Lecture 36 - UM 102 (Spring 2021)

Vamsi Pritham Pingali

IISc

Recap

Recap

- Integration over non-rectangular domains,

Recap

- Integration over non-rectangular domains, and Fubini's theorem for Type-I, Type-II domains,

Recap

- Integration over non-rectangular domains, and Fubini's theorem for Type-I, Type-II domains, Examples.
- Integration over non-rectangular domains, and Fubini's theorem for Type-I, Type-II domains, Examples.
- Green's theorem
- Integration over non-rectangular domains, and Fubini's theorem for Type-I, Type-II domains, Examples.
- Green's theorem and its "proof".

Examples

Examples

- Find the area of the circle $x^{2}+y^{2}=1$.

Examples

- Find the area of the circle $x^{2}+y^{2}=1$. The area is $\iint d x d y$.

Examples

- Find the area of the circle $x^{2}+y^{2}=1$. The area is $\iint d x d y$. Choose $Q=x, P=-y$ and use Green:

Examples

- Find the area of the circle $x^{2}+y^{2}=1$. The area is $\iint d x d y$. Choose $Q=x, P=-y$ and use Green: $2 \times$ Area $=\int_{C}(x d y-y d x)$.
- Find the area of the circle $x^{2}+y^{2}=1$. The area is $\iint d x d y$. Choose $Q=x, P=-y$ and use Green:

$$
\begin{aligned}
& 2 \times \text { Area }=\int_{C}(x d y-y d x) . \text { Parametrise } C \text { as } \\
& x=\cos (t), y=\sin (t) .
\end{aligned}
$$

- Find the area of the circle $x^{2}+y^{2}=1$. The area is $\iint d x d y$. Choose $Q=x, P=-y$ and use Green:

$$
\begin{aligned}
& 2 \times \operatorname{Area}=\int_{C}(x d y-y d x) . \text { Parametrise } C \text { as } \\
& x=\cos (t), y=\sin (t) . \text { Thus } x d y-y d x=d t .
\end{aligned}
$$

- Find the area of the circle $x^{2}+y^{2}=1$. The area is $\iint d x d y$. Choose $Q=x, P=-y$ and use Green: $2 \times$ Area $=\int_{C}(x d y-y d x)$. Parametrise C as $x=\cos (t), y=\sin (t)$. Thus $x d y-y d x=d t$. Thus Area $=\pi$. (

Examples

- Find the area of the circle $x^{2}+y^{2}=1$. The area is $\iint d x d y$. Choose $Q=x, P=-y$ and use Green: $2 \times$ Area $=\int_{C}(x d y-y d x)$. Parametrise C as $x=\cos (t), y=\sin (t)$. Thus $x d y-y d x=d t$. Thus Area $=\pi$. (A device called the

Examples

- Find the area of the circle $x^{2}+y^{2}=1$. The area is $\iint d x d y$. Choose $Q=x, P=-y$ and use Green: $2 \times$ Area $=\int_{C}(x d y-y d x)$. Parametrise C as $x=\cos (t), y=\sin (t)$. Thus $x d y-y d x=d t$. Thus Area $=\pi$. (A device called the planimeter works on this principle!)

Examples

- Find the area of the circle $x^{2}+y^{2}=1$. The area is $\iint d x d y$. Choose $Q=x, P=-y$ and use Green: $2 \times$ Area $=\int_{C}(x d y-y d x)$. Parametrise C as $x=\cos (t), y=\sin (t)$. Thus $x d y-y d x=d t$. Thus Area $=\pi$.
(A device called the planimeter works on this principle!)
- Consider $\int \frac{y d x-x d y}{x^{2}+y^{2}}$ over the circle of radius r centred at $(0,0)$.
- Find the area of the circle $x^{2}+y^{2}=1$. The area is $\iint d x d y$. Choose $Q=x, P=-y$ and use Green: $2 \times$ Area $=\int_{C}(x d y-y d x)$. Parametrise C as $x=\cos (t), y=\sin (t)$. Thus $x d y-y d x=d t$. Thus Area $=\pi$.
(A device called the planimeter works on this principle!)
- Consider $\int \frac{y d x-x d y}{x^{2}+y^{2}}$ over the circle of radius r centred at $(0,0)$. Parametrise it as $(r \cos (t), r \sin (t)), 0 \leq t \leq 2 \pi$.
- Find the area of the circle $x^{2}+y^{2}=1$. The area is $\iint d x d y$. Choose $Q=x, P=-y$ and use Green: $2 \times$ Area $=\int_{C}(x d y-y d x)$. Parametrise C as $x=\cos (t), y=\sin (t)$. Thus $x d y-y d x=d t$. Thus Area $=\pi$.
(A device called the planimeter works on this principle!)
- Consider $\int \frac{y d x-x d y}{x^{2}+y^{2}}$ over the circle of radius r centred at $(0,0)$. Parametrise it as $(r \cos (t), r \sin (t)), 0 \leq t \leq 2 \pi$. Then the integral is -2π.
- Find the area of the circle $x^{2}+y^{2}=1$. The area is $\iint d x d y$. Choose $Q=x, P=-y$ and use Green: $2 \times$ Area $=\int_{C}(x d y-y d x)$. Parametrise C as $x=\cos (t), y=\sin (t)$. Thus $x d y-y d x=d t$. Thus Area $=\pi$. (A device called the planimeter works on this principle!)
- Consider $\int \frac{y d x-x d y}{x^{2}+y^{2}}$ over the circle of radius r centred at $(0,0)$. Parametrise it as $(r \cos (t), r \sin (t)), 0 \leq t \leq 2 \pi$. Then the integral is -2π. However, naively applying the Green theorem,
- Find the area of the circle $x^{2}+y^{2}=1$. The area is $\iint d x d y$. Choose $Q=x, P=-y$ and use Green: $2 \times$ Area $=\int_{C}(x d y-y d x)$. Parametrise C as $x=\cos (t), y=\sin (t)$. Thus $x d y-y d x=d t$. Thus Area $=\pi$. (A device called the planimeter works on this principle!)
- Consider $\int \frac{y d x-x d y}{x^{2}+y^{2}}$ over the circle of radius r centred at $(0,0)$. Parametrise it as $(r \cos (t), r \sin (t)), 0 \leq t \leq 2 \pi$. Then the integral is -2π. However, naively applying the Green theorem, we get 0 !!
- Find the area of the circle $x^{2}+y^{2}=1$. The area is $\iint d x d y$. Choose $Q=x, P=-y$ and use Green: $2 \times$ Area $=\int_{C}(x d y-y d x)$. Parametrise C as $x=\cos (t), y=\sin (t)$. Thus $x d y-y d x=d t$. Thus Area $=\pi$. (A device called the planimeter works on this principle!)
- Consider $\int \frac{y d x-x d y}{x^{2}+y^{2}}$ over the circle of radius r centred at $(0,0)$. Parametrise it as $(r \cos (t), r \sin (t)), 0 \leq t \leq 2 \pi$. Then the integral is -2π. However, naively applying the Green theorem, we get 0 !! What is going wrong?
- Find the area of the circle $x^{2}+y^{2}=1$. The area is $\iint d x d y$. Choose $Q=x, P=-y$ and use Green: $2 \times$ Area $=\int_{C}(x d y-y d x)$. Parametrise C as $x=\cos (t), y=\sin (t)$. Thus $x d y-y d x=d t$. Thus Area $=\pi$. (A device called the planimeter works on this principle!)
- Consider $\int \frac{y d x-x d y}{x^{2}+y^{2}}$ over the circle of radius r centred at $(0,0)$. Parametrise it as $(r \cos (t), r \sin (t)), 0 \leq t \leq 2 \pi$. Then the integral is -2π. However, naively applying the Green theorem, we get 0 !! What is going wrong? The point is that the domain of P, Q is actually
- Find the area of the circle $x^{2}+y^{2}=1$. The area is $\iint d x d y$. Choose $Q=x, P=-y$ and use Green: $2 \times$ Area $=\int_{C}(x d y-y d x)$. Parametrise C as $x=\cos (t), y=\sin (t)$. Thus $x d y-y d x=d t$. Thus Area $=\pi$. (A device called the planimeter works on this principle!)
- Consider $\int \frac{y d x-x d y}{x^{2}+y^{2}}$ over the circle of radius r centred at $(0,0)$. Parametrise it as $(r \cos (t), r \sin (t)), 0 \leq t \leq 2 \pi$. Then the integral is -2π. However, naively applying the Green theorem, we get 0 !! What is going wrong? The point is that the domain of P, Q is actually the disc minus the origin, i.e.,
- Find the area of the circle $x^{2}+y^{2}=1$. The area is $\iint d x d y$. Choose $Q=x, P=-y$ and use Green: $2 \times$ Area $=\int_{C}(x d y-y d x)$. Parametrise C as $x=\cos (t), y=\sin (t)$. Thus $x d y-y d x=d t$. Thus Area $=\pi$. (A device called the planimeter works on this principle!)
- Consider $\int \frac{y d x-x d y}{x^{2}+y^{2}}$ over the circle of radius r centred at $(0,0)$. Parametrise it as $(r \cos (t), r \sin (t)), 0 \leq t \leq 2 \pi$. Then the integral is -2π. However, naively applying the Green theorem, we get 0 !! What is going wrong? The point is that the domain of P, Q is actually the disc minus the origin, i.e., it has a hole.
- Find the area of the circle $x^{2}+y^{2}=1$. The area is $\iint d x d y$. Choose $Q=x, P=-y$ and use Green: $2 \times$ Area $=\int_{C}(x d y-y d x)$. Parametrise C as $x=\cos (t), y=\sin (t)$. Thus $x d y-y d x=d t$. Thus Area $=\pi$. (A device called the planimeter works on this principle!)
- Consider $\int \frac{y d x-x d y}{x^{2}+y^{2}}$ over the circle of radius r centred at $(0,0)$. Parametrise it as $(r \cos (t), r \sin (t)), 0 \leq t \leq 2 \pi$. Then the integral is -2π. However, naively applying the Green theorem, we get 0 !! What is going wrong? The point is that the domain of P, Q is actually the disc minus the origin, i.e., it has a hole. So Green is not applicable! (
- Find the area of the circle $x^{2}+y^{2}=1$. The area is $\iint d x d y$. Choose $Q=x, P=-y$ and use Green: $2 \times$ Area $=\int_{C}(x d y-y d x)$. Parametrise C as $x=\cos (t), y=\sin (t)$. Thus $x d y-y d x=d t$. Thus Area $=\pi$. (A device called the planimeter works on this principle!)
- Consider $\int \frac{y d x-x d y}{x^{2}+y^{2}}$ over the circle of radius r centred at $(0,0)$. Parametrise it as $(r \cos (t), r \sin (t)), 0 \leq t \leq 2 \pi$. Then the integral is -2π. However, naively applying the Green theorem, we get 0 !! What is going wrong? The point is that the domain of P, Q is actually the disc minus the origin, i.e., it has a hole. So Green is not applicable! (This way of
- Find the area of the circle $x^{2}+y^{2}=1$. The area is $\iint d x d y$. Choose $Q=x, P=-y$ and use Green: $2 \times$ Area $=\int_{C}(x d y-y d x)$. Parametrise C as $x=\cos (t), y=\sin (t)$. Thus $x d y-y d x=d t$. Thus Area $=\pi$. (A device called the planimeter works on this principle!)
- Consider $\int \frac{y d x-x d y}{x^{2}+y^{2}}$ over the circle of radius r centred at $(0,0)$. Parametrise it as $(r \cos (t), r \sin (t)), 0 \leq t \leq 2 \pi$. Then the integral is -2π. However, naively applying the Green theorem, we get 0 !! What is going wrong? The point is that the domain of P, Q is actually the disc minus the origin, i.e., it has a hole. So Green is not applicable! (This way of deducing the shape of regions
- Find the area of the circle $x^{2}+y^{2}=1$. The area is $\iint d x d y$. Choose $Q=x, P=-y$ and use Green: $2 \times$ Area $=\int_{C}(x d y-y d x)$. Parametrise C as $x=\cos (t), y=\sin (t)$. Thus $x d y-y d x=d t$. Thus Area $=\pi$. (A device called the planimeter works on this principle!)
- Consider $\int \frac{y d x-x d y}{x^{2}+y^{2}}$ over the circle of radius r centred at $(0,0)$. Parametrise it as $(r \cos (t), r \sin (t)), 0 \leq t \leq 2 \pi$. Then the integral is -2π. However, naively applying the Green theorem, we get 0 !! What is going wrong? The point is that the domain of P, Q is actually the disc minus the origin, i.e., it has a hole. So Green is not applicable! (This way of deducing the shape of regions by what kind of calculus
- Find the area of the circle $x^{2}+y^{2}=1$. The area is $\iint d x d y$. Choose $Q=x, P=-y$ and use Green: $2 \times$ Area $=\int_{C}(x d y-y d x)$. Parametrise C as $x=\cos (t), y=\sin (t)$. Thus $x d y-y d x=d t$. Thus Area $=\pi$. (A device called the planimeter works on this principle!)
- Consider $\int \frac{y d x-x d y}{x^{2}+y^{2}}$ over the circle of radius r centred at $(0,0)$. Parametrise it as $(r \cos (t), r \sin (t)), 0 \leq t \leq 2 \pi$. Then the integral is -2π. However, naively applying the Green theorem, we get 0 !! What is going wrong? The point is that the domain of P, Q is actually the disc minus the origin, i.e., it has a hole. So Green is not applicable! (This way of deducing the shape of regions by what kind of calculus one can do on them
- Find the area of the circle $x^{2}+y^{2}=1$. The area is $\iint d x d y$. Choose $Q=x, P=-y$ and use Green: $2 \times$ Area $=\int_{C}(x d y-y d x)$. Parametrise C as $x=\cos (t), y=\sin (t)$. Thus $x d y-y d x=d t$. Thus Area $=\pi$. (A device called the planimeter works on this principle!)
- Consider $\int \frac{y d x-x d y}{x^{2}+y^{2}}$ over the circle of radius r centred at $(0,0)$. Parametrise it as $(r \cos (t), r \sin (t)), 0 \leq t \leq 2 \pi$. Then the integral is -2π. However, naively applying the Green theorem, we get 0 !! What is going wrong? The point is that the domain of P, Q is actually the disc minus the origin, i.e., it has a hole. So Green is not applicable! (This way of deducing the shape of regions by what kind of calculus one can do on them is a big thing.
- Find the area of the circle $x^{2}+y^{2}=1$. The area is $\iint d x d y$. Choose $Q=x, P=-y$ and use Green: $2 \times$ Area $=\int_{C}(x d y-y d x)$. Parametrise C as $x=\cos (t), y=\sin (t)$. Thus $x d y-y d x=d t$. Thus Area $=\pi$. (A device called the planimeter works on this principle!)
- Consider $\int \frac{y d x-x d y}{x^{2}+y^{2}}$ over the circle of radius r centred at $(0,0)$. Parametrise it as $(r \cos (t), r \sin (t)), 0 \leq t \leq 2 \pi$. Then the integral is -2π. However, naively applying the Green theorem, we get 0 !! What is going wrong? The point is that the domain of P, Q is actually the disc minus the origin, i.e., it has a hole. So Green is not applicable! (This way of deducing the shape of regions by what kind of calculus one can do on them is a big thing. It is called "Differential Topology".)

Change of variables (a digression from FTCs)

Change of variables (a digression from FTCs)

- In one-variable calculus,

Change of variables (a digression from FTCs)

- In one-variable calculus, recall that if $u:[a, b] \rightarrow[c, d]$ is a

Change of variables (a digression from FTCs)

- In one-variable calculus, recall that if $u:[a, b] \rightarrow[c, d]$ is a $1-1$ onto C^{1} map such that

Change of variables (a digression from FTCs)

- In one-variable calculus, recall that if $u:[a, b] \rightarrow[c, d]$ is a $1-1$ onto C^{1} map such that $\frac{d u}{d x} \neq 0$ for all $x($

Change of variables (a digression from FTCs)

- In one-variable calculus, recall that if $u:[a, b] \rightarrow[c, d]$ is a $1-1$ onto C^{1} map such that $\frac{d u}{d x} \neq 0$ for all x (except possibly at $a, b)$,

Change of variables (a digression from FTCs)

- In one-variable calculus, recall that if $u:[a, b] \rightarrow[c, d]$ is a $1-1$ onto C^{1} map such that $\frac{d u}{d x} \neq 0$ for all x (except possibly at $a, b)$, and $f:[c, d] \rightarrow \mathbb{R}$ is continuous function,

Change of variables (a digression from FTCs)

- In one-variable calculus, recall that if $u:[a, b] \rightarrow[c, d]$ is a $1-1$ onto C^{1} map such that $\frac{d u}{d x} \neq 0$ for all x (except possibly at $a, b)$, and $f:[c, d] \rightarrow \mathbb{R}$ is continuous function, then $\int_{u^{-1}(a)}^{u^{-1}(b)} f(u(x)) u^{\prime}(x) d x=\int_{c}^{d} f(u) d u$.

Change of variables (a digression from FTCs)

- In one-variable calculus, recall that if $u:[a, b] \rightarrow[c, d]$ is a $1-1$ onto C^{1} map such that $\frac{d u}{d x} \neq 0$ for all x (except possibly at $a, b)$, and $f:[c, d] \rightarrow \mathbb{R}$ is continuous function, then

$$
\int_{u^{-1}(a)}^{u^{-1}(b)} f(u(x)) u^{\prime}(x) d x=\int_{c}^{d} f(u) d u .
$$

- Examples:

Change of variables (a digression from FTCs)

- In one-variable calculus, recall that if $u:[a, b] \rightarrow[c, d]$ is a $1-1$ onto C^{1} map such that $\frac{d u}{d x} \neq 0$ for all x (except possibly at $a, b)$, and $f:[c, d] \rightarrow \mathbb{R}$ is continuous function, then $\int_{u^{-1}(a)}^{u^{-1}(b)} f(u(x)) u^{\prime}(x) d x=\int_{c}^{d} f(u) d u$.
- Examples: Take $\int_{0}^{2} u^{2} d u$ with $u=2 x$ to get $\int_{0}^{1} 8 x^{2} d x$.

Change of variables (a digression from FTCs)

- In one-variable calculus, recall that if $u:[a, b] \rightarrow[c, d]$ is a $1-1$ onto C^{1} map such that $\frac{d u}{d x} \neq 0$ for all x (except possibly at $a, b)$, and $f:[c, d] \rightarrow \mathbb{R}$ is continuous function, then $\int_{u^{-1}(a)}^{u^{-1}(b)} f(u(x)) u^{\prime}(x) d x=\int_{c}^{d} f(u) d u$.
- Examples: Take $\int_{0}^{2} u^{2} d u$ with $u=2 x$ to get $\int_{0}^{1} 8 x^{2} d x$. But with $u=2-2 x$,

Change of variables (a digression from FTCs)

- In one-variable calculus, recall that if $u:[a, b] \rightarrow[c, d]$ is a $1-1$ onto C^{1} map such that $\frac{d u}{d x} \neq 0$ for all x (except possibly at $a, b)$, and $f:[c, d] \rightarrow \mathbb{R}$ is continuous function, then $\int_{u^{-1}(a)}^{u^{-1}(b)} f(u(x)) u^{\prime}(x) d x=\int_{c}^{d} f(u) d u$.
- Examples: Take $\int_{0}^{2} u^{2} d u$ with $u=2 x$ to get $\int_{0}^{1} 8 x^{2} d x$. But with $u=2-2 x$,

$$
\int_{0}^{2} u^{2} d u=-\int_{1}^{0} 8(1-x)^{2} d x=2 \int_{0}^{1} 4(1-x)^{2} d x
$$

Change of variables (a digression from FTCs)

- In one-variable calculus, recall that if $u:[a, b] \rightarrow[c, d]$ is a $1-1$ onto C^{1} map such that $\frac{d u}{d x} \neq 0$ for all x (except possibly at $a, b)$, and $f:[c, d] \rightarrow \mathbb{R}$ is continuous function, then $\int_{u^{-1}(a)}^{u^{-1}(b)} f(u(x)) u^{\prime}(x) d x=\int_{c}^{d} f(u) d u$.
- Examples: Take $\int_{0}^{2} u^{2} d u$ with $u=2 x$ to get $\int_{0}^{1} 8 x^{2} d x$. But with $u=2-2 x$, $\int_{0}^{2} u^{2} d u=-\int_{1}^{0} 8(1-x)^{2} d x=2 \int_{0}^{1} 4(1-x)^{2} d x$. If we want to use only

Change of variables (a digression from FTCs)

- In one-variable calculus, recall that if $u:[a, b] \rightarrow[c, d]$ is a $1-1$ onto C^{1} map such that $\frac{d u}{d x} \neq 0$ for all x (except possibly at $a, b)$, and $f:[c, d] \rightarrow \mathbb{R}$ is continuous function, then $\int_{u^{-1}(a)}^{u^{-1}(b)} f(u(x)) u^{\prime}(x) d x=\int_{c}^{d} f(u) d u$.
- Examples: Take $\int_{0}^{2} u^{2} d u$ with $u=2 x$ to get $\int_{0}^{1} 8 x^{2} d x$. But with $u=2-2 x$, $\int_{0}^{2} u^{2} d u=-\int_{1}^{0} 8(1-x)^{2} d x=2 \int_{0}^{1} 4(1-x)^{2} d x$. If we want to use only $[0,2]$ and $[0,1]$ instead of the upper and lower limits,

Change of variables (a digression from FTCs)

- In one-variable calculus, recall that if $u:[a, b] \rightarrow[c, d]$ is a $1-1$ onto C^{1} map such that $\frac{d u}{d x} \neq 0$ for all x (except possibly at $a, b)$, and $f:[c, d] \rightarrow \mathbb{R}$ is continuous function, then $\int_{u^{-1}(a)}^{u^{-1}(b)} f(u(x)) u^{\prime}(x) d x=\int_{c}^{d} f(u) d u$.
- Examples: Take $\int_{0}^{2} u^{2} d u$ with $u=2 x$ to get $\int_{0}^{1} 8 x^{2} d x$. But with $u=2-2 x$, $\int_{0}^{2} u^{2} d u=-\int_{1}^{0} 8(1-x)^{2} d x=2 \int_{0}^{1} 4(1-x)^{2} d x$. If we want to use only $[0,2]$ and $[0,1]$ instead of the upper and lower limits, then in the second example,

Change of variables (a digression from FTCs)

- In one-variable calculus, recall that if $u:[a, b] \rightarrow[c, d]$ is a $1-1$ onto C^{1} map such that $\frac{d u}{d x} \neq 0$ for all x (except possibly at $a, b)$, and $f:[c, d] \rightarrow \mathbb{R}$ is continuous function, then $\int_{u^{-1}(a)}^{u^{-1}(b)} f(u(x)) u^{\prime}(x) d x=\int_{c}^{d} f(u) d u$.
- Examples: Take $\int_{0}^{2} u^{2} d u$ with $u=2 x$ to get $\int_{0}^{1} 8 x^{2} d x$. But with $u=2-2 x$, $\int_{0}^{2} u^{2} d u=-\int_{1}^{0} 8(1-x)^{2} d x=2 \int_{0}^{1} 4(1-x)^{2} d x$. If we want to use only $[0,2]$ and $[0,1]$ instead of the upper and lower limits, then in the second example, $\int_{[0,2]} u^{2} d u=\int_{[0,1]} 4(1-x)^{2}\left|\frac{d u}{d x}\right| d x$.

Change of variables (a digression from FTCs)

- In one-variable calculus, recall that if $u:[a, b] \rightarrow[c, d]$ is a $1-1$ onto C^{1} map such that $\frac{d u}{d x} \neq 0$ for all x (except possibly at $a, b)$, and $f:[c, d] \rightarrow \mathbb{R}$ is continuous function, then $\int_{u^{-1}(a)}^{u^{-1}(b)} f(u(x)) u^{\prime}(x) d x=\int_{c}^{d} f(u) d u$.
- Examples: Take $\int_{0}^{2} u^{2} d u$ with $u=2 x$ to get $\int_{0}^{1} 8 x^{2} d x$. But with $u=2-2 x$, $\int_{0}^{2} u^{2} d u=-\int_{1}^{0} 8(1-x)^{2} d x=2 \int_{0}^{1} 4(1-x)^{2} d x$. If we want to use only $[0,2]$ and $[0,1]$ instead of the upper and lower limits, then in the second example, $\int_{[0,2]} u^{2} d u=\int_{[0,1]} 4(1-x)^{2}\left|\frac{d u}{d x}\right| d x$.
- We want a

Change of variables (a digression from FTCs)

- In one-variable calculus, recall that if $u:[a, b] \rightarrow[c, d]$ is a $1-1$ onto C^{1} map such that $\frac{d u}{d x} \neq 0$ for all x (except possibly at $a, b)$, and $f:[c, d] \rightarrow \mathbb{R}$ is continuous function, then $\int_{u^{-1}(a)}^{u^{-1}(b)} f(u(x)) u^{\prime}(x) d x=\int_{c}^{d} f(u) d u$.
- Examples: Take $\int_{0}^{2} u^{2} d u$ with $u=2 x$ to get $\int_{0}^{1} 8 x^{2} d x$. But with $u=2-2 x$, $\int_{0}^{2} u^{2} d u=-\int_{1}^{0} 8(1-x)^{2} d x=2 \int_{0}^{1} 4(1-x)^{2} d x$. If we want to use only $[0,2]$ and $[0,1]$ instead of the upper and lower limits, then in the second example, $\int_{[0,2]} u^{2} d u=\int_{[0,1]} 4(1-x)^{2}\left|\frac{d u}{d x}\right| d x$.
- We want a generalisation for multiple integrals. (

Change of variables (a digression from FTCs)

- In one-variable calculus, recall that if $u:[a, b] \rightarrow[c, d]$ is a $1-1$ onto C^{1} map such that $\frac{d u}{d x} \neq 0$ for all x (except possibly at $a, b)$, and $f:[c, d] \rightarrow \mathbb{R}$ is continuous function, then $\int_{u^{-1}(a)}^{u^{-1}(b)} f(u(x)) u^{\prime}(x) d x=\int_{c}^{d} f(u) d u$.
- Examples: Take $\int_{0}^{2} u^{2} d u$ with $u=2 x$ to get $\int_{0}^{1} 8 x^{2} d x$. But with $u=2-2 x$, $\int_{0}^{2} u^{2} d u=-\int_{1}^{0} 8(1-x)^{2} d x=2 \int_{0}^{1} 4(1-x)^{2} d x$. If we want to use only $[0,2]$ and $[0,1]$ instead of the upper and lower limits, then in the second example, $\int_{[0,2]} u^{2} d u=\int_{[0,1]} 4(1-x)^{2}\left|\frac{d u}{d x}\right| d x$.
- We want a generalisation for multiple integrals. (Indeed, if we have

Change of variables (a digression from FTCs)

- In one-variable calculus, recall that if $u:[a, b] \rightarrow[c, d]$ is a $1-1$ onto C^{1} map such that $\frac{d u}{d x} \neq 0$ for all x (except possibly at $a, b)$, and $f:[c, d] \rightarrow \mathbb{R}$ is continuous function, then $\int_{u^{-1}(a)}^{u^{-1}(b)} f(u(x)) u^{\prime}(x) d x=\int_{c}^{d} f(u) d u$.
- Examples: Take $\int_{0}^{2} u^{2} d u$ with $u=2 x$ to get $\int_{0}^{1} 8 x^{2} d x$. But with $u=2-2 x$, $\int_{0}^{2} u^{2} d u=-\int_{1}^{0} 8(1-x)^{2} d x=2 \int_{0}^{1} 4(1-x)^{2} d x$. If we want to use only $[0,2]$ and $[0,1]$ instead of the upper and lower limits, then in the second example, $\int_{[0,2]} u^{2} d u=\int_{[0,1]} 4(1-x)^{2}\left|\frac{d u}{d x}\right| d x$.
- We want a generalisation for multiple integrals. (Indeed, if we have cylindrical or spherical symmetry,

Change of variables (a digression from FTCs)

- In one-variable calculus, recall that if $u:[a, b] \rightarrow[c, d]$ is a $1-1$ onto C^{1} map such that $\frac{d u}{d x} \neq 0$ for all x (except possibly at $a, b)$, and $f:[c, d] \rightarrow \mathbb{R}$ is continuous function, then $\int_{u^{-1}(a)}^{u^{-1}(b)} f(u(x)) u^{\prime}(x) d x=\int_{c}^{d} f(u) d u$.
- Examples: Take $\int_{0}^{2} u^{2} d u$ with $u=2 x$ to get $\int_{0}^{1} 8 x^{2} d x$. But with $u=2-2 x$, $\int_{0}^{2} u^{2} d u=-\int_{1}^{0} 8(1-x)^{2} d x=2 \int_{0}^{1} 4(1-x)^{2} d x$. If we want to use only $[0,2]$ and $[0,1]$ instead of the upper and lower limits, then in the second example, $\int_{[0,2]} u^{2} d u=\int_{[0,1]} 4(1-x)^{2}\left|\frac{d u}{d x}\right| d x$.
- We want a generalisation for multiple integrals. (Indeed, if we have cylindrical or spherical symmetry, it makes sense to choose

Change of variables (a digression from FTCs)

- In one-variable calculus, recall that if $u:[a, b] \rightarrow[c, d]$ is a $1-1$ onto C^{1} map such that $\frac{d u}{d x} \neq 0$ for all x (except possibly at $a, b)$, and $f:[c, d] \rightarrow \mathbb{R}$ is continuous function, then $\int_{u^{-1}(a)}^{u^{-1}(b)} f(u(x)) u^{\prime}(x) d x=\int_{c}^{d} f(u) d u$.
- Examples: Take $\int_{0}^{2} u^{2} d u$ with $u=2 x$ to get $\int_{0}^{1} 8 x^{2} d x$. But with $u=2-2 x$, $\int_{0}^{2} u^{2} d u=-\int_{1}^{0} 8(1-x)^{2} d x=2 \int_{0}^{1} 4(1-x)^{2} d x$. If we want to use only $[0,2]$ and $[0,1]$ instead of the upper and lower limits, then in the second example, $\int_{[0,2]} u^{2} d u=\int_{[0,1]} 4(1-x)^{2}\left|\frac{d u}{d x}\right| d x$.
- We want a generalisation for multiple integrals. (Indeed, if we have cylindrical or spherical symmetry, it makes sense to choose other coordinates systems like polar coordinates.)

Change of variables - intuition

Change of variables - intuition

- Suppose we change coordinates

Change of variables - intuition

- Suppose we change coordinates $(u, v) \rightarrow(x(u, v), y(u, v))$.

Change of variables - intuition

- Suppose we change coordinates $(u, v) \rightarrow(x(u, v), y(u, v))$. Then, the infinitesimal area element

Change of variables - intuition

- Suppose we change coordinates $(u, v) \rightarrow(x(u, v), y(u, v))$. Then, the infinitesimal area element $d A$ in (x, y)

Change of variables - intuition

- Suppose we change coordinates $(u, v) \rightarrow(x(u, v), y(u, v))$. Then, the infinitesimal area element $d A$ in (x, y) is a small parallelogram with vertices $(x(u, v), y(u, v))$, $(x(u+d u, v), y(u+d u, v))=\left(x(u, v)+\frac{\partial x}{\partial u} d u, y(u, v)+\frac{\partial y}{\partial u} d u\right)$, etc.

Change of variables - intuition

- Suppose we change coordinates $(u, v) \rightarrow(x(u, v), y(u, v))$. Then, the infinitesimal area element $d A$ in (x, y) is a small parallelogram with vertices $(x(u, v), y(u, v))$, $(x(u+d u, v), y(u+d u, v))=\left(x(u, v)+\frac{\partial x}{\partial u} d u, y(u, v)+\frac{\partial y}{\partial u} d u\right)$, etc.
- The tiny side-vectors of the parallelogram are

Change of variables - intuition

- Suppose we change coordinates $(u, v) \rightarrow(x(u, v), y(u, v))$. Then, the infinitesimal area element $d A$ in (x, y) is a small parallelogram with vertices $(x(u, v), y(u, v))$, $(x(u+d u, v), y(u+d u, v))=\left(x(u, v)+\frac{\partial x}{\partial u} d u, y(u, v)+\frac{\partial y}{\partial u} d u\right)$, etc.
- The tiny side-vectors of the parallelogram are $d u\left(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}\right)$ and

Change of variables - intuition

- Suppose we change coordinates $(u, v) \rightarrow(x(u, v), y(u, v))$. Then, the infinitesimal area element $d A$ in (x, y) is a small parallelogram with vertices $(x(u, v), y(u, v))$, $(x(u+d u, v), y(u+d u, v))=\left(x(u, v)+\frac{\partial x}{\partial u} d u, y(u, v)+\frac{\partial y}{\partial u} d u\right)$, etc.
- The tiny side-vectors of the parallelogram are $d u\left(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}\right)$ and $d v\left(\frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}\right)$.

Change of variables - intuition

- Suppose we change coordinates $(u, v) \rightarrow(x(u, v), y(u, v))$. Then, the infinitesimal area element $d A$ in (x, y) is a small parallelogram with vertices $(x(u, v), y(u, v))$, $(x(u+d u, v), y(u+d u, v))=\left(x(u, v)+\frac{\partial x}{\partial u} d u, y(u, v)+\frac{\partial y}{\partial u} d u\right)$, etc.
- The tiny side-vectors of the parallelogram are $d u\left(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}\right)$ and $d v\left(\frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}\right)$. Thus the area is

Change of variables - intuition

- Suppose we change coordinates $(u, v) \rightarrow(x(u, v), y(u, v))$. Then, the infinitesimal area element $d A$ in (x, y) is a small parallelogram with vertices $(x(u, v), y(u, v))$, $(x(u+d u, v), y(u+d u, v))=\left(x(u, v)+\frac{\partial x}{\partial u} d u, y(u, v)+\frac{\partial y}{\partial u} d u\right)$, etc.
- The tiny side-vectors of the parallelogram are $d u\left(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}\right)$ and $d v\left(\frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}\right)$. Thus the area is $d A=d u d v\left|\vec{r}_{u} \times \vec{r}_{v}\right|$ which is

Change of variables - intuition

- Suppose we change coordinates $(u, v) \rightarrow(x(u, v), y(u, v))$. Then, the infinitesimal area element $d A$ in (x, y) is a small parallelogram with vertices $(x(u, v), y(u, v))$, $(x(u+d u, v), y(u+d u, v))=\left(x(u, v)+\frac{\partial x}{\partial u} d u, y(u, v)+\frac{\partial y}{\partial u} d u\right)$, etc.
- The tiny side-vectors of the parallelogram are $d u\left(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}\right)$ and $d v\left(\frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}\right)$. Thus the area is $d A=d u d v\left|\vec{r}_{u} \times \vec{r}_{v}\right|$ which is $d^{\prime} u d v|J(u, v)|$ where

Change of variables - intuition

- Suppose we change coordinates $(u, v) \rightarrow(x(u, v), y(u, v))$. Then, the infinitesimal area element $d A$ in (x, y) is a small parallelogram with vertices $(x(u, v), y(u, v))$, $(x(u+d u, v), y(u+d u, v))=\left(x(u, v)+\frac{\partial x}{\partial u} d u, y(u, v)+\frac{\partial y}{\partial u} d u\right)$, etc.
- The tiny side-vectors of the parallelogram are $d u\left(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}\right)$ and $d v\left(\frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}\right)$. Thus the area is $d A=d u d v\left|\vec{r}_{u} \times \vec{r}_{v}\right|$ which is $\operatorname{dudv}|J(u, v)|$ where $J(u, v)$ is called the Jacobian and is the

Change of variables - intuition

- Suppose we change coordinates $(u, v) \rightarrow(x(u, v), y(u, v))$. Then, the infinitesimal area element $d A$ in (x, y) is a small parallelogram with vertices $(x(u, v), y(u, v))$, $(x(u+d u, v), y(u+d u, v))=\left(x(u, v)+\frac{\partial x}{\partial u} d u, y(u, v)+\frac{\partial y}{\partial u} d u\right)$, etc.
- The tiny side-vectors of the parallelogram are $d u\left(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}\right)$ and $d v\left(\frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}\right)$. Thus the area is $d A=d u d v\left|\vec{r}_{u} \times \vec{r}_{v}\right|$ which is $d u d v|J(u, v)|$ where $J(u, v)$ is called the Jacobian and is the determinant of the derivative matrix.

Change of variables - intuition

- Suppose we change coordinates $(u, v) \rightarrow(x(u, v), y(u, v))$. Then, the infinitesimal area element $d A$ in (x, y) is a small parallelogram with vertices $(x(u, v), y(u, v))$, $(x(u+d u, v), y(u+d u, v))=\left(x(u, v)+\frac{\partial x}{\partial u} d u, y(u, v)+\frac{\partial y}{\partial u} d u\right)$, etc.
- The tiny side-vectors of the parallelogram are $d u\left(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}\right)$ and $d v\left(\frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}\right)$. Thus the area is $d A=d u d v\left|\vec{r}_{u} \times \vec{r}_{v}\right|$ which is $d u d v|J(u, v)|$ where $J(u, v)$ is called the Jacobian and is the determinant of the derivative matrix.
- Note that

Change of variables - intuition

- Suppose we change coordinates $(u, v) \rightarrow(x(u, v), y(u, v))$. Then, the infinitesimal area element $d A$ in (x, y) is a small parallelogram with vertices $(x(u, v), y(u, v))$, $(x(u+d u, v), y(u+d u, v))=\left(x(u, v)+\frac{\partial x}{\partial u} d u, y(u, v)+\frac{\partial y}{\partial u} d u\right)$, etc.
- The tiny side-vectors of the parallelogram are $d u\left(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}\right)$ and $d v\left(\frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}\right)$. Thus the area is $d A=d u d v\left|\vec{r}_{u} \times \vec{r}_{v}\right|$ which is $d u d v|J(u, v)|$ where $J(u, v)$ is called the Jacobian and is the determinant of the derivative matrix.
- Note that one takes the

Change of variables - intuition

- Suppose we change coordinates $(u, v) \rightarrow(x(u, v), y(u, v))$. Then, the infinitesimal area element $d A$ in (x, y) is a small parallelogram with vertices $(x(u, v), y(u, v))$, $(x(u+d u, v), y(u+d u, v))=\left(x(u, v)+\frac{\partial x}{\partial u} d u, y(u, v)+\frac{\partial y}{\partial u} d u\right)$, etc.
- The tiny side-vectors of the parallelogram are $d u\left(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}\right)$ and $d v\left(\frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}\right)$. Thus the area is $d A=d u d v\left|\vec{r}_{u} \times \vec{r}_{v}\right|$ which is $d u d v|J(u, v)|$ where $J(u, v)$ is called the Jacobian and is the determinant of the derivative matrix.
- Note that one takes the modulus of J and thus no sign appears.

Change of variables - intuition

- Suppose we change coordinates $(u, v) \rightarrow(x(u, v), y(u, v))$. Then, the infinitesimal area element $d A$ in (x, y) is a small parallelogram with vertices $(x(u, v), y(u, v))$, $(x(u+d u, v), y(u+d u, v))=\left(x(u, v)+\frac{\partial x}{\partial u} d u, y(u, v)+\frac{\partial y}{\partial u} d u\right)$, etc.
- The tiny side-vectors of the parallelogram are $d u\left(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}\right)$ and $d v\left(\frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}\right)$. Thus the area is $d A=d u d v\left|\vec{r}_{u} \times \vec{r}_{v}\right|$ which is $d u d v|J(u, v)|$ where $J(u, v)$ is called the Jacobian and is the determinant of the derivative matrix.
- Note that one takes the modulus of J and thus no sign appears. The region's shape of course changes

Change of variables - intuition

- Suppose we change coordinates $(u, v) \rightarrow(x(u, v), y(u, v))$. Then, the infinitesimal area element $d A$ in (x, y) is a small parallelogram with vertices $(x(u, v), y(u, v))$, $(x(u+d u, v), y(u+d u, v))=\left(x(u, v)+\frac{\partial x}{\partial u} d u, y(u, v)+\frac{\partial y}{\partial u} d u\right)$, etc.
- The tiny side-vectors of the parallelogram are $d u\left(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}\right)$ and $d v\left(\frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}\right)$. Thus the area is $d A=d u d v\left|\vec{r}_{u} \times \vec{r}_{v}\right|$ which is $d u d v|J(u, v)|$ where $J(u, v)$ is called the Jacobian and is the determinant of the derivative matrix.
- Note that one takes the modulus of J and thus no sign appears. The region's shape of course changes in new coordinates.

Change of variables - intuition

- Suppose we change coordinates $(u, v) \rightarrow(x(u, v), y(u, v))$. Then, the infinitesimal area element $d A$ in (x, y) is a small parallelogram with vertices $(x(u, v), y(u, v))$, $(x(u+d u, v), y(u+d u, v))=\left(x(u, v)+\frac{\partial x}{\partial u} d u, y(u, v)+\frac{\partial y}{\partial u} d u\right)$, etc.
- The tiny side-vectors of the parallelogram are $d u\left(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}\right)$ and $d v\left(\frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}\right)$. Thus the area is $d A=d u d v\left|\vec{r}_{u} \times \vec{r}_{v}\right|$ which is $d u d v|J(u, v)|$ where $J(u, v)$ is called the Jacobian and is the determinant of the derivative matrix.
- Note that one takes the modulus of J and thus no sign appears. The region's shape of course changes in new coordinates. Another important point is that

Change of variables - intuition

- Suppose we change coordinates $(u, v) \rightarrow(x(u, v), y(u, v))$. Then, the infinitesimal area element $d A$ in (x, y) is a small parallelogram with vertices $(x(u, v), y(u, v))$, $(x(u+d u, v), y(u+d u, v))=\left(x(u, v)+\frac{\partial x}{\partial u} d u, y(u, v)+\frac{\partial y}{\partial u} d u\right)$, etc.
- The tiny side-vectors of the parallelogram are $d u\left(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}\right)$ and $d v\left(\frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}\right)$. Thus the area is $d A=d u d v\left|\vec{r}_{u} \times \vec{r}_{v}\right|$ which is $d u d v|J(u, v)|$ where $J(u, v)$ is called the Jacobian and is the determinant of the derivative matrix.
- Note that one takes the modulus of J and thus no sign appears. The region's shape of course changes in new coordinates. Another important point is that none of the infinitesimal parallelogram's should be

Change of variables - intuition

- Suppose we change coordinates $(u, v) \rightarrow(x(u, v), y(u, v))$. Then, the infinitesimal area element $d A$ in (x, y) is a small parallelogram with vertices $(x(u, v), y(u, v))$, $(x(u+d u, v), y(u+d u, v))=\left(x(u, v)+\frac{\partial x}{\partial u} d u, y(u, v)+\frac{\partial y}{\partial u} d u\right)$, etc.
- The tiny side-vectors of the parallelogram are $d u\left(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}\right)$ and $d v\left(\frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}\right)$. Thus the area is $d A=d u d v\left|\vec{r}_{u} \times \vec{r}_{v}\right|$ which is $d u d v|J(u, v)|$ where $J(u, v)$ is called the Jacobian and is the determinant of the derivative matrix.
- Note that one takes the modulus of J and thus no sign appears. The region's shape of course changes in new coordinates. Another important point is that none of the infinitesimal parallelogram's should be "crushed" to lines or points

Change of variables - intuition

- Suppose we change coordinates $(u, v) \rightarrow(x(u, v), y(u, v))$. Then, the infinitesimal area element $d A$ in (x, y) is a small parallelogram with vertices $(x(u, v), y(u, v))$, $(x(u+d u, v), y(u+d u, v))=\left(x(u, v)+\frac{\partial x}{\partial u} d u, y(u, v)+\frac{\partial y}{\partial u} d u\right)$, etc.
- The tiny side-vectors of the parallelogram are $d u\left(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}\right)$ and $d v\left(\frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}\right)$. Thus the area is $d A=d u d v\left|\vec{r}_{u} \times \vec{r}_{v}\right|$ which is $d u d v|J(u, v)|$ where $J(u, v)$ is called the Jacobian and is the determinant of the derivative matrix.
- Note that one takes the modulus of J and thus no sign appears. The region's shape of course changes in new coordinates. Another important point is that none of the infinitesimal parallelogram's should be "crushed" to lines or points because we want change-of-variables to

Change of variables - intuition

- Suppose we change coordinates $(u, v) \rightarrow(x(u, v), y(u, v))$. Then, the infinitesimal area element $d A$ in (x, y) is a small parallelogram with vertices $(x(u, v), y(u, v))$, $(x(u+d u, v), y(u+d u, v))=\left(x(u, v)+\frac{\partial x}{\partial u} d u, y(u, v)+\frac{\partial y}{\partial u} d u\right)$, etc.
- The tiny side-vectors of the parallelogram are $d u\left(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}\right)$ and $d v\left(\frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}\right)$. Thus the area is $d A=d u d v\left|\vec{r}_{u} \times \vec{r}_{v}\right|$ which is $d u d v|J(u, v)|$ where $J(u, v)$ is called the Jacobian and is the determinant of the derivative matrix.
- Note that one takes the modulus of J and thus no sign appears. The region's shape of course changes in new coordinates. Another important point is that none of the infinitesimal parallelogram's should be "crushed" to lines or points because we want change-of-variables to "preserve" information.

Change of variables - intuition

- Suppose we change coordinates $(u, v) \rightarrow(x(u, v), y(u, v))$. Then, the infinitesimal area element $d A$ in (x, y) is a small parallelogram with vertices $(x(u, v), y(u, v))$, $(x(u+d u, v), y(u+d u, v))=\left(x(u, v)+\frac{\partial x}{\partial u} d u, y(u, v)+\frac{\partial y}{\partial u} d u\right)$, etc.
- The tiny side-vectors of the parallelogram are $d u\left(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}\right)$ and $d v\left(\frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}\right)$. Thus the area is $d A=d u d v\left|\vec{r}_{u} \times \vec{r}_{v}\right|$ which is $d u d v|J(u, v)|$ where $J(u, v)$ is called the Jacobian and is the determinant of the derivative matrix.
- Note that one takes the modulus of J and thus no sign appears. The region's shape of course changes in new coordinates. Another important point is that none of the infinitesimal parallelogram's should be "crushed" to lines or points because we want change-of-variables to "preserve" information. Thus, morally, we expect $J \neq 0$ to be a natural assumption.

Change of variables - statement and examples

Change of variables - statement and examples

- Let $\Omega, \tilde{\Omega} \subset \mathbb{R}^{2}$ be bounded open sets.

Change of variables - statement and examples

- Let $\Omega, \tilde{\Omega} \subset \mathbb{R}^{2}$ be bounded open sets. Let $f: \tilde{\Omega} \rightarrow \mathbb{R}$ be a continuous bounded function.

Change of variables - statement and examples

- Let $\Omega, \tilde{\Omega} \subset \mathbb{R}^{2}$ be bounded open sets. Let $f: \tilde{\Omega} \rightarrow \mathbb{R}$ be a continuous bounded function. Let $(x(u, v), y(u, v)): \Omega \rightarrow \tilde{\Omega}$ be a $C^{1} 1-1$ onto map such that

Change of variables - statement and examples

- Let $\Omega, \tilde{\Omega} \subset \mathbb{R}^{2}$ be bounded open sets. Let $f: \tilde{\Omega} \rightarrow \mathbb{R}$ be a continuous bounded function. Let $(x(u, v), y(u, v)): \Omega \rightarrow \tilde{\Omega}$ be a $C^{1} 1-1$ onto map such that $J(x(u, v), y(u, v)) \neq 0$ everywhere.

Change of variables - statement and examples

- Let $\Omega, \tilde{\Omega} \subset \mathbb{R}^{2}$ be bounded open sets. Let $f: \tilde{\Omega} \rightarrow \mathbb{R}$ be a continuous bounded function. Let $(x(u, v), y(u, v)): \Omega \rightarrow \tilde{\Omega}$ be a $C^{1} 1-1$ onto map such that $J(x(u, v), y(u, v)) \neq 0$ everywhere. Then

$$
\iint_{\Omega} f(x(u, v), y(u, v))|J(u, v)| d u d v=\iint_{\Omega} f(x, y) d x d y
$$

Change of variables - statement and examples

- Let $\Omega, \tilde{\Omega} \subset \mathbb{R}^{2}$ be bounded open sets. Let $f: \tilde{\Omega} \rightarrow \mathbb{R}$ be a continuous bounded function. Let $(x(u, v), y(u, v)): \Omega \rightarrow \tilde{\Omega}$ be a $C^{1} 1-1$ onto map such that $J(x(u, v), y(u, v)) \neq 0$ everywhere. Then
$\iint_{\Omega} f(x(u, v), y(u, v))|J(u, v)| d u d v=\iint_{\Omega} f(x, y) d x d y$. A similar statement holds in higher dimensions too.

Change of variables - statement and examples

- Let $\Omega, \tilde{\Omega} \subset \mathbb{R}^{2}$ be bounded open sets. Let $f: \tilde{\Omega} \rightarrow \mathbb{R}$ be a continuous bounded function. Let $(x(u, v), y(u, v)): \Omega \rightarrow \tilde{\Omega}$ be a $C^{1} 1-1$ onto map such that $J(x(u, v), y(u, v)) \neq 0$ everywhere. Then
$\iint_{\Omega} f(x(u, v), y(u, v))|J(u, v)| d u d v=\iint_{\Omega} f(x, y) d x d y$. A similar statement holds in higher dimensions too.
- The proof is

Change of variables - statement and examples

- Let $\Omega, \tilde{\Omega} \subset \mathbb{R}^{2}$ be bounded open sets. Let $f: \tilde{\Omega} \rightarrow \mathbb{R}$ be a continuous bounded function. Let $(x(u, v), y(u, v)): \Omega \rightarrow \tilde{\Omega}$ be a $C^{1} 1-1$ onto map such that $J(x(u, v), y(u, v)) \neq 0$ everywhere. Then $\iint_{\Omega} f(x(u, v), y(u, v))|J(u, v)| d u d v=\iint_{\Omega} f(x, y) d x d y$. A similar statement holds in higher dimensions too.
- The proof is surprisingly complicated.

Change of variables - statement and examples

- Let $\Omega, \tilde{\Omega} \subset \mathbb{R}^{2}$ be bounded open sets. Let $f: \tilde{\Omega} \rightarrow \mathbb{R}$ be a continuous bounded function. Let $(x(u, v), y(u, v)): \Omega \rightarrow \tilde{\Omega}$ be a $C^{1} 1-1$ onto map such that $J(x(u, v), y(u, v)) \neq 0$ everywhere. Then
$\iint_{\Omega} f(x(u, v), y(u, v))|J(u, v)| d u d v=\iint_{\Omega} f(x, y) d x d y$. A similar statement holds in higher dimensions too.
- The proof is surprisingly complicated. We shall prove a special case

Change of variables - statement and examples

- Let $\Omega, \tilde{\Omega} \subset \mathbb{R}^{2}$ be bounded open sets. Let $f: \tilde{\Omega} \rightarrow \mathbb{R}$ be a continuous bounded function. Let $(x(u, v), y(u, v)): \Omega \rightarrow \tilde{\Omega}$ be a $C^{1} 1-1$ onto map such that $J(x(u, v), y(u, v)) \neq 0$ everywhere. Then
$\iint_{\Omega} f(x(u, v), y(u, v))|J(u, v)| d u d v=\iint_{\Omega} f(x, y) d x d y$. A similar statement holds in higher dimensions too.
- The proof is surprisingly complicated. We shall prove a special case later on.

Change of variables - statement and examples

- Let $\Omega, \tilde{\Omega} \subset \mathbb{R}^{2}$ be bounded open sets. Let $f: \tilde{\Omega} \rightarrow \mathbb{R}$ be a continuous bounded function. Let $(x(u, v), y(u, v)): \Omega \rightarrow \tilde{\Omega}$ be a $C^{1} 1-1$ onto map such that $J(x(u, v), y(u, v)) \neq 0$ everywhere. Then
$\iint_{\Omega} f(x(u, v), y(u, v))|J(u, v)| d u d v=\iint_{\Omega} f(x, y) d x d y$. A similar statement holds in higher dimensions too.
- The proof is surprisingly complicated. We shall prove a special case later on.
- Calculate $\iint_{\mathbb{R}^{2}} e^{-\left(x^{2}+y^{2}\right)} d x d y$ (I am cheating by using improper integrals).

Change of variables - statement and examples

- Let $\Omega, \tilde{\Omega} \subset \mathbb{R}^{2}$ be bounded open sets. Let $f: \tilde{\Omega} \rightarrow \mathbb{R}$ be a continuous bounded function. Let $(x(u, v), y(u, v)): \Omega \rightarrow \tilde{\Omega}$ be a $C^{1} 1-1$ onto map such that $J(x(u, v), y(u, v)) \neq 0$ everywhere. Then
$\iint_{\Omega} f(x(u, v), y(u, v))|J(u, v)| d u d v=\iint_{\Omega} f(x, y) d x d y$. A similar statement holds in higher dimensions too.
- The proof is surprisingly complicated. We shall prove a special case later on.
- Calculate $\iint_{\mathbb{R}^{2}} e^{-\left(x^{2}+y^{2}\right)} d x d y$ (I am cheating by using improper integrals). Choose polar coordinates

$$
x=r \cos (\theta), y=r \sin (\theta) . J=\operatorname{det}\left[\begin{array}{ll}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta}
\end{array}\right]=r .
$$

Change of variables - statement and examples

- Let $\Omega, \tilde{\Omega} \subset \mathbb{R}^{2}$ be bounded open sets. Let $f: \tilde{\Omega} \rightarrow \mathbb{R}$ be a continuous bounded function. Let $(x(u, v), y(u, v)): \Omega \rightarrow \tilde{\Omega}$ be a $C^{1} 1-1$ onto map such that $J(x(u, v), y(u, v)) \neq 0$ everywhere. Then
$\iint_{\Omega} f(x(u, v), y(u, v))|J(u, v)| d u d v=\iint_{\Omega} f(x, y) d x d y$. A similar statement holds in higher dimensions too.
- The proof is surprisingly complicated. We shall prove a special case later on.
- Calculate $\iint_{\mathbb{R}^{2}} e^{-\left(x^{2}+y^{2}\right)} d x d y$ (I am cheating by using improper integrals). Choose polar coordinates

$$
\begin{aligned}
& x=r \cos (\theta), y=r \sin (\theta) . J=\operatorname{det}\left[\begin{array}{ll}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta}
\end{array}\right]=r \text {. Thus } \\
& \int_{0}^{\infty} \int_{0}^{2 \pi} e^{-r^{2}} r d \theta d r=2 \pi \int_{0}^{\infty} e^{-r^{2} r d r=\pi .}
\end{aligned}
$$

Change of variables - statement and examples

- Let $\Omega, \tilde{\Omega} \subset \mathbb{R}^{2}$ be bounded open sets. Let $f: \tilde{\Omega} \rightarrow \mathbb{R}$ be a continuous bounded function. Let $(x(u, v), y(u, v)): \Omega \rightarrow \tilde{\Omega}$ be a $C^{1} 1-1$ onto map such that $J(x(u, v), y(u, v)) \neq 0$ everywhere. Then
$\iint_{\Omega} f(x(u, v), y(u, v))|J(u, v)| d u d v=\iint_{\Omega} f(x, y) d x d y$. A similar statement holds in higher dimensions too.
- The proof is surprisingly complicated. We shall prove a special case later on.
- Calculate $\iint_{\mathbb{R}^{2}} e^{-\left(x^{2}+y^{2}\right)} d x d y$ (I am cheating by using improper integrals). Choose polar coordinates

$$
\begin{aligned}
& x=r \cos (\theta), y=r \sin (\theta) . J=\operatorname{det}\left[\begin{array}{ll}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta}
\end{array}\right]=r . \text { Thus } \\
& \int_{0}^{\infty} \int_{0}^{2 \pi} e^{-r^{2}} r d \theta d r=2 \pi \int_{0}^{\infty} e^{-r^{2}} r d r=\pi
\end{aligned}
$$

- Let $I=\int_{-\infty}^{\infty} e^{-x^{2}} d x$ and hence $I^{2}=\pi$.

Change of variables - statement and examples

- Let $\Omega, \tilde{\Omega} \subset \mathbb{R}^{2}$ be bounded open sets. Let $f: \tilde{\Omega} \rightarrow \mathbb{R}$ be a continuous bounded function. Let $(x(u, v), y(u, v)): \Omega \rightarrow \tilde{\Omega}$ be a $C^{1} 1-1$ onto map such that $J(x(u, v), y(u, v)) \neq 0$ everywhere. Then
$\iint_{\Omega} f(x(u, v), y(u, v))|J(u, v)| d u d v=\iint_{\Omega} f(x, y) d x d y$. A similar statement holds in higher dimensions too.
- The proof is surprisingly complicated. We shall prove a special case later on.
- Calculate $\iint_{\mathbb{R}^{2}} e^{-\left(x^{2}+y^{2}\right)} d x d y$ (I am cheating by using improper integrals). Choose polar coordinates

$$
\begin{aligned}
& x=r \cos (\theta), y=r \sin (\theta) . J=\operatorname{det}\left[\begin{array}{ll}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta}
\end{array}\right]=r . \text { Thus } \\
& \int_{0}^{\infty} \int_{0}^{2 \pi} e^{-r^{2}} r d \theta d r=2 \pi \int_{0}^{\infty} e^{-r^{2}} r d r=\pi .
\end{aligned}
$$

- Let $I=\int_{-\infty}^{\infty} e^{-x^{2}} d x$ and hence $I^{2}=\pi$. This is the easiest way to evaluate

Change of variables - statement and examples

- Let $\Omega, \tilde{\Omega} \subset \mathbb{R}^{2}$ be bounded open sets. Let $f: \tilde{\Omega} \rightarrow \mathbb{R}$ be a continuous bounded function. Let $(x(u, v), y(u, v)): \Omega \rightarrow \tilde{\Omega}$ be a $C^{1} 1-1$ onto map such that $J(x(u, v), y(u, v)) \neq 0$ everywhere. Then
$\iint_{\Omega} f(x(u, v), y(u, v))|J(u, v)| d u d v=\iint_{\Omega} f(x, y) d x d y$. A similar statement holds in higher dimensions too.
- The proof is surprisingly complicated. We shall prove a special case later on.
- Calculate $\iint_{\mathbb{R}^{2}} e^{-\left(x^{2}+y^{2}\right)} d x d y$ (I am cheating by using improper integrals). Choose polar coordinates

$$
\begin{aligned}
& x=r \cos (\theta), y=r \sin (\theta) . J=\operatorname{det}\left[\begin{array}{ll}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta}
\end{array}\right]=r . \text { Thus } \\
& \int_{0}^{\infty} \int_{0}^{2 \pi} e^{-r^{2}} r d \theta d r=2 \pi \int_{0}^{\infty} e^{-r^{2}} r d r=\pi .
\end{aligned}
$$

- Let $I=\int_{-\infty}^{\infty} e^{-x^{2}} d x$ and hence $I^{2}=\pi$. This is the easiest way to evaluate the Gaussian integral.

One more example

One more example

- Let S be the triangle

One more example

- Let S be the triangle bounded by $x+y=2$ and the axes.

One more example

- Let S be the triangle bounded by $x+y=2$ and the axes. Evaluate $\iint_{S} e^{(y-x) /(y+x)} d x d y$.

One more example

- Let S be the triangle bounded by $x+y=2$ and the axes. Evaluate $\iint_{S} e^{(y-x) /(y+x)} d x d y$.
- Let $u=y-x, v=y+x$. Then the triangle is bounded between

One more example

- Let S be the triangle bounded by $x+y=2$ and the axes. Evaluate $\iint_{S} e^{(y-x) /(y+x)} d x d y$.
- Let $u=y-x, v=y+x$. Then the triangle is bounded between $u+v=0=u-v, v=2$.

One more example

- Let S be the triangle bounded by $x+y=2$ and the axes. Evaluate $\iint_{S} e^{(y-x) /(y+x)} d x d y$.
- Let $u=y-x, v=y+x$. Then the triangle is bounded between $u+v=0=u-v, v=2$. The modulus of the Jacobian is

One more example

- Let S be the triangle bounded by $x+y=2$ and the axes. Evaluate $\iint_{S} e^{(y-x) /(y+x)} d x d y$.
- Let $u=y-x, v=y+x$. Then the triangle is bounded between $u+v=0=u-v, v=2$. The modulus of the Jacobian is $|J|=\frac{1}{2}$

One more example

- Let S be the triangle bounded by $x+y=2$ and the axes. Evaluate $\iint_{S} e^{(y-x) /(y+x)} d x d y$.
- Let $u=y-x, v=y+x$. Then the triangle is bounded between $u+v=0=u-v, v=2$. The modulus of the Jacobian is $|J|=\frac{1}{2}$
- So we integrate $\frac{1}{2} \int_{0}^{2} \int_{-v}^{v} e^{u / v} d u d v$ which is

One more example

- Let S be the triangle bounded by $x+y=2$ and the axes. Evaluate $\iint_{S} e^{(y-x) /(y+x)} d x d y$.
- Let $u=y-x, v=y+x$. Then the triangle is bounded between $u+v=0=u-v, v=2$. The modulus of the Jacobian is $|J|=\frac{1}{2}$
- So we integrate $\frac{1}{2} \int_{0}^{2} \int_{-v}^{v} e^{u / v} d u d v$ which is

$$
\frac{1}{2} \int_{0}^{2} v\left(e-e^{-1}\right) d v=e-e^{-1}
$$

Proof in a special case

Proof in a special case

- Assuming the change of variables is C^{2},

Proof in a special case

- Assuming the change of variables is C^{2}, we shall prove $\iint_{R} d x d y=\iint_{\tilde{R}}|J| d u d v$
- Assuming the change of variables is C^{2}, we shall prove $\iint_{R} d x d y=\iint_{\tilde{R}}|J| d u d v$ i.e. when $f=1$, and Orega $=R$ is a rectangle using

Proof in a special case

- Assuming the change of variables is C^{2}, we shall prove $\iint_{R} d x d y=\iint_{\tilde{R}}|J| d u d v$ i.e. when $f=1$, and Omega $=R$ is a rectangle using Green's theorem.

Proof in a special case

- Assuming the change of variables is C^{2}, we shall prove $\iint_{R} d x d y=\iint_{\tilde{R}}|J| d u d v$ i.e. when $f=1$, and Orega $=R$ is a rectangle using Green's theorem.
- Assume WLOG that $J>0$.

Proof in a special case

- Assuming the change of variables is C^{2}, we shall prove $\iint_{R} d x d y=\iint_{\tilde{R}}|J| d u d v$ i.e. when $f=1$, and Orega $=R$ is a rectangle using Green's theorem.
- Assume WLOG that $J>0 . \iint_{R} d x d y=\int_{C} x d y$.

Proof in a special case

- Assuming the change of variables is C^{2}, we shall prove $\iint_{R} d x d y=\iint_{\tilde{R}}|J| d u d v$ i.e. when $f=1$, and Orega $=R$ is a rectangle using Green's theorem.
- Assume WLOG that $J>0 . \iint_{R} d x d y=\int_{C} x d y$. Likewise, note that the RHS is

Proof in a special case

- Assuming the change of variables is C^{2}, we shall prove $\iint_{R} d x d y=\iint_{\tilde{R}}|J| d u d v$ i.e. when $f=1$, and Orega $=R$ is a rectangle using Green's theorem.
- Assume WLOG that $J>0$. $\iint_{R} d x d y=\int_{C} x d y$. Likewise, note that the RHS is $\iint_{\tilde{R}} \frac{\partial}{\partial u}\left(x \frac{\partial y}{\partial v}\right)-\frac{\partial}{\partial v}\left(x \frac{\partial y}{\partial u}\right)$.

Proof in a special case

- Assuming the change of variables is C^{2}, we shall prove $\iint_{R} d x d y=\iint_{\tilde{R}}|J| d u d v$ i.e. when $f=1$, and Orega $=R$ is a rectangle using Green's theorem.
- Assume WLOG that $J>0$. $\iint_{R} d x d y=\int_{C} x d y$. Likewise, note that the RHS is $\iint_{\tilde{R}} \frac{\partial}{\partial u}\left(x \frac{\partial y}{\partial v}\right)-\frac{\partial}{\partial v}\left(x \frac{\partial y}{\partial u}\right)$. Thus by Green it is

Proof in a special case

- Assuming the change of variables is C^{2}, we shall prove $\iint_{R} d x d y=\iint_{\tilde{R}}|J| d u d v$ i.e. when $f=1$, and Orega $=R$ is a rectangle using Green's theorem.
- Assume WLOG that $J>0$. $\iint_{R} d x d y=\int_{C} x d y$. Likewise, note that the RHS is $\iint_{\tilde{R}} \frac{\partial}{\partial u}\left(x \frac{\partial y}{\partial v}\right)-\frac{\partial}{\partial v}\left(x \frac{\partial y}{\partial u}\right)$. Thus by Green it is $\left.\iint_{\tilde{C}}\left(x \frac{\partial y}{\partial v}\right) d u+x \frac{\partial y}{\partial v} d v\right)$.

Proof in a special case

- Assuming the change of variables is C^{2}, we shall prove $\iint_{R} d x d y=\iint_{\tilde{R}}|J| d u d v$ i.e. when $f=1$, and Orega $=R$ is a rectangle using Green's theorem.
- Assume WLOG that $J>0$. $\iint_{R} d x d y=\int_{C} x d y$. Likewise, note that the RHS is $\iint_{\tilde{R}} \frac{\partial}{\partial u}\left(x \frac{\partial y}{\partial v}\right)-\frac{\partial}{\partial v}\left(x \frac{\partial y}{\partial u}\right)$. Thus by Green it is $\left.\iint_{\tilde{C}}\left(x \frac{\partial y}{\partial v}\right) d u+x \frac{\partial y}{\partial v} d v\right)$.
- Suppose we parametrise

Proof in a special case

- Assuming the change of variables is C^{2}, we shall prove $\iint_{R} d x d y=\iint_{\tilde{R}}|J| d u d v$ i.e. when $f=1$, and Orega $=R$ is a rectangle using Green's theorem.
- Assume WLOG that $J>0$. $\iint_{R} d x d y=\int_{C} x d y$. Likewise, note that the RHS is $\iint_{\tilde{R}} \frac{\partial}{\partial u}\left(x \frac{\partial y}{\partial v}\right)-\frac{\partial}{\partial v}\left(x \frac{\partial y}{\partial u}\right)$. Thus by Green it is $\left.\iint_{\tilde{C}}\left(x \frac{\partial y}{\partial v}\right) d u+x \frac{\partial y}{\partial v} d v\right)$.
- Suppose we parametrise \tilde{C} as $(u(t), v(t))$.

Proof in a special case

- Assuming the change of variables is C^{2}, we shall prove $\iint_{R} d x d y=\iint_{\tilde{R}}|J| d u d v$ i.e. when $f=1$, and Orega $=R$ is a rectangle using Green's theorem.
- Assume WLOG that $J>0$. $\iint_{R} d x d y=\int_{C} x d y$. Likewise, note that the RHS is $\iint_{\tilde{R}} \frac{\partial}{\partial u}\left(x \frac{\partial y}{\partial v}\right)-\frac{\partial}{\partial v}\left(x \frac{\partial y}{\partial u}\right)$. Thus by Green it is $\left.\iint_{\tilde{C}}\left(x \frac{\partial y}{\partial v}\right) d u+x \frac{\partial y}{\partial v} d v\right)$.
- Suppose we parametrise \tilde{C} as $(u(t), v(t))$. Then $(x(u(t), v(t)), y(u(t), v(t)))$ is a parametrisation for the rectangle.

Proof in a special case

- Assuming the change of variables is C^{2}, we shall prove $\iint_{R} d x d y=\iint_{\tilde{R}}|J| d u d v$ i.e. when $f=1$, and Orega $=R$ is a rectangle using Green's theorem.
- Assume WLOG that $J>0$. $\iint_{R} d x d y=\int_{C} x d y$. Likewise, note that the RHS is $\iint_{\tilde{R}} \frac{\partial}{\partial u}\left(x \frac{\partial y}{\partial v}\right)-\frac{\partial}{\partial v}\left(x \frac{\partial y}{\partial u}\right)$. Thus by Green it is $\left.\iint_{\tilde{C}}\left(x \frac{\partial y}{\partial v}\right) d u+x \frac{\partial y}{\partial v} d v\right)$.
- Suppose we parametrise \tilde{C} as $(u(t), v(t))$. Then $(x(u(t), v(t)), y(u(t), v(t)))$ is a parametrisation for the rectangle. Its velocity is

Proof in a special case

- Assuming the change of variables is C^{2}, we shall prove $\iint_{R} d x d y=\iint_{\tilde{R}}|J| d u d v$ i.e. when $f=1$, and Omega $=R$ is a rectangle using Green's theorem.
- Assume WLOG that $J>0$. $\iint_{R} d x d y=\int_{C} x d y$. Likewise, note that the RHS is $\iint_{\tilde{R}} \frac{\partial}{\partial u}\left(x \frac{\partial y}{\partial v}\right)-\frac{\partial}{\partial v}\left(x \frac{\partial y}{\partial u}\right)$. Thus by Green it is $\left.\iint_{\tilde{C}}\left(x \frac{\partial y}{\partial v}\right) d u+x \frac{\partial y}{\partial v} d v\right)$.
- Suppose we parametrise \tilde{C} as $(u(t), v(t))$. Then $(x(u(t), v(t)), y(u(t), v(t)))$ is a parametrisation for the rectangle. Its velocity is $\left(x_{u} u^{\prime}+x_{v} v^{\prime}, y_{u} u^{\prime}+y_{v} v^{\prime}\right)$.

Proof in a special case

- Assuming the change of variables is C^{2}, we shall prove $\iint_{R} d x d y=\iint_{\tilde{R}}|J| d u d v$ i.e. when $f=1$, and Omega $=R$ is a rectangle using Green's theorem.
- Assume WLOG that $J>0$. $\iint_{R} d x d y=\int_{C} x d y$. Likewise, note that the RHS is $\iint_{\tilde{R}} \frac{\partial}{\partial u}\left(x \frac{\partial y}{\partial v}\right)-\frac{\partial}{\partial v}\left(x \frac{\partial y}{\partial u}\right)$. Thus by Green it is $\left.\iint_{\tilde{C}}\left(x \frac{\partial y}{\partial v}\right) d u+x \frac{\partial y}{\partial v} d v\right)$.
- Suppose we parametrise \tilde{C} as $(u(t), v(t))$. Then $(x(u(t), v(t)), y(u(t), v(t)))$ is a parametrisation for the rectangle. Its velocity is $\left(x_{u} u^{\prime}+x_{v} v^{\prime}, y_{u} u^{\prime}+y_{v} v^{\prime}\right)$. Using the change of parametrisation formula, we are done.

Proof in a special case

- Assuming the change of variables is C^{2}, we shall prove $\iint_{R} d x d y=\iint_{\tilde{R}}|J| d u d v$ i.e. when $f=1$, and Omega $=R$ is a rectangle using Green's theorem.
- Assume WLOG that $J>0$. $\iint_{R} d x d y=\int_{C} x d y$. Likewise, note that the RHS is $\iint_{\tilde{R}} \frac{\partial}{\partial u}\left(x \frac{\partial y}{\partial v}\right)-\frac{\partial}{\partial v}\left(x \frac{\partial y}{\partial u}\right)$. Thus by Green it is $\left.\iint_{\tilde{C}}\left(x \frac{\partial y}{\partial v}\right) d u+x \frac{\partial y}{\partial v} d v\right)$.
- Suppose we parametrise \tilde{C} as $(u(t), v(t))$. Then $(x(u(t), v(t)), y(u(t), v(t)))$ is a parametrisation for the rectangle. Its velocity is $\left(x_{u} u^{\prime}+x_{v} v^{\prime}, y_{u} u^{\prime}+y_{v} v^{\prime}\right)$. Using the change of parametrisation formula, we are done.
- One can use

Proof in a special case

- Assuming the change of variables is C^{2}, we shall prove $\iint_{R} d x d y=\iint_{\tilde{R}}|J| d u d v$ i.e. when $f=1$, and Omega $=R$ is a rectangle using Green's theorem.
- Assume WLOG that $J>0$. $\iint_{R} d x d y=\int_{C} x d y$. Likewise, note that the RHS is $\iint_{\tilde{R}} \frac{\partial}{\partial u}\left(x \frac{\partial y}{\partial v}\right)-\frac{\partial}{\partial v}\left(x \frac{\partial y}{\partial u}\right)$. Thus by Green it is $\left.\iint_{\tilde{C}}\left(x \frac{\partial y}{\partial v}\right) d u+x \frac{\partial y}{\partial v} d v\right)$.
- Suppose we parametrise \tilde{C} as $(u(t), v(t))$. Then $(x(u(t), v(t)), y(u(t), v(t)))$ is a parametrisation for the rectangle. Its velocity is $\left(x_{u} u^{\prime}+x_{v} v^{\prime}, y_{u} u^{\prime}+y_{v} v^{\prime}\right)$. Using the change of parametrisation formula, we are done.
- One can use this special case to

Proof in a special case

- Assuming the change of variables is C^{2}, we shall prove $\iint_{R} d x d y=\iint_{\tilde{R}}|J| d u d v$ i.e. when $f=1$, and Omega $=R$ is a rectangle using Green's theorem.
- Assume WLOG that $J>0$. $\iint_{R} d x d y=\int_{C} x d y$. Likewise, note that the RHS is $\iint_{\tilde{R}} \frac{\partial}{\partial u}\left(x \frac{\partial y}{\partial v}\right)-\frac{\partial}{\partial v}\left(x \frac{\partial y}{\partial u}\right)$. Thus by Green it is $\left.\iint_{\tilde{C}}\left(x \frac{\partial y}{\partial v}\right) d u+x \frac{\partial y}{\partial v} d v\right)$.
- Suppose we parametrise \tilde{C} as $(u(t), v(t))$. Then $(x(u(t), v(t)), y(u(t), v(t)))$ is a parametrisation for the rectangle. Its velocity is $\left(x_{u} u^{\prime}+x_{v} v^{\prime}, y_{u} u^{\prime}+y_{v} v^{\prime}\right)$. Using the change of parametrisation formula, we are done.
- One can use this special case to prove the general case.

An example in higher dimensions

An example in higher dimensions

- Calculate the volume $V_{n}(a)$ of

An example in higher dimensions

- Calculate the volume $V_{n}(a)$ of an n-dimensional ball $x_{1}^{2}+x_{2}^{2} \leq+x_{n}^{2} \leq a^{2}$.

An example in higher dimensions

- Calculate the volume $V_{n}(a)$ of an n-dimensional ball $x_{1}^{2}+x_{2}^{2} \leq+x_{n}^{2} \leq a^{2}$.
- Firstly, we prove that

An example in higher dimensions

- Calculate the volume $V_{n}(a)$ of an n-dimensional ball $x_{1}^{2}+x_{2}^{2} \leq+x_{n}^{2} \leq a^{2}$.
- Firstly, we prove that $V_{n}(a)=a^{n} V_{n}(1)$:

An example in higher dimensions

- Calculate the volume $V_{n}(a)$ of an n-dimensional ball $x_{1}^{2}+x_{2}^{2} \leq+x_{n}^{2} \leq a^{2}$.
- Firstly, we prove that $V_{n}(a)=a^{n} V_{n}(1)$: Let $x=a u$ where

An example in higher dimensions

- Calculate the volume $V_{n}(a)$ of an n-dimensional ball $x_{1}^{2}+x_{2}^{2} \leq+x_{n}^{2} \leq a^{2}$.
- Firstly, we prove that $V_{n}(a)=a^{n} V_{n}(1)$: Let $x=a u$ where u is a part of a unit ball.

An example in higher dimensions

- Calculate the volume $V_{n}(a)$ of an n-dimensional ball $x_{1}^{2}+x_{2}^{2} \leq+x_{n}^{2} \leq a^{2}$.
- Firstly, we prove that $V_{n}(a)=a^{n} V_{n}(1)$: Let $x=a u$ where u is a part of a unit ball. Then $J=a^{n}$ and the change of variables

An example in higher dimensions

- Calculate the volume $V_{n}(a)$ of an n-dimensional ball $x_{1}^{2}+x_{2}^{2} \leq+x_{n}^{2} \leq a^{2}$.
- Firstly, we prove that $V_{n}(a)=a^{n} V_{n}(1)$: Let $x=a u$ where u is a part of a unit ball. Then $J=a^{n}$ and the change of variables formula does the trick.

An example in higher dimensions

- Calculate the volume $V_{n}(a)$ of an n-dimensional ball $x_{1}^{2}+x_{2}^{2} \leq+x_{n}^{2} \leq a^{2}$.
- Firstly, we prove that $V_{n}(a)=a^{n} V_{n}(1)$: Let $x=a u$ where u is a part of a unit ball. Then $J=a^{n}$ and the change of variables formula does the trick.
- As for $V_{n}(1)$, it equals

An example in higher dimensions

- Calculate the volume $V_{n}(a)$ of an n-dimensional ball $x_{1}^{2}+x_{2}^{2} \leq+x_{n}^{2} \leq a^{2}$.
- Firstly, we prove that $V_{n}(a)=a^{n} V_{n}(1)$: Let $x=a u$ where u is a part of a unit ball. Then $J=a^{n}$ and the change of variables formula does the trick.
- As for $V_{n}(1)$, it equals the iterated integral

$$
\int_{x_{n-1}^{2}+x_{n}^{2} \leq 1} \iint \cdots \int_{x_{1}^{2}+x_{2}^{2}+\ldots x_{n-2}^{2} \leq 1-x_{n-1}^{2}-x_{n}^{2}} d x_{1} \ldots d x_{n-2} d x_{n-1} d x_{n}
$$

An example in higher dimensions

- Calculate the volume $V_{n}(a)$ of an n-dimensional ball $x_{1}^{2}+x_{2}^{2} \leq+x_{n}^{2} \leq a^{2}$.
- Firstly, we prove that $V_{n}(a)=a^{n} V_{n}(1)$: Let $x=a u$ where u is a part of a unit ball. Then $J=a^{n}$ and the change of variables formula does the trick.
- As for $V_{n}(1)$, it equals the iterated integral

$$
\int_{x_{n-1}^{2}+x_{n}^{2} \leq 1} \iint \cdots \int_{x_{1}^{2}+x_{2}^{2}+\ldots x_{n-2}^{2} \leq 1-x_{n-1}^{2}-x_{n}^{2}} d x_{1} \ldots d x_{n-2} d x_{n-1} d x_{n}
$$

Now the inner integrand is
$V_{n}\left(\sqrt{1-x_{n-1}^{2}-x_{n}^{2}}\right)=\left(1-x_{n-1}^{2}-x_{n}^{2}\right)^{(n-2) / 2} V_{n-2}(1)$.

An example in higher dimensions

- Calculate the volume $V_{n}(a)$ of an n-dimensional ball $x_{1}^{2}+x_{2}^{2} \leq+x_{n}^{2} \leq a^{2}$.
- Firstly, we prove that $V_{n}(a)=a^{n} V_{n}(1)$: Let $x=a u$ where u is a part of a unit ball. Then $J=a^{n}$ and the change of variables formula does the trick.
- As for $V_{n}(1)$, it equals the iterated integral

$$
\int_{x_{n-1}^{2}+x_{n}^{2} \leq 1} \iint \cdots \int_{x_{1}^{2}+x_{2}^{2}+\ldots x_{n-2}^{2} \leq 1-x_{n-1}^{2}-x_{n}^{2}} d x_{1} \ldots d x_{n-2} d x_{n-1} d x_{n}
$$

Now the inner integrand is
$V_{n}\left(\sqrt{1-x_{n-1}^{2}-x_{n}^{2}}\right)=\left(1-x_{n-1}^{2}-x_{n}^{2}\right)^{(n-2) / 2} V_{n-2}(1)$.

- Thus $V_{n}(1)=V_{n-2}(1) \iint_{D}\left(1-x^{2}-y^{2}\right)^{(n-2) / 2} d x d y=$ $2 \pi V_{n-2}(1) \int_{0}^{1}\left(1-r^{2}\right)^{(n-2) / 2} r d r=V_{n-2}(1) \frac{2 \pi}{n}$.

An example in higher dimensions

- Calculate the volume $V_{n}(a)$ of an n-dimensional ball $x_{1}^{2}+x_{2}^{2} \leq+x_{n}^{2} \leq a^{2}$.
- Firstly, we prove that $V_{n}(a)=a^{n} V_{n}(1)$: Let $x=a u$ where u is a part of a unit ball. Then $J=a^{n}$ and the change of variables formula does the trick.
- As for $V_{n}(1)$, it equals the iterated integral

$$
\int_{x_{n-1}^{2}+x_{n}^{2} \leq 1} \iint \cdots \int_{x_{1}^{2}+x_{2}^{2}+\ldots x_{n-2}^{2} \leq 1-x_{n-1}^{2}-x_{n}^{2}} d x_{1} \ldots d x_{n-2} d x_{n-1} d x_{n}
$$

Now the inner integrand is
$V_{n}\left(\sqrt{1-x_{n-1}^{2}-x_{n}^{2}}\right)=\left(1-x_{n-1}^{2}-x_{n}^{2}\right)^{(n-2) / 2} V_{n-2}(1)$.

- Thus $V_{n}(1)=V_{n-2}(1) \iint_{D}\left(1-x^{2}-y^{2}\right)^{(n-2) / 2} d x d y=$ $2 \pi V_{n-2}(1) \int_{0}^{1}\left(1-r^{2}\right)^{(n-2) / 2} r d r=V_{n-2}(1) \frac{2 \pi}{n}$. We can calculate using this formula.

