Lecture 35 - UM 102 (Spring 2021)

Vamsi Pritham Pingali

IISc

Recap

Recap

- Partitions of rectangles,

Recap

- Partitions of rectangles, step functions,
- Partitions of rectangles, step functions, their double integrals,
- Partitions of rectangles, step functions, their double integrals, properties,
- Partitions of rectangles, step functions, their double integrals, properties, iterated integrals,
- Partitions of rectangles, step functions, their double integrals, properties, iterated integrals, and Fubini's theorem.
- Partitions of rectangles, step functions, their double integrals, properties, iterated integrals, and Fubini's theorem.
- Bounded functions over rectangles,
- Partitions of rectangles, step functions, their double integrals, properties, iterated integrals, and Fubini's theorem.
- Bounded functions over rectangles, their double integrals,
- Partitions of rectangles, step functions, their double integrals, properties, iterated integrals, and Fubini's theorem.
- Bounded functions over rectangles, their double integrals, properties,
- Partitions of rectangles, step functions, their double integrals, properties, iterated integrals, and Fubini's theorem.
- Bounded functions over rectangles, their double integrals, properties, Fubini's theorem.
- Partitions of rectangles, step functions, their double integrals, properties, iterated integrals, and Fubini's theorem.
- Bounded functions over rectangles, their double integrals, properties, Fubini's theorem.
- Continuous functions over rectangles
- Partitions of rectangles, step functions, their double integrals, properties, iterated integrals, and Fubini's theorem.
- Bounded functions over rectangles, their double integrals, properties, Fubini's theorem.
- Continuous functions over rectangles are double integrable
- Partitions of rectangles, step functions, their double integrals, properties, iterated integrals, and Fubini's theorem.
- Bounded functions over rectangles, their double integrals, properties, Fubini's theorem.
- Continuous functions over rectangles are double integrable and satisfy Fubini's theorem.
- Partitions of rectangles, step functions, their double integrals, properties, iterated integrals, and Fubini's theorem.
- Bounded functions over rectangles, their double integrals, properties, Fubini's theorem.
- Continuous functions over rectangles are double integrable and satisfy Fubini's theorem.
- Discontinuous functions over rectangles
- Partitions of rectangles, step functions, their double integrals, properties, iterated integrals, and Fubini's theorem.
- Bounded functions over rectangles, their double integrals, properties, Fubini's theorem.
- Continuous functions over rectangles are double integrable and satisfy Fubini's theorem.
- Discontinuous functions over rectangles are double integrable if
- Partitions of rectangles, step functions, their double integrals, properties, iterated integrals, and Fubini's theorem.
- Bounded functions over rectangles, their double integrals, properties, Fubini's theorem.
- Continuous functions over rectangles are double integrable and satisfy Fubini's theorem.
- Discontinuous functions over rectangles are double integrable if their discontinuities have "zero area".
- Partitions of rectangles, step functions, their double integrals, properties, iterated integrals, and Fubini's theorem.
- Bounded functions over rectangles, their double integrals, properties, Fubini's theorem.
- Continuous functions over rectangles are double integrable and satisfy Fubini's theorem.
- Discontinuous functions over rectangles are double integrable if their discontinuities have "zero area". For instance,

Recap

- Partitions of rectangles, step functions, their double integrals, properties, iterated integrals, and Fubini's theorem.
- Bounded functions over rectangles, their double integrals, properties, Fubini's theorem.
- Continuous functions over rectangles are double integrable and satisfy Fubini's theorem.
- Discontinuous functions over rectangles are double integrable if their discontinuities have "zero area". For instance, a finite collection of C^{1} regular paths

Recap

- Partitions of rectangles, step functions, their double integrals, properties, iterated integrals, and Fubini's theorem.
- Bounded functions over rectangles, their double integrals, properties, Fubini's theorem.
- Continuous functions over rectangles are double integrable and satisfy Fubini's theorem.
- Discontinuous functions over rectangles are double integrable if their discontinuities have "zero area". For instance, a finite collection of C^{1} regular paths like $(x, f(x)),(y, g(y))$

Recap

- Partitions of rectangles, step functions, their double integrals, properties, iterated integrals, and Fubini's theorem.
- Bounded functions over rectangles, their double integrals, properties, Fubini's theorem.
- Continuous functions over rectangles are double integrable and satisfy Fubini's theorem.
- Discontinuous functions over rectangles are double integrable if their discontinuities have "zero area". For instance, a finite collection of C^{1} regular paths like $(x, f(x)),(y, g(y))$ have zero area.

Non-rectangular domains

Non-rectangular domains

- If Ω is a bounded region, i.e.,
- If Ω is a bounded region, i.e., it is contained in some rectangle Q,
- If Ω is a bounded region, i.e., it is contained in some rectangle Q, then extend f to \tilde{f} on Q
- If Ω is a bounded region, i.e., it is contained in some rectangle Q, then extend f to \tilde{f} on Q by setting it to 0 outside Ω.
- If Ω is a bounded region, i.e., it is contained in some rectangle Q, then extend f to \tilde{f} on Q by setting it to 0 outside Ω.
- Def:

Non-rectangular domains

- If Ω is a bounded region, i.e., it is contained in some rectangle Q, then extend f to \tilde{f} on Q by setting it to 0 outside Ω.
- Def: A bounded function f is said to be integrable

Non-rectangular domains

- If Ω is a bounded region, i.e., it is contained in some rectangle Q, then extend f to \tilde{f} on Q by setting it to 0 outside Ω.
- Def: A bounded function f is said to be integrable over Ω if $\iint_{\Omega} f d A:=\iint_{Q} \tilde{f} d A$ exists.

Non-rectangular domains

- If Ω is a bounded region, i.e., it is contained in some rectangle Q, then extend f to \tilde{f} on Q by setting it to 0 outside Ω.
- Def: A bounded function f is said to be integrable over Ω if $\iint_{\Omega} f d A:=\iint_{Q} \tilde{f} d A$ exists.
- One can prove that

Non-rectangular domains

- If Ω is a bounded region, i.e., it is contained in some rectangle Q, then extend f to \tilde{f} on Q by setting it to 0 outside Ω.
- Def: A bounded function f is said to be integrable over Ω if $\iint_{\Omega} f d A:=\iint_{Q} \tilde{f} d A$ exists.
- One can prove that this definition makes sense,

Non-rectangular domains

- If Ω is a bounded region, i.e., it is contained in some rectangle Q, then extend f to \tilde{f} on Q by setting it to 0 outside Ω.
- Def: A bounded function f is said to be integrable over Ω if $\iint_{\Omega} f d A:=\iint_{Q} \tilde{f} d A$ exists.
- One can prove that this definition makes sense, i.e., a different choice of Q does not change anything.

Non-rectangular domains

- If Ω is a bounded region, i.e., it is contained in some rectangle Q, then extend f to \tilde{f} on Q by setting it to 0 outside Ω.
- Def: A bounded function f is said to be integrable over Ω if $\iint_{\Omega} f d A:=\iint_{Q} \tilde{f} d A$ exists.
- One can prove that this definition makes sense, i.e., a different choice of Q does not change anything.
- The real problem is

Non-rectangular domains

- If Ω is a bounded region, i.e., it is contained in some rectangle Q, then extend f to \tilde{f} on Q by setting it to 0 outside Ω.
- Def: A bounded function f is said to be integrable over Ω if $\iint_{\Omega} f d A:=\iint_{Q} \tilde{f} d A$ exists.
- One can prove that this definition makes sense, i.e., a different choice of Q does not change anything.
- The real problem is whether one can prove that

Non-rectangular domains

- If Ω is a bounded region, i.e., it is contained in some rectangle Q, then extend f to \tilde{f} on Q by setting it to 0 outside Ω.
- Def: A bounded function f is said to be integrable over Ω if $\iint_{\Omega} f d A:=\iint_{Q} \tilde{f} d A$ exists.
- One can prove that this definition makes sense, i.e., a different choice of Q does not change anything.
- The real problem is whether one can prove that continuous functions f are integrable

Non-rectangular domains

- If Ω is a bounded region, i.e., it is contained in some rectangle Q, then extend f to \tilde{f} on Q by setting it to 0 outside Ω.
- Def: A bounded function f is said to be integrable over Ω if $\iint_{\Omega} f d A:=\iint_{Q} \tilde{f} d A$ exists.
- One can prove that this definition makes sense, i.e., a different choice of Q does not change anything.
- The real problem is whether one can prove that continuous functions f are integrable and whether Fubini holds.

Non-rectangular domains

- If Ω is a bounded region, i.e., it is contained in some rectangle Q, then extend f to \tilde{f} on Q by setting it to 0 outside Ω.
- Def: A bounded function f is said to be integrable over Ω if $\iint_{\Omega} f d A:=\iint_{Q} \tilde{f} d A$ exists.
- One can prove that this definition makes sense, i.e., a different choice of Q does not change anything.
- The real problem is whether one can prove that continuous functions f are integrable and whether Fubini holds. For this, it is crucial that

Non-rectangular domains

- If Ω is a bounded region, i.e., it is contained in some rectangle Q, then extend f to \tilde{f} on Q by setting it to 0 outside Ω.
- Def: A bounded function f is said to be integrable over Ω if $\iint_{\Omega} f d A:=\iint_{Q} \tilde{f} d A$ exists.
- One can prove that this definition makes sense, i.e., a different choice of Q does not change anything.
- The real problem is whether one can prove that continuous functions f are integrable and whether Fubini holds. For this, it is crucial that the boundary of Ω (

Non-rectangular domains

- If Ω is a bounded region, i.e., it is contained in some rectangle Q, then extend f to \tilde{f} on Q by setting it to 0 outside Ω.
- Def: A bounded function f is said to be integrable over Ω if $\iint_{\Omega} f d A:=\iint_{Q} \tilde{f} d A$ exists.
- One can prove that this definition makes sense, i.e., a different choice of Q does not change anything.
- The real problem is whether one can prove that continuous functions f are integrable and whether Fubini holds. For this, it is crucial that the boundary of Ω (the place where \tilde{f} can be discontinuous)

Non-rectangular domains

- If Ω is a bounded region, i.e., it is contained in some rectangle Q, then extend f to \tilde{f} on Q by setting it to 0 outside Ω.
- Def: A bounded function f is said to be integrable over Ω if $\iint_{\Omega} f d A:=\iint_{Q} \tilde{f} d A$ exists.
- One can prove that this definition makes sense, i.e., a different choice of Q does not change anything.
- The real problem is whether one can prove that continuous functions f are integrable and whether Fubini holds. For this, it is crucial that the boundary of Ω (the place where \tilde{f} can be discontinuous) is of zero area.

Non-rectangular domains

- If Ω is a bounded region, i.e., it is contained in some rectangle Q, then extend f to \tilde{f} on Q by setting it to 0 outside Ω.
- Def: A bounded function f is said to be integrable over Ω if $\iint_{\Omega} f d A:=\iint_{Q} \tilde{f} d A$ exists.
- One can prove that this definition makes sense, i.e., a different choice of Q does not change anything.
- The real problem is whether one can prove that continuous functions f are integrable and whether Fubini holds. For this, it is crucial that the boundary of Ω (the place where \tilde{f} can be discontinuous) is of zero area. Surely this is the case for

Non-rectangular domains

- If Ω is a bounded region, i.e., it is contained in some rectangle Q, then extend f to \tilde{f} on Q by setting it to 0 outside Ω.
- Def: A bounded function f is said to be integrable over Ω if $\iint_{\Omega} f d A:=\iint_{Q} \tilde{f} d A$ exists.
- One can prove that this definition makes sense, i.e., a different choice of Q does not change anything.
- The real problem is whether one can prove that continuous functions f are integrable and whether Fubini holds. For this, it is crucial that the boundary of Ω (the place where \tilde{f} can be discontinuous) is of zero area. Surely this is the case for Type-I domains: $a \leq x \leq b, \phi_{1}(x) \leq y \leq \phi_{2}(x)$ where ϕ_{1}, ϕ_{2} are C^{1} on $[a, b]$, and

Non-rectangular domains

- If Ω is a bounded region, i.e., it is contained in some rectangle Q, then extend f to \tilde{f} on Q by setting it to 0 outside Ω.
- Def: A bounded function f is said to be integrable over Ω if $\iint_{\Omega} f d A:=\iint_{Q} \tilde{f} d A$ exists.
- One can prove that this definition makes sense, i.e., a different choice of Q does not change anything.
- The real problem is whether one can prove that continuous functions f are integrable and whether Fubini holds. For this, it is crucial that the boundary of Ω (the place where \tilde{f} can be discontinuous) is of zero area. Surely this is the case for Type-I domains: $a \leq x \leq b, \phi_{1}(x) \leq y \leq \phi_{2}(x)$ where ϕ_{1}, ϕ_{2} are C^{1} on $[a, b]$, and Type-II domains:
$c \leq y \leq d, \psi_{1}(y) \leq x \leq \psi_{2}(y)$ where ψ_{1}, ψ_{2} are C^{1} on $[c, d]$.

Fubini for certain domains

Fubini for certain domains

- Let S be a Type-I region,
- Let S be a Type-I region, i.e., $a \leq x \leq b, \phi_{1}(x) \leq y \leq \phi_{2}(x)$.
- Let S be a Type-I region, i.e., $a \leq x \leq b, \phi_{1}(x) \leq y \leq \phi_{2}(x)$. Assume that $f: S \rightarrow \mathbb{R}$ is bounded and
- Let S be a Type-I region, i.e., $a \leq x \leq b, \phi_{1}(x) \leq y \leq \phi_{2}(x)$. Assume that $f: S \rightarrow \mathbb{R}$ is bounded and continuous on the interior.
- Let S be a Type-I region, i.e., $a \leq x \leq b, \phi_{1}(x) \leq y \leq \phi_{2}(x)$. Assume that $f: S \rightarrow \mathbb{R}$ is bounded and continuous on the interior. Then $\iint_{S} f$ exists and equals
- Let S be a Type-I region, i.e., $a \leq x \leq b, \phi_{1}(x) \leq y \leq \phi_{2}(x)$. Assume that $f: S \rightarrow \mathbb{R}$ is bounded and continuous on the interior. Then $\iint_{S} f$ exists and equals $\int_{a}^{b} \int_{\phi_{1}(x)}^{\phi_{2}(x)} f(x, y) d y d x$. (
- Let S be a Type-I region, i.e., $a \leq x \leq b, \phi_{1}(x) \leq y \leq \phi_{2}(x)$. Assume that $f: S \rightarrow \mathbb{R}$ is bounded and continuous on the interior. Then $\iint_{S} f$ exists and equals $\int_{a}^{b} \int_{\phi_{1}(x)}^{\phi_{2}(x)} f(x, y) d y d x$. (Likewise, for Type-II.
- Let S be a Type-I region, i.e., $a \leq x \leq b, \phi_{1}(x) \leq y \leq \phi_{2}(x)$. Assume that $f: S \rightarrow \mathbb{R}$ is bounded and continuous on the interior. Then $\iint_{S} f$ exists and equals $\int_{a}^{b} \int_{\phi_{1}(x)}^{\phi_{2}(x)} f(x, y) d y d x$. (Likewise, for Type-II. If it is both of Type-I and Type-II,
- Let S be a Type-I region, i.e., $a \leq x \leq b, \phi_{1}(x) \leq y \leq \phi_{2}(x)$. Assume that $f: S \rightarrow \mathbb{R}$ is bounded and continuous on the interior. Then $\iint_{S} f$ exists and equals $\int_{a}^{b} \int_{\phi_{1}(x)}^{\phi_{2}(x)} f(x, y) d y d x$. (Likewise, for Type-II. If it is both of Type-I and Type-II, it is sometimes called Type-III and
- Let S be a Type-I region, i.e., $a \leq x \leq b, \phi_{1}(x) \leq y \leq \phi_{2}(x)$. Assume that $f: S \rightarrow \mathbb{R}$ is bounded and continuous on the interior. Then $\iint_{S} f$ exists and equals $\int_{a}^{b} \int_{\phi_{1}(x)}^{\phi_{2}(x)} f(x, y) d y d x$. (Likewise, for Type-II. If it is both of Type-I and Type-II, it is sometimes called Type-III and in that case, the iterated integrals
- Let S be a Type-I region, i.e., $a \leq x \leq b, \phi_{1}(x) \leq y \leq \phi_{2}(x)$. Assume that $f: S \rightarrow \mathbb{R}$ is bounded and continuous on the interior. Then $\iint_{S} f$ exists and equals $\int_{a}^{b} \int_{\phi_{1}(x)}^{\phi_{2}(x)} f(x, y) d y d x$. (Likewise, for Type-II. If it is both of Type-I and Type-II, it is sometimes called Type-III and in that case, the iterated integrals are equal.)
- Let S be a Type-I region, i.e., $a \leq x \leq b, \phi_{1}(x) \leq y \leq \phi_{2}(x)$. Assume that $f: S \rightarrow \mathbb{R}$ is bounded and continuous on the interior. Then $\iint_{S} f$ exists and equals $\int_{a}^{b} \int_{\phi_{1}(x)}^{\phi_{2}(x)} f(x, y) d y d x$. (Likewise, for Type-II. If it is both of Type-I and Type-II, it is sometimes called Type-III and in that case, the iterated integrals are equal.)
- Proof:
- Let S be a Type-I region, i.e., $a \leq x \leq b, \phi_{1}(x) \leq y \leq \phi_{2}(x)$. Assume that $f: S \rightarrow \mathbb{R}$ is bounded and continuous on the interior. Then $\iint_{S} f$ exists and equals $\int_{a}^{b} \int_{\phi_{1}(x)}^{\phi_{2}(x)} f(x, y) d y d x$. (Likewise, for Type-II. If it is both of Type-I and Type-II, it is sometimes called Type-III and in that case, the iterated integrals are equal.)
- Proof: Recall that the boundary of
- Let S be a Type-I region, i.e., $a \leq x \leq b, \phi_{1}(x) \leq y \leq \phi_{2}(x)$. Assume that $f: S \rightarrow \mathbb{R}$ is bounded and continuous on the interior. Then $\iint_{S} f$ exists and equals $\int_{a}^{b} \int_{\phi_{1}(x)}^{\phi_{2}(x)} f(x, y) d y d x$. (Likewise, for Type-II. If it is both of Type-I and Type-II, it is sometimes called Type-III and in that case, the iterated integrals are equal.)
- Proof: Recall that the boundary of a Type-I domain has zero area.
- Let S be a Type-I region, i.e., $a \leq x \leq b, \phi_{1}(x) \leq y \leq \phi_{2}(x)$. Assume that $f: S \rightarrow \mathbb{R}$ is bounded and continuous on the interior. Then $\iint_{S} f$ exists and equals $\int_{a}^{b} \int_{\phi_{1}(x)}^{\phi_{2}(x)} f(x, y) d y d x$. (Likewise, for Type-II. If it is both of Type-I and Type-II, it is sometimes called Type-III and in that case, the iterated integrals are equal.)
- Proof: Recall that the boundary of a Type-I domain has zero area. Thus the extension \tilde{f} to
- Let S be a Type-I region, i.e., $a \leq x \leq b, \phi_{1}(x) \leq y \leq \phi_{2}(x)$. Assume that $f: S \rightarrow \mathbb{R}$ is bounded and continuous on the interior. Then $\iint_{S} f$ exists and equals $\int_{a}^{b} \int_{\phi_{1}(x)}^{\phi_{2}(x)} f(x, y) d y d x$. (Likewise, for Type-II. If it is both of Type-I and Type-II, it is sometimes called Type-III and in that case, the iterated integrals are equal.)
- Proof: Recall that the boundary of a Type-I domain has zero area. Thus the extension \tilde{f} to $[a, b] \times[c, d]$ is integrable.
- Let S be a Type-I region, i.e., $a \leq x \leq b, \phi_{1}(x) \leq y \leq \phi_{2}(x)$. Assume that $f: S \rightarrow \mathbb{R}$ is bounded and continuous on the interior. Then $\iint_{S} f$ exists and equals $\int_{a}^{b} \int_{\phi_{1}(x)}^{\phi_{2}(x)} f(x, y) d y d x$. (Likewise, for Type-II. If it is both of Type-I and Type-II, it is sometimes called Type-III and in that case, the iterated integrals are equal.)
- Proof: Recall that the boundary of a Type-I domain has zero area. Thus the extension \tilde{f} to $[a, b] \times[c, d]$ is integrable. Moreover, for each x,
- Let S be a Type-I region, i.e., $a \leq x \leq b, \phi_{1}(x) \leq y \leq \phi_{2}(x)$. Assume that $f: S \rightarrow \mathbb{R}$ is bounded and continuous on the interior. Then $\iint_{S} f$ exists and equals $\int_{a}^{b} \int_{\phi_{1}(x)}^{\phi_{2}(x)} f(x, y) d y d x$. (Likewise, for Type-II. If it is both of Type-I and Type-II, it is sometimes called Type-III and in that case, the iterated integrals are equal.)
- Proof: Recall that the boundary of a Type-I domain has zero area. Thus the extension \tilde{f} to $[a, b] \times[c, d]$ is integrable. Moreover, for each $x, \int_{c}^{d} \tilde{f}(x, y) d y$ is integrable because
- Let S be a Type-I region, i.e., $a \leq x \leq b, \phi_{1}(x) \leq y \leq \phi_{2}(x)$. Assume that $f: S \rightarrow \mathbb{R}$ is bounded and continuous on the interior. Then $\iint_{S} f$ exists and equals $\int_{a}^{b} \int_{\phi_{1}(x)}^{\phi_{2}(x)} f(x, y) d y d x$. (Likewise, for Type-II. If it is both of Type-I and Type-II, it is sometimes called Type-III and in that case, the iterated integrals are equal.)
- Proof: Recall that the boundary of a Type-I domain has zero area. Thus the extension \tilde{f} to $[a, b] \times[c, d]$ is integrable. Moreover, for each $x, \int_{c}^{d} \tilde{f}(x, y) d y$ is integrable because there are at most two discontinuities.
- Let S be a Type-I region, i.e., $a \leq x \leq b, \phi_{1}(x) \leq y \leq \phi_{2}(x)$. Assume that $f: S \rightarrow \mathbb{R}$ is bounded and continuous on the interior. Then $\iint_{S} f$ exists and equals $\int_{a}^{b} \int_{\phi_{1}(x)}^{\phi_{2}(x)} f(x, y) d y d x$. (Likewise, for Type-II. If it is both of Type-I and Type-II, it is sometimes called Type-III and in that case, the iterated integrals are equal.)
- Proof: Recall that the boundary of a Type-I domain has zero area. Thus the extension \tilde{f} to $[a, b] \times[c, d]$ is integrable. Moreover, for each $x, \int_{c}^{d} \tilde{f}(x, y) d y$ is integrable because there are at most two discontinuities. Thus by Fubini,
- Let S be a Type-I region, i.e., $a \leq x \leq b, \phi_{1}(x) \leq y \leq \phi_{2}(x)$. Assume that $f: S \rightarrow \mathbb{R}$ is bounded and continuous on the interior. Then $\iint_{S} f$ exists and equals $\int_{a}^{b} \int_{\phi_{1}(x)}^{\phi_{2}(x)} f(x, y) d y d x$. (Likewise, for Type-II. If it is both of Type-I and Type-II, it is sometimes called Type-III and in that case, the iterated integrals are equal.)
- Proof: Recall that the boundary of a Type-I domain has zero area. Thus the extension \tilde{f} to $[a, b] \times[c, d]$ is integrable. Moreover, for each $x, \int_{c}^{d} \tilde{f}(x, y) d y$ is integrable because there are at most two discontinuities. Thus by Fubini, $\iint_{S} f:=$ $\iint_{Q} \tilde{f}=\int_{a}^{b} \int_{c}^{d} \tilde{f}(x, y) d y d x=\int_{a}^{b} \int_{\phi_{1}(x)}^{\phi_{2}(x)} f(x, y) d y d x$.

Examples

Examples

- Firstly, if S is a

Examples

- Firstly, if S is a Type-I domain, then

Examples

- Firstly, if S is a Type-I domain, then
$\iint_{S} d A=\int_{a}^{b}\left(\phi_{2}(x)-\phi_{1}(x)\right) d x$ is indeed the Area.
- Firstly, if S is a Type-I domain, then
$\iint_{S} d A=\int_{a}^{b}\left(\phi_{2}(x)-\phi_{1}(x)\right) d x$ is indeed the Area. Likewise, $\iiint_{S} d V$ is the volume
- Firstly, if S is a Type-I domain, then
$\iint_{S} d A=\int_{a}^{b}\left(\phi_{2}(x)-\phi_{1}(x)\right) d x$ is indeed the Area. Likewise, $\iiint_{S} d V$ is the volume of a Type-I domain in 3-D.
- Firstly, if S is a Type-I domain, then
$\iint_{S} d A=\int_{a}^{b}\left(\phi_{2}(x)-\phi_{1}(x)\right) d x$ is indeed the Area. Likewise, $\iiint_{S} d V$ is the volume of a Type-I domain in 3-D. The same results hold for Type-II domains as well.
- Firstly, if S is a Type-I domain, then
$\iint_{S} d A=\int_{a}^{b}\left(\phi_{2}(x)-\phi_{1}(x)\right) d x$ is indeed the Area. Likewise, $\iiint_{S} d V$ is the volume of a Type-I domain in 3-D. The same results hold for Type-II domains as well.
- Example 1:
- Firstly, if S is a Type-I domain, then
$\iint_{S} d A=\int_{a}^{b}\left(\phi_{2}(x)-\phi_{1}(x)\right) d x$ is indeed the Area. Likewise, $\iiint_{S} d V$ is the volume of a Type-I domain in 3-D. The same results hold for Type-II domains as well.
- Example 1: Calculate the volume of
- Firstly, if S is a Type-I domain, then
$\iint_{S} d A=\int_{a}^{b}\left(\phi_{2}(x)-\phi_{1}(x)\right) d x$ is indeed the Area. Likewise, $\iiint_{S} d V$ is the volume of a Type-I domain in 3-D. The same results hold for Type-II domains as well.
- Example 1: Calculate the volume of an ellipsoid:

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

- Firstly, if S is a Type-I domain, then
$\iint_{S} d A=\int_{a}^{b}\left(\phi_{2}(x)-\phi_{1}(x)\right) d x$ is indeed the Area. Likewise, $\iiint_{S} d V$ is the volume of a Type-I domain in 3-D. The same results hold for Type-II domains as well.
- Example 1: Calculate the volume of an ellipsoid:
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$. An ellipsoid is a Type-I domain in 3-D:
- Firstly, if S is a Type-I domain, then
$\iint_{S} d A=\int_{a}^{b}\left(\phi_{2}(x)-\phi_{1}(x)\right) d x$ is indeed the Area. Likewise, $\iiint_{S} d V$ is the volume of a Type-I domain in 3-D. The same results hold for Type-II domains as well.
- Example 1: Calculate the volume of an ellipsoid:

$$
\begin{aligned}
& \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1 \text {. An ellipsoid is a Type-I domain in 3-D: } \\
& -c \sqrt{1-x^{2} / a^{2}-y^{2} / b^{2}} \leq z \leq c \sqrt{1-x^{2} / a^{2}-y^{2} / b^{2}} .
\end{aligned}
$$

- Firstly, if S is a Type-I domain, then
$\iint_{S} d A=\int_{a}^{b}\left(\phi_{2}(x)-\phi_{1}(x)\right) d x$ is indeed the Area. Likewise, $\iiint_{S} d V$ is the volume of a Type-I domain in 3-D. The same results hold for Type-II domains as well.
- Example 1: Calculate the volume of an ellipsoid:
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$. An ellipsoid is a Type-I domain in 3-D:
$-c \sqrt{1-x^{2} / a^{2}-y^{2} / b^{2}} \leq z \leq c \sqrt{1-x^{2} / a^{2}-y^{2} / b^{2}}$. Thus the volume is
- Firstly, if S is a Type-I domain, then
$\iint_{S} d A=\int_{a}^{b}\left(\phi_{2}(x)-\phi_{1}(x)\right) d x$ is indeed the Area. Likewise, $\iiint_{S} d V$ is the volume of a Type-I domain in 3-D. The same results hold for Type-II domains as well.
- Example 1: Calculate the volume of an ellipsoid:
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$. An ellipsoid is a Type-I domain in 3-D:
$-c \sqrt{1-x^{2} / a^{2}-y^{2} / b^{2}} \leq z \leq c \sqrt{1-x^{2} / a^{2}-y^{2} / b^{2}}$. Thus the volume is $\iiint d V=2 c \iint \sqrt{1-x^{2} / a^{2}-y^{2} / b^{2}} d A$ over
- Firstly, if S is a Type-I domain, then
$\iint_{S} d A=\int_{a}^{b}\left(\phi_{2}(x)-\phi_{1}(x)\right) d x$ is indeed the Area. Likewise, $\iiint_{S} d V$ is the volume of a Type-I domain in 3-D. The same results hold for Type-II domains as well.
- Example 1: Calculate the volume of an ellipsoid:
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$. An ellipsoid is a Type-I domain in 3-D:
$-c \sqrt{1-x^{2} / a^{2}-y^{2} / b^{2}} \leq z \leq c \sqrt{1-x^{2} / a^{2}-y^{2} / b^{2}}$. Thus the volume is $\iiint d V=2 c \iint \sqrt{1-x^{2} / a^{2}-y^{2} / b^{2}} d A$ over $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} \leq 1$. Now the latter
- Firstly, if S is a Type-I domain, then
$\iint_{S} d A=\int_{a}^{b}\left(\phi_{2}(x)-\phi_{1}(x)\right) d x$ is indeed the Area. Likewise, $\iiint_{S} d V$ is the volume of a Type-I domain in 3-D. The same results hold for Type-II domains as well.
- Example 1: Calculate the volume of an ellipsoid:
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$. An ellipsoid is a Type-I domain in 3-D:
$-c \sqrt{1-x^{2} / a^{2}-y^{2} / b^{2}} \leq z \leq c \sqrt{1-x^{2} / a^{2}-y^{2} / b^{2}}$. Thus the volume is $\iiint d V=2 c \iint \sqrt{1-x^{2} / a^{2}-y^{2} / b^{2}} d A$ over $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} \leq 1$. Now the latter is a Type-I domain in $2 D$:
- Firstly, if S is a Type-I domain, then
$\iint_{S} d A=\int_{a}^{b}\left(\phi_{2}(x)-\phi_{1}(x)\right) d x$ is indeed the Area. Likewise, $\iiint_{S} d V$ is the volume of a Type-I domain in 3-D. The same results hold for Type-II domains as well.
- Example 1: Calculate the volume of an ellipsoid:
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$. An ellipsoid is a Type-I domain in 3-D:
$-c \sqrt{1-x^{2} / a^{2}-y^{2} / b^{2}} \leq z \leq c \sqrt{1-x^{2} / a^{2}-y^{2} / b^{2}}$. Thus the volume is $\iiint d V=2 c \iint \sqrt{1-x^{2} / a^{2}-y^{2} / b^{2}} d A$ over $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} \leq 1$. Now the latter is a Type-I domain in $2 D$:
$-b \sqrt{1-x^{2} / a^{2}} \leq y \leq b \sqrt{1-x^{2} / a^{2}}$.

Examples

- Firstly, if S is a Type-I domain, then
$\iint_{S} d A=\int_{a}^{b}\left(\phi_{2}(x)-\phi_{1}(x)\right) d x$ is indeed the Area. Likewise, $\iiint_{S} d V$ is the volume of a Type-I domain in 3-D. The same results hold for Type-II domains as well.
- Example 1: Calculate the volume of an ellipsoid:
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$. An ellipsoid is a Type-I domain in 3-D:
$-c \sqrt{1-x^{2} / a^{2}-y^{2} / b^{2}} \leq z \leq c \sqrt{1-x^{2} / a^{2}-y^{2} / b^{2}}$. Thus the volume is $\iiint d V=2 c \iint \sqrt{1-x^{2} / a^{2}-y^{2} / b^{2}} d A$ over $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} \leq 1$. Now the latter is a Type-I domain in $2 D$:
$-b \sqrt{1-x^{2} / a^{2}} \leq y \leq b \sqrt{1-x^{2} / a^{2}}$. Thus the volume is
- Firstly, if S is a Type-I domain, then
$\iint_{S} d A=\int_{a}^{b}\left(\phi_{2}(x)-\phi_{1}(x)\right) d x$ is indeed the Area. Likewise, $\iiint_{S} d V$ is the volume of a Type-I domain in 3-D. The same results hold for Type-II domains as well.
- Example 1: Calculate the volume of an ellipsoid:
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$. An ellipsoid is a Type-I domain in 3-D:
$-c \sqrt{1-x^{2} / a^{2}-y^{2} / b^{2}} \leq z \leq c \sqrt{1-x^{2} / a^{2}-y^{2} / b^{2}}$. Thus the volume is $\iiint d V=2 c \iint \sqrt{1-x^{2} / a^{2}-y^{2} / b^{2}} d A$ over $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} \leq 1$. Now the latter is a Type-I domain in $2 D:$
$-b \sqrt{1-x^{2} / a^{2}} \leq y \leq b \sqrt{1-x^{2} / a^{2}}$. Thus the volume is
$2 b c \int_{-a}^{a} \int_{-b \sqrt{1-x^{2} / a^{2}}}^{b \sqrt{1-x^{2} / a^{2}}} \sqrt{1-x^{2} / a^{2}-y^{2} / b^{2}} d y d x$.
- Firstly, if S is a Type-I domain, then
$\iint_{S} d A=\int_{a}^{b}\left(\phi_{2}(x)-\phi_{1}(x)\right) d x$ is indeed the Area. Likewise, $\iiint_{S} d V$ is the volume of a Type-I domain in 3-D. The same results hold for Type-II domains as well.
- Example 1: Calculate the volume of an ellipsoid:
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$. An ellipsoid is a Type-I domain in 3-D:
$-c \sqrt{1-x^{2} / a^{2}-y^{2} / b^{2}} \leq z \leq c \sqrt{1-x^{2} / a^{2}-y^{2} / b^{2}}$. Thus the volume is $\iiint d V=2 c \iint \sqrt{1-x^{2} / a^{2}-y^{2} / b^{2}} d A$ over $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} \leq 1$. Now the latter is a Type-I domain in $2 D$: $-b \sqrt{1-x^{2} / a^{2}} \leq y \leq b \sqrt{1-x^{2} / a^{2}}$. Thus the volume is $2 b c \int_{-a}^{a} \int_{-b \sqrt{1-x^{2} / a^{2}}}^{b \sqrt{1-x^{2} / a^{2}}} \sqrt{1-x^{2} / a^{2}-y^{2} / b^{2}} d y d x$. Now $A(x)=\int_{-b \sqrt{1-x^{2} / a^{2}}}^{b \sqrt{1-x^{2} / a^{2}}} \sqrt{1-x^{2} / a^{2}-y^{2} / b^{2}} d y$ can be evaluated
- Firstly, if S is a Type-I domain, then
$\iint_{S} d A=\int_{a}^{b}\left(\phi_{2}(x)-\phi_{1}(x)\right) d x$ is indeed the Area. Likewise, $\iiint_{S} d V$ is the volume of a Type-I domain in 3-D. The same results hold for Type-II domains as well.
- Example 1: Calculate the volume of an ellipsoid:
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$. An ellipsoid is a Type-I domain in 3-D:
$-c \sqrt{1-x^{2} / a^{2}-y^{2} / b^{2}} \leq z \leq c \sqrt{1-x^{2} / a^{2}-y^{2} / b^{2}}$. Thus the volume is $\iiint d V=2 c \iint \sqrt{1-x^{2} / a^{2}-y^{2} / b^{2}} d A$ over $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} \leq 1$. Now the latter is a Type-I domain in $2 D$:
$-b \sqrt{1-x^{2} / a^{2}} \leq y \leq b \sqrt{1-x^{2} / a^{2}}$. Thus the volume is
$2 b c \int_{-a}^{a} \int_{-b \sqrt{1-x^{2} / a^{2}}}^{b \sqrt{1-x^{2} / a^{2}}} \sqrt{1-x^{2} / a^{2}-y^{2} / b^{2}} d y d x$. Now
$A(x)=\int_{-b \sqrt{1-x^{2} / a^{2}}}^{b \sqrt{1-x^{2} / a^{2}}} \sqrt{1-x^{2} / a^{2}-y^{2} / b^{2}} d y$ can be evaluated easily by substitution (

Examples

- Firstly, if S is a Type-I domain, then
$\iint_{S} d A=\int_{a}^{b}\left(\phi_{2}(x)-\phi_{1}(x)\right) d x$ is indeed the Area. Likewise, $\iiint_{S} d V$ is the volume of a Type-I domain in 3-D. The same results hold for Type-II domains as well.
- Example 1: Calculate the volume of an ellipsoid:
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$. An ellipsoid is a Type-I domain in 3-D:
$-c \sqrt{1-x^{2} / a^{2}-y^{2} / b^{2}} \leq z \leq c \sqrt{1-x^{2} / a^{2}-y^{2} / b^{2}}$. Thus the volume is $\iiint d V=2 c \iint \sqrt{1-x^{2} / a^{2}-y^{2} / b^{2}} d A$ over $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} \leq 1$. Now the latter is a Type-I domain in $2 D:$
$-b \sqrt{1-x^{2} / a^{2}} \leq y \leq b \sqrt{1-x^{2} / a^{2}}$. Thus the volume is
$2 b c \int_{-a}^{a} \int_{-b \sqrt{1-x^{2} / a^{2}}}^{b \sqrt{1-x^{2} / a^{2}}} \sqrt{1-x^{2} / a^{2}-y^{2} / b^{2}} d y d x$. Now
$A(x)=\int_{-b \sqrt{1-x^{2} / a^{2}}}^{b \sqrt{1-x^{2} / a^{2}}} \sqrt{1-x^{2} / a^{2}-y^{2} / b^{2}} d y$ can be evaluated
easily by substitution (or by geometry)

Examples

- Firstly, if S is a Type-I domain, then
$\iint_{S} d A=\int_{a}^{b}\left(\phi_{2}(x)-\phi_{1}(x)\right) d x$ is indeed the Area. Likewise, $\iiint_{S} d V$ is the volume of a Type-I domain in 3-D. The same results hold for Type-II domains as well.
- Example 1: Calculate the volume of an ellipsoid:
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$. An ellipsoid is a Type-I domain in 3-D:
$-c \sqrt{1-x^{2} / a^{2}-y^{2} / b^{2}} \leq z \leq c \sqrt{1-x^{2} / a^{2}-y^{2} / b^{2}}$. Thus the volume is $\iiint d V=2 c \iint \sqrt{1-x^{2} / a^{2}-y^{2} / b^{2}} d A$ over $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} \leq 1$. Now the latter is a Type-I domain in $2 D:$
$-b \sqrt{1-x^{2} / a^{2}} \leq y \leq b \sqrt{1-x^{2} / a^{2}}$. Thus the volume is
$2 b c \int_{-a}^{a} \int_{-b \sqrt{1-x^{2} / a^{2}}}^{b \sqrt{1-x^{2} / a^{2}}} \sqrt{1-x^{2} / a^{2}-y^{2} / b^{2}} d y d x$. Now
$A(x)=\int_{-b \sqrt{1-x^{2} / a^{2}}}^{b \sqrt{1-x^{2} / a^{2}}} \sqrt{1-x^{2} / a^{2}-y^{2} / b^{2}} d y$ can be evaluated
easily by substitution (or by geometry) and found to be

Examples

- Firstly, if S is a Type-I domain, then
$\iint_{S} d A=\int_{a}^{b}\left(\phi_{2}(x)-\phi_{1}(x)\right) d x$ is indeed the Area. Likewise, $\iiint_{S} d V$ is the volume of a Type-I domain in 3-D. The same results hold for Type-II domains as well.
- Example 1: Calculate the volume of an ellipsoid:
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$. An ellipsoid is a Type-I domain in 3-D:
$-c \sqrt{1-x^{2} / a^{2}-y^{2} / b^{2}} \leq z \leq c \sqrt{1-x^{2} / a^{2}-y^{2} / b^{2}}$. Thus the volume is $\iiint d V=2 c \iint \sqrt{1-x^{2} / a^{2}-y^{2} / b^{2}} d A$ over $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} \leq 1$. Now the latter is a Type-I domain in $2 D$:
$-b \sqrt{1-x^{2} / a^{2}} \leq y \leq b \sqrt{1-x^{2} / a^{2}}$. Thus the volume is
$2 b c \int_{-a}^{a} \int_{-b \sqrt{1-x^{2} / a^{2}}}^{b \sqrt{1-x^{2} / a^{2}}} \sqrt{1-x^{2} / a^{2}-y^{2} / b^{2}} d y d x$. Now
$A(x)=\int_{-b \sqrt{1-x^{2} / a^{2}}}^{b \sqrt{1-x^{2} / a^{2}}} \sqrt{1-x^{2} / a^{2}-y^{2} / b^{2}} d y$ can be evaluated
easily by substitution (or by geometry) and found to be $b \frac{\pi}{2}\left(1-\frac{x^{2}}{a^{2}}\right)$.

Examples

- Firstly, if S is a Type-I domain, then
$\iint_{S} d A=\int_{a}^{b}\left(\phi_{2}(x)-\phi_{1}(x)\right) d x$ is indeed the Area. Likewise, $\iiint_{S} d V$ is the volume of a Type-I domain in 3-D. The same results hold for Type-II domains as well.
- Example 1: Calculate the volume of an ellipsoid:
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$. An ellipsoid is a Type-I domain in 3-D:
$-c \sqrt{1-x^{2} / a^{2}-y^{2} / b^{2}} \leq z \leq c \sqrt{1-x^{2} / a^{2}-y^{2} / b^{2}}$. Thus the volume is $\iiint d V=2 c \iint \sqrt{1-x^{2} / a^{2}-y^{2} / b^{2}} d A$ over $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} \leq 1$. Now the latter is a Type-I domain in $2 D$:
$-b \sqrt{1-x^{2} / a^{2}} \leq y \leq b \sqrt{1-x^{2} / a^{2}}$. Thus the volume is
$2 b c \int_{-a}^{a} \int_{-b \sqrt{1-x^{2} / a^{2}}}^{b \sqrt{1-x^{2} / a^{2}}} \sqrt{1-x^{2} / a^{2}-y^{2} / b^{2}} d y d x$. Now
$A(x)=\int_{-b \sqrt{1-x^{2} / a^{2}}}^{b \sqrt{1-x^{2} / a^{2}}} \sqrt{1-x^{2} / a^{2}-y^{2} / b^{2}} d y$ can be evaluated
easily by substitution (or by geometry) and found to be $b \frac{\pi}{2}\left(1-\frac{x^{2}}{a^{2}}\right)$. Now the final volume is

Examples

- Firstly, if S is a Type-I domain, then
$\iint_{S} d A=\int_{a}^{b}\left(\phi_{2}(x)-\phi_{1}(x)\right) d x$ is indeed the Area. Likewise, $\iiint_{S} d V$ is the volume of a Type-I domain in 3-D. The same results hold for Type-II domains as well.
- Example 1: Calculate the volume of an ellipsoid:
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$. An ellipsoid is a Type-I domain in 3-D:
$-c \sqrt{1-x^{2} / a^{2}-y^{2} / b^{2}} \leq z \leq c \sqrt{1-x^{2} / a^{2}-y^{2} / b^{2}}$. Thus the volume is $\iiint d V=2 c \iint \sqrt{1-x^{2} / a^{2}-y^{2} / b^{2}} d A$ over $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} \leq 1$. Now the latter is a Type-I domain in $2 D$:
$-b \sqrt{1-x^{2} / a^{2}} \leq y \leq b \sqrt{1-x^{2} / a^{2}}$. Thus the volume is
$2 b c \int_{-a}^{a} \int_{-b \sqrt{1-x^{2} / a^{2}}}^{b \sqrt{1-x^{2} / a^{2}}} \sqrt{1-x^{2} / a^{2}-y^{2} / b^{2}} d y d x$. Now
$A(x)=\int_{-b \sqrt{1-x^{2} / a^{2}}}^{b \sqrt{1-x^{2} / a^{2}}} \sqrt{1-x^{2} / a^{2}-y^{2} / b^{2}} d y$ can be evaluated
easily by substitution (or by geometry) and found to be $b \frac{\pi}{2}\left(1-\frac{x^{2}}{a^{2}}\right)$. Now the final volume is
$b c \int_{-a}^{a} \pi\left(1-\frac{x^{2}}{2^{2}}\right) d x=\frac{4}{3} \pi a b c$.

Examples

Examples

- Example 2:

Examples

- Example 2: Suppose f is continuous on

Examples

- Example 2: Suppose f is continuous on a bounded region S and
- Example 2: Suppose f is continuous on a bounded region S and $\iint_{S} f d A=\int_{0}^{3} \int_{4 y / 3}^{\sqrt{25-y^{2}}} f(x, y) d x d y$.
- Example 2: Suppose f is continuous on a bounded region S and $\iint_{S} f d A=\int_{0}^{3} \int_{4 y / 3}^{\sqrt{25-y^{2}}} f(x, y) d x d y$. then sketch S and interchange the order of integration:
- Example 2: Suppose f is continuous on a bounded region S and $\iint_{S} f d A=\int_{0}^{3} \int_{4 y / 3}^{\sqrt{25-y^{2}}} f(x, y) d x d y$. then sketch S and interchange the order of integration: $\frac{4 y}{3} \leq x \leq \sqrt{25-y^{2}}$. Hence it is the region between a circle and
- Example 2: Suppose f is continuous on a bounded region S and $\iint_{S} f d A=\int_{0}^{3} \int_{4 y / 3}^{\sqrt{25-y^{2}}} f(x, y) d x d y$. then sketch S and interchange the order of integration: $\frac{4 y}{3} \leq x \leq \sqrt{25-y^{2}}$. Hence it is the region between a circle and a line passing through the centre.
- Example 2: Suppose f is continuous on a bounded region S and $\iint_{S} f d A=\int_{0}^{3} \int_{4 y / 3}^{\sqrt{25-y^{2}}} f(x, y) d x d y$. then sketch S and interchange the order of integration: $\frac{4 y}{3} \leq x \leq \sqrt{25-y^{2}}$. Hence it is the region between a circle and a line passing through the centre. $x=\frac{4 y}{3}$ and $x=\sqrt{25-y^{2}}$ intersect at
- Example 2: Suppose f is continuous on a bounded region S and $\iint_{S} f d A=\int_{0}^{3} \int_{4 y / 3}^{\sqrt{25-y^{2}}} f(x, y) d x d y$. then sketch S and interchange the order of integration: $\frac{4 y}{3} \leq x \leq \sqrt{25-y^{2}}$. Hence it is the region between a circle and a line passing through the centre. $x=\frac{4 y}{3}$ and $x=\sqrt{25-y^{2}}$ intersect at $(4,3)$.
- Example 2: Suppose f is continuous on a bounded region S and $\iint_{S} f d A=\int_{0}^{3} \int_{4 y / 3}^{\sqrt{25-y^{2}}} f(x, y) d x d y$. then sketch S and interchange the order of integration: $\frac{4 y}{3} \leq x \leq \sqrt{25-y^{2}}$. Hence it is the region between a circle and a line passing through the centre. $x=\frac{4 y}{3}$ and $x=\sqrt{25-y^{2}}$ intersect at $(4,3)$. Thus we have two regions
- Example 2: Suppose f is continuous on a bounded region S and $\iint_{S} f d A=\int_{0}^{3} \int_{4 y / 3}^{\sqrt{25-y^{2}}} f(x, y) d x d y$. then sketch S and interchange the order of integration: $\frac{4 y}{3} \leq x \leq \sqrt{25-y^{2}}$. Hence it is the region between a circle and a line passing through the centre. $x=\frac{4 y}{3}$ and $x=\sqrt{25-y^{2}}$ intersect at $(4,3)$. Thus we have two regions $0 \leq y \leq \frac{3 x}{4}$ in $0 \leq x \leq 4$ and $0 \leq x \leq \sqrt{25-y^{2}}$ in $4 \leq x \leq 5$. So the integral is $\int_{0}^{4} \int_{0}^{3 x / 4} f d y d x+\int_{4}^{5} \int_{0}^{\sqrt{25-y^{2}}} f d y d x$.
- Example 2: Suppose f is continuous on a bounded region S and $\iint_{S} f d A=\int_{0}^{3} \int_{4 y / 3}^{\sqrt{25-y^{2}}} f(x, y) d x d y$. then sketch S and interchange the order of integration: $\frac{4 y}{3} \leq x \leq \sqrt{25-y^{2}}$. Hence it is the region between a circle and a line passing through the centre. $x=\frac{4 y}{3}$ and $x=\sqrt{25-y^{2}}$ intersect at $(4,3)$. Thus we have two regions $0 \leq y \leq \frac{3 x}{4}$ in $0 \leq x \leq 4$ and $0 \leq x \leq \sqrt{25-y^{2}}$ in $4 \leq x \leq 5$. So the integral is $\int_{0}^{4} \int_{0}^{3 x / 4} f d y d x+\int_{4}^{5} \int_{0}^{\sqrt{25-y^{2}}} f d y d x$.
- Example 3 :
- Example 2: Suppose f is continuous on a bounded region S and $\iint_{S} f d A=\int_{0}^{3} \int_{4 y / 3}^{\sqrt{25-y^{2}}} f(x, y) d x d y$. then sketch S and interchange the order of integration: $\frac{4 y}{3} \leq x \leq \sqrt{25-y^{2}}$. Hence it is the region between a circle and a line passing through the centre. $x=\frac{4 y}{3}$ and $x=\sqrt{25-y^{2}}$ intersect at $(4,3)$. Thus we have two regions $0 \leq y \leq \frac{3 x}{4}$ in $0 \leq x \leq 4$ and $0 \leq x \leq \sqrt{25-y^{2}}$ in $4 \leq x \leq 5$. So the integral is $\int_{0}^{4} \int_{0}^{3 x / 4} f d y d x+\int_{4}^{5} \int_{0}^{\sqrt{25-y^{2}}} f d y d x$.
- Example 3: Calculate $\iint_{[-1,1] \times[0,2]} \sqrt{\left|y-x^{2}\right|} d A$.
- Example 2: Suppose f is continuous on a bounded region S and $\iint_{S} f d A=\int_{0}^{3} \int_{4 y / 3}^{\sqrt{25-y^{2}}} f(x, y) d x d y$. then sketch S and interchange the order of integration: $\frac{4 y}{3} \leq x \leq \sqrt{25-y^{2}}$. Hence it is the region between a circle and a line passing through the centre. $x=\frac{4 y}{3}$ and $x=\sqrt{25-y^{2}}$ intersect at $(4,3)$. Thus we have two regions $0 \leq y \leq \frac{3 x}{4}$ in $0 \leq x \leq 4$ and $0 \leq x \leq \sqrt{25-y^{2}}$ in $4 \leq x \leq 5$. So the integral is $\int_{0}^{4} \int_{0}^{3 x / 4} f d y d x+\int_{4}^{5} \int_{0}^{\sqrt{25-y^{2}}} f d y d x$.
- Example 3: Calculate $\iint_{[-1,1] \times[0,2]} \sqrt{\left|y-x^{2}\right|} d A$. We integrate over y first:
- Example 2: Suppose f is continuous on a bounded region S and $\iint_{S} f d A=\int_{0}^{3} \int_{4 y / 3}^{\sqrt{25-y^{2}}} f(x, y) d x d y$. then sketch S and interchange the order of integration: $\frac{4 y}{3} \leq x \leq \sqrt{25-y^{2}}$. Hence it is the region between a circle and a line passing through the centre. $x=\frac{4 y}{3}$ and $x=\sqrt{25-y^{2}}$ intersect at $(4,3)$. Thus we have two regions $0 \leq y \leq \frac{3 x}{4}$ in $0 \leq x \leq 4$ and $0 \leq x \leq \sqrt{25-y^{2}}$ in $4 \leq x \leq 5$. So the integral is $\int_{0}^{4} \int_{0}^{3 x / 4} f d y d x+\int_{4}^{5} \int_{0}^{\sqrt{25-y^{2}}} f d y d x$.
- Example 3: Calculate $\iint_{[-1,1] \times[0,2]} \sqrt{\left|y-x^{2}\right|} d A$. We integrate over y first: $\int_{-1}^{1}\left(\int_{0}^{x^{2}} \sqrt{x^{2}-y} d y+\int_{x^{2}}^{2} \sqrt{y-x^{2}} d y\right)$. Since x is a constant,
- Example 2: Suppose f is continuous on a bounded region S and $\iint_{S} f d A=\int_{0}^{3} \int_{4 y / 3}^{\sqrt{25-y^{2}}} f(x, y) d x d y$. then sketch S and interchange the order of integration: $\frac{4 y}{3} \leq x \leq \sqrt{25-y^{2}}$. Hence it is the region between a circle and a line passing through the centre. $x=\frac{4 y}{3}$ and $x=\sqrt{25-y^{2}}$ intersect at $(4,3)$. Thus we have two regions $0 \leq y \leq \frac{3 x}{4}$ in $0 \leq x \leq 4$ and $0 \leq x \leq \sqrt{25-y^{2}}$ in $4 \leq x \leq 5$. So the integral is $\int_{0}^{4} \int_{0}^{3 x / 4} f d y d x+\int_{4}^{5} \int_{0}^{\sqrt{25-y^{2}}} f d y d x$.
- Example 3: Calculate $\iint_{[-1,1] \times[0,2]} \sqrt{\left|y-x^{2}\right|} d A$. We integrate over y first: $\int_{-1}^{1}\left(\int_{0}^{x^{2}} \sqrt{x^{2}-y} d y+\int_{x^{2}}^{2} \sqrt{y-x^{2}} d y\right)$. Since x is a constant, we can easily integrate to get
- Example 2: Suppose f is continuous on a bounded region S and $\iint_{S} f d A=\int_{0}^{3} \int_{4 y / 3}^{\sqrt{25-y^{2}}} f(x, y) d x d y$. then sketch S and interchange the order of integration: $\frac{4 y}{3} \leq x \leq \sqrt{25-y^{2}}$. Hence it is the region between a circle and a line passing through the centre. $x=\frac{4 y}{3}$ and $x=\sqrt{25-y^{2}}$ intersect at $(4,3)$. Thus we have two regions $0 \leq y \leq \frac{3 x}{4}$ in $0 \leq x \leq 4$ and $0 \leq x \leq \sqrt{25-y^{2}}$ in $4 \leq x \leq 5$. So the integral is $\int_{0}^{4} \int_{0}^{3 x / 4} f d y d x+\int_{4}^{5} \int_{0}^{\sqrt{25-y^{2}}} f d y d x$.
- Example 3: Calculate $\iint_{[-1,1] \times[0,2]} \sqrt{\left|y-x^{2}\right|} d A$. We integrate over y first: $\int_{-1}^{1}\left(\int_{0}^{x^{2}} \sqrt{x^{2}-y} d y+\int_{x^{2}}^{2} \sqrt{y-x^{2}} d y\right)$.
Since x is a constant, we can easily integrate to get $\frac{2}{3} x^{3}+\frac{2}{3}\left(2-x^{2}\right)^{3 / 2}$.
- Example 2: Suppose f is continuous on a bounded region S and $\iint_{S} f d A=\int_{0}^{3} \int_{4 y / 3}^{\sqrt{25-y^{2}}} f(x, y) d x d y$. then sketch S and interchange the order of integration: $\frac{4 y}{3} \leq x \leq \sqrt{25-y^{2}}$. Hence it is the region between a circle and a line passing through the centre. $x=\frac{4 y}{3}$ and $x=\sqrt{25-y^{2}}$ intersect at $(4,3)$. Thus we have two regions $0 \leq y \leq \frac{3 x}{4}$ in $0 \leq x \leq 4$ and $0 \leq x \leq \sqrt{25-y^{2}}$ in $4 \leq x \leq 5$. So the integral is $\int_{0}^{4} \int_{0}^{3 x / 4} f d y d x+\int_{4}^{5} \int_{0}^{\sqrt{25-y^{2}}} f d y d x$.
- Example 3: Calculate $\iint_{[-1,1] \times[0,2]} \sqrt{\left|y-x^{2}\right|} d A$. We integrate over y first: $\int_{-1}^{1}\left(\int_{0}^{x^{2}} \sqrt{x^{2}-y} d y+\int_{x^{2}}^{2} \sqrt{y-x^{2}} d y\right)$.
Since x is a constant, we can easily integrate to get $\frac{2}{3} x^{3}+\frac{2}{3}\left(2-x^{2}\right)^{3 / 2}$. The second term can be evaluated by
- Example 2: Suppose f is continuous on a bounded region S and $\iint_{S} f d A=\int_{0}^{3} \int_{4 y / 3}^{\sqrt{25-y^{2}}} f(x, y) d x d y$. then sketch S and interchange the order of integration: $\frac{4 y}{3} \leq x \leq \sqrt{25-y^{2}}$. Hence it is the region between a circle and a line passing through the centre. $x=\frac{4 y}{3}$ and $x=\sqrt{25-y^{2}}$ intersect at $(4,3)$. Thus we have two regions $0 \leq y \leq \frac{3 x}{4}$ in $0 \leq x \leq 4$ and $0 \leq x \leq \sqrt{25-y^{2}}$ in $4 \leq x \leq 5$. So the integral is $\int_{0}^{4} \int_{0}^{3 x / 4} f d y d x+\int_{4}^{5} \int_{0}^{\sqrt{25-y^{2}}} f d y d x$.
- Example 3: Calculate $\iint_{[-1,1] \times[0,2]} \sqrt{\left|y-x^{2}\right|} d A$. We integrate over y first: $\int_{-1}^{1}\left(\int_{0}^{x^{2}} \sqrt{x^{2}-y} d y+\int_{x^{2}}^{2} \sqrt{y-x^{2}} d y\right)$.
Since x is a constant, we can easily integrate to get $\frac{2}{3} x^{3}+\frac{2}{3}\left(2-x^{2}\right)^{3 / 2}$. The second term can be evaluated by trigonometric substitution.
- Example 2: Suppose f is continuous on a bounded region S and $\iint_{S} f d A=\int_{0}^{3} \int_{4 y / 3}^{\sqrt{25-y^{2}}} f(x, y) d x d y$. then sketch S and interchange the order of integration: $\frac{4 y}{3} \leq x \leq \sqrt{25-y^{2}}$. Hence it is the region between a circle and a line passing through the centre. $x=\frac{4 y}{3}$ and $x=\sqrt{25-y^{2}}$ intersect at $(4,3)$. Thus we have two regions $0 \leq y \leq \frac{3 x}{4}$ in $0 \leq x \leq 4$ and $0 \leq x \leq \sqrt{25-y^{2}}$ in $4 \leq x \leq 5$. So the integral is $\int_{0}^{4} \int_{0}^{3 x / 4} f d y d x+\int_{4}^{5} \int_{0}^{\sqrt{25-y^{2}}} f d y d x$.
- Example 3: Calculate $\iint_{[-1,1] \times[0,2]} \sqrt{\left|y-x^{2}\right|} d A$. We integrate over y first: $\int_{-1}^{1}\left(\int_{0}^{x^{2}} \sqrt{x^{2}-y} d y+\int_{x^{2}}^{2} \sqrt{y-x^{2}} d y\right)$.
Since x is a constant, we can easily integrate to get $\frac{2}{3} x^{3}+\frac{2}{3}\left(2-x^{2}\right)^{3 / 2}$. The second term can be evaluated by trigonometric substitution. So we get $\frac{4}{3}+\frac{\pi}{2}$.
- Example 2: Suppose f is continuous on a bounded region S and $\iint_{S} f d A=\int_{0}^{3} \int_{4 y / 3}^{\sqrt{25-y^{2}}} f(x, y) d x d y$. then sketch S and interchange the order of integration: $\frac{4 y}{3} \leq x \leq \sqrt{25-y^{2}}$. Hence it is the region between a circle and a line passing through the centre. $x=\frac{4 y}{3}$ and $x=\sqrt{25-y^{2}}$ intersect at $(4,3)$. Thus we have two regions $0 \leq y \leq \frac{3 x}{4}$ in $0 \leq x \leq 4$ and $0 \leq x \leq \sqrt{25-y^{2}}$ in $4 \leq x \leq 5$. So the integral is $\int_{0}^{4} \int_{0}^{3 x / 4} f d y d x+\int_{4}^{5} \int_{0}^{\sqrt{25-y^{2}}} f d y d x$.
- Example 3: Calculate $\iint_{[-1,1] \times[0,2]} \sqrt{\left|y-x^{2}\right|} d A$. We integrate over y first: $\int_{-1}^{1}\left(\int_{0}^{x^{2}} \sqrt{x^{2}-y} d y+\int_{x^{2}}^{2} \sqrt{y-x^{2}} d y\right)$. Since x is a constant, we can easily integrate to get $\frac{2}{3} x^{3}+\frac{2}{3}\left(2-x^{2}\right)^{3 / 2}$. The second term can be evaluated by trigonometric substitution. So we get $\frac{4}{3}+\frac{\pi}{2}$. Note that first integrating over x
- Example 2: Suppose f is continuous on a bounded region S and $\iint_{S} f d A=\int_{0}^{3} \int_{4 y / 3}^{\sqrt{25-y^{2}}} f(x, y) d x d y$. then sketch S and interchange the order of integration: $\frac{4 y}{3} \leq x \leq \sqrt{25-y^{2}}$. Hence it is the region between a circle and a line passing through the centre. $x=\frac{4 y}{3}$ and $x=\sqrt{25-y^{2}}$ intersect at $(4,3)$. Thus we have two regions $0 \leq y \leq \frac{3 x}{4}$ in $0 \leq x \leq 4$ and $0 \leq x \leq \sqrt{25-y^{2}}$ in $4 \leq x \leq 5$. So the integral is $\int_{0}^{4} \int_{0}^{3 x / 4} f d y d x+\int_{4}^{5} \int_{0}^{\sqrt{25-y^{2}}} f d y d x$.
- Example 3: Calculate $\iint_{[-1,1] \times[0,2]} \sqrt{\left|y-x^{2}\right|} d A$. We integrate over y first: $\int_{-1}^{1}\left(\int_{0}^{x^{2}} \sqrt{x^{2}-y} d y+\int_{x^{2}}^{2} \sqrt{y-x^{2}} d y\right)$. Since x is a constant, we can easily integrate to get $\frac{2}{3} x^{3}+\frac{2}{3}\left(2-x^{2}\right)^{3 / 2}$. The second term can be evaluated by trigonometric substitution. So we get $\frac{4}{3}+\frac{\pi}{2}$. Note that first integrating over x would have made life worse.

What should an FTC look like?

What should an FTC look like?

- We want to formulate

What should an FTC look like?

- We want to formulate a fundamental theorem of calculus.
- We want to formulate a fundamental theorem of calculus. In $1-\mathrm{D}$, recall that it is

What should an FTC look like?

- We want to formulate a fundamental theorem of calculus. In 1-D, recall that it is $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$.

What should an FTC look like?

- We want to formulate a fundamental theorem of calculus. In 1-D, recall that it is $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$. In other words,

What should an FTC look like?

- We want to formulate a fundamental theorem of calculus. In 1-D, recall that it is $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$. In other words, "the integral of a derivative

What should an FTC look like?

- We want to formulate a fundamental theorem of calculus. In 1-D, recall that it is $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$. In other words, "the integral of a derivative over a region

What should an FTC look like?

- We want to formulate a fundamental theorem of calculus. In 1-D, recall that it is $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$. In other words, "the integral of a derivative over a region boils down to

What should an FTC look like?

- We want to formulate a fundamental theorem of calculus. In 1-D, recall that it is $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$. In other words, "the integral of a derivative over a region boils down to its boundary".

What should an FTC look like?

- We want to formulate a fundamental theorem of calculus. In 1-D, recall that it is $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$. In other words, "the integral of a derivative over a region boils down to its boundary".
- So in $2 D$,

What should an FTC look like?

- We want to formulate a fundamental theorem of calculus. In 1-D, recall that it is $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$. In other words, "the integral of a derivative over a region boils down to its boundary".
- So in $2 D$, there are a few questions:

What should an FTC look like?

- We want to formulate a fundamental theorem of calculus. In 1-D, recall that it is $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$. In other words, "the integral of a derivative over a region boils down to its boundary".
- So in $2 D$, there are a few questions: What regions must we consider?

What should an FTC look like?

- We want to formulate a fundamental theorem of calculus. In 1-D, recall that it is $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$. In other words, "the integral of a derivative over a region boils down to its boundary".
- So in $2 D$, there are a few questions: What regions must we consider? If $f(x, y)$ is a scalar field,

What should an FTC look like?

- We want to formulate a fundamental theorem of calculus. In 1-D, recall that it is $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$. In other words, "the integral of a derivative over a region boils down to its boundary".
- So in $2 D$, there are a few questions: What regions must we consider? If $f(x, y)$ is a scalar field, what "derivative" must we integrate?

What should an FTC look like?

- We want to formulate a fundamental theorem of calculus. In 1-D, recall that it is $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$. In other words, "the integral of a derivative over a region boils down to its boundary".
- So in $2 D$, there are a few questions: What regions must we consider? If $f(x, y)$ is a scalar field, what "derivative" must we integrate? and since the boundary is

What should an FTC look like?

- We want to formulate a fundamental theorem of calculus. In 1-D, recall that it is $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$. In other words, "the integral of a derivative over a region boils down to its boundary".
- So in $2 D$, there are a few questions: What regions must we consider? If $f(x, y)$ is a scalar field, what "derivative" must we integrate? and since the boundary is a curve, what must

What should an FTC look like?

- We want to formulate a fundamental theorem of calculus. In 1-D, recall that it is $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$. In other words, "the integral of a derivative over a region boils down to its boundary".
- So in $2 D$, there are a few questions: What regions must we consider? If $f(x, y)$ is a scalar field, what "derivative" must we integrate? and since the boundary is a curve, what must the integral boil down to (

What should an FTC look like?

- We want to formulate a fundamental theorem of calculus. In 1-D, recall that it is $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$. In other words, "the integral of a derivative over a region boils down to its boundary".
- So in $2 D$, there are a few questions: What regions must we consider? If $f(x, y)$ is a scalar field, what "derivative" must we integrate? and since the boundary is a curve, what must the integral boil down to (presumably a line integral

What should an FTC look like?

- We want to formulate a fundamental theorem of calculus. In 1-D, recall that it is $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$. In other words, "the integral of a derivative over a region boils down to its boundary".
- So in $2 D$, there are a few questions: What regions must we consider? If $f(x, y)$ is a scalar field, what "derivative" must we integrate? and since the boundary is a curve, what must the integral boil down to (presumably a line integral on the boundary)?

What should an FTC look like?

- We want to formulate a fundamental theorem of calculus. In 1-D, recall that it is $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$. In other words, "the integral of a derivative over a region boils down to its boundary".
- So in $2 D$, there are a few questions: What regions must we consider? If $f(x, y)$ is a scalar field, what "derivative" must we integrate? and since the boundary is a curve, what must the integral boil down to (presumably a line integral on the boundary)?
- For the first question,

What should an FTC look like?

- We want to formulate a fundamental theorem of calculus. In 1-D, recall that it is $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$. In other words, "the integral of a derivative over a region boils down to its boundary".
- So in $2 D$, there are a few questions: What regions must we consider? If $f(x, y)$ is a scalar field, what "derivative" must we integrate? and since the boundary is a curve, what must the integral boil down to (presumably a line integral on the boundary)?
- For the first question, we must choose a domain whose

What should an FTC look like?

- We want to formulate a fundamental theorem of calculus. In 1-D, recall that it is $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$. In other words, "the integral of a derivative over a region boils down to its boundary".
- So in $2 D$, there are a few questions: What regions must we consider? If $f(x, y)$ is a scalar field, what "derivative" must we integrate? and since the boundary is a curve, what must the integral boil down to (presumably a line integral on the boundary)?
- For the first question, we must choose a domain whose boundary is a piecewise C^{1} regular curve (

What should an FTC look like?

- We want to formulate a fundamental theorem of calculus. In 1-D, recall that it is $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$. In other words, "the integral of a derivative over a region boils down to its boundary".
- So in $2 D$, there are a few questions: What regions must we consider? If $f(x, y)$ is a scalar field, what "derivative" must we integrate? and since the boundary is a curve, what must the integral boil down to (presumably a line integral on the boundary)?
- For the first question, we must choose a domain whose boundary is a piecewise C^{1} regular curve (to make sense of line integrals).

What should an FTC look like?

- We want to formulate a fundamental theorem of calculus. In 1-D, recall that it is $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$. In other words, "the integral of a derivative over a region boils down to its boundary".
- So in $2 D$, there are a few questions: What regions must we consider? If $f(x, y)$ is a scalar field, what "derivative" must we integrate? and since the boundary is a curve, what must the integral boil down to (presumably a line integral on the boundary)?
- For the first question, we must choose a domain whose boundary is a piecewise C^{1} regular curve (to make sense of line integrals). Furthermore, the region

What should an FTC look like?

- We want to formulate a fundamental theorem of calculus. In 1-D, recall that it is $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$. In other words, "the integral of a derivative over a region boils down to its boundary".
- So in $2 D$, there are a few questions: What regions must we consider? If $f(x, y)$ is a scalar field, what "derivative" must we integrate? and since the boundary is a curve, what must the integral boil down to (presumably a line integral on the boundary)?
- For the first question, we must choose a domain whose boundary is a piecewise C^{1} regular curve (to make sense of line integrals). Furthermore, the region must not have "holes"

What should an FTC look like?

- We want to formulate a fundamental theorem of calculus. In 1-D, recall that it is $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$. In other words, "the integral of a derivative over a region boils down to its boundary".
- So in $2 D$, there are a few questions: What regions must we consider? If $f(x, y)$ is a scalar field, what "derivative" must we integrate? and since the boundary is a curve, what must the integral boil down to (presumably a line integral on the boundary)?
- For the first question, we must choose a domain whose boundary is a piecewise C^{1} regular curve (to make sense of line integrals). Furthermore, the region must not have "holes" because then the boundary can be

What should an FTC look like?

- We want to formulate a fundamental theorem of calculus. In 1-D, recall that it is $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$. In other words, "the integral of a derivative over a region boils down to its boundary".
- So in $2 D$, there are a few questions: What regions must we consider? If $f(x, y)$ is a scalar field, what "derivative" must we integrate? and since the boundary is a curve, what must the integral boil down to (presumably a line integral on the boundary)?
- For the first question, we must choose a domain whose boundary is a piecewise C^{1} regular curve (to make sense of line integrals). Furthermore, the region must not have "holes" because then the boundary can be more than one curve (

What should an FTC look like?

- We want to formulate a fundamental theorem of calculus. In 1-D, recall that it is $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$. In other words, "the integral of a derivative over a region boils down to its boundary".
- So in $2 D$, there are a few questions: What regions must we consider? If $f(x, y)$ is a scalar field, what "derivative" must we integrate? and since the boundary is a curve, what must the integral boil down to (presumably a line integral on the boundary)?
- For the first question, we must choose a domain whose boundary is a piecewise C^{1} regular curve (to make sense of line integrals). Furthermore, the region must not have "holes" because then the boundary can be more than one curve (such regions are called

What should an FTC look like?

- We want to formulate a fundamental theorem of calculus. In 1-D, recall that it is $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$. In other words, "the integral of a derivative over a region boils down to its boundary".
- So in $2 D$, there are a few questions: What regions must we consider? If $f(x, y)$ is a scalar field, what "derivative" must we integrate? and since the boundary is a curve, what must the integral boil down to (presumably a line integral on the boundary)?
- For the first question, we must choose a domain whose boundary is a piecewise C^{1} regular curve (to make sense of line integrals). Furthermore, the region must not have "holes" because then the boundary can be more than one curve (such regions are called simply connected).

What should an FTC look like?

- We want to formulate a fundamental theorem of calculus. In 1-D, recall that it is $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$. In other words, "the integral of a derivative over a region boils down to its boundary".
- So in $2 D$, there are a few questions: What regions must we consider? If $f(x, y)$ is a scalar field, what "derivative" must we integrate? and since the boundary is a curve, what must the integral boil down to (presumably a line integral on the boundary)?
- For the first question, we must choose a domain whose boundary is a piecewise C^{1} regular curve (to make sense of line integrals). Furthermore, the region must not have "holes" because then the boundary can be more than one curve (such regions are called simply connected). It turns out that

What should an FTC look like?

- We want to formulate a fundamental theorem of calculus. In 1-D, recall that it is $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$. In other words, "the integral of a derivative over a region boils down to its boundary".
- So in $2 D$, there are a few questions: What regions must we consider? If $f(x, y)$ is a scalar field, what "derivative" must we integrate? and since the boundary is a curve, what must the integral boil down to (presumably a line integral on the boundary)?
- For the first question, we must choose a domain whose boundary is a piecewise C^{1} regular curve (to make sense of line integrals). Furthermore, the region must not have "holes" because then the boundary can be more than one curve (such regions are called simply connected). It turns out that every simple closed curve

What should an FTC look like?

- We want to formulate a fundamental theorem of calculus. In 1-D, recall that it is $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$. In other words, "the integral of a derivative over a region boils down to its boundary".
- So in $2 D$, there are a few questions: What regions must we consider? If $f(x, y)$ is a scalar field, what "derivative" must we integrate? and since the boundary is a curve, what must the integral boil down to (presumably a line integral on the boundary)?
- For the first question, we must choose a domain whose boundary is a piecewise C^{1} regular curve (to make sense of line integrals). Furthermore, the region must not have "holes" because then the boundary can be more than one curve (such regions are called simply connected). It turns out that every simple closed curve divides \mathbb{R}^{2} into two regions

What should an FTC look like?

- We want to formulate a fundamental theorem of calculus. In 1-D, recall that it is $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$. In other words, "the integral of a derivative over a region boils down to its boundary".
- So in $2 D$, there are a few questions: What regions must we consider? If $f(x, y)$ is a scalar field, what "derivative" must we integrate? and since the boundary is a curve, what must the integral boil down to (presumably a line integral on the boundary)?
- For the first question, we must choose a domain whose boundary is a piecewise C^{1} regular curve (to make sense of line integrals). Furthermore, the region must not have "holes" because then the boundary can be more than one curve (such regions are called simply connected). It turns out that every simple closed curve divides \mathbb{R}^{2} into two regions the interior region is simply connected (

What should an FTC look like?

- We want to formulate a fundamental theorem of calculus. In 1-D, recall that it is $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$. In other words, "the integral of a derivative over a region boils down to its boundary".
- So in $2 D$, there are a few questions: What regions must we consider? If $f(x, y)$ is a scalar field, what "derivative" must we integrate? and since the boundary is a curve, what must the integral boil down to (presumably a line integral on the boundary)?
- For the first question, we must choose a domain whose boundary is a piecewise C^{1} regular curve (to make sense of line integrals). Furthermore, the region must not have "holes" because then the boundary can be more than one curve (such regions are called simply connected). It turns out that every simple closed curve divides \mathbb{R}^{2} into two regions the interior region is simply connected (Jordan curve theorem).

Green's theorem

Green's theorem

- Theorem:

Green's theorem

- Theorem: Let P, Q be C^{1} scalar fields on

Green's theorem

- Theorem: Let P, Q be C^{1} scalar fields on a simply connected closed set S

Green's theorem

- Theorem: Let P, Q be C^{1} scalar fields on a simply connected closed set S whose boundary is a

Green's theorem

- Theorem: Let P, Q be C^{1} scalar fields on a simply connected closed set S whose boundary is a piecewise C^{1} regular curve.

Green's theorem

- Theorem: Let P, Q be C^{1} scalar fields on a simply connected closed set S whose boundary is a piecewise C^{1} regular curve. Then $\int_{C}(P d x+Q d y)$ taken in the

Green's theorem

- Theorem: Let P, Q be C^{1} scalar fields on a simply connected closed set S whose boundary is a piecewise C^{1} regular curve. Then $\int_{C}(P d x+Q d y)$ taken in the anti-clockwise direction equals

Green's theorem

- Theorem: Let P, Q be C^{1} scalar fields on a simply connected closed set S whose boundary is a piecewise C^{1} regular curve. Then $\int_{C}(P d x+Q d y)$ taken in the anti-clockwise direction equals $\iint_{S}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A$.

Green's theorem

- Theorem: Let P, Q be C^{1} scalar fields on a simply connected closed set S whose boundary is a piecewise C^{1} regular curve. Then $\int_{C}(P d x+Q d y)$ taken in the anti-clockwise direction equals $\iint_{S}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A$.
- The proof is

Green's theorem

- Theorem: Let P, Q be C^{1} scalar fields on a simply connected closed set S whose boundary is a piecewise C^{1} regular curve. Then $\int_{C}(P d x+Q d y)$ taken in the anti-clockwise direction equals $\iint_{S}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A$.
- The proof is quite painful and is frankly,

Green's theorem

- Theorem: Let P, Q be C^{1} scalar fields on a simply connected closed set S whose boundary is a piecewise C^{1} regular curve. Then $\int_{C}(P d x+Q d y)$ taken in the anti-clockwise direction equals $\iint_{S}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A$.
- The proof is quite painful and is frankly, beyond the scope of this course.

Green's theorem

- Theorem: Let P, Q be C^{1} scalar fields on a simply connected closed set S whose boundary is a piecewise C^{1} regular curve. Then $\int_{C}(P d x+Q d y)$ taken in the anti-clockwise direction equals $\iint_{S}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A$.
- The proof is quite painful and is frankly, beyond the scope of this course. However, let us look

Green's theorem

- Theorem: Let P, Q be C^{1} scalar fields on a simply connected closed set S whose boundary is a piecewise C^{1} regular curve. Then $\int_{C}(P d x+Q d y)$ taken in the anti-clockwise direction equals $\iint_{S}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A$.
- The proof is quite painful and is frankly, beyond the scope of this course. However, let us look at a special case

Green's theorem

- Theorem: Let P, Q be C^{1} scalar fields on a simply connected closed set S whose boundary is a piecewise C^{1} regular curve. Then $\int_{C}(P d x+Q d y)$ taken in the anti-clockwise direction equals $\iint_{S}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A$.
- The proof is quite painful and is frankly, beyond the scope of this course. However, let us look at a special case of a rectangle:

Green's theorem

- Theorem: Let P, Q be C^{1} scalar fields on a simply connected closed set S whose boundary is a piecewise C^{1} regular curve. Then $\int_{C}(P d x+Q d y)$ taken in the anti-clockwise direction equals $\iint_{S}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A$.
- The proof is quite painful and is frankly, beyond the scope of this course. However, let us look at a special case of a rectangle: The boundary is piecewise C^{1}

Green's theorem

- Theorem: Let P, Q be C^{1} scalar fields on a simply connected closed set S whose boundary is a piecewise C^{1} regular curve. Then $\int_{C}(P d x+Q d y)$ taken in the anti-clockwise direction equals $\iint_{S}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A$.
- The proof is quite painful and is frankly, beyond the scope of this course. However, let us look at a special case of a rectangle: The boundary is piecewise C^{1} and is parametrised as

Green's theorem

- Theorem: Let P, Q be C^{1} scalar fields on a simply connected closed set S whose boundary is a piecewise C^{1} regular curve. Then $\int_{C}(P d x+Q d y)$ taken in the anti-clockwise direction equals $\iint_{S}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A$.
- The proof is quite painful and is frankly, beyond the scope of this course. However, let us look at a special case of a rectangle: The boundary is piecewise C^{1} and is parametrised as $(t, c) a \leq t \leq b,(b, t) c \leq t \leq d,(-t, d)-b \leq t \leq-a$, and $(a,-t)-d \leq t \leq-c$.

Green's theorem

- Theorem: Let P, Q be C^{1} scalar fields on a simply connected closed set S whose boundary is a piecewise C^{1} regular curve. Then $\int_{C}(P d x+Q d y)$ taken in the anti-clockwise direction equals $\iint_{S}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A$.
- The proof is quite painful and is frankly, beyond the scope of this course. However, let us look at a special case of a rectangle: The boundary is piecewise C^{1} and is parametrised as $(t, c) a \leq t \leq b,(b, t) c \leq t \leq d,(-t, d)-b \leq t \leq-a$, and $(a,-t)-d \leq t \leq-c$. Thus the line integral is

Green's theorem

- Theorem: Let P, Q be C^{1} scalar fields on a simply connected closed set S whose boundary is a piecewise C^{1} regular curve. Then $\int_{C}(P d x+Q d y)$ taken in the anti-clockwise direction equals $\iint_{S}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A$.
- The proof is quite painful and is frankly, beyond the scope of this course. However, let us look at a special case of a rectangle: The boundary is piecewise C^{1} and is parametrised as $(t, c) a \leq t \leq b,(b, t) c \leq t \leq d,(-t, d)-b \leq t \leq-a$, and $(a,-t)-d \leq t \leq-c$. Thus the line integral is
$\int_{a}^{b} P(t, c) d t-\int_{-b}^{-a} P(-t, d) d t+\int_{c}^{d} Q(b, t) d t-$ $\int_{-d}^{-c} Q(a,-t) d t$.

Green's theorem

- Theorem: Let P, Q be C^{1} scalar fields on a simply connected closed set S whose boundary is a piecewise C^{1} regular curve. Then $\int_{C}(P d x+Q d y)$ taken in the anti-clockwise direction equals $\iint_{S}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A$.
- The proof is quite painful and is frankly, beyond the scope of this course. However, let us look at a special case of a rectangle: The boundary is piecewise C^{1} and is parametrised as $(t, c) a \leq t \leq b,(b, t) c \leq t \leq d,(-t, d)-b \leq t \leq-a$, and $(a,-t)-d \leq t \leq-c$. Thus the line integral is
$\int_{a}^{b} P(t, c) d t-\int_{-b}^{-a} P(-t, d) d t+\int_{c}^{d} Q(b, t) d t-$
$\int_{-d}^{-c} Q(a,-t) d t$. By the usual FTC,

Green's theorem

- Theorem: Let P, Q be C^{1} scalar fields on a simply connected closed set S whose boundary is a piecewise C^{1} regular curve. Then $\int_{C}(P d x+Q d y)$ taken in the anti-clockwise direction equals $\iint_{S}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A$.
- The proof is quite painful and is frankly, beyond the scope of this course. However, let us look at a special case of a rectangle: The boundary is piecewise C^{1} and is parametrised as $(t, c) a \leq t \leq b,(b, t) c \leq t \leq d,(-t, d)-b \leq t \leq-a$, and $(a,-t)-d \leq t \leq-c$. Thus the line integral is
$\int_{a}^{b} P(t, c) d t-\int_{-b}^{-a} P(-t, d) d t+\int_{c}^{d} Q(b, t) d t-$
$\int_{-d}^{-c} Q(a,-t) d t$. By the usual FTC, this equals the other side of

Green's theorem

- Theorem: Let P, Q be C^{1} scalar fields on a simply connected closed set S whose boundary is a piecewise C^{1} regular curve. Then $\int_{C}(P d x+Q d y)$ taken in the anti-clockwise direction equals $\iint_{S}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A$.
- The proof is quite painful and is frankly, beyond the scope of this course. However, let us look at a special case of a rectangle: The boundary is piecewise C^{1} and is parametrised as $(t, c) a \leq t \leq b,(b, t) c \leq t \leq d,(-t, d)-b \leq t \leq-a$, and $(a,-t)-d \leq t \leq-c$. Thus the line integral is $\int_{a}^{b} P(t, c) d t-\int_{-b}^{-a} P(-t, d) d t+\int_{c}^{d} Q(b, t) d t-$ $\int_{-d}^{-c} Q(a,-t) d t$. By the usual FTC, this equals the other side of Green's theorem.

Green's theorem

- Theorem: Let P, Q be C^{1} scalar fields on a simply connected closed set S whose boundary is a piecewise C^{1} regular curve. Then $\int_{C}(P d x+Q d y)$ taken in the anti-clockwise direction equals $\iint_{S}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A$.
- The proof is quite painful and is frankly, beyond the scope of this course. However, let us look at a special case of a rectangle: The boundary is piecewise C^{1} and is parametrised as $(t, c) a \leq t \leq b,(b, t) c \leq t \leq d,(-t, d)-b \leq t \leq-a$, and $(a,-t)-d \leq t \leq-c$. Thus the line integral is
$\int_{a}^{b} P(t, c) d t-\int_{-b}^{-a} P(-t, d) d t+\int_{c}^{d} Q(b, t) d t-$
$\int_{-d}^{-c} Q(a,-t) d t$. By the usual FTC, this equals the other side of Green's theorem.
- It is not hard

Green's theorem

- Theorem: Let P, Q be C^{1} scalar fields on a simply connected closed set S whose boundary is a piecewise C^{1} regular curve. Then $\int_{C}(P d x+Q d y)$ taken in the anti-clockwise direction equals $\iint_{S}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A$.
- The proof is quite painful and is frankly, beyond the scope of this course. However, let us look at a special case of a rectangle: The boundary is piecewise C^{1} and is parametrised as $(t, c) a \leq t \leq b,(b, t) c \leq t \leq d,(-t, d)-b \leq t \leq-a$, and $(a,-t)-d \leq t \leq-c$. Thus the line integral is
$\int_{a}^{b} P(t, c) d t-\int_{-b}^{-a} P(-t, d) d t+\int_{c}^{d} Q(b, t) d t-$
$\int_{-d}^{-c} Q(a,-t) d t$. By the usual FTC, this equals the other side of Green's theorem.
- It is not hard to do the same thing for Type-III domains (HW).

Green's theorem

- Theorem: Let P, Q be C^{1} scalar fields on a simply connected closed set S whose boundary is a piecewise C^{1} regular curve. Then $\int_{C}(P d x+Q d y)$ taken in the anti-clockwise direction equals $\iint_{S}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A$.
- The proof is quite painful and is frankly, beyond the scope of this course. However, let us look at a special case of a rectangle: The boundary is piecewise C^{1} and is parametrised as $(t, c) a \leq t \leq b,(b, t) c \leq t \leq d,(-t, d)-b \leq t \leq-a$, and $(a,-t)-d \leq t \leq-c$. Thus the line integral is
$\int_{a}^{b} P(t, c) d t-\int_{-b}^{-a} P(-t, d) d t+\int_{c}^{d} Q(b, t) d t-$
$\int_{-d}^{-c} Q(a,-t) d t$. By the usual FTC, this equals the other side of Green's theorem.
- It is not hard to do the same thing for Type-III domains (HW). In the general case,

Green's theorem

- Theorem: Let P, Q be C^{1} scalar fields on a simply connected closed set S whose boundary is a piecewise C^{1} regular curve. Then $\int_{C}(P d x+Q d y)$ taken in the anti-clockwise direction equals $\iint_{S}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A$.
- The proof is quite painful and is frankly, beyond the scope of this course. However, let us look at a special case of a rectangle: The boundary is piecewise C^{1} and is parametrised as $(t, c) a \leq t \leq b,(b, t) c \leq t \leq d,(-t, d)-b \leq t \leq-a$, and $(a,-t)-d \leq t \leq-c$. Thus the line integral is
$\int_{a}^{b} P(t, c) d t-\int_{-b}^{-a} P(-t, d) d t+\int_{c}^{d} Q(b, t) d t-$
$\int_{-d}^{-c} Q(a,-t) d t$. By the usual FTC, this equals the other side of Green's theorem.
- It is not hard to do the same thing for Type-III domains (HW). In the general case, one approximates the boundary

Green's theorem

- Theorem: Let P, Q be C^{1} scalar fields on a simply connected closed set S whose boundary is a piecewise C^{1} regular curve. Then $\int_{C}(P d x+Q d y)$ taken in the anti-clockwise direction equals $\iint_{S}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A$.
- The proof is quite painful and is frankly, beyond the scope of this course. However, let us look at a special case of a rectangle: The boundary is piecewise C^{1} and is parametrised as $(t, c) a \leq t \leq b,(b, t) c \leq t \leq d,(-t, d)-b \leq t \leq-a$, and $(a,-t)-d \leq t \leq-c$. Thus the line integral is
$\int_{a}^{b} P(t, c) d t-\int_{-b}^{-a} P(-t, d) d t+\int_{c}^{d} Q(b, t) d t-$
$\int_{-d}^{-c} Q(a,-t) d t$. By the usual FTC, this equals the other side of Green's theorem.
- It is not hard to do the same thing for Type-III domains (HW). In the general case, one approximates the boundary by a many-sided polygon

Green's theorem

- Theorem: Let P, Q be C^{1} scalar fields on a simply connected closed set S whose boundary is a piecewise C^{1} regular curve. Then $\int_{C}(P d x+Q d y)$ taken in the anti-clockwise direction equals $\iint_{S}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A$.
- The proof is quite painful and is frankly, beyond the scope of this course. However, let us look at a special case of a rectangle: The boundary is piecewise C^{1} and is parametrised as $(t, c) a \leq t \leq b,(b, t) c \leq t \leq d,(-t, d)-b \leq t \leq-a$, and $(a,-t)-d \leq t \leq-c$. Thus the line integral is
$\int_{a}^{b} P(t, c) d t-\int_{-b}^{-a} P(-t, d) d t+\int_{c}^{d} Q(b, t) d t-$
$\int_{-d}^{-c} Q(a,-t) d t$. By the usual FTC, this equals the other side of Green's theorem.
- It is not hard to do the same thing for Type-III domains (HW). In the general case, one approximates the boundary by a many-sided polygon and breaks the interior of this polygon up

Green's theorem

- Theorem: Let P, Q be C^{1} scalar fields on a simply connected closed set S whose boundary is a piecewise C^{1} regular curve. Then $\int_{C}(P d x+Q d y)$ taken in the anti-clockwise direction equals $\iint_{S}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A$.
- The proof is quite painful and is frankly, beyond the scope of this course. However, let us look at a special case of a rectangle: The boundary is piecewise C^{1} and is parametrised as $(t, c) a \leq t \leq b,(b, t) c \leq t \leq d,(-t, d)-b \leq t \leq-a$, and $(a,-t)-d \leq t \leq-c$. Thus the line integral is
$\int_{a}^{b} P(t, c) d t-\int_{-b}^{-a} P(-t, d) d t+\int_{c}^{d} Q(b, t) d t-$
$\int_{-d}^{-c} Q(a,-t) d t$. By the usual FTC, this equals the other side of Green's theorem.
- It is not hard to do the same thing for Type-III domains (HW). In the general case, one approximates the boundary by a many-sided polygon and breaks the interior of this polygon up into a bunch of rectangles and triangles (

Green's theorem

- Theorem: Let P, Q be C^{1} scalar fields on a simply connected closed set S whose boundary is a piecewise C^{1} regular curve. Then $\int_{C}(P d x+Q d y)$ taken in the anti-clockwise direction equals $\iint_{S}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A$.
- The proof is quite painful and is frankly, beyond the scope of this course. However, let us look at a special case of a rectangle: The boundary is piecewise C^{1} and is parametrised as $(t, c) a \leq t \leq b,(b, t) c \leq t \leq d,(-t, d)-b \leq t \leq-a$, and $(a,-t)-d \leq t \leq-c$. Thus the line integral is
$\int_{a}^{b} P(t, c) d t-\int_{-b}^{-a} P(-t, d) d t+\int_{c}^{d} Q(b, t) d t-$
$\int_{-d}^{-c} Q(a,-t) d t$. By the usual FTC, this equals the other side of Green's theorem.
- It is not hard to do the same thing for Type-III domains (HW). In the general case, one approximates the boundary by a many-sided polygon and breaks the interior of this polygon up into a bunch of rectangles and triangles (all Type-III).

Green's theorem

- Theorem: Let P, Q be C^{1} scalar fields on a simply connected closed set S whose boundary is a piecewise C^{1} regular curve. Then $\int_{C}(P d x+Q d y)$ taken in the anti-clockwise direction equals $\iint_{S}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A$.
- The proof is quite painful and is frankly, beyond the scope of this course. However, let us look at a special case of a rectangle: The boundary is piecewise C^{1} and is parametrised as $(t, c) a \leq t \leq b,(b, t) c \leq t \leq d,(-t, d)-b \leq t \leq-a$, and $(a,-t)-d \leq t \leq-c$. Thus the line integral is
$\int_{a}^{b} P(t, c) d t-\int_{-b}^{-a} P(-t, d) d t+\int_{c}^{d} Q(b, t) d t-$
$\int_{-d}^{-c} Q(a,-t) d t$. By the usual FTC, this equals the other side of Green's theorem.
- It is not hard to do the same thing for Type-III domains (HW). In the general case, one approximates the boundary by a many-sided polygon and breaks the interior of this polygon up into a bunch of rectangles and triangles (all Type-III).
Then one applies

Green's theorem

- Theorem: Let P, Q be C^{1} scalar fields on a simply connected closed set S whose boundary is a piecewise C^{1} regular curve. Then $\int_{C}(P d x+Q d y)$ taken in the anti-clockwise direction equals $\iint_{S}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A$.
- The proof is quite painful and is frankly, beyond the scope of this course. However, let us look at a special case of a rectangle: The boundary is piecewise C^{1} and is parametrised as $(t, c) a \leq t \leq b,(b, t) c \leq t \leq d,(-t, d)-b \leq t \leq-a$, and $(a,-t)-d \leq t \leq-c$. Thus the line integral is
$\int_{a}^{b} P(t, c) d t-\int_{-b}^{-a} P(-t, d) d t+\int_{c}^{d} Q(b, t) d t-$
$\int_{-d}^{-c} Q(a,-t) d t$. By the usual FTC, this equals the other side of Green's theorem.
- It is not hard to do the same thing for Type-III domains (HW). In the general case, one approximates the boundary by a many-sided polygon and breaks the interior of this polygon up into a bunch of rectangles and triangles (all Type-III).
Then one applies the above proof to each and adds.

