g1 + λ2∇g2 + . . . provided
∇g1(~r0),∇g2(~r0), . . . are linearly independent.
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Proof

Assume (WLog) that ∂g
∂xn

(~r0) 6= 0. By the implicit function

theorem, xn = h(x1, . . . , xn−1) for a C 1 function h near ~r0.

Now f̃ = f (x1, . . . , xn−1, h(x1, . . . , xn−1)) attains an
unconstrained local extremum at ~r0. Thus
∂ f̃
∂x1

(~r0) = . . . = ∂ f̃
∂xn−1

(~r0) = 0. By the chain rule,
∂f
∂x1

+ ∂f
∂xn

∂h
∂x1

= 0 = . . ..

However, since g(x1, . . . , xn−1, h(x1, . . .)) = 0, differentiating
both sides using the chain rule, gx1 + gxnhx1 = 0 = . . ..

Thus,
gxi
gxn

=
f̃xi
f̃xn

for all 1 ≤ i ≤ n − 1. Therefore, ∇f = λ∇g
at ~r0.

By the way, the second derivative test for constrained local
extrema is too complicated for us.
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Example 1

Let’s go back to maximising f = x + y + z subject to
g = x2 + y2 + z2 − 1 = 0. Note that the level set is a regular
closed surface that is a bounded set. f is continuous and
hence the global max is a local max and we can use
Lagrange’s multipliers: ∇f = (1, 1, 1) and ∇g = (2x , 2y , 2z).
Thus, ∇f = λ∇g implies that x = y = z . Since
x2 + y2 + z2 = 1, x = y = z = ± 1√

3
. One of these

corresponds to the maximum and the other to the minimum.
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Example 2

Maximise f (x1, . . . , xn) = x1x2 . . . xn on xi ≥ 0 subject to
x1 + x2 + . . .+ xn = a > 0. The constraining surface is a
closed set and a bounded set. However it is NOT a closed
surface and has a boundary corresponding to one of the xi
being 0. At these boundary points, f = 0.

Let us look at the interior local extrema:
∇g = (1, 1, . . . , 1) 6= 0. Hence we can use Lagrange’s
multipliers.

∇f = (x2x3 . . . xn, x1x3 . . . , . . .) = λ(1, 1, . . .). Thus
x1 = x2 = . . . = a

n . Thus the maximum value of f is an

nn . This

means that f 1/n ≤ g
n for all xi ≥ 0. This inequality is the

famous AM-GM inequality.
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