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Recap

Integration over non-rectangular domains, and Fubini’s
theorem for Type-I, Type-II domains, Examples.

Green’s theorem and its “proof”.
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Examples

Find the area of the circle x2 + y2 = 1. The area is
∫ ∫

dxdy .
Choose Q = x ,P = −y and use Green:
2× Area =

∫
C (xdy − ydx). Parametrise C as

x = cos(t), y = sin(t). Thus xdy − ydx = dt. Thus Area = π.
(A device called the planimeter works on this principle!)

Consider
∫ ydx−xdy

x2+y2 over the circle of radius r centred at (0, 0).

Parametrise it as (r cos(t), r sin(t)), 0 ≤ t ≤ 2π. Then the
integral is −2π. However, naively applying the Green theorem,
we get 0 !! What is going wrong? The point is that the
domain of P,Q is actually the disc minus the origin, i.e., it
has a hole. So Green is not applicable! (This way of deducing
the shape of regions by what kind of calculus one can do on
them is a big thing. It is called “Differential Topology”.)
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Change of variables (a digression from FTCs)

In one-variable calculus, recall that if u : [a, b]→ [c , d ] is a
1− 1 onto C 1 map such that du

dx 6= 0 for all x (except possibly
at a, b), and f : [c , d ]→ R is continuous function, then∫ u−1(b)
u−1(a)

f (u(x))u′(x)dx =
∫ d
c f (u)du.

Examples: Take
∫ 2

0 u2du with u = 2x to get
∫ 1

0 8x2dx . But
with u = 2− 2x ,∫ 2

0 u2du = −
∫ 0

1 8(1− x)2dx = 2
∫ 1

0 4(1− x)2dx . If we want
to use only [0, 2] and [0, 1] instead of the upper and lower
limits, then in the second example,∫
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Change of variables - intuition

Suppose we change coordinates (u, v)→ (x(u, v), y(u, v)).
Then, the infinitesimal area element dA in (x , y) is a small
parallelogram with vertices (x(u, v), y(u, v)),
(x(u+du, v), y(u+du, v)) = (x(u, v)+ ∂x

∂udu, y(u, v)+ ∂y
∂udu),

etc.

The tiny side-vectors of the parallelogram are du(∂x∂u ,
∂y
∂u ) and

dv(∂x∂v ,
∂y
∂v ). Thus the area is dA = dudv |~ru × ~rv | which is

dudv |J(u, v)| where J(u, v) is called the Jacobian and is the
determinant of the derivative matrix.

Note that one takes the modulus of J and thus no sign
appears. The region’s shape of course changes in new
coordinates. Another important point is that none of the
infinitesimal parallelogram’s should be “crushed” to lines or
points because we want change-of-variables to “preserve”
information. Thus, morally, we expect J 6= 0 to be a natural
assumption.
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Change of variables - statement and examples
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One more example

Let S be the triangle bounded by x + y = 2 and the axes.
Evaluate

∫ ∫
S e

(y−x)/(y+x)dxdy .

Let u = y − x , v = y + x . Then the triangle is bounded
between u + v = 0 = u − v , v = 2. The modulus of the
Jacobian is |J| = 1

2

So we integrate 1
2

∫ 2
0

∫ v
−v e

u/vdudv which is
1
2

∫ 2
0 v(e − e−1)dv = e − e−1.
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Jacobian is |J| = 1

2

So we integrate 1
2

∫ 2
0

∫ v
−v e

u/vdudv which is
1
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Proof in a special case

Assuming the change of variables is C 2, we shall prove∫ ∫
R dxdy =

∫ ∫
R̃ |J|dudv i.e. when f = 1, and ˜Omega = R is

a rectangle using Green’s theorem.

Assume WLOG that J > 0.
∫ ∫

R dxdy =
∫
C xdy . Likewise,

note that the RHS is
∫ ∫

R̃
∂
∂u (x ∂y∂v )− ∂

∂v (x ∂y∂u ). Thus by

Green it is
∫ ∫

C̃ (x ∂y∂v )du + x ∂y∂v dv).

Suppose we parametrise C̃ as (u(t), v(t)). Then
(x(u(t), v(t)), y(u(t), v(t))) is a parametrisation for the
rectangle. Its velocity is (xuu

′ + xvv
′, yuu

′ + yvv
′). Using the

change of parametrisation formula, we are done.

One can use this special case to prove the general case.
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An example in higher dimensions

Calculate the volume Vn(a) of an n-dimensional ball
x2

1 + x2
2 ≤ +x2

n ≤ a2.

Firstly, we prove that Vn(a) = anVn(1): Let x = au where u is
a part of a unit ball. Then J = an and the change of variables
formula does the trick.

As for Vn(1), it equals the iterated integral∫
x2
n−1+x2

n≤1

∫ ∫
. . .

∫
x2

1 +x2
2 +...x2

n−2≤1−x2
n−1−x2

n

dx1 . . . dxn−2dxn−1dxn.

Now the inner integrand is

Vn(
√

1− x2
n−1 − x2

n ) = (1− x2
n−1 − x2

n )(n−2)/2Vn−2(1).

Thus Vn(1) = Vn−2(1)
∫ ∫

D(1− x2 − y2)(n−2)/2dxdy =

2πVn−2(1)
∫ 1

0 (1− r2)(n−2)/2rdr = Vn−2(1) 2π
n . We can

calculate using this formula.
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