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Recap

Partitions of rectangles, step functions, their double integrals,
properties, iterated integrals, and Fubini’s theorem.

Bounded functions over rectangles, their double integrals,
properties, Fubini’s theorem.

Continuous functions over rectangles are double integrable
and satisfy Fubini’s theorem.

Discontinuous functions over rectangles are double integrable
if their discontinuities have “zero area”. For instance, a finite
collection of C 1 regular paths like (x , f (x)), (y , g(y)) have
zero area.
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Non-rectangular domains

If Ω is a bounded region, i.e., it is contained in some rectangle
Q, then extend f to f̃ on Q by setting it to 0 outside Ω.

Def: A bounded function f is said to be integrable over Ω if∫ ∫
Ω fdA :=

∫ ∫
Q f̃ dA exists.

One can prove that this definition makes sense, i.e., a
different choice of Q does not change anything.

The real problem is whether one can prove that continuous
functions f are integrable and whether Fubini holds. For this,
it is crucial that the boundary of Ω (the place where f̃ can be
discontinuous) is of zero area. Surely this is the case for
Type-I domains: a ≤ x ≤ b, φ1(x) ≤ y ≤ φ2(x) where φ1, φ2

are C 1 on [a, b], and Type-II domains:
c ≤ y ≤ d , ψ1(y) ≤ x ≤ ψ2(y) where ψ1, ψ2 are C 1 on [c , d ].
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different choice of Q does not change anything.

The real problem is whether one can prove that continuous
functions f are integrable and whether Fubini holds. For this,
it is crucial that the boundary of Ω (the place where f̃ can be
discontinuous)

is of zero area. Surely this is the case for
Type-I domains: a ≤ x ≤ b, φ1(x) ≤ y ≤ φ2(x) where φ1, φ2

are C 1 on [a, b], and Type-II domains:
c ≤ y ≤ d , ψ1(y) ≤ x ≤ ψ2(y) where ψ1, ψ2 are C 1 on [c , d ].
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Fubini for certain domains

Let S be a Type-I region, i.e., a ≤ x ≤ b, φ1(x) ≤ y ≤ φ2(x).
Assume that f : S → R is bounded and continuous on the
interior. Then

∫ ∫
S f exists and equals

∫ b
a

∫ φ2(x)
φ1(x) f (x , y)dydx .

(Likewise, for Type-II. If it is both of Type-I and Type-II, it is
sometimes called Type-III and in that case, the iterated
integrals are equal.)

Proof: Recall that the boundary of a Type-I domain has zero
area. Thus the extension f̃ to [a, b]× [c , d ] is integrable.

Moreover, for each x ,
∫ d
c f̃ (x , y)dy is integrable because there

are at most two discontinuities. Thus by Fubini,
∫ ∫

S f :=∫ ∫
Q f̃ =

∫ b
a

∫ d
c f̃ (x , y)dydx =

∫ b
a

∫ φ2(x)
φ1(x) f (x , y)dydx .
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sometimes called Type-III and in that case, the iterated
integrals are equal.)

Proof: Recall that the boundary of a Type-I domain has zero
area. Thus the extension f̃ to [a, b]× [c , d ] is integrable.

Moreover, for each x ,
∫ d
c f̃ (x , y)dy is integrable because there

are at most two discontinuities. Thus by Fubini,

∫ ∫
S f :=∫ ∫

Q f̃ =
∫ b
a

∫ d
c f̃ (x , y)dydx =

∫ b
a

∫ φ2(x)
φ1(x) f (x , y)dydx .
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Examples

Firstly, if S is a Type-I domain, then∫ ∫
S dA =

∫ b
a (φ2(x)− φ1(x))dx is indeed the Area. Likewise,∫ ∫ ∫

S dV is the volume of a Type-I domain in 3-D. The same
results hold for Type-II domains as well.
Example 1: Calculate the volume of an ellipsoid:
x2

a2 + y2

b2 + z2

c2 = 1. An ellipsoid is a Type-I domain in 3-D:

−c
√

1− x2/a2 − y2/b2 ≤ z ≤ c
√

1− x2/a2 − y2/b2. Thus
the volume is

∫ ∫ ∫
dV = 2c

∫ ∫ √
1− x2/a2 − y2/b2dA over

x2

a2 + y2

b2 ≤ 1. Now the latter is a Type-I domain in 2D:

−b
√

1− x2/a2 ≤ y ≤ b
√

1− x2/a2. Thus the volume is

2bc
∫ a
−a
∫ b
√

1−x2/a2

−b
√

1−x2/a2

√
1− x2/a2 − y2/b2dydx . Now

A(x) =
∫ b
√

1−x2/a2

−b
√

1−x2/a2

√
1− x2/a2 − y2/b2dy can be evaluated

easily by substitution (or by geometry) and found to be

b π2 (1− x2

a2 ). Now the final volume is

bc
∫ a
−a π(1− x2

a2 )dx = 4
3πabc.
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Examples

Example 2: Suppose f is continuous on a bounded region S

and
∫ ∫

S fdA =
∫ 3

0

∫√25−y2

4y/3 f (x , y)dxdy . then sketch S and

interchange the order of integration: 4y
3 ≤ x ≤

√
25− y2.

Hence it is the region between a circle and a line passing
through the centre. x = 4y

3 and x =
√

25− y2 intersect at
(4, 3). Thus we have two regions 0 ≤ y ≤ 3x

4 in 0 ≤ x ≤ 4

and 0 ≤ x ≤
√

25− y2 in 4 ≤ x ≤ 5. So the integral is∫ 4
0

∫ 3x/4
0 fdydx +

∫ 5
4

∫√25−y2

0 fdydx .

Example 3: Calculate
∫ ∫

[−1,1]×[0,2]

√
|y − x2|dA. We

integrate over y first:
∫ 1
−1(
∫ x2

0

√
x2 − ydy +

∫ 2
x2

√
y − x2dy).

Since x is a constant, we can easily integrate to get
2
3x

3 + 2
3

(
2− x2

)3/2
. The second term can be evaluated by

trigonometric substitution. So we get 4
3 + π

2 . Note that first
integrating over x would have made life worse.
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What should an FTC look like?

We want to formulate a fundamental theorem of calculus. In
1-D, recall that it is

∫ b
a f ′(x)dx = f (b)− f (a). In other

words, “the integral of a derivative over a region boils down to
its boundary”.

So in 2D, there are a few questions: What regions must we
consider? If f (x , y) is a scalar field, what “derivative” must
we integrate? and since the boundary is a curve, what must
the integral boil down to (presumably a line integral on the
boundary)?

For the first question, we must choose a domain whose
boundary is a piecewise C 1 regular curve (to make sense of
line integrals). Furthermore, the region must not have “holes”
because then the boundary can be more than one curve (such
regions are called simply connected). It turns out that every
simple closed curve divides R2 into two regions the interior
region is simply connected (Jordan curve theorem).
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the integral boil down to (presumably a line integral on the
boundary)?

For the first question, we must choose a domain whose
boundary is a piecewise C 1 regular curve (to make sense of
line integrals). Furthermore, the region must not have “holes”
because then the boundary can be more than one curve (such
regions are called simply connected). It turns out that every
simple closed curve divides R2 into two regions the interior
region is simply connected (Jordan curve theorem).
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line integrals). Furthermore, the region must not have “holes”
because then the boundary can be more than one curve (such
regions are called simply connected). It turns out that every
simple closed curve divides R2 into two regions

the interior
region is simply connected (Jordan curve theorem).
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Green’s theorem

Theorem: Let P,Q be C 1 scalar fields on a simply connected
closed set S whose boundary is a piecewise C 1 regular
curve.Then

∫
C (Pdx + Qdy) taken in the anti-clockwise

direction equals
∫ ∫

S

(
∂Q
∂x −

∂P
∂y

)
dA.

The proof is quite painful and is frankly, beyond the scope of
this course. However, let us look at a special case of a
rectangle: The boundary is piecewise C 1 and is parametrised
as (t, c) a ≤ t ≤ b, (b, t) c ≤ t ≤ d , (−t, d) − b ≤ t ≤ −a,
and (a,−t) − d ≤ t ≤ −c . Thus the line integral is∫ b
a P(t, c)dt −

∫ −a
−b P(−t, d)dt +

∫ d
c Q(b, t)dt −∫ −c

−d Q(a,−t)dt. By the usual FTC, this equals the other side
of Green’s theorem.
It is not hard to do the same thing for Type-III domains
(HW). In the general case, one approximates the boundary by
a many-sided polygon and breaks the interior of this polygon
up into a bunch of rectangles and triangles (all Type-III).
Then one applies the above proof to each and adds.
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