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Constrained optimisation

@ Most real world problems require the “best answer” subject to
some constraints.

@ A pure maths example: Find the maximum possible value of
X + y + z subject to x* + y? + 2% = 1.

e Firstly, the constraining set is closed (it is a sphere) and
bounded. x + y + z being a continuous function attains its
maximum and minimum somewhere. So the question makes
sense.

@ One way to solve it: Solve for z = £4/1 — x2 — y2 and
x2 —|—y2 < 1. Since we want the maximum of x + y 4+ z, we
choose f(x,y) =x+y ++/1 —x2 — y2 over x> + y? < 1.
This is an unconstrained problem. We look at critical points
on the interior:fle—\/ﬁ:O:fyzl—ﬁ.
Thus x =y = % f(%) = /3. We now look at the
maximum of the function f(x,y) on the boundary
x2+y?=1.
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Constrained optimisation

@ This is another constrained problem. Again, y = v/1 — x2 and
g(x) =x++v1—x%on —1<x <1. lts interior critical
points correspond to g’(x) =1 — —== = 0 and hence

Vie
x=5 8(75)=V2

Vamsi Pritham Pingali Lecture 40 4/9



Constrained optimisation

@ This is another constrained problem. Again, y = v/1 — x2 and
g(x) =x++v1—x%on —1<x <1. lts interior critical
. ’ 1 _ X _
points correspond to g'(x) =1 T = 0 and hence

X = % g(%) = /2. The boundary values are

g(1)=1.g(-1) = 1.
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@ The point of Vg(xo, yo,20) # 0 is the implicit function
theorem: If g—f(xo,yo,zo), then near this point, z = f(x, y) for
some C! function f, i.e., the level set is a regular
parametrised surface near this point.

@ As a consequence, if g(x,y,z) =0 is a regular closed surface
that is a bounded set, then a C! function f attains a global
max/min and does so at local extrema. On the other hand, if
the level set has a boundary, then the global extrema can
occur on the boundary too.
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@ Assume (WLog) that g—i(ﬁ)) # 0.
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@ Assume (WLog) that g—g(F{)) # 0. By the implicit function

x
theorem, x, = h(x, ... ,nx,,,l) for a C! function h near 7).
e Now f = f(x1,...,Xn—1,h(x1,...,xp—1)) attains an
unconstrained local extremum at rp. Thus
S(m)=...= 32=(") =0.
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g—:l(r?)) =...= 85:_1(%) = 0. By the chain rule,

of 0h _ n _
8x1+8X,,87X1_0_
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@ Assume (WLog) that 72 (1) # 0. By the implicit function
theorem, x, = h(x, ... ,x,,,l) for a C! function h near 7).
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@ Assume (WLog) that 72 (1) # 0. By the implicit function
theorem, x, = h(x, ... ,x,,,l) for a C! function h near 7).
e Now f = f(x1,...,Xn—1,h(x1,...,xp—1)) attains an
un~constrained local extremum at 5. Thus
g—:l(r?)) =...= 85:_1(%) = 0. By the chain rule,

of 0h _ n _
8x1 + Ox, Ox1 =0=

e However, since g(xi,...,%p—1, h(x1,...)) = 0, differentiating
both sides usmg the chaln rule, g, + 8x,hx, =0 =

o Thus, 2% = g for all 1 < i< n—1. Therefore, Vf = AVg

at 1.

@ By the way, the second derivative test for constrained local
extrema is too complicated for us.
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Example 1

@ Let's go back to maximising f = x + y + z subject to
g:X2—|—y2—|—22—1:0.
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g =x%>+y?+ 22 — 1 =0. Note that the level set is a regular
closed surface that is a bounded set. f is continuous and
hence the global max is a local max and we can use
Lagrange's multipliers: Vf = (1,1,1) and Vg = (2x, 2y, 2z).
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@ Let's go back to maximising f = x + y + z subject to
g =x%>+y?+ 22 — 1 =0. Note that the level set is a regular
closed surface that is a bounded set. f is continuous and
hence the global max is a local max and we can use
Lagrange's multipliers: Vf = (1,1,1) and Vg = (2x, 2y, 2z).
Thus, Vf = AVg implies that x =y = z.
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Example 1

@ Let's go back to maximising f = x + y + z subject to
g =x%>+y?+ 22 — 1 =0. Note that the level set is a regular
closed surface that is a bounded set. f is continuous and
hence the global max is a local max and we can use
Lagrange's multipliers: Vf = (1,1,1) and Vg = (2x, 2y, 2z).
Thus, Vf = AVg implies that x = y = z. Since
X2—|—y2+z2:1,x:y:z::|:%.
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Example 1

@ Let's go back to maximising f = x + y + z subject to
g =x%>+y?+ 22 — 1 =0. Note that the level set is a regular
closed surface that is a bounded set. f is continuous and
hence the global max is a local max and we can use
Lagrange's multipliers: Vf = (1,1,1) and Vg = (2x, 2y, 2z).
Thus, Vf = AVg implies that x = y = z. Since
X2—|—y2+z2:1,x:y:z::|:%. One of these
corresponds to the maximum and the other to the minimum.
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e Maximise f(x,...,Xn) = Xx1X2...Xp on x; > 0 subject to

Vamsi Pritham Pingali Lecture 40 9/9



Example 2

e Maximise f(x,...,Xn) = Xx1X2...Xp on x; > 0 subject to
xX1+x0+...+x,=a>0.
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Example 2

e Maximise f(x,...,Xn) = Xx1X2...Xp on x; > 0 subject to
x1+x2+ ...+ x, =a > 0. The constraining surface is a
closed set and a bounded set.
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x1+x2+ ...+ x, =a > 0. The constraining surface is a
closed set and a bounded set. However it is NOT a closed
surface and has a boundary corresponding to one of the x;
being 0. At these boundary points, f = 0.

@ Let us look at the interior local extrema:
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Example 2

e Maximise f(x,...,Xn) = Xx1X2...Xp on x; > 0 subject to
x1+x2+ ...+ x, =a > 0. The constraining surface is a
closed set and a bounded set. However it is NOT a closed
surface and has a boundary corresponding to one of the x;
being 0. At these boundary points, f = 0.

@ Let us look at the interior local extrema:

Vg =(1,1,...,1) # 0. Hence we can use Lagrange’s
multipliers.
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Example 2

e Maximise f(x,...,Xn) = Xx1X2...Xp on x; > 0 subject to
x1+x2+ ...+ x, =a > 0. The constraining surface is a
closed set and a bounded set. However it is NOT a closed
surface and has a boundary corresponding to one of the x;
being 0. At these boundary points, f = 0.

@ Let us look at the interior local extrema:
Vg =(1,1,...,1) # 0. Hence we can use Lagrange’s
multipliers.

o Vf=(xx3...xn,x1x3...,...) =A(1,1,...).
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Example 2

e Maximise f(x,...,Xn) = Xx1X2...Xp on x; > 0 subject to
x1+x2+ ...+ x, =a > 0. The constraining surface is a
closed set and a bounded set. However it is NOT a closed
surface and has a boundary corresponding to one of the x;
being 0. At these boundary points, f = 0.

@ Let us look at the interior local extrema:
Vg =(1,1,...,1) # 0. Hence we can use Lagrange’s

multipliers.
o VFf=(xx3...%0x1x3...,...)=A1,1,...). Thus
— — __a
Xl_XZ_"'_E'
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e Maximise f(x,...,Xn) = Xx1X2...Xp on x; > 0 subject to
x1+x2+ ...+ x, =a > 0. The constraining surface is a
closed set and a bounded set. However it is NOT a closed
surface and has a boundary corresponding to one of the x;
being 0. At these boundary points, f = 0.

@ Let us look at the interior local extrema:
Vg =(1,1,...,1) # 0. Hence we can use Lagrange’s

multipliers.
o VFf=(xx3...%0x1x3...,...)=A1,1,...). Thus
X] =Xp = ...= % Thus the maximum value of f is
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Example 2

e Maximise f(x,...,Xn) = Xx1X2...Xp on x; > 0 subject to
x1+x2+ ...+ x, =a > 0. The constraining surface is a
closed set and a bounded set. However it is NOT a closed
surface and has a boundary corresponding to one of the x;
being 0. At these boundary points, f = 0.

@ Let us look at the interior local extrema:
Vg =(1,1,...,1) # 0. Hence we can use Lagrange’s

multipliers.
o VFf=(xx3...%0x1x3...,...)=A1,1,...). Thus
X] =Xp = ...= % Thus the maximum value of f is z—:
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Example 2

e Maximise f(x,...,Xn) = Xx1X2...Xp on x; > 0 subject to
x1+x2+ ...+ x, =a > 0. The constraining surface is a
closed set and a bounded set. However it is NOT a closed
surface and has a boundary corresponding to one of the x;
being 0. At these boundary points, f = 0.

@ Let us look at the interior local extrema:
Vg =(1,1,...,1) # 0. Hence we can use Lagrange’s

multipliers.
o VFf=(xx3...%0x1x3...,...)=A1,1,...). Thus
X1 = X2 = ... = 2. Thus the maximum value of f is f}—: This

means that f1/" < & for all x; > 0.
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Example 2

e Maximise f(x,...,Xn) = Xx1X2...Xp on x; > 0 subject to
x1+x2+ ...+ x, =a > 0. The constraining surface is a
closed set and a bounded set. However it is NOT a closed
surface and has a boundary corresponding to one of the x;
being 0. At these boundary points, f = 0.

@ Let us look at the interior local extrema:
Vg =(1,1,...,1) # 0. Hence we can use Lagrange’s

multipliers.
o VFf=(xx3...%0x1x3...,...)=A1,1,...). Thus
X1 = X2 = ... = 2. Thus the maximum value of f is f}—: This

means that /" < % for all x; > 0. This inequality is the
famous AM-GM inequality.
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