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Recap

Area enclosed by a Jordan curve using Green’s theorem.

Change of variables formula.

Examples, including the volume of a ball.
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Parametrisation of surfaces

Let T ⊂ R2 be a bounded region whose boundary is a
piecewise C 1 Jordan curve (i.e., simple closed regular curve).

Def: A parametrised surface is (the range of) a piecewise C 1

map ~r(u, v) : T → R3 that is 1− 1 on the interior.

Example: ~r(u, v) = (sin(u) cos(v), sin(u) sin(v), cos(u)) where
(u, v) ∈ T = [0, π]× [0, 2π]. The image is the unit sphere.
The map is not 1− 1 on the boundary of T . This surface is a
“closed” surface, i.e., it has no “boundary”. On the other
hand, if T = [0, π2 ]× [0, 2π] then it is a hemisphere whose
boundary is a circle.

Def: A closed parametrised surface is a set such that near
every point it is a parametrised surface. So the sphere is a
closed parametrised surface.
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Some more examples and infinitesimal area

Example: ~r(u, v) = (cos(u), sin(u), v) where
(u, v) ∈ [0, 2π]× [0, 1]. It is a right-circular cylinder with
boundary being two circles. (It is not a closed parametrised
surface.)

Example: ~r(u, v) = (v sin(α) cos(u), v sin(α) sin(u), v cos(α))
where (u, v) ∈ [0, 2π]× [0, 1] is a right-circular cone with cone
angle α. It is a (non-closed) parametrised surface with
boundary as a circle.

Suppose dudv is an infinitesimal area element in the u − v
plane. Then the parallelogram formed in R3 has sides
~rudu = du(∂x∂u ,

∂y
∂u ,

∂z
∂u ) and ~rvdv = dv(∂x∂v ,

∂y
∂v ,

∂z
∂v ).
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Regular/Smooth surfaces

The infinitesimal area is ‖~ru × ~rv‖dudv . Just as for regular
curves, we define regular surfaces as those with ~ru × ~rv 6= 0
everywhere. Such surfaces are also called “smooth”.

For a cone, ~ru = v(− sin(α) sin(u), sin(α) cos(u), 0) and
~rv = (sin(α) cos(u), sin(α) sin(u), cos(α)). Thus ~ru × ~rv = ~0
when v = 0. The vertex of the cone is not a smooth point.

Example: Suppose z = f (x , y) where f is a C 1 function,
~r(u, v) = (u, v , f (u, v)). Then ~ru = (1, 0, fu) and
~rv = (0, 1, fv ). Thus ~ru × ~rv = (−fu,−fv , 1) and is hence
never zero. So the graph of a C 1 function is a regular
parameterised surface.

For instance, if we take z =
√

1− x2 − y2, the function is not
differentiable at x = y = 0. The problem here lies with this
particular parametrisation because we already saw the the
sphere can be parametrised even near the equator as a regular
surface. So the choice of a parametrisation is important.

Vamsi Pritham Pingali Lecture 37 5/8



Regular/Smooth surfaces

The infinitesimal area is ‖~ru × ~rv‖dudv .

Just as for regular
curves, we define regular surfaces as those with ~ru × ~rv 6= 0
everywhere. Such surfaces are also called “smooth”.

For a cone, ~ru = v(− sin(α) sin(u), sin(α) cos(u), 0) and
~rv = (sin(α) cos(u), sin(α) sin(u), cos(α)). Thus ~ru × ~rv = ~0
when v = 0. The vertex of the cone is not a smooth point.

Example: Suppose z = f (x , y) where f is a C 1 function,
~r(u, v) = (u, v , f (u, v)). Then ~ru = (1, 0, fu) and
~rv = (0, 1, fv ). Thus ~ru × ~rv = (−fu,−fv , 1) and is hence
never zero. So the graph of a C 1 function is a regular
parameterised surface.

For instance, if we take z =
√

1− x2 − y2, the function is not
differentiable at x = y = 0. The problem here lies with this
particular parametrisation because we already saw the the
sphere can be parametrised even near the equator as a regular
surface. So the choice of a parametrisation is important.

Vamsi Pritham Pingali Lecture 37 5/8



Regular/Smooth surfaces

The infinitesimal area is ‖~ru × ~rv‖dudv . Just as for regular
curves,

we define regular surfaces as those with ~ru × ~rv 6= 0
everywhere. Such surfaces are also called “smooth”.

For a cone, ~ru = v(− sin(α) sin(u), sin(α) cos(u), 0) and
~rv = (sin(α) cos(u), sin(α) sin(u), cos(α)). Thus ~ru × ~rv = ~0
when v = 0. The vertex of the cone is not a smooth point.

Example: Suppose z = f (x , y) where f is a C 1 function,
~r(u, v) = (u, v , f (u, v)). Then ~ru = (1, 0, fu) and
~rv = (0, 1, fv ). Thus ~ru × ~rv = (−fu,−fv , 1) and is hence
never zero. So the graph of a C 1 function is a regular
parameterised surface.

For instance, if we take z =
√

1− x2 − y2, the function is not
differentiable at x = y = 0. The problem here lies with this
particular parametrisation because we already saw the the
sphere can be parametrised even near the equator as a regular
surface. So the choice of a parametrisation is important.

Vamsi Pritham Pingali Lecture 37 5/8



Regular/Smooth surfaces

The infinitesimal area is ‖~ru × ~rv‖dudv . Just as for regular
curves, we define regular surfaces as

those with ~ru × ~rv 6= 0
everywhere. Such surfaces are also called “smooth”.

For a cone, ~ru = v(− sin(α) sin(u), sin(α) cos(u), 0) and
~rv = (sin(α) cos(u), sin(α) sin(u), cos(α)). Thus ~ru × ~rv = ~0
when v = 0. The vertex of the cone is not a smooth point.

Example: Suppose z = f (x , y) where f is a C 1 function,
~r(u, v) = (u, v , f (u, v)). Then ~ru = (1, 0, fu) and
~rv = (0, 1, fv ). Thus ~ru × ~rv = (−fu,−fv , 1) and is hence
never zero. So the graph of a C 1 function is a regular
parameterised surface.

For instance, if we take z =
√

1− x2 − y2, the function is not
differentiable at x = y = 0. The problem here lies with this
particular parametrisation because we already saw the the
sphere can be parametrised even near the equator as a regular
surface. So the choice of a parametrisation is important.

Vamsi Pritham Pingali Lecture 37 5/8



Regular/Smooth surfaces

The infinitesimal area is ‖~ru × ~rv‖dudv . Just as for regular
curves, we define regular surfaces as those with ~ru × ~rv 6= 0
everywhere.

Such surfaces are also called “smooth”.

For a cone, ~ru = v(− sin(α) sin(u), sin(α) cos(u), 0) and
~rv = (sin(α) cos(u), sin(α) sin(u), cos(α)). Thus ~ru × ~rv = ~0
when v = 0. The vertex of the cone is not a smooth point.

Example: Suppose z = f (x , y) where f is a C 1 function,
~r(u, v) = (u, v , f (u, v)). Then ~ru = (1, 0, fu) and
~rv = (0, 1, fv ). Thus ~ru × ~rv = (−fu,−fv , 1) and is hence
never zero. So the graph of a C 1 function is a regular
parameterised surface.

For instance, if we take z =
√

1− x2 − y2, the function is not
differentiable at x = y = 0. The problem here lies with this
particular parametrisation because we already saw the the
sphere can be parametrised even near the equator as a regular
surface. So the choice of a parametrisation is important.

Vamsi Pritham Pingali Lecture 37 5/8



Regular/Smooth surfaces

The infinitesimal area is ‖~ru × ~rv‖dudv . Just as for regular
curves, we define regular surfaces as those with ~ru × ~rv 6= 0
everywhere. Such surfaces are also called “smooth”.

For a cone, ~ru = v(− sin(α) sin(u), sin(α) cos(u), 0) and
~rv = (sin(α) cos(u), sin(α) sin(u), cos(α)). Thus ~ru × ~rv = ~0
when v = 0. The vertex of the cone is not a smooth point.

Example: Suppose z = f (x , y) where f is a C 1 function,
~r(u, v) = (u, v , f (u, v)). Then ~ru = (1, 0, fu) and
~rv = (0, 1, fv ). Thus ~ru × ~rv = (−fu,−fv , 1) and is hence
never zero. So the graph of a C 1 function is a regular
parameterised surface.

For instance, if we take z =
√

1− x2 − y2, the function is not
differentiable at x = y = 0. The problem here lies with this
particular parametrisation because we already saw the the
sphere can be parametrised even near the equator as a regular
surface. So the choice of a parametrisation is important.

Vamsi Pritham Pingali Lecture 37 5/8



Regular/Smooth surfaces

The infinitesimal area is ‖~ru × ~rv‖dudv . Just as for regular
curves, we define regular surfaces as those with ~ru × ~rv 6= 0
everywhere. Such surfaces are also called “smooth”.

For a cone,

~ru = v(− sin(α) sin(u), sin(α) cos(u), 0) and
~rv = (sin(α) cos(u), sin(α) sin(u), cos(α)). Thus ~ru × ~rv = ~0
when v = 0. The vertex of the cone is not a smooth point.

Example: Suppose z = f (x , y) where f is a C 1 function,
~r(u, v) = (u, v , f (u, v)). Then ~ru = (1, 0, fu) and
~rv = (0, 1, fv ). Thus ~ru × ~rv = (−fu,−fv , 1) and is hence
never zero. So the graph of a C 1 function is a regular
parameterised surface.

For instance, if we take z =
√

1− x2 − y2, the function is not
differentiable at x = y = 0. The problem here lies with this
particular parametrisation because we already saw the the
sphere can be parametrised even near the equator as a regular
surface. So the choice of a parametrisation is important.

Vamsi Pritham Pingali Lecture 37 5/8



Regular/Smooth surfaces

The infinitesimal area is ‖~ru × ~rv‖dudv . Just as for regular
curves, we define regular surfaces as those with ~ru × ~rv 6= 0
everywhere. Such surfaces are also called “smooth”.

For a cone, ~ru = v(− sin(α) sin(u), sin(α) cos(u), 0) and
~rv = (sin(α) cos(u), sin(α) sin(u), cos(α)).

Thus ~ru × ~rv = ~0
when v = 0. The vertex of the cone is not a smooth point.

Example: Suppose z = f (x , y) where f is a C 1 function,
~r(u, v) = (u, v , f (u, v)). Then ~ru = (1, 0, fu) and
~rv = (0, 1, fv ). Thus ~ru × ~rv = (−fu,−fv , 1) and is hence
never zero. So the graph of a C 1 function is a regular
parameterised surface.

For instance, if we take z =
√

1− x2 − y2, the function is not
differentiable at x = y = 0. The problem here lies with this
particular parametrisation because we already saw the the
sphere can be parametrised even near the equator as a regular
surface. So the choice of a parametrisation is important.

Vamsi Pritham Pingali Lecture 37 5/8



Regular/Smooth surfaces

The infinitesimal area is ‖~ru × ~rv‖dudv . Just as for regular
curves, we define regular surfaces as those with ~ru × ~rv 6= 0
everywhere. Such surfaces are also called “smooth”.

For a cone, ~ru = v(− sin(α) sin(u), sin(α) cos(u), 0) and
~rv = (sin(α) cos(u), sin(α) sin(u), cos(α)). Thus ~ru × ~rv = ~0
when v = 0.

The vertex of the cone is not a smooth point.

Example: Suppose z = f (x , y) where f is a C 1 function,
~r(u, v) = (u, v , f (u, v)). Then ~ru = (1, 0, fu) and
~rv = (0, 1, fv ). Thus ~ru × ~rv = (−fu,−fv , 1) and is hence
never zero. So the graph of a C 1 function is a regular
parameterised surface.

For instance, if we take z =
√

1− x2 − y2, the function is not
differentiable at x = y = 0. The problem here lies with this
particular parametrisation because we already saw the the
sphere can be parametrised even near the equator as a regular
surface. So the choice of a parametrisation is important.

Vamsi Pritham Pingali Lecture 37 5/8



Regular/Smooth surfaces

The infinitesimal area is ‖~ru × ~rv‖dudv . Just as for regular
curves, we define regular surfaces as those with ~ru × ~rv 6= 0
everywhere. Such surfaces are also called “smooth”.

For a cone, ~ru = v(− sin(α) sin(u), sin(α) cos(u), 0) and
~rv = (sin(α) cos(u), sin(α) sin(u), cos(α)). Thus ~ru × ~rv = ~0
when v = 0. The vertex of the cone

is not a smooth point.

Example: Suppose z = f (x , y) where f is a C 1 function,
~r(u, v) = (u, v , f (u, v)). Then ~ru = (1, 0, fu) and
~rv = (0, 1, fv ). Thus ~ru × ~rv = (−fu,−fv , 1) and is hence
never zero. So the graph of a C 1 function is a regular
parameterised surface.

For instance, if we take z =
√

1− x2 − y2, the function is not
differentiable at x = y = 0. The problem here lies with this
particular parametrisation because we already saw the the
sphere can be parametrised even near the equator as a regular
surface. So the choice of a parametrisation is important.

Vamsi Pritham Pingali Lecture 37 5/8



Regular/Smooth surfaces

The infinitesimal area is ‖~ru × ~rv‖dudv . Just as for regular
curves, we define regular surfaces as those with ~ru × ~rv 6= 0
everywhere. Such surfaces are also called “smooth”.

For a cone, ~ru = v(− sin(α) sin(u), sin(α) cos(u), 0) and
~rv = (sin(α) cos(u), sin(α) sin(u), cos(α)). Thus ~ru × ~rv = ~0
when v = 0. The vertex of the cone is not a smooth point.

Example: Suppose z = f (x , y) where f is a C 1 function,
~r(u, v) = (u, v , f (u, v)). Then ~ru = (1, 0, fu) and
~rv = (0, 1, fv ). Thus ~ru × ~rv = (−fu,−fv , 1) and is hence
never zero. So the graph of a C 1 function is a regular
parameterised surface.

For instance, if we take z =
√

1− x2 − y2, the function is not
differentiable at x = y = 0. The problem here lies with this
particular parametrisation because we already saw the the
sphere can be parametrised even near the equator as a regular
surface. So the choice of a parametrisation is important.

Vamsi Pritham Pingali Lecture 37 5/8



Regular/Smooth surfaces

The infinitesimal area is ‖~ru × ~rv‖dudv . Just as for regular
curves, we define regular surfaces as those with ~ru × ~rv 6= 0
everywhere. Such surfaces are also called “smooth”.

For a cone, ~ru = v(− sin(α) sin(u), sin(α) cos(u), 0) and
~rv = (sin(α) cos(u), sin(α) sin(u), cos(α)). Thus ~ru × ~rv = ~0
when v = 0. The vertex of the cone is not a smooth point.

Example:

Suppose z = f (x , y) where f is a C 1 function,
~r(u, v) = (u, v , f (u, v)). Then ~ru = (1, 0, fu) and
~rv = (0, 1, fv ). Thus ~ru × ~rv = (−fu,−fv , 1) and is hence
never zero. So the graph of a C 1 function is a regular
parameterised surface.

For instance, if we take z =
√

1− x2 − y2, the function is not
differentiable at x = y = 0. The problem here lies with this
particular parametrisation because we already saw the the
sphere can be parametrised even near the equator as a regular
surface. So the choice of a parametrisation is important.

Vamsi Pritham Pingali Lecture 37 5/8



Regular/Smooth surfaces

The infinitesimal area is ‖~ru × ~rv‖dudv . Just as for regular
curves, we define regular surfaces as those with ~ru × ~rv 6= 0
everywhere. Such surfaces are also called “smooth”.

For a cone, ~ru = v(− sin(α) sin(u), sin(α) cos(u), 0) and
~rv = (sin(α) cos(u), sin(α) sin(u), cos(α)). Thus ~ru × ~rv = ~0
when v = 0. The vertex of the cone is not a smooth point.

Example: Suppose z = f (x , y) where f is a C 1 function,

~r(u, v) = (u, v , f (u, v)). Then ~ru = (1, 0, fu) and
~rv = (0, 1, fv ). Thus ~ru × ~rv = (−fu,−fv , 1) and is hence
never zero. So the graph of a C 1 function is a regular
parameterised surface.

For instance, if we take z =
√

1− x2 − y2, the function is not
differentiable at x = y = 0. The problem here lies with this
particular parametrisation because we already saw the the
sphere can be parametrised even near the equator as a regular
surface. So the choice of a parametrisation is important.

Vamsi Pritham Pingali Lecture 37 5/8



Regular/Smooth surfaces

The infinitesimal area is ‖~ru × ~rv‖dudv . Just as for regular
curves, we define regular surfaces as those with ~ru × ~rv 6= 0
everywhere. Such surfaces are also called “smooth”.

For a cone, ~ru = v(− sin(α) sin(u), sin(α) cos(u), 0) and
~rv = (sin(α) cos(u), sin(α) sin(u), cos(α)). Thus ~ru × ~rv = ~0
when v = 0. The vertex of the cone is not a smooth point.

Example: Suppose z = f (x , y) where f is a C 1 function,
~r(u, v) = (u, v , f (u, v)).

Then ~ru = (1, 0, fu) and
~rv = (0, 1, fv ). Thus ~ru × ~rv = (−fu,−fv , 1) and is hence
never zero. So the graph of a C 1 function is a regular
parameterised surface.

For instance, if we take z =
√

1− x2 − y2, the function is not
differentiable at x = y = 0. The problem here lies with this
particular parametrisation because we already saw the the
sphere can be parametrised even near the equator as a regular
surface. So the choice of a parametrisation is important.

Vamsi Pritham Pingali Lecture 37 5/8



Regular/Smooth surfaces

The infinitesimal area is ‖~ru × ~rv‖dudv . Just as for regular
curves, we define regular surfaces as those with ~ru × ~rv 6= 0
everywhere. Such surfaces are also called “smooth”.

For a cone, ~ru = v(− sin(α) sin(u), sin(α) cos(u), 0) and
~rv = (sin(α) cos(u), sin(α) sin(u), cos(α)). Thus ~ru × ~rv = ~0
when v = 0. The vertex of the cone is not a smooth point.

Example: Suppose z = f (x , y) where f is a C 1 function,
~r(u, v) = (u, v , f (u, v)). Then ~ru = (1, 0, fu) and
~rv = (0, 1, fv ).

Thus ~ru × ~rv = (−fu,−fv , 1) and is hence
never zero. So the graph of a C 1 function is a regular
parameterised surface.

For instance, if we take z =
√

1− x2 − y2, the function is not
differentiable at x = y = 0. The problem here lies with this
particular parametrisation because we already saw the the
sphere can be parametrised even near the equator as a regular
surface. So the choice of a parametrisation is important.

Vamsi Pritham Pingali Lecture 37 5/8



Regular/Smooth surfaces

The infinitesimal area is ‖~ru × ~rv‖dudv . Just as for regular
curves, we define regular surfaces as those with ~ru × ~rv 6= 0
everywhere. Such surfaces are also called “smooth”.

For a cone, ~ru = v(− sin(α) sin(u), sin(α) cos(u), 0) and
~rv = (sin(α) cos(u), sin(α) sin(u), cos(α)). Thus ~ru × ~rv = ~0
when v = 0. The vertex of the cone is not a smooth point.

Example: Suppose z = f (x , y) where f is a C 1 function,
~r(u, v) = (u, v , f (u, v)). Then ~ru = (1, 0, fu) and
~rv = (0, 1, fv ). Thus ~ru × ~rv = (−fu,−fv , 1) and is hence

never zero. So the graph of a C 1 function is a regular
parameterised surface.

For instance, if we take z =
√

1− x2 − y2, the function is not
differentiable at x = y = 0. The problem here lies with this
particular parametrisation because we already saw the the
sphere can be parametrised even near the equator as a regular
surface. So the choice of a parametrisation is important.

Vamsi Pritham Pingali Lecture 37 5/8



Regular/Smooth surfaces

The infinitesimal area is ‖~ru × ~rv‖dudv . Just as for regular
curves, we define regular surfaces as those with ~ru × ~rv 6= 0
everywhere. Such surfaces are also called “smooth”.

For a cone, ~ru = v(− sin(α) sin(u), sin(α) cos(u), 0) and
~rv = (sin(α) cos(u), sin(α) sin(u), cos(α)). Thus ~ru × ~rv = ~0
when v = 0. The vertex of the cone is not a smooth point.

Example: Suppose z = f (x , y) where f is a C 1 function,
~r(u, v) = (u, v , f (u, v)). Then ~ru = (1, 0, fu) and
~rv = (0, 1, fv ). Thus ~ru × ~rv = (−fu,−fv , 1) and is hence
never zero.

So the graph of a C 1 function is a regular
parameterised surface.

For instance, if we take z =
√

1− x2 − y2, the function is not
differentiable at x = y = 0. The problem here lies with this
particular parametrisation because we already saw the the
sphere can be parametrised even near the equator as a regular
surface. So the choice of a parametrisation is important.

Vamsi Pritham Pingali Lecture 37 5/8



Regular/Smooth surfaces

The infinitesimal area is ‖~ru × ~rv‖dudv . Just as for regular
curves, we define regular surfaces as those with ~ru × ~rv 6= 0
everywhere. Such surfaces are also called “smooth”.

For a cone, ~ru = v(− sin(α) sin(u), sin(α) cos(u), 0) and
~rv = (sin(α) cos(u), sin(α) sin(u), cos(α)). Thus ~ru × ~rv = ~0
when v = 0. The vertex of the cone is not a smooth point.

Example: Suppose z = f (x , y) where f is a C 1 function,
~r(u, v) = (u, v , f (u, v)). Then ~ru = (1, 0, fu) and
~rv = (0, 1, fv ). Thus ~ru × ~rv = (−fu,−fv , 1) and is hence
never zero. So the graph of a

C 1 function is a regular
parameterised surface.

For instance, if we take z =
√

1− x2 − y2, the function is not
differentiable at x = y = 0. The problem here lies with this
particular parametrisation because we already saw the the
sphere can be parametrised even near the equator as a regular
surface. So the choice of a parametrisation is important.

Vamsi Pritham Pingali Lecture 37 5/8



Regular/Smooth surfaces

The infinitesimal area is ‖~ru × ~rv‖dudv . Just as for regular
curves, we define regular surfaces as those with ~ru × ~rv 6= 0
everywhere. Such surfaces are also called “smooth”.

For a cone, ~ru = v(− sin(α) sin(u), sin(α) cos(u), 0) and
~rv = (sin(α) cos(u), sin(α) sin(u), cos(α)). Thus ~ru × ~rv = ~0
when v = 0. The vertex of the cone is not a smooth point.

Example: Suppose z = f (x , y) where f is a C 1 function,
~r(u, v) = (u, v , f (u, v)). Then ~ru = (1, 0, fu) and
~rv = (0, 1, fv ). Thus ~ru × ~rv = (−fu,−fv , 1) and is hence
never zero. So the graph of a C 1 function is

a regular
parameterised surface.

For instance, if we take z =
√

1− x2 − y2, the function is not
differentiable at x = y = 0. The problem here lies with this
particular parametrisation because we already saw the the
sphere can be parametrised even near the equator as a regular
surface. So the choice of a parametrisation is important.

Vamsi Pritham Pingali Lecture 37 5/8



Regular/Smooth surfaces

The infinitesimal area is ‖~ru × ~rv‖dudv . Just as for regular
curves, we define regular surfaces as those with ~ru × ~rv 6= 0
everywhere. Such surfaces are also called “smooth”.

For a cone, ~ru = v(− sin(α) sin(u), sin(α) cos(u), 0) and
~rv = (sin(α) cos(u), sin(α) sin(u), cos(α)). Thus ~ru × ~rv = ~0
when v = 0. The vertex of the cone is not a smooth point.

Example: Suppose z = f (x , y) where f is a C 1 function,
~r(u, v) = (u, v , f (u, v)). Then ~ru = (1, 0, fu) and
~rv = (0, 1, fv ). Thus ~ru × ~rv = (−fu,−fv , 1) and is hence
never zero. So the graph of a C 1 function is a regular
parameterised surface.

For instance, if we take z =
√

1− x2 − y2, the function is not
differentiable at x = y = 0. The problem here lies with this
particular parametrisation because we already saw the the
sphere can be parametrised even near the equator as a regular
surface. So the choice of a parametrisation is important.

Vamsi Pritham Pingali Lecture 37 5/8



Regular/Smooth surfaces

The infinitesimal area is ‖~ru × ~rv‖dudv . Just as for regular
curves, we define regular surfaces as those with ~ru × ~rv 6= 0
everywhere. Such surfaces are also called “smooth”.

For a cone, ~ru = v(− sin(α) sin(u), sin(α) cos(u), 0) and
~rv = (sin(α) cos(u), sin(α) sin(u), cos(α)). Thus ~ru × ~rv = ~0
when v = 0. The vertex of the cone is not a smooth point.

Example: Suppose z = f (x , y) where f is a C 1 function,
~r(u, v) = (u, v , f (u, v)). Then ~ru = (1, 0, fu) and
~rv = (0, 1, fv ). Thus ~ru × ~rv = (−fu,−fv , 1) and is hence
never zero. So the graph of a C 1 function is a regular
parameterised surface.

For instance,

if we take z =
√

1− x2 − y2, the function is not
differentiable at x = y = 0. The problem here lies with this
particular parametrisation because we already saw the the
sphere can be parametrised even near the equator as a regular
surface. So the choice of a parametrisation is important.

Vamsi Pritham Pingali Lecture 37 5/8



Regular/Smooth surfaces

The infinitesimal area is ‖~ru × ~rv‖dudv . Just as for regular
curves, we define regular surfaces as those with ~ru × ~rv 6= 0
everywhere. Such surfaces are also called “smooth”.

For a cone, ~ru = v(− sin(α) sin(u), sin(α) cos(u), 0) and
~rv = (sin(α) cos(u), sin(α) sin(u), cos(α)). Thus ~ru × ~rv = ~0
when v = 0. The vertex of the cone is not a smooth point.

Example: Suppose z = f (x , y) where f is a C 1 function,
~r(u, v) = (u, v , f (u, v)). Then ~ru = (1, 0, fu) and
~rv = (0, 1, fv ). Thus ~ru × ~rv = (−fu,−fv , 1) and is hence
never zero. So the graph of a C 1 function is a regular
parameterised surface.

For instance, if we take z =
√

1− x2 − y2, the function is

not
differentiable at x = y = 0. The problem here lies with this
particular parametrisation because we already saw the the
sphere can be parametrised even near the equator as a regular
surface. So the choice of a parametrisation is important.

Vamsi Pritham Pingali Lecture 37 5/8



Regular/Smooth surfaces

The infinitesimal area is ‖~ru × ~rv‖dudv . Just as for regular
curves, we define regular surfaces as those with ~ru × ~rv 6= 0
everywhere. Such surfaces are also called “smooth”.

For a cone, ~ru = v(− sin(α) sin(u), sin(α) cos(u), 0) and
~rv = (sin(α) cos(u), sin(α) sin(u), cos(α)). Thus ~ru × ~rv = ~0
when v = 0. The vertex of the cone is not a smooth point.

Example: Suppose z = f (x , y) where f is a C 1 function,
~r(u, v) = (u, v , f (u, v)). Then ~ru = (1, 0, fu) and
~rv = (0, 1, fv ). Thus ~ru × ~rv = (−fu,−fv , 1) and is hence
never zero. So the graph of a C 1 function is a regular
parameterised surface.

For instance, if we take z =
√

1− x2 − y2, the function is not
differentiable at x = y = 0.

The problem here lies with this
particular parametrisation because we already saw the the
sphere can be parametrised even near the equator as a regular
surface. So the choice of a parametrisation is important.

Vamsi Pritham Pingali Lecture 37 5/8



Regular/Smooth surfaces

The infinitesimal area is ‖~ru × ~rv‖dudv . Just as for regular
curves, we define regular surfaces as those with ~ru × ~rv 6= 0
everywhere. Such surfaces are also called “smooth”.

For a cone, ~ru = v(− sin(α) sin(u), sin(α) cos(u), 0) and
~rv = (sin(α) cos(u), sin(α) sin(u), cos(α)). Thus ~ru × ~rv = ~0
when v = 0. The vertex of the cone is not a smooth point.

Example: Suppose z = f (x , y) where f is a C 1 function,
~r(u, v) = (u, v , f (u, v)). Then ~ru = (1, 0, fu) and
~rv = (0, 1, fv ). Thus ~ru × ~rv = (−fu,−fv , 1) and is hence
never zero. So the graph of a C 1 function is a regular
parameterised surface.

For instance, if we take z =
√

1− x2 − y2, the function is not
differentiable at x = y = 0. The problem here lies

with this
particular parametrisation because we already saw the the
sphere can be parametrised even near the equator as a regular
surface. So the choice of a parametrisation is important.

Vamsi Pritham Pingali Lecture 37 5/8



Regular/Smooth surfaces

The infinitesimal area is ‖~ru × ~rv‖dudv . Just as for regular
curves, we define regular surfaces as those with ~ru × ~rv 6= 0
everywhere. Such surfaces are also called “smooth”.

For a cone, ~ru = v(− sin(α) sin(u), sin(α) cos(u), 0) and
~rv = (sin(α) cos(u), sin(α) sin(u), cos(α)). Thus ~ru × ~rv = ~0
when v = 0. The vertex of the cone is not a smooth point.

Example: Suppose z = f (x , y) where f is a C 1 function,
~r(u, v) = (u, v , f (u, v)). Then ~ru = (1, 0, fu) and
~rv = (0, 1, fv ). Thus ~ru × ~rv = (−fu,−fv , 1) and is hence
never zero. So the graph of a C 1 function is a regular
parameterised surface.

For instance, if we take z =
√

1− x2 − y2, the function is not
differentiable at x = y = 0. The problem here lies with this
particular parametrisation because

we already saw the the
sphere can be parametrised even near the equator as a regular
surface. So the choice of a parametrisation is important.

Vamsi Pritham Pingali Lecture 37 5/8



Regular/Smooth surfaces

The infinitesimal area is ‖~ru × ~rv‖dudv . Just as for regular
curves, we define regular surfaces as those with ~ru × ~rv 6= 0
everywhere. Such surfaces are also called “smooth”.

For a cone, ~ru = v(− sin(α) sin(u), sin(α) cos(u), 0) and
~rv = (sin(α) cos(u), sin(α) sin(u), cos(α)). Thus ~ru × ~rv = ~0
when v = 0. The vertex of the cone is not a smooth point.

Example: Suppose z = f (x , y) where f is a C 1 function,
~r(u, v) = (u, v , f (u, v)). Then ~ru = (1, 0, fu) and
~rv = (0, 1, fv ). Thus ~ru × ~rv = (−fu,−fv , 1) and is hence
never zero. So the graph of a C 1 function is a regular
parameterised surface.

For instance, if we take z =
√

1− x2 − y2, the function is not
differentiable at x = y = 0. The problem here lies with this
particular parametrisation because we already saw the the
sphere

can be parametrised even near the equator as a regular
surface. So the choice of a parametrisation is important.

Vamsi Pritham Pingali Lecture 37 5/8



Regular/Smooth surfaces

The infinitesimal area is ‖~ru × ~rv‖dudv . Just as for regular
curves, we define regular surfaces as those with ~ru × ~rv 6= 0
everywhere. Such surfaces are also called “smooth”.

For a cone, ~ru = v(− sin(α) sin(u), sin(α) cos(u), 0) and
~rv = (sin(α) cos(u), sin(α) sin(u), cos(α)). Thus ~ru × ~rv = ~0
when v = 0. The vertex of the cone is not a smooth point.

Example: Suppose z = f (x , y) where f is a C 1 function,
~r(u, v) = (u, v , f (u, v)). Then ~ru = (1, 0, fu) and
~rv = (0, 1, fv ). Thus ~ru × ~rv = (−fu,−fv , 1) and is hence
never zero. So the graph of a C 1 function is a regular
parameterised surface.

For instance, if we take z =
√

1− x2 − y2, the function is not
differentiable at x = y = 0. The problem here lies with this
particular parametrisation because we already saw the the
sphere can be parametrised even near

the equator as a regular
surface. So the choice of a parametrisation is important.

Vamsi Pritham Pingali Lecture 37 5/8



Regular/Smooth surfaces

The infinitesimal area is ‖~ru × ~rv‖dudv . Just as for regular
curves, we define regular surfaces as those with ~ru × ~rv 6= 0
everywhere. Such surfaces are also called “smooth”.

For a cone, ~ru = v(− sin(α) sin(u), sin(α) cos(u), 0) and
~rv = (sin(α) cos(u), sin(α) sin(u), cos(α)). Thus ~ru × ~rv = ~0
when v = 0. The vertex of the cone is not a smooth point.

Example: Suppose z = f (x , y) where f is a C 1 function,
~r(u, v) = (u, v , f (u, v)). Then ~ru = (1, 0, fu) and
~rv = (0, 1, fv ). Thus ~ru × ~rv = (−fu,−fv , 1) and is hence
never zero. So the graph of a C 1 function is a regular
parameterised surface.

For instance, if we take z =
√

1− x2 − y2, the function is not
differentiable at x = y = 0. The problem here lies with this
particular parametrisation because we already saw the the
sphere can be parametrised even near the equator as a regular
surface.

So the choice of a parametrisation is important.

Vamsi Pritham Pingali Lecture 37 5/8



Regular/Smooth surfaces

The infinitesimal area is ‖~ru × ~rv‖dudv . Just as for regular
curves, we define regular surfaces as those with ~ru × ~rv 6= 0
everywhere. Such surfaces are also called “smooth”.

For a cone, ~ru = v(− sin(α) sin(u), sin(α) cos(u), 0) and
~rv = (sin(α) cos(u), sin(α) sin(u), cos(α)). Thus ~ru × ~rv = ~0
when v = 0. The vertex of the cone is not a smooth point.

Example: Suppose z = f (x , y) where f is a C 1 function,
~r(u, v) = (u, v , f (u, v)). Then ~ru = (1, 0, fu) and
~rv = (0, 1, fv ). Thus ~ru × ~rv = (−fu,−fv , 1) and is hence
never zero. So the graph of a C 1 function is a regular
parameterised surface.

For instance, if we take z =
√

1− x2 − y2, the function is not
differentiable at x = y = 0. The problem here lies with this
particular parametrisation because we already saw the the
sphere can be parametrised even near the equator as a regular
surface. So the choice of

a parametrisation is important.

Vamsi Pritham Pingali Lecture 37 5/8



Regular/Smooth surfaces

The infinitesimal area is ‖~ru × ~rv‖dudv . Just as for regular
curves, we define regular surfaces as those with ~ru × ~rv 6= 0
everywhere. Such surfaces are also called “smooth”.

For a cone, ~ru = v(− sin(α) sin(u), sin(α) cos(u), 0) and
~rv = (sin(α) cos(u), sin(α) sin(u), cos(α)). Thus ~ru × ~rv = ~0
when v = 0. The vertex of the cone is not a smooth point.

Example: Suppose z = f (x , y) where f is a C 1 function,
~r(u, v) = (u, v , f (u, v)). Then ~ru = (1, 0, fu) and
~rv = (0, 1, fv ). Thus ~ru × ~rv = (−fu,−fv , 1) and is hence
never zero. So the graph of a C 1 function is a regular
parameterised surface.

For instance, if we take z =
√

1− x2 − y2, the function is not
differentiable at x = y = 0. The problem here lies with this
particular parametrisation because we already saw the the
sphere can be parametrised even near the equator as a regular
surface. So the choice of a parametrisation is important.

Vamsi Pritham Pingali Lecture 37 5/8



Normals and areas

~ru × ~rv is normal to the surface. Indeed, let (u(t), v(t)) be a
C 1 path on the surface passing through p. Then
d~r
dt = ~ruu

′ + ~rvv
′. Thus ~r ′ is perpendicular to ~ru × ~rv .

This is another way to study normals to surfaces. The same
surface can be given in two ways: F (x , y , z) = 0 and as
(x(u, v), y(u, v), z(u, v)). The normals are ∇F and ~ru × ~rv .
For instance, even for a graph, F (x , y , z) = z − f (x , y) gives
the same unit normal as the previous one.

The infinitesimal area vector is d ~A = ~ru × ~rvdudv .

The area of a parametric surface is
∫ ∫

T ‖~ru × ~rv‖dudv . For
instance, for a graph z = f (x , y), the area is∫ ∫ √

1 + f 2x + f 2y dxdy .
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An example and scalar line integrals

Hemisphere:~r = (r sin(u) cos(v), r sin(u) sin(v), r cos(u)) and
hence ~ru = (r cos(u) cos(v), r cos(u) sin(v),−r sin(u)),
~rv = (−r sin(u) sin(v), r sin(u) cos(v), 0). So
‖~ru × ~rv‖ = r2 sin(v). Therefore, the area is 2πr2.

A digression: If ~γ(t) is a piecewise C 1 regular path, and
f (x , y , z) is a bounded function along the path, then∫
fds =

∫ b
a f (γ(t))‖γ′(t)‖dt is called the scalar line integral of

f along γ. (For instance, the charge on a wire.)

A crucial point: The scalar line integral is reparametrisation
invariant: If t(τ) is a reparametrisation, then
‖dγdτ ‖ = ‖γ′(t)‖| dtdτ |. Thus the “new” integral is∫
[c,d ] f (γ(t(τ)))‖γ′(t)‖| dtdτ |dτ which by the change of

variables formula equals the “old” integral.

Vamsi Pritham Pingali Lecture 37 7/8



An example and scalar line integrals

Hemisphere:

~r = (r sin(u) cos(v), r sin(u) sin(v), r cos(u)) and
hence ~ru = (r cos(u) cos(v), r cos(u) sin(v),−r sin(u)),
~rv = (−r sin(u) sin(v), r sin(u) cos(v), 0). So
‖~ru × ~rv‖ = r2 sin(v). Therefore, the area is 2πr2.

A digression: If ~γ(t) is a piecewise C 1 regular path, and
f (x , y , z) is a bounded function along the path, then∫
fds =

∫ b
a f (γ(t))‖γ′(t)‖dt is called the scalar line integral of

f along γ. (For instance, the charge on a wire.)

A crucial point: The scalar line integral is reparametrisation
invariant: If t(τ) is a reparametrisation, then
‖dγdτ ‖ = ‖γ′(t)‖| dtdτ |. Thus the “new” integral is∫
[c,d ] f (γ(t(τ)))‖γ′(t)‖| dtdτ |dτ which by the change of

variables formula equals the “old” integral.

Vamsi Pritham Pingali Lecture 37 7/8



An example and scalar line integrals

Hemisphere:~r = (r sin(u) cos(v), r sin(u) sin(v), r cos(u)) and
hence ~ru = (r cos(u) cos(v), r cos(u) sin(v),−r sin(u)),
~rv = (−r sin(u) sin(v), r sin(u) cos(v), 0).

So
‖~ru × ~rv‖ = r2 sin(v). Therefore, the area is 2πr2.

A digression: If ~γ(t) is a piecewise C 1 regular path, and
f (x , y , z) is a bounded function along the path, then∫
fds =

∫ b
a f (γ(t))‖γ′(t)‖dt is called the scalar line integral of

f along γ. (For instance, the charge on a wire.)

A crucial point: The scalar line integral is reparametrisation
invariant: If t(τ) is a reparametrisation, then
‖dγdτ ‖ = ‖γ′(t)‖| dtdτ |. Thus the “new” integral is∫
[c,d ] f (γ(t(τ)))‖γ′(t)‖| dtdτ |dτ which by the change of

variables formula equals the “old” integral.

Vamsi Pritham Pingali Lecture 37 7/8



An example and scalar line integrals

Hemisphere:~r = (r sin(u) cos(v), r sin(u) sin(v), r cos(u)) and
hence ~ru = (r cos(u) cos(v), r cos(u) sin(v),−r sin(u)),
~rv = (−r sin(u) sin(v), r sin(u) cos(v), 0). So
‖~ru × ~rv‖ = r2 sin(v). Therefore,

the area is 2πr2.

A digression: If ~γ(t) is a piecewise C 1 regular path, and
f (x , y , z) is a bounded function along the path, then∫
fds =

∫ b
a f (γ(t))‖γ′(t)‖dt is called the scalar line integral of

f along γ. (For instance, the charge on a wire.)

A crucial point: The scalar line integral is reparametrisation
invariant: If t(τ) is a reparametrisation, then
‖dγdτ ‖ = ‖γ′(t)‖| dtdτ |. Thus the “new” integral is∫
[c,d ] f (γ(t(τ)))‖γ′(t)‖| dtdτ |dτ which by the change of

variables formula equals the “old” integral.

Vamsi Pritham Pingali Lecture 37 7/8



An example and scalar line integrals

Hemisphere:~r = (r sin(u) cos(v), r sin(u) sin(v), r cos(u)) and
hence ~ru = (r cos(u) cos(v), r cos(u) sin(v),−r sin(u)),
~rv = (−r sin(u) sin(v), r sin(u) cos(v), 0). So
‖~ru × ~rv‖ = r2 sin(v). Therefore, the area is 2πr2.

A digression: If ~γ(t) is a piecewise C 1 regular path, and
f (x , y , z) is a bounded function along the path, then∫
fds =

∫ b
a f (γ(t))‖γ′(t)‖dt is called the scalar line integral of

f along γ. (For instance, the charge on a wire.)

A crucial point: The scalar line integral is reparametrisation
invariant: If t(τ) is a reparametrisation, then
‖dγdτ ‖ = ‖γ′(t)‖| dtdτ |. Thus the “new” integral is∫
[c,d ] f (γ(t(τ)))‖γ′(t)‖| dtdτ |dτ which by the change of

variables formula equals the “old” integral.

Vamsi Pritham Pingali Lecture 37 7/8



An example and scalar line integrals

Hemisphere:~r = (r sin(u) cos(v), r sin(u) sin(v), r cos(u)) and
hence ~ru = (r cos(u) cos(v), r cos(u) sin(v),−r sin(u)),
~rv = (−r sin(u) sin(v), r sin(u) cos(v), 0). So
‖~ru × ~rv‖ = r2 sin(v). Therefore, the area is 2πr2.

A digression:

If ~γ(t) is a piecewise C 1 regular path, and
f (x , y , z) is a bounded function along the path, then∫
fds =

∫ b
a f (γ(t))‖γ′(t)‖dt is called the scalar line integral of

f along γ. (For instance, the charge on a wire.)

A crucial point: The scalar line integral is reparametrisation
invariant: If t(τ) is a reparametrisation, then
‖dγdτ ‖ = ‖γ′(t)‖| dtdτ |. Thus the “new” integral is∫
[c,d ] f (γ(t(τ)))‖γ′(t)‖| dtdτ |dτ which by the change of

variables formula equals the “old” integral.

Vamsi Pritham Pingali Lecture 37 7/8



An example and scalar line integrals

Hemisphere:~r = (r sin(u) cos(v), r sin(u) sin(v), r cos(u)) and
hence ~ru = (r cos(u) cos(v), r cos(u) sin(v),−r sin(u)),
~rv = (−r sin(u) sin(v), r sin(u) cos(v), 0). So
‖~ru × ~rv‖ = r2 sin(v). Therefore, the area is 2πr2.

A digression: If ~γ(t) is a piecewise C 1 regular path,

and
f (x , y , z) is a bounded function along the path, then∫
fds =

∫ b
a f (γ(t))‖γ′(t)‖dt is called the scalar line integral of

f along γ. (For instance, the charge on a wire.)

A crucial point: The scalar line integral is reparametrisation
invariant: If t(τ) is a reparametrisation, then
‖dγdτ ‖ = ‖γ′(t)‖| dtdτ |. Thus the “new” integral is∫
[c,d ] f (γ(t(τ)))‖γ′(t)‖| dtdτ |dτ which by the change of

variables formula equals the “old” integral.

Vamsi Pritham Pingali Lecture 37 7/8



An example and scalar line integrals

Hemisphere:~r = (r sin(u) cos(v), r sin(u) sin(v), r cos(u)) and
hence ~ru = (r cos(u) cos(v), r cos(u) sin(v),−r sin(u)),
~rv = (−r sin(u) sin(v), r sin(u) cos(v), 0). So
‖~ru × ~rv‖ = r2 sin(v). Therefore, the area is 2πr2.

A digression: If ~γ(t) is a piecewise C 1 regular path, and
f (x , y , z) is a bounded function along the path,

then∫
fds =

∫ b
a f (γ(t))‖γ′(t)‖dt is called the scalar line integral of

f along γ. (For instance, the charge on a wire.)

A crucial point: The scalar line integral is reparametrisation
invariant: If t(τ) is a reparametrisation, then
‖dγdτ ‖ = ‖γ′(t)‖| dtdτ |. Thus the “new” integral is∫
[c,d ] f (γ(t(τ)))‖γ′(t)‖| dtdτ |dτ which by the change of

variables formula equals the “old” integral.

Vamsi Pritham Pingali Lecture 37 7/8



An example and scalar line integrals

Hemisphere:~r = (r sin(u) cos(v), r sin(u) sin(v), r cos(u)) and
hence ~ru = (r cos(u) cos(v), r cos(u) sin(v),−r sin(u)),
~rv = (−r sin(u) sin(v), r sin(u) cos(v), 0). So
‖~ru × ~rv‖ = r2 sin(v). Therefore, the area is 2πr2.

A digression: If ~γ(t) is a piecewise C 1 regular path, and
f (x , y , z) is a bounded function along the path, then∫
fds =

∫ b
a f (γ(t))‖γ′(t)‖dt is called the scalar line integral of

f along γ. (

For instance, the charge on a wire.)

A crucial point: The scalar line integral is reparametrisation
invariant: If t(τ) is a reparametrisation, then
‖dγdτ ‖ = ‖γ′(t)‖| dtdτ |. Thus the “new” integral is∫
[c,d ] f (γ(t(τ)))‖γ′(t)‖| dtdτ |dτ which by the change of

variables formula equals the “old” integral.

Vamsi Pritham Pingali Lecture 37 7/8



An example and scalar line integrals

Hemisphere:~r = (r sin(u) cos(v), r sin(u) sin(v), r cos(u)) and
hence ~ru = (r cos(u) cos(v), r cos(u) sin(v),−r sin(u)),
~rv = (−r sin(u) sin(v), r sin(u) cos(v), 0). So
‖~ru × ~rv‖ = r2 sin(v). Therefore, the area is 2πr2.

A digression: If ~γ(t) is a piecewise C 1 regular path, and
f (x , y , z) is a bounded function along the path, then∫
fds =

∫ b
a f (γ(t))‖γ′(t)‖dt is called the scalar line integral of

f along γ. (For instance, the charge on a wire.)

A crucial point: The scalar line integral is reparametrisation
invariant: If t(τ) is a reparametrisation, then
‖dγdτ ‖ = ‖γ′(t)‖| dtdτ |. Thus the “new” integral is∫
[c,d ] f (γ(t(τ)))‖γ′(t)‖| dtdτ |dτ which by the change of

variables formula equals the “old” integral.

Vamsi Pritham Pingali Lecture 37 7/8



An example and scalar line integrals

Hemisphere:~r = (r sin(u) cos(v), r sin(u) sin(v), r cos(u)) and
hence ~ru = (r cos(u) cos(v), r cos(u) sin(v),−r sin(u)),
~rv = (−r sin(u) sin(v), r sin(u) cos(v), 0). So
‖~ru × ~rv‖ = r2 sin(v). Therefore, the area is 2πr2.

A digression: If ~γ(t) is a piecewise C 1 regular path, and
f (x , y , z) is a bounded function along the path, then∫
fds =

∫ b
a f (γ(t))‖γ′(t)‖dt is called the scalar line integral of

f along γ. (For instance, the charge on a wire.)

A crucial point:

The scalar line integral is reparametrisation
invariant: If t(τ) is a reparametrisation, then
‖dγdτ ‖ = ‖γ′(t)‖| dtdτ |. Thus the “new” integral is∫
[c,d ] f (γ(t(τ)))‖γ′(t)‖| dtdτ |dτ which by the change of

variables formula equals the “old” integral.

Vamsi Pritham Pingali Lecture 37 7/8



An example and scalar line integrals

Hemisphere:~r = (r sin(u) cos(v), r sin(u) sin(v), r cos(u)) and
hence ~ru = (r cos(u) cos(v), r cos(u) sin(v),−r sin(u)),
~rv = (−r sin(u) sin(v), r sin(u) cos(v), 0). So
‖~ru × ~rv‖ = r2 sin(v). Therefore, the area is 2πr2.

A digression: If ~γ(t) is a piecewise C 1 regular path, and
f (x , y , z) is a bounded function along the path, then∫
fds =

∫ b
a f (γ(t))‖γ′(t)‖dt is called the scalar line integral of

f along γ. (For instance, the charge on a wire.)

A crucial point: The scalar line integral is

reparametrisation
invariant: If t(τ) is a reparametrisation, then
‖dγdτ ‖ = ‖γ′(t)‖| dtdτ |. Thus the “new” integral is∫
[c,d ] f (γ(t(τ)))‖γ′(t)‖| dtdτ |dτ which by the change of

variables formula equals the “old” integral.

Vamsi Pritham Pingali Lecture 37 7/8



An example and scalar line integrals

Hemisphere:~r = (r sin(u) cos(v), r sin(u) sin(v), r cos(u)) and
hence ~ru = (r cos(u) cos(v), r cos(u) sin(v),−r sin(u)),
~rv = (−r sin(u) sin(v), r sin(u) cos(v), 0). So
‖~ru × ~rv‖ = r2 sin(v). Therefore, the area is 2πr2.

A digression: If ~γ(t) is a piecewise C 1 regular path, and
f (x , y , z) is a bounded function along the path, then∫
fds =

∫ b
a f (γ(t))‖γ′(t)‖dt is called the scalar line integral of

f along γ. (For instance, the charge on a wire.)

A crucial point: The scalar line integral is reparametrisation
invariant:

If t(τ) is a reparametrisation, then
‖dγdτ ‖ = ‖γ′(t)‖| dtdτ |. Thus the “new” integral is∫
[c,d ] f (γ(t(τ)))‖γ′(t)‖| dtdτ |dτ which by the change of

variables formula equals the “old” integral.

Vamsi Pritham Pingali Lecture 37 7/8



An example and scalar line integrals

Hemisphere:~r = (r sin(u) cos(v), r sin(u) sin(v), r cos(u)) and
hence ~ru = (r cos(u) cos(v), r cos(u) sin(v),−r sin(u)),
~rv = (−r sin(u) sin(v), r sin(u) cos(v), 0). So
‖~ru × ~rv‖ = r2 sin(v). Therefore, the area is 2πr2.

A digression: If ~γ(t) is a piecewise C 1 regular path, and
f (x , y , z) is a bounded function along the path, then∫
fds =

∫ b
a f (γ(t))‖γ′(t)‖dt is called the scalar line integral of

f along γ. (For instance, the charge on a wire.)

A crucial point: The scalar line integral is reparametrisation
invariant: If t(τ) is a reparametrisation,

then
‖dγdτ ‖ = ‖γ′(t)‖| dtdτ |. Thus the “new” integral is∫
[c,d ] f (γ(t(τ)))‖γ′(t)‖| dtdτ |dτ which by the change of

variables formula equals the “old” integral.

Vamsi Pritham Pingali Lecture 37 7/8



An example and scalar line integrals

Hemisphere:~r = (r sin(u) cos(v), r sin(u) sin(v), r cos(u)) and
hence ~ru = (r cos(u) cos(v), r cos(u) sin(v),−r sin(u)),
~rv = (−r sin(u) sin(v), r sin(u) cos(v), 0). So
‖~ru × ~rv‖ = r2 sin(v). Therefore, the area is 2πr2.

A digression: If ~γ(t) is a piecewise C 1 regular path, and
f (x , y , z) is a bounded function along the path, then∫
fds =

∫ b
a f (γ(t))‖γ′(t)‖dt is called the scalar line integral of

f along γ. (For instance, the charge on a wire.)

A crucial point: The scalar line integral is reparametrisation
invariant: If t(τ) is a reparametrisation, then
‖dγdτ ‖ = ‖γ′(t)‖| dtdτ |. Thus

the “new” integral is∫
[c,d ] f (γ(t(τ)))‖γ′(t)‖| dtdτ |dτ which by the change of

variables formula equals the “old” integral.

Vamsi Pritham Pingali Lecture 37 7/8



An example and scalar line integrals

Hemisphere:~r = (r sin(u) cos(v), r sin(u) sin(v), r cos(u)) and
hence ~ru = (r cos(u) cos(v), r cos(u) sin(v),−r sin(u)),
~rv = (−r sin(u) sin(v), r sin(u) cos(v), 0). So
‖~ru × ~rv‖ = r2 sin(v). Therefore, the area is 2πr2.

A digression: If ~γ(t) is a piecewise C 1 regular path, and
f (x , y , z) is a bounded function along the path, then∫
fds =

∫ b
a f (γ(t))‖γ′(t)‖dt is called the scalar line integral of

f along γ. (For instance, the charge on a wire.)

A crucial point: The scalar line integral is reparametrisation
invariant: If t(τ) is a reparametrisation, then
‖dγdτ ‖ = ‖γ′(t)‖| dtdτ |. Thus the “new” integral is∫
[c,d ] f (γ(t(τ)))‖γ′(t)‖| dtdτ |dτ which by

the change of
variables formula equals the “old” integral.

Vamsi Pritham Pingali Lecture 37 7/8



An example and scalar line integrals

Hemisphere:~r = (r sin(u) cos(v), r sin(u) sin(v), r cos(u)) and
hence ~ru = (r cos(u) cos(v), r cos(u) sin(v),−r sin(u)),
~rv = (−r sin(u) sin(v), r sin(u) cos(v), 0). So
‖~ru × ~rv‖ = r2 sin(v). Therefore, the area is 2πr2.

A digression: If ~γ(t) is a piecewise C 1 regular path, and
f (x , y , z) is a bounded function along the path, then∫
fds =

∫ b
a f (γ(t))‖γ′(t)‖dt is called the scalar line integral of

f along γ. (For instance, the charge on a wire.)

A crucial point: The scalar line integral is reparametrisation
invariant: If t(τ) is a reparametrisation, then
‖dγdτ ‖ = ‖γ′(t)‖| dtdτ |. Thus the “new” integral is∫
[c,d ] f (γ(t(τ)))‖γ′(t)‖| dtdτ |dτ which by the change of

variables formula equals the “old” integral.

Vamsi Pritham Pingali Lecture 37 7/8



Scalar surface integral and examples

Let S = ~r(T ) be a parametrised surface and let f be a
bounded scalar field on S . Then∫ ∫

S fdA :=
∫ ∫

T f (~r(u, v))‖~ru × ~rv‖dudv .

When f = 1, we get the area. (Akin to the length of a regular
curve in the case of line integrals.)

Centre of mass: If f is the density, then xCM =
∫ ∫

xfdA and
likewise for other coordinates. For instance, for a cone
~r = (v sin(α) cos(u), v sin(α) sin(u), v cos(α)) where
(u, v) ∈ [0, 2π]× [0, l ], we see that dA = v sin(α)dudv . Thus
if f = 1 (uniform density), then∫ ∫

zdA =
∫ l
0

∫ 2π
0 v2 cos(α) sin(α)dudv = π

3 sin(2α). It is easy
to see that xCM = yCM = 0. Thus the centre of mass can lie
outside the surface.
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