Lecture 37 - UM 102 (Spring 2021)

Vamsi Pritham Pingali

IISc

Recap

Recap

- Area enclosed by a Jordan curve

Recap

- Area enclosed by a Jordan curve using Green's theorem.

Recap

- Area enclosed by a Jordan curve using Green's theorem.
- Change of variables formula.

Recap

- Area enclosed by a Jordan curve using Green's theorem.
- Change of variables formula.
- Examples, including
- Area enclosed by a Jordan curve using Green's theorem.
- Change of variables formula.
- Examples, including the volume of a ball.

Parametrisation of surfaces

Parametrisation of surfaces

- Let $T \subset \mathbb{R}^{2}$ be a

Parametrisation of surfaces

- Let $T \subset \mathbb{R}^{2}$ be a bounded region whose boundary is a
- Let $T \subset \mathbb{R}^{2}$ be a bounded region whose boundary is a piecewise C^{1} Jordan curve (
- Let $T \subset \mathbb{R}^{2}$ be a bounded region whose boundary is a piecewise C^{1} Jordan curve (i.e., simple closed regular curve).
- Let $T \subset \mathbb{R}^{2}$ be a bounded region whose boundary is a piecewise C^{1} Jordan curve (i.e., simple closed regular curve).
- Def:
- Let $T \subset \mathbb{R}^{2}$ be a bounded region whose boundary is a piecewise C^{1} Jordan curve (i.e., simple closed regular curve).
- Def: A parametrised surface
- Let $T \subset \mathbb{R}^{2}$ be a bounded region whose boundary is a piecewise C^{1} Jordan curve (i.e., simple closed regular curve).
- Def: A parametrised surface is (the range of) a piecewise C^{1} map $\vec{r}(u, v): T \rightarrow \mathbb{R}^{3}$ that
- Let $T \subset \mathbb{R}^{2}$ be a bounded region whose boundary is a piecewise C^{1} Jordan curve (i.e., simple closed regular curve).
- Def: A parametrised surface is (the range of) a piecewise C^{1} map $\vec{r}(u, v): T \rightarrow \mathbb{R}^{3}$ that is $1-1$ on the interior.
- Let $T \subset \mathbb{R}^{2}$ be a bounded region whose boundary is a piecewise C^{1} Jordan curve (i.e., simple closed regular curve).
- Def: A parametrised surface is (the range of) a piecewise C^{1} map $\vec{r}(u, v): T \rightarrow \mathbb{R}^{3}$ that is $1-1$ on the interior.
- Example:
- Let $T \subset \mathbb{R}^{2}$ be a bounded region whose boundary is a piecewise C^{1} Jordan curve (i.e., simple closed regular curve).
- Def: A parametrised surface is (the range of) a piecewise C^{1} map $\vec{r}(u, v): T \rightarrow \mathbb{R}^{3}$ that is $1-1$ on the interior.
- Example: $\vec{r}(u, v)=(\sin (u) \cos (v), \sin (u) \sin (v), \cos (u))$ where $(u, v) \in T=[0, \pi] \times[0,2 \pi]$.
- Let $T \subset \mathbb{R}^{2}$ be a bounded region whose boundary is a piecewise C^{1} Jordan curve (i.e., simple closed regular curve).
- Def: A parametrised surface is (the range of) a piecewise C^{1} map $\vec{r}(u, v): T \rightarrow \mathbb{R}^{3}$ that is $1-1$ on the interior.
- Example: $\vec{r}(u, v)=(\sin (u) \cos (v), \sin (u) \sin (v), \cos (u))$ where $(u, v) \in T=[0, \pi] \times[0,2 \pi]$. The image is the unit sphere.
- Let $T \subset \mathbb{R}^{2}$ be a bounded region whose boundary is a piecewise C^{1} Jordan curve (i.e., simple closed regular curve).
- Def: A parametrised surface is (the range of) a piecewise C^{1} map $\vec{r}(u, v): T \rightarrow \mathbb{R}^{3}$ that is $1-1$ on the interior.
- Example: $\vec{r}(u, v)=(\sin (u) \cos (v), \sin (u) \sin (v), \cos (u))$ where $(u, v) \in T=[0, \pi] \times[0,2 \pi]$. The image is the unit sphere. The map is not $1-1$ on the boundary of T.
- Let $T \subset \mathbb{R}^{2}$ be a bounded region whose boundary is a piecewise C^{1} Jordan curve (i.e., simple closed regular curve).
- Def: A parametrised surface is (the range of) a piecewise C^{1} map $\vec{r}(u, v): T \rightarrow \mathbb{R}^{3}$ that is $1-1$ on the interior.
- Example: $\vec{r}(u, v)=(\sin (u) \cos (v), \sin (u) \sin (v), \cos (u))$ where $(u, v) \in T=[0, \pi] \times[0,2 \pi]$. The image is the unit sphere. The map is not $1-1$ on the boundary of T. This surface is a "closed" surface, i.e.,
- Let $T \subset \mathbb{R}^{2}$ be a bounded region whose boundary is a piecewise C^{1} Jordan curve (i.e., simple closed regular curve).
- Def: A parametrised surface is (the range of) a piecewise C^{1} map $\vec{r}(u, v): T \rightarrow \mathbb{R}^{3}$ that is $1-1$ on the interior.
- Example: $\vec{r}(u, v)=(\sin (u) \cos (v), \sin (u) \sin (v), \cos (u))$ where $(u, v) \in T=[0, \pi] \times[0,2 \pi]$. The image is the unit sphere. The map is not $1-1$ on the boundary of T. This surface is a "closed" surface, i.e., it has no "boundary".
- Let $T \subset \mathbb{R}^{2}$ be a bounded region whose boundary is a piecewise C^{1} Jordan curve (i.e., simple closed regular curve).
- Def: A parametrised surface is (the range of) a piecewise C^{1} map $\vec{r}(u, v): T \rightarrow \mathbb{R}^{3}$ that is $1-1$ on the interior.
- Example: $\vec{r}(u, v)=(\sin (u) \cos (v), \sin (u) \sin (v), \cos (u))$ where $(u, v) \in T=[0, \pi] \times[0,2 \pi]$. The image is the unit sphere. The map is not $1-1$ on the boundary of T. This surface is a "closed" surface, i.e., it has no "boundary". On the other hand,
- Let $T \subset \mathbb{R}^{2}$ be a bounded region whose boundary is a piecewise C^{1} Jordan curve (i.e., simple closed regular curve).
- Def: A parametrised surface is (the range of) a piecewise C^{1} map $\vec{r}(u, v): T \rightarrow \mathbb{R}^{3}$ that is $1-1$ on the interior.
- Example: $\vec{r}(u, v)=(\sin (u) \cos (v), \sin (u) \sin (v), \cos (u))$ where $(u, v) \in T=[0, \pi] \times[0,2 \pi]$. The image is the unit sphere. The map is not $1-1$ on the boundary of T. This surface is a "closed" surface, i.e., it has no "boundary". On the other hand, if $T=\left[0, \frac{\pi}{2}\right] \times[0,2 \pi]$ then it is a hemisphere whose
- Let $T \subset \mathbb{R}^{2}$ be a bounded region whose boundary is a piecewise C^{1} Jordan curve (i.e., simple closed regular curve).
- Def: A parametrised surface is (the range of) a piecewise C^{1} map $\vec{r}(u, v): T \rightarrow \mathbb{R}^{3}$ that is $1-1$ on the interior.
- Example: $\vec{r}(u, v)=(\sin (u) \cos (v), \sin (u) \sin (v), \cos (u))$ where $(u, v) \in T=[0, \pi] \times[0,2 \pi]$. The image is the unit sphere. The map is not $1-1$ on the boundary of T. This surface is a "closed" surface, i.e., it has no "boundary". On the other hand, if $T=\left[0, \frac{\pi}{2}\right] \times[0,2 \pi]$ then it is a hemisphere whose boundary is a circle.
- Let $T \subset \mathbb{R}^{2}$ be a bounded region whose boundary is a piecewise C^{1} Jordan curve (i.e., simple closed regular curve).
- Def: A parametrised surface is (the range of) a piecewise C^{1} map $\vec{r}(u, v): T \rightarrow \mathbb{R}^{3}$ that is $1-1$ on the interior.
- Example: $\vec{r}(u, v)=(\sin (u) \cos (v), \sin (u) \sin (v), \cos (u))$ where $(u, v) \in T=[0, \pi] \times[0,2 \pi]$. The image is the unit sphere. The map is not $1-1$ on the boundary of T. This surface is a "closed" surface, i.e., it has no "boundary". On the other hand, if $T=\left[0, \frac{\pi}{2}\right] \times[0,2 \pi]$ then it is a hemisphere whose boundary is a circle.
- Def:
- Let $T \subset \mathbb{R}^{2}$ be a bounded region whose boundary is a piecewise C^{1} Jordan curve (i.e., simple closed regular curve).
- Def: A parametrised surface is (the range of) a piecewise C^{1} map $\vec{r}(u, v): T \rightarrow \mathbb{R}^{3}$ that is $1-1$ on the interior.
- Example: $\vec{r}(u, v)=(\sin (u) \cos (v), \sin (u) \sin (v), \cos (u))$ where $(u, v) \in T=[0, \pi] \times[0,2 \pi]$. The image is the unit sphere. The map is not $1-1$ on the boundary of T. This surface is a "closed" surface, i.e., it has no "boundary". On the other hand, if $T=\left[0, \frac{\pi}{2}\right] \times[0,2 \pi]$ then it is a hemisphere whose boundary is a circle.
- Def: A closed parametrised surface
- Let $T \subset \mathbb{R}^{2}$ be a bounded region whose boundary is a piecewise C^{1} Jordan curve (i.e., simple closed regular curve).
- Def: A parametrised surface is (the range of) a piecewise C^{1} map $\vec{r}(u, v): T \rightarrow \mathbb{R}^{3}$ that is $1-1$ on the interior.
- Example: $\vec{r}(u, v)=(\sin (u) \cos (v), \sin (u) \sin (v), \cos (u))$ where $(u, v) \in T=[0, \pi] \times[0,2 \pi]$. The image is the unit sphere. The map is not $1-1$ on the boundary of T. This surface is a "closed" surface, i.e., it has no "boundary". On the other hand, if $T=\left[0, \frac{\pi}{2}\right] \times[0,2 \pi]$ then it is a hemisphere whose boundary is a circle.
- Def: A closed parametrised surface is a set such that near
- Let $T \subset \mathbb{R}^{2}$ be a bounded region whose boundary is a piecewise C^{1} Jordan curve (i.e., simple closed regular curve).
- Def: A parametrised surface is (the range of) a piecewise C^{1} map $\vec{r}(u, v): T \rightarrow \mathbb{R}^{3}$ that is $1-1$ on the interior.
- Example: $\vec{r}(u, v)=(\sin (u) \cos (v), \sin (u) \sin (v), \cos (u))$ where $(u, v) \in T=[0, \pi] \times[0,2 \pi]$. The image is the unit sphere. The map is not $1-1$ on the boundary of T. This surface is a "closed" surface, i.e., it has no "boundary". On the other hand, if $T=\left[0, \frac{\pi}{2}\right] \times[0,2 \pi]$ then it is a hemisphere whose boundary is a circle.
- Def: A closed parametrised surface is a set such that near every point it is
- Let $T \subset \mathbb{R}^{2}$ be a bounded region whose boundary is a piecewise C^{1} Jordan curve (i.e., simple closed regular curve).
- Def: A parametrised surface is (the range of) a piecewise C^{1} map $\vec{r}(u, v): T \rightarrow \mathbb{R}^{3}$ that is $1-1$ on the interior.
- Example: $\vec{r}(u, v)=(\sin (u) \cos (v), \sin (u) \sin (v), \cos (u))$ where $(u, v) \in T=[0, \pi] \times[0,2 \pi]$. The image is the unit sphere. The map is not $1-1$ on the boundary of T. This surface is a "closed" surface, i.e., it has no "boundary". On the other hand, if $T=\left[0, \frac{\pi}{2}\right] \times[0,2 \pi]$ then it is a hemisphere whose boundary is a circle.
- Def: A closed parametrised surface is a set such that near every point it is a parametrised surface.
- Let $T \subset \mathbb{R}^{2}$ be a bounded region whose boundary is a piecewise C^{1} Jordan curve (i.e., simple closed regular curve).
- Def: A parametrised surface is (the range of) a piecewise C^{1} map $\vec{r}(u, v): T \rightarrow \mathbb{R}^{3}$ that is $1-1$ on the interior.
- Example: $\vec{r}(u, v)=(\sin (u) \cos (v), \sin (u) \sin (v), \cos (u))$ where $(u, v) \in T=[0, \pi] \times[0,2 \pi]$. The image is the unit sphere. The map is not $1-1$ on the boundary of T. This surface is a "closed" surface, i.e., it has no "boundary". On the other hand, if $T=\left[0, \frac{\pi}{2}\right] \times[0,2 \pi]$ then it is a hemisphere whose boundary is a circle.
- Def: A closed parametrised surface is a set such that near every point it is a parametrised surface. So the sphere is a closed parametrised surface.

Some more examples and infinitesimal area

Some more examples and infinitesimal area

- Example:

Some more examples and infinitesimal area

- Example: $\vec{r}(u, v)=(\cos (u), \sin (u), v)$ where $(u, v) \in[0,2 \pi] \times[0,1]$.

Some more examples and infinitesimal area

- Example: $\vec{r}(u, v)=(\cos (u), \sin (u), v)$ where $(u, v) \in[0,2 \pi] \times[0,1]$. It is a right-circular cylinder

Some more examples and infinitesimal area

- Example: $\vec{r}(u, v)=(\cos (u), \sin (u), v)$ where $(u, v) \in[0,2 \pi] \times[0,1]$. It is a right-circular cylinder with boundary being two circles. (

Some more examples and infinitesimal area

- Example: $\vec{r}(u, v)=(\cos (u), \sin (u), v)$ where $(u, v) \in[0,2 \pi] \times[0,1]$. It is a right-circular cylinder with boundary being two circles. (It is not a closed parametrised surface.)

Some more examples and infinitesimal area

- Example: $\vec{r}(u, v)=(\cos (u), \sin (u), v)$ where $(u, v) \in[0,2 \pi] \times[0,1]$. It is a right-circular cylinder with boundary being two circles. (It is not a closed parametrised surface.)
- Example:

Some more examples and infinitesimal area

- Example: $\vec{r}(u, v)=(\cos (u), \sin (u), v)$ where $(u, v) \in[0,2 \pi] \times[0,1]$. It is a right-circular cylinder with boundary being two circles. (It is not a closed parametrised surface.)
- Example: $\vec{r}(u, v)=(v \sin (\alpha) \cos (u), v \sin (\alpha) \sin (u), v \cos (\alpha))$ where $(u, v) \in[0,2 \pi] \times[0,1]$

Some more examples and infinitesimal area

- Example: $\vec{r}(u, v)=(\cos (u), \sin (u), v)$ where $(u, v) \in[0,2 \pi] \times[0,1]$. It is a right-circular cylinder with boundary being two circles. (It is not a closed parametrised surface.)
- Example: $\vec{r}(u, v)=(v \sin (\alpha) \cos (u), v \sin (\alpha) \sin (u), v \cos (\alpha))$ where $(u, v) \in[0,2 \pi] \times[0,1]$ is a right-circular cone with cone angle α.

Some more examples and infinitesimal area

- Example: $\vec{r}(u, v)=(\cos (u), \sin (u), v)$ where $(u, v) \in[0,2 \pi] \times[0,1]$. It is a right-circular cylinder with boundary being two circles. (It is not a closed parametrised surface.)
- Example: $\vec{r}(u, v)=(v \sin (\alpha) \cos (u), v \sin (\alpha) \sin (u), v \cos (\alpha))$ where $(u, v) \in[0,2 \pi] \times[0,1]$ is a right-circular cone with cone angle α. It is a (non-closed) parametrised surface

Some more examples and infinitesimal area

- Example: $\vec{r}(u, v)=(\cos (u), \sin (u), v)$ where $(u, v) \in[0,2 \pi] \times[0,1]$. It is a right-circular cylinder with boundary being two circles. (It is not a closed parametrised surface.)
- Example: $\vec{r}(u, v)=(v \sin (\alpha) \cos (u), v \sin (\alpha) \sin (u), v \cos (\alpha))$ where $(u, v) \in[0,2 \pi] \times[0,1]$ is a right-circular cone with cone angle α. It is a (non-closed) parametrised surface with boundary as a circle.

Some more examples and infinitesimal area

- Example: $\vec{r}(u, v)=(\cos (u), \sin (u), v)$ where $(u, v) \in[0,2 \pi] \times[0,1]$. It is a right-circular cylinder with boundary being two circles. (It is not a closed parametrised surface.)
- Example: $\vec{r}(u, v)=(v \sin (\alpha) \cos (u), v \sin (\alpha) \sin (u), v \cos (\alpha))$ where $(u, v) \in[0,2 \pi] \times[0,1]$ is a right-circular cone with cone angle α. It is a (non-closed) parametrised surface with boundary as a circle.
- Suppose $d u d v$ is an infinitesimal area element

Some more examples and infinitesimal area

- Example: $\vec{r}(u, v)=(\cos (u), \sin (u), v)$ where $(u, v) \in[0,2 \pi] \times[0,1]$. It is a right-circular cylinder with boundary being two circles. (It is not a closed parametrised surface.)
- Example: $\vec{r}(u, v)=(v \sin (\alpha) \cos (u), v \sin (\alpha) \sin (u), v \cos (\alpha))$ where $(u, v) \in[0,2 \pi] \times[0,1]$ is a right-circular cone with cone angle α. It is a (non-closed) parametrised surface with boundary as a circle.
- Suppose $d u d v$ is an infinitesimal area element in the $u-v$ plane.

Some more examples and infinitesimal area

- Example: $\vec{r}(u, v)=(\cos (u), \sin (u), v)$ where $(u, v) \in[0,2 \pi] \times[0,1]$. It is a right-circular cylinder with boundary being two circles. (It is not a closed parametrised surface.)
- Example: $\vec{r}(u, v)=(v \sin (\alpha) \cos (u), v \sin (\alpha) \sin (u), v \cos (\alpha))$ where $(u, v) \in[0,2 \pi] \times[0,1]$ is a right-circular cone with cone angle α. It is a (non-closed) parametrised surface with boundary as a circle.
- Suppose dudv is an infinitesimal area element in the $u-v$ plane. Then the parallelogram formed

Some more examples and infinitesimal area

- Example: $\vec{r}(u, v)=(\cos (u), \sin (u), v)$ where $(u, v) \in[0,2 \pi] \times[0,1]$. It is a right-circular cylinder with boundary being two circles. (It is not a closed parametrised surface.)
- Example: $\vec{r}(u, v)=(v \sin (\alpha) \cos (u), v \sin (\alpha) \sin (u), v \cos (\alpha))$ where $(u, v) \in[0,2 \pi] \times[0,1]$ is a right-circular cone with cone angle α. It is a (non-closed) parametrised surface with boundary as a circle.
- Suppose $d u d v$ is an infinitesimal area element in the $u-v$ plane. Then the parallelogram formed in \mathbb{R}^{3} has sides

Some more examples and infinitesimal area

- Example: $\vec{r}(u, v)=(\cos (u), \sin (u), v)$ where $(u, v) \in[0,2 \pi] \times[0,1]$. It is a right-circular cylinder with boundary being two circles. (It is not a closed parametrised surface.)
- Example: $\vec{r}(u, v)=(v \sin (\alpha) \cos (u), v \sin (\alpha) \sin (u), v \cos (\alpha))$ where $(u, v) \in[0,2 \pi] \times[0,1]$ is a right-circular cone with cone angle α. It is a (non-closed) parametrised surface with boundary as a circle.
- Suppose dudv is an infinitesimal area element in the $u-v$ plane. Then the parallelogram formed in \mathbb{R}^{3} has sides $\vec{r}_{u} d u=d u\left(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}, \frac{\partial z}{\partial u}\right)$ and $\vec{r}_{v} d v=d v\left(\frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}, \frac{\partial z}{\partial v}\right)$.

Regular/Smooth surfaces

Regular/Smooth surfaces

- The infinitesimal area is $\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| d u d v$.

Regular/Smooth surfaces

- The infinitesimal area is $\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| d u d v$. Just as for regular curves,

Regular/Smooth surfaces

- The infinitesimal area is $\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| d u d v$. Just as for regular curves, we define regular surfaces as

Regular/Smooth surfaces

- The infinitesimal area is $\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| d u d v$. Just as for regular curves, we define regular surfaces as those with $\vec{r}_{u} \times \vec{r}_{V} \neq 0$ everywhere.

Regular/Smooth surfaces

- The infinitesimal area is $\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| d u d v$. Just as for regular curves, we define regular surfaces as those with $\vec{r}_{u} \times \vec{r}_{v} \neq 0$ everywhere. Such surfaces are also called "smooth".

Regular/Smooth surfaces

- The infinitesimal area is $\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| d u d v$. Just as for regular curves, we define regular surfaces as those with $\vec{r}_{u} \times \vec{r}_{V} \neq 0$ everywhere. Such surfaces are also called "smooth".
- For a cone,

Regular/Smooth surfaces

- The infinitesimal area is $\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| d u d v$. Just as for regular curves, we define regular surfaces as those with $\vec{r}_{u} \times \vec{r}_{v} \neq 0$ everywhere. Such surfaces are also called "smooth".
- For a cone, $\vec{r}_{u}=v(-\sin (\alpha) \sin (u), \sin (\alpha) \cos (u), 0)$ and $\vec{r}_{v}=(\sin (\alpha) \cos (u), \sin (\alpha) \sin (u), \cos (\alpha))$.

Regular/Smooth surfaces

- The infinitesimal area is $\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| d u d v$. Just as for regular curves, we define regular surfaces as those with $\vec{r}_{U} \times \vec{r}_{V} \neq 0$ everywhere. Such surfaces are also called "smooth".
- For a cone, $\vec{r}_{u}=v(-\sin (\alpha) \sin (u), \sin (\alpha) \cos (u), 0)$ and $\vec{r}_{V}=(\sin (\alpha) \cos (u), \sin (\alpha) \sin (u), \cos (\alpha))$. Thus $\vec{r}_{u} \times \vec{r}_{V}=\overrightarrow{0}$ when $v=0$.

Regular/Smooth surfaces

- The infinitesimal area is $\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| d u d v$. Just as for regular curves, we define regular surfaces as those with $\vec{r}_{U} \times \vec{r}_{V} \neq 0$ everywhere. Such surfaces are also called "smooth".
- For a cone, $\vec{r}_{u}=v(-\sin (\alpha) \sin (u), \sin (\alpha) \cos (u), 0)$ and $\vec{r}_{V}=(\sin (\alpha) \cos (u), \sin (\alpha) \sin (u), \cos (\alpha))$. Thus $\vec{r}_{u} \times \vec{r}_{V}=\overrightarrow{0}$ when $v=0$. The vertex of the cone

Regular/Smooth surfaces

- The infinitesimal area is $\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| d u d v$. Just as for regular curves, we define regular surfaces as those with $\vec{r}_{U} \times \vec{r}_{V} \neq 0$ everywhere. Such surfaces are also called "smooth".
- For a cone, $\vec{r}_{u}=v(-\sin (\alpha) \sin (u), \sin (\alpha) \cos (u), 0)$ and $\vec{r}_{V}=(\sin (\alpha) \cos (u), \sin (\alpha) \sin (u), \cos (\alpha))$. Thus $\vec{r}_{u} \times \vec{r}_{V}=\overrightarrow{0}$ when $v=0$. The vertex of the cone is not a smooth point.

Regular/Smooth surfaces

- The infinitesimal area is $\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| d u d v$. Just as for regular curves, we define regular surfaces as those with $\vec{r}_{U} \times \vec{r}_{V} \neq 0$ everywhere. Such surfaces are also called "smooth".
- For a cone, $\vec{r}_{u}=v(-\sin (\alpha) \sin (u), \sin (\alpha) \cos (u), 0)$ and $\vec{r}_{V}=(\sin (\alpha) \cos (u), \sin (\alpha) \sin (u), \cos (\alpha))$. Thus $\vec{r}_{u} \times \vec{r}_{V}=\overrightarrow{0}$ when $v=0$. The vertex of the cone is not a smooth point.
- Example:

Regular/Smooth surfaces

- The infinitesimal area is $\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| d u d v$. Just as for regular curves, we define regular surfaces as those with $\vec{r}_{U} \times \vec{r}_{V} \neq 0$ everywhere. Such surfaces are also called "smooth".
- For a cone, $\vec{r}_{u}=v(-\sin (\alpha) \sin (u), \sin (\alpha) \cos (u), 0)$ and $\vec{r}_{V}=(\sin (\alpha) \cos (u), \sin (\alpha) \sin (u), \cos (\alpha))$. Thus $\vec{r}_{u} \times \vec{r}_{V}=\overrightarrow{0}$ when $v=0$. The vertex of the cone is not a smooth point.
- Example: Suppose $z=f(x, y)$ where f is a C^{1} function,

Regular/Smooth surfaces

- The infinitesimal area is $\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| d u d v$. Just as for regular curves, we define regular surfaces as those with $\vec{r}_{U} \times \vec{r}_{V} \neq 0$ everywhere. Such surfaces are also called "smooth".
- For a cone, $\vec{r}_{u}=v(-\sin (\alpha) \sin (u), \sin (\alpha) \cos (u), 0)$ and $\vec{r}_{V}=(\sin (\alpha) \cos (u), \sin (\alpha) \sin (u), \cos (\alpha))$. Thus $\vec{r}_{u} \times \vec{r}_{V}=\overrightarrow{0}$ when $v=0$. The vertex of the cone is not a smooth point.
- Example: Suppose $z=f(x, y)$ where f is a C^{1} function, $\vec{r}(u, v)=(u, v, f(u, v))$.

Regular/Smooth surfaces

- The infinitesimal area is $\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| d u d v$. Just as for regular curves, we define regular surfaces as those with $\vec{r}_{u} \times \vec{r}_{v} \neq 0$ everywhere. Such surfaces are also called "smooth".
- For a cone, $\vec{r}_{u}=v(-\sin (\alpha) \sin (u), \sin (\alpha) \cos (u), 0)$ and $\vec{r}_{V}=(\sin (\alpha) \cos (u), \sin (\alpha) \sin (u), \cos (\alpha))$. Thus $\vec{r}_{u} \times \vec{r}_{V}=\overrightarrow{0}$ when $v=0$. The vertex of the cone is not a smooth point.
- Example: Suppose $z=f(x, y)$ where f is a C^{1} function, $\vec{r}(u, v)=(u, v, f(u, v))$. Then $\vec{r}_{u}=\left(1,0, f_{u}\right)$ and $\vec{r}_{v}=\left(0,1, f_{v}\right)$.

Regular/Smooth surfaces

- The infinitesimal area is $\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| d u d v$. Just as for regular curves, we define regular surfaces as those with $\vec{r}_{u} \times \vec{r}_{v} \neq 0$ everywhere. Such surfaces are also called "smooth".
- For a cone, $\vec{r}_{u}=v(-\sin (\alpha) \sin (u), \sin (\alpha) \cos (u), 0)$ and $\vec{r}_{V}=(\sin (\alpha) \cos (u), \sin (\alpha) \sin (u), \cos (\alpha))$. Thus $\vec{r}_{u} \times \vec{r}_{V}=\overrightarrow{0}$ when $v=0$. The vertex of the cone is not a smooth point.
- Example: Suppose $z=f(x, y)$ where f is a C^{1} function, $\vec{r}(u, v)=(u, v, f(u, v))$. Then $\vec{r}_{u}=\left(1,0, f_{u}\right)$ and $\vec{r}_{v}=\left(0,1, f_{v}\right)$. Thus $\vec{r}_{u} \times \vec{r}_{v}=\left(-f_{u},-f_{v}, 1\right)$ and is hence

Regular/Smooth surfaces

- The infinitesimal area is $\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| d u d v$. Just as for regular curves, we define regular surfaces as those with $\vec{r}_{u} \times \vec{r}_{v} \neq 0$ everywhere. Such surfaces are also called "smooth".
- For a cone, $\vec{r}_{u}=v(-\sin (\alpha) \sin (u), \sin (\alpha) \cos (u), 0)$ and $\vec{r}_{V}=(\sin (\alpha) \cos (u), \sin (\alpha) \sin (u), \cos (\alpha))$. Thus $\vec{r}_{u} \times \vec{r}_{V}=\overrightarrow{0}$ when $v=0$. The vertex of the cone is not a smooth point.
- Example: Suppose $z=f(x, y)$ where f is a C^{1} function, $\vec{r}(u, v)=(u, v, f(u, v))$. Then $\vec{r}_{u}=\left(1,0, f_{u}\right)$ and $\vec{r}_{v}=\left(0,1, f_{v}\right)$. Thus $\vec{r}_{u} \times \vec{r}_{v}=\left(-f_{u},-f_{v}, 1\right)$ and is hence never zero.

Regular/Smooth surfaces

- The infinitesimal area is $\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| d u d v$. Just as for regular curves, we define regular surfaces as those with $\vec{r}_{U} \times \vec{r}_{V} \neq 0$ everywhere. Such surfaces are also called "smooth".
- For a cone, $\vec{r}_{u}=v(-\sin (\alpha) \sin (u), \sin (\alpha) \cos (u), 0)$ and $\vec{r}_{V}=(\sin (\alpha) \cos (u), \sin (\alpha) \sin (u), \cos (\alpha))$. Thus $\vec{r}_{u} \times \vec{r}_{V}=\overrightarrow{0}$ when $v=0$. The vertex of the cone is not a smooth point.
- Example: Suppose $z=f(x, y)$ where f is a C^{1} function, $\vec{r}(u, v)=(u, v, f(u, v))$. Then $\vec{r}_{u}=\left(1,0, f_{u}\right)$ and $\vec{r}_{v}=\left(0,1, f_{v}\right)$. Thus $\vec{r}_{u} \times \vec{r}_{v}=\left(-f_{u},-f_{v}, 1\right)$ and is hence never zero. So the graph of a

Regular/Smooth surfaces

- The infinitesimal area is $\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| d u d v$. Just as for regular curves, we define regular surfaces as those with $\vec{r}_{U} \times \vec{r}_{V} \neq 0$ everywhere. Such surfaces are also called "smooth".
- For a cone, $\vec{r}_{u}=v(-\sin (\alpha) \sin (u), \sin (\alpha) \cos (u), 0)$ and $\vec{r}_{V}=(\sin (\alpha) \cos (u), \sin (\alpha) \sin (u), \cos (\alpha))$. Thus $\vec{r}_{u} \times \vec{r}_{V}=\overrightarrow{0}$ when $v=0$. The vertex of the cone is not a smooth point.
- Example: Suppose $z=f(x, y)$ where f is a C^{1} function, $\vec{r}(u, v)=(u, v, f(u, v))$. Then $\vec{r}_{u}=\left(1,0, f_{u}\right)$ and $\vec{r}_{v}=\left(0,1, f_{v}\right)$. Thus $\vec{r}_{u} \times \vec{r}_{v}=\left(-f_{u},-f_{v}, 1\right)$ and is hence never zero. So the graph of a C^{1} function is

Regular/Smooth surfaces

- The infinitesimal area is $\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| d u d v$. Just as for regular curves, we define regular surfaces as those with $\vec{r}_{U} \times \vec{r}_{V} \neq 0$ everywhere. Such surfaces are also called "smooth".
- For a cone, $\vec{r}_{u}=v(-\sin (\alpha) \sin (u), \sin (\alpha) \cos (u), 0)$ and $\vec{r}_{V}=(\sin (\alpha) \cos (u), \sin (\alpha) \sin (u), \cos (\alpha))$. Thus $\vec{r}_{u} \times \vec{r}_{V}=\overrightarrow{0}$ when $v=0$. The vertex of the cone is not a smooth point.
- Example: Suppose $z=f(x, y)$ where f is a C^{1} function, $\vec{r}(u, v)=(u, v, f(u, v))$. Then $\vec{r}_{u}=\left(1,0, f_{u}\right)$ and $\vec{r}_{v}=\left(0,1, f_{v}\right)$. Thus $\vec{r}_{u} \times \vec{r}_{v}=\left(-f_{u},-f_{v}, 1\right)$ and is hence never zero. So the graph of a C^{1} function is a regular parameterised surface.

Regular/Smooth surfaces

- The infinitesimal area is $\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| d u d v$. Just as for regular curves, we define regular surfaces as those with $\vec{r}_{U} \times \vec{r}_{V} \neq 0$ everywhere. Such surfaces are also called "smooth".
- For a cone, $\vec{r}_{u}=v(-\sin (\alpha) \sin (u), \sin (\alpha) \cos (u), 0)$ and $\vec{r}_{V}=(\sin (\alpha) \cos (u), \sin (\alpha) \sin (u), \cos (\alpha))$. Thus $\vec{r}_{u} \times \vec{r}_{V}=\overrightarrow{0}$ when $v=0$. The vertex of the cone is not a smooth point.
- Example: Suppose $z=f(x, y)$ where f is a C^{1} function, $\vec{r}(u, v)=(u, v, f(u, v))$. Then $\vec{r}_{u}=\left(1,0, f_{u}\right)$ and $\vec{r}_{v}=\left(0,1, f_{v}\right)$. Thus $\vec{r}_{u} \times \vec{r}_{v}=\left(-f_{u},-f_{v}, 1\right)$ and is hence never zero. So the graph of a C^{1} function is a regular parameterised surface.
- For instance,

Regular/Smooth surfaces

- The infinitesimal area is $\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| d u d v$. Just as for regular curves, we define regular surfaces as those with $\vec{r}_{U} \times \vec{r}_{V} \neq 0$ everywhere. Such surfaces are also called "smooth".
- For a cone, $\vec{r}_{u}=v(-\sin (\alpha) \sin (u), \sin (\alpha) \cos (u), 0)$ and $\vec{r}_{V}=(\sin (\alpha) \cos (u), \sin (\alpha) \sin (u), \cos (\alpha))$. Thus $\vec{r}_{u} \times \vec{r}_{V}=\overrightarrow{0}$ when $v=0$. The vertex of the cone is not a smooth point.
- Example: Suppose $z=f(x, y)$ where f is a C^{1} function, $\vec{r}(u, v)=(u, v, f(u, v))$. Then $\vec{r}_{u}=\left(1,0, f_{u}\right)$ and $\vec{r}_{v}=\left(0,1, f_{v}\right)$. Thus $\vec{r}_{u} \times \vec{r}_{v}=\left(-f_{u},-f_{v}, 1\right)$ and is hence never zero. So the graph of a C^{1} function is a regular parameterised surface.
- For instance, if we take $z=\sqrt{1-x^{2}-y^{2}}$, the function is

Regular/Smooth surfaces

- The infinitesimal area is $\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| d u d v$. Just as for regular curves, we define regular surfaces as those with $\vec{r}_{U} \times \vec{r}_{V} \neq 0$ everywhere. Such surfaces are also called "smooth".
- For a cone, $\vec{r}_{u}=v(-\sin (\alpha) \sin (u), \sin (\alpha) \cos (u), 0)$ and $\vec{r}_{V}=(\sin (\alpha) \cos (u), \sin (\alpha) \sin (u), \cos (\alpha))$. Thus $\vec{r}_{u} \times \vec{r}_{V}=\overrightarrow{0}$ when $v=0$. The vertex of the cone is not a smooth point.
- Example: Suppose $z=f(x, y)$ where f is a C^{1} function, $\vec{r}(u, v)=(u, v, f(u, v))$. Then $\vec{r}_{u}=\left(1,0, f_{u}\right)$ and $\vec{r}_{v}=\left(0,1, f_{v}\right)$. Thus $\vec{r}_{u} \times \vec{r}_{v}=\left(-f_{u},-f_{v}, 1\right)$ and is hence never zero. So the graph of a C^{1} function is a regular parameterised surface.
- For instance, if we take $z=\sqrt{1-x^{2}-y^{2}}$, the function is not differentiable at $x=y=0$.

Regular/Smooth surfaces

- The infinitesimal area is $\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| d u d v$. Just as for regular curves, we define regular surfaces as those with $\vec{r}_{u} \times \vec{r}_{V} \neq 0$ everywhere. Such surfaces are also called "smooth".
- For a cone, $\vec{r}_{u}=v(-\sin (\alpha) \sin (u), \sin (\alpha) \cos (u), 0)$ and $\vec{r}_{V}=(\sin (\alpha) \cos (u), \sin (\alpha) \sin (u), \cos (\alpha))$. Thus $\vec{r}_{u} \times \vec{r}_{V}=\overrightarrow{0}$ when $v=0$. The vertex of the cone is not a smooth point.
- Example: Suppose $z=f(x, y)$ where f is a C^{1} function, $\vec{r}(u, v)=(u, v, f(u, v))$. Then $\vec{r}_{u}=\left(1,0, f_{u}\right)$ and $\vec{r}_{v}=\left(0,1, f_{v}\right)$. Thus $\vec{r}_{u} \times \vec{r}_{v}=\left(-f_{u},-f_{v}, 1\right)$ and is hence never zero. So the graph of a C^{1} function is a regular parameterised surface.
- For instance, if we take $z=\sqrt{1-x^{2}-y^{2}}$, the function is not differentiable at $x=y=0$. The problem here lies

Regular/Smooth surfaces

- The infinitesimal area is $\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| d u d v$. Just as for regular curves, we define regular surfaces as those with $\vec{r}_{u} \times \vec{r}_{V} \neq 0$ everywhere. Such surfaces are also called "smooth".
- For a cone, $\vec{r}_{u}=v(-\sin (\alpha) \sin (u), \sin (\alpha) \cos (u), 0)$ and $\vec{r}_{V}=(\sin (\alpha) \cos (u), \sin (\alpha) \sin (u), \cos (\alpha))$. Thus $\vec{r}_{u} \times \vec{r}_{V}=\overrightarrow{0}$ when $v=0$. The vertex of the cone is not a smooth point.
- Example: Suppose $z=f(x, y)$ where f is a C^{1} function, $\vec{r}(u, v)=(u, v, f(u, v))$. Then $\vec{r}_{u}=\left(1,0, f_{u}\right)$ and $\vec{r}_{v}=\left(0,1, f_{v}\right)$. Thus $\vec{r}_{u} \times \vec{r}_{v}=\left(-f_{u},-f_{v}, 1\right)$ and is hence never zero. So the graph of a C^{1} function is a regular parameterised surface.
- For instance, if we take $z=\sqrt{1-x^{2}-y^{2}}$, the function is not differentiable at $x=y=0$. The problem here lies with this particular parametrisation because

Regular/Smooth surfaces

- The infinitesimal area is $\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| d u d v$. Just as for regular curves, we define regular surfaces as those with $\vec{r}_{u} \times \vec{r}_{V} \neq 0$ everywhere. Such surfaces are also called "smooth".
- For a cone, $\vec{r}_{u}=v(-\sin (\alpha) \sin (u), \sin (\alpha) \cos (u), 0)$ and $\vec{r}_{V}=(\sin (\alpha) \cos (u), \sin (\alpha) \sin (u), \cos (\alpha))$. Thus $\vec{r}_{u} \times \vec{r}_{V}=\overrightarrow{0}$ when $v=0$. The vertex of the cone is not a smooth point.
- Example: Suppose $z=f(x, y)$ where f is a C^{1} function, $\vec{r}(u, v)=(u, v, f(u, v))$. Then $\vec{r}_{u}=\left(1,0, f_{u}\right)$ and $\vec{r}_{v}=\left(0,1, f_{v}\right)$. Thus $\vec{r}_{u} \times \vec{r}_{v}=\left(-f_{u},-f_{v}, 1\right)$ and is hence never zero. So the graph of a C^{1} function is a regular parameterised surface.
- For instance, if we take $z=\sqrt{1-x^{2}-y^{2}}$, the function is not differentiable at $x=y=0$. The problem here lies with this particular parametrisation because we already saw the the sphere

Regular/Smooth surfaces

- The infinitesimal area is $\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| d u d v$. Just as for regular curves, we define regular surfaces as those with $\vec{r}_{u} \times \vec{r}_{V} \neq 0$ everywhere. Such surfaces are also called "smooth".
- For a cone, $\vec{r}_{u}=v(-\sin (\alpha) \sin (u), \sin (\alpha) \cos (u), 0)$ and $\vec{r}_{V}=(\sin (\alpha) \cos (u), \sin (\alpha) \sin (u), \cos (\alpha))$. Thus $\vec{r}_{u} \times \vec{r}_{V}=\overrightarrow{0}$ when $v=0$. The vertex of the cone is not a smooth point.
- Example: Suppose $z=f(x, y)$ where f is a C^{1} function, $\vec{r}(u, v)=(u, v, f(u, v))$. Then $\vec{r}_{u}=\left(1,0, f_{u}\right)$ and $\vec{r}_{v}=\left(0,1, f_{v}\right)$. Thus $\vec{r}_{u} \times \vec{r}_{v}=\left(-f_{u},-f_{v}, 1\right)$ and is hence never zero. So the graph of a C^{1} function is a regular parameterised surface.
- For instance, if we take $z=\sqrt{1-x^{2}-y^{2}}$, the function is not differentiable at $x=y=0$. The problem here lies with this particular parametrisation because we already saw the the sphere can be parametrised even near

Regular/Smooth surfaces

- The infinitesimal area is $\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| d u d v$. Just as for regular curves, we define regular surfaces as those with $\vec{r}_{u} \times \vec{r}_{v} \neq 0$ everywhere. Such surfaces are also called "smooth".
- For a cone, $\vec{r}_{u}=v(-\sin (\alpha) \sin (u), \sin (\alpha) \cos (u), 0)$ and $\vec{r}_{V}=(\sin (\alpha) \cos (u), \sin (\alpha) \sin (u), \cos (\alpha))$. Thus $\vec{r}_{u} \times \vec{r}_{V}=\overrightarrow{0}$ when $v=0$. The vertex of the cone is not a smooth point.
- Example: Suppose $z=f(x, y)$ where f is a C^{1} function, $\vec{r}(u, v)=(u, v, f(u, v))$. Then $\vec{r}_{u}=\left(1,0, f_{u}\right)$ and $\vec{r}_{v}=\left(0,1, f_{v}\right)$. Thus $\vec{r}_{u} \times \vec{r}_{v}=\left(-f_{u},-f_{v}, 1\right)$ and is hence never zero. So the graph of a C^{1} function is a regular parameterised surface.
- For instance, if we take $z=\sqrt{1-x^{2}-y^{2}}$, the function is not differentiable at $x=y=0$. The problem here lies with this particular parametrisation because we already saw the the sphere can be parametrised even near the equator as a regular surface.

Regular/Smooth surfaces

- The infinitesimal area is $\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| d u d v$. Just as for regular curves, we define regular surfaces as those with $\vec{r}_{u} \times \vec{r}_{v} \neq 0$ everywhere. Such surfaces are also called "smooth".
- For a cone, $\vec{r}_{u}=v(-\sin (\alpha) \sin (u), \sin (\alpha) \cos (u), 0)$ and $\vec{r}_{V}=(\sin (\alpha) \cos (u), \sin (\alpha) \sin (u), \cos (\alpha))$. Thus $\vec{r}_{u} \times \vec{r}_{V}=\overrightarrow{0}$ when $v=0$. The vertex of the cone is not a smooth point.
- Example: Suppose $z=f(x, y)$ where f is a C^{1} function, $\vec{r}(u, v)=(u, v, f(u, v))$. Then $\vec{r}_{u}=\left(1,0, f_{u}\right)$ and $\vec{r}_{v}=\left(0,1, f_{v}\right)$. Thus $\vec{r}_{u} \times \vec{r}_{v}=\left(-f_{u},-f_{v}, 1\right)$ and is hence never zero. So the graph of a C^{1} function is a regular parameterised surface.
- For instance, if we take $z=\sqrt{1-x^{2}-y^{2}}$, the function is not differentiable at $x=y=0$. The problem here lies with this particular parametrisation because we already saw the the sphere can be parametrised even near the equator as a regular surface. So the choice of

Regular/Smooth surfaces

- The infinitesimal area is $\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| d u d v$. Just as for regular curves, we define regular surfaces as those with $\vec{r}_{u} \times \vec{r}_{v} \neq 0$ everywhere. Such surfaces are also called "smooth".
- For a cone, $\vec{r}_{u}=v(-\sin (\alpha) \sin (u), \sin (\alpha) \cos (u), 0)$ and $\vec{r}_{V}=(\sin (\alpha) \cos (u), \sin (\alpha) \sin (u), \cos (\alpha))$. Thus $\vec{r}_{u} \times \vec{r}_{v}=\overrightarrow{0}$ when $v=0$. The vertex of the cone is not a smooth point.
- Example: Suppose $z=f(x, y)$ where f is a C^{1} function, $\vec{r}(u, v)=(u, v, f(u, v))$. Then $\vec{r}_{u}=\left(1,0, f_{u}\right)$ and $\vec{r}_{v}=\left(0,1, f_{v}\right)$. Thus $\vec{r}_{u} \times \vec{r}_{v}=\left(-f_{u},-f_{v}, 1\right)$ and is hence never zero. So the graph of a C^{1} function is a regular parameterised surface.
- For instance, if we take $z=\sqrt{1-x^{2}-y^{2}}$, the function is not differentiable at $x=y=0$. The problem here lies with this particular parametrisation because we already saw the the sphere can be parametrised even near the equator as a regular surface. So the choice of a parametrisation is important.

Normals and areas

Normals and areas

- $\vec{r}_{u} \times \vec{r}_{v}$ is normal to the surface.

Normals and areas

- $\vec{r}_{u} \times \vec{r}_{v}$ is normal to the surface. Indeed, let $(u(t), v(t))$ be a C^{1} path on the surface passing through p.

Normals and areas

- $\vec{r}_{u} \times \vec{r}_{v}$ is normal to the surface. Indeed, let $(u(t), v(t))$ be a C^{1} path on the surface passing through p. Then $\frac{d \vec{r}}{d t}=\vec{r}_{u} u^{\prime}+\vec{r}_{v} v^{\prime}$. Thus

Normals and areas

- $\vec{r}_{u} \times \vec{r}_{v}$ is normal to the surface. Indeed, let $(u(t), v(t))$ be a C^{1} path on the surface passing through p. Then $\frac{d \vec{r}}{d t}=\vec{r}_{u} u^{\prime}+\vec{r}_{v} v^{\prime}$. Thus \vec{r}^{\prime} is perpendicular to $\vec{r}_{u} \times \vec{r}_{v}$.

Normals and areas

- $\vec{r}_{u} \times \vec{r}_{V}$ is normal to the surface. Indeed, let $(u(t), v(t))$ be a C^{1} path on the surface passing through p. Then $\frac{d \vec{r}}{d t}=\vec{r}_{u} u^{\prime}+\vec{r}_{v} v^{\prime}$. Thus \vec{r}^{\prime} is perpendicular to $\vec{r}_{u} \times \vec{r}_{v}$.
- This is another way

Normals and areas

- $\vec{r}_{u} \times \vec{r}_{V}$ is normal to the surface. Indeed, let $(u(t), v(t))$ be a C^{1} path on the surface passing through p. Then $\frac{d \vec{r}}{d t}=\vec{r}_{u} u^{\prime}+\vec{r}_{v} v^{\prime}$. Thus \vec{r}^{\prime} is perpendicular to $\vec{r}_{u} \times \vec{r}_{v}$.
- This is another way to study normals to surfaces.

Normals and areas

- $\vec{r}_{u} \times \vec{r}_{V}$ is normal to the surface. Indeed, let $(u(t), v(t))$ be a C^{1} path on the surface passing through p. Then $\frac{d \vec{r}}{d t}=\vec{r}_{u} u^{\prime}+\vec{r}_{v} v^{\prime}$. Thus \vec{r}^{\prime} is perpendicular to $\vec{r}_{u} \times \vec{r}_{v}$.
- This is another way to study normals to surfaces. The same surface can be

Normals and areas

- $\vec{r}_{u} \times \vec{r}_{V}$ is normal to the surface. Indeed, let $(u(t), v(t))$ be a C^{1} path on the surface passing through p. Then $\frac{d \vec{r}}{d t}=\vec{r}_{u} u^{\prime}+\vec{r}_{v} v^{\prime}$. Thus \vec{r}^{\prime} is perpendicular to $\vec{r}_{u} \times \vec{r}_{v}$.
- This is another way to study normals to surfaces. The same surface can be given in two ways:

Normals and areas

- $\vec{r}_{u} \times \vec{r}_{V}$ is normal to the surface. Indeed, let $(u(t), v(t))$ be a C^{1} path on the surface passing through p. Then $\frac{d \vec{r}}{d t}=\vec{r}_{u} u^{\prime}+\vec{r}_{v} v^{\prime}$. Thus \vec{r}^{\prime} is perpendicular to $\vec{r}_{u} \times \vec{r}_{v}$.
- This is another way to study normals to surfaces. The same surface can be given in two ways: $F(x, y, z)=0$ and as $(x(u, v), y(u, v), z(u, v))$. The normals are

Normals and areas

- $\vec{r}_{u} \times \vec{r}_{V}$ is normal to the surface. Indeed, let $(u(t), v(t))$ be a C^{1} path on the surface passing through p. Then $\frac{d \vec{r}}{d t}=\vec{r}_{u} u^{\prime}+\vec{r}_{v} v^{\prime}$. Thus \vec{r}^{\prime} is perpendicular to $\vec{r}_{u} \times \vec{r}_{v}$.
- This is another way to study normals to surfaces. The same surface can be given in two ways: $F(x, y, z)=0$ and as $(x(u, v), y(u, v), z(u, v))$. The normals are ∇F and $\vec{r}_{u} \times \vec{r}_{v}$.

Normals and areas

- $\vec{r}_{u} \times \vec{r}_{V}$ is normal to the surface. Indeed, let $(u(t), v(t))$ be a C^{1} path on the surface passing through p. Then $\frac{d \vec{r}}{d t}=\vec{r}_{u} u^{\prime}+\vec{r}_{v} v^{\prime}$. Thus \vec{r}^{\prime} is perpendicular to $\vec{r}_{u} \times \vec{r}_{v}$.
- This is another way to study normals to surfaces. The same surface can be given in two ways: $F(x, y, z)=0$ and as $(x(u, v), y(u, v), z(u, v))$. The normals are ∇F and $\vec{r}_{u} \times \vec{r}_{v}$. For instance, even for a graph,

Normals and areas

- $\vec{r}_{u} \times \vec{r}_{V}$ is normal to the surface. Indeed, let $(u(t), v(t))$ be a C^{1} path on the surface passing through p. Then $\frac{d \vec{r}}{d t}=\vec{r}_{u} u^{\prime}+\vec{r}_{v} v^{\prime}$. Thus \vec{r}^{\prime} is perpendicular to $\vec{r}_{u} \times \vec{r}_{v}$.
- This is another way to study normals to surfaces. The same surface can be given in two ways: $F(x, y, z)=0$ and as $(x(u, v), y(u, v), z(u, v))$. The normals are ∇F and $\vec{r}_{u} \times \vec{r}_{v}$. For instance, even for a graph, $F(x, y, z)=z-f(x, y)$ gives the same

Normals and areas

- $\vec{r}_{u} \times \vec{r}_{V}$ is normal to the surface. Indeed, let $(u(t), v(t))$ be a C^{1} path on the surface passing through p. Then $\frac{d \vec{r}}{d t}=\vec{r}_{u} u^{\prime}+\vec{r}_{v} v^{\prime}$. Thus \vec{r}^{\prime} is perpendicular to $\vec{r}_{u} \times \vec{r}_{V}$.
- This is another way to study normals to surfaces. The same surface can be given in two ways: $F(x, y, z)=0$ and as $(x(u, v), y(u, v), z(u, v))$. The normals are ∇F and $\vec{r}_{u} \times \vec{r}_{v}$. For instance, even for a graph, $F(x, y, z)=z-f(x, y)$ gives the same unit normal as the previous one.

Normals and areas

- $\vec{r}_{u} \times \vec{r}_{v}$ is normal to the surface. Indeed, let $(u(t), v(t))$ be a C^{1} path on the surface passing through p. Then $\frac{d \vec{r}}{d t}=\vec{r}_{u} u^{\prime}+\vec{r}_{v} v^{\prime}$. Thus \vec{r}^{\prime} is perpendicular to $\vec{r}_{u} \times \vec{r}_{v}$.
- This is another way to study normals to surfaces. The same surface can be given in two ways: $F(x, y, z)=0$ and as $(x(u, v), y(u, v), z(u, v))$. The normals are ∇F and $\vec{r}_{u} \times \vec{r}_{v}$. For instance, even for a graph, $F(x, y, z)=z-f(x, y)$ gives the same unit normal as the previous one.
- The infinitesimal area vector

Normals and areas

- $\vec{r}_{u} \times \vec{r}_{v}$ is normal to the surface. Indeed, let $(u(t), v(t))$ be a C^{1} path on the surface passing through p. Then $\frac{d \vec{r}}{d t}=\vec{r}_{u} u^{\prime}+\vec{r}_{v} v^{\prime}$. Thus \vec{r}^{\prime} is perpendicular to $\vec{r}_{u} \times \vec{r}_{V}$.
- This is another way to study normals to surfaces. The same surface can be given in two ways: $F(x, y, z)=0$ and as $(x(u, v), y(u, v), z(u, v))$. The normals are ∇F and $\vec{r}_{u} \times \vec{r}_{v}$. For instance, even for a graph, $F(x, y, z)=z-f(x, y)$ gives the same unit normal as the previous one.
- The infinitesimal area vector is $d \vec{A}=\vec{r}_{u} \times \vec{r}_{v} d u d v$.

Normals and areas

- $\vec{r}_{u} \times \vec{r}_{v}$ is normal to the surface. Indeed, let $(u(t), v(t))$ be a C^{1} path on the surface passing through p. Then $\frac{d \vec{r}}{d t}=\vec{r}_{u} u^{\prime}+\vec{r}_{v} v^{\prime}$. Thus \vec{r}^{\prime} is perpendicular to $\vec{r}_{u} \times \vec{r}_{v}$.
- This is another way to study normals to surfaces. The same surface can be given in two ways: $F(x, y, z)=0$ and as $(x(u, v), y(u, v), z(u, v))$. The normals are ∇F and $\vec{r}_{u} \times \vec{r}_{v}$. For instance, even for a graph, $F(x, y, z)=z-f(x, y)$ gives the same unit normal as the previous one.
- The infinitesimal area vector is $d \vec{A}=\vec{r}_{u} \times \vec{r}_{v} d u d v$.
- The area of a parametric surface is

Normals and areas

- $\vec{r}_{u} \times \vec{r}_{v}$ is normal to the surface. Indeed, let $(u(t), v(t))$ be a C^{1} path on the surface passing through p. Then $\frac{d \vec{r}}{d t}=\vec{r}_{u} u^{\prime}+\vec{r}_{v} v^{\prime}$. Thus \vec{r}^{\prime} is perpendicular to $\vec{r}_{u} \times \vec{r}_{V}$.
- This is another way to study normals to surfaces. The same surface can be given in two ways: $F(x, y, z)=0$ and as $(x(u, v), y(u, v), z(u, v))$. The normals are ∇F and $\vec{r}_{u} \times \vec{r}_{v}$. For instance, even for a graph, $F(x, y, z)=z-f(x, y)$ gives the same unit normal as the previous one.
- The infinitesimal area vector is $d \vec{A}=\vec{r}_{u} \times \vec{r}_{v} d u d v$.
- The area of a parametric surface is $\iint_{T}\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| d u d v$. For instance,

Normals and areas

- $\vec{r}_{u} \times \vec{r}_{v}$ is normal to the surface. Indeed, let $(u(t), v(t))$ be a C^{1} path on the surface passing through p. Then $\frac{d \vec{r}}{d t}=\vec{r}_{u} u^{\prime}+\vec{r}_{v} v^{\prime}$. Thus \vec{r}^{\prime} is perpendicular to $\vec{r}_{u} \times \vec{r}_{V}$.
- This is another way to study normals to surfaces. The same surface can be given in two ways: $F(x, y, z)=0$ and as $(x(u, v), y(u, v), z(u, v))$. The normals are ∇F and $\vec{r}_{u} \times \vec{r}_{v}$. For instance, even for a graph, $F(x, y, z)=z-f(x, y)$ gives the same unit normal as the previous one.
- The infinitesimal area vector is $d \vec{A}=\vec{r}_{u} \times \vec{r}_{v} d u d v$.
- The area of a parametric surface is $\iint_{T}\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| d u d v$. For instance, for a graph $z=f(x, y)$, the area is

Normals and areas

- $\vec{r}_{u} \times \vec{r}_{v}$ is normal to the surface. Indeed, let $(u(t), v(t))$ be a C^{1} path on the surface passing through p. Then $\frac{d \vec{r}}{d t}=\vec{r}_{u} u^{\prime}+\vec{r}_{v} v^{\prime}$. Thus \vec{r}^{\prime} is perpendicular to $\vec{r}_{u} \times \vec{r}_{V}$.
- This is another way to study normals to surfaces. The same surface can be given in two ways: $F(x, y, z)=0$ and as $(x(u, v), y(u, v), z(u, v))$. The normals are ∇F and $\vec{r}_{u} \times \vec{r}_{v}$. For instance, even for a graph, $F(x, y, z)=z-f(x, y)$ gives the same unit normal as the previous one.
- The infinitesimal area vector is $d \vec{A}=\vec{r}_{u} \times \vec{r}_{v} d u d v$.
- The area of a parametric surface is $\iint_{T}\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| d u d v$. For instance, for a graph $z=f(x, y)$, the area is

$$
\iint \sqrt{1+f_{x}^{2}+f_{y}^{2}} d x d y
$$

An example and scalar line integrals

An example and scalar line integrals

- Hemisphere:

An example and scalar line integrals

- Hemisphere: $\vec{r}=(r \sin (u) \cos (v), r \sin (u) \sin (v), r \cos (u))$ and hence $\vec{r}_{u}=(r \cos (u) \cos (v), r \cos (u) \sin (v),-r \sin (u))$, $\vec{r}_{v}=(-r \sin (u) \sin (v), r \sin (u) \cos (v), 0)$.

An example and scalar line integrals

- Hemisphere: $\vec{r}=(r \sin (u) \cos (v), r \sin (u) \sin (v), r \cos (u))$ and hence $\vec{r}_{u}=(r \cos (u) \cos (v), r \cos (u) \sin (v),-r \sin (u))$, $\vec{r}_{v}=(-r \sin (u) \sin (v), r \sin (u) \cos (v), 0)$. So $\left\|\vec{r}_{u} \times \vec{r}_{v}\right\|=r^{2} \sin (v)$. Therefore,

An example and scalar line integrals

- Hemisphere: $\vec{r}=(r \sin (u) \cos (v), r \sin (u) \sin (v), r \cos (u))$ and hence $\vec{r}_{u}=(r \cos (u) \cos (v), r \cos (u) \sin (v),-r \sin (u))$, $\vec{r}_{v}=(-r \sin (u) \sin (v), r \sin (u) \cos (v), 0)$. So $\left\|\vec{r}_{u} \times \vec{r}_{v}\right\|=r^{2} \sin (v)$. Therefore, the area is $2 \pi r^{2}$.

An example and scalar line integrals

- Hemisphere: $\vec{r}=(r \sin (u) \cos (v), r \sin (u) \sin (v), r \cos (u))$ and hence $\vec{r}_{u}=(r \cos (u) \cos (v), r \cos (u) \sin (v),-r \sin (u))$, $\vec{r}_{v}=(-r \sin (u) \sin (v), r \sin (u) \cos (v), 0)$. So $\left\|\vec{r}_{u} \times \vec{r}_{v}\right\|=r^{2} \sin (v)$. Therefore, the area is $2 \pi r^{2}$.
- A digression:

An example and scalar line integrals

- Hemisphere: $\vec{r}=(r \sin (u) \cos (v), r \sin (u) \sin (v), r \cos (u))$ and hence $\vec{r}_{u}=(r \cos (u) \cos (v), r \cos (u) \sin (v),-r \sin (u))$, $\vec{r}_{v}=(-r \sin (u) \sin (v), r \sin (u) \cos (v), 0)$. So $\left\|\vec{r}_{u} \times \vec{r}_{v}\right\|=r^{2} \sin (v)$. Therefore, the area is $2 \pi r^{2}$.
- A digression: If $\vec{\gamma}(t)$ is a piecewise C^{1} regular path,

An example and scalar line integrals

- Hemisphere: $\vec{r}=(r \sin (u) \cos (v), r \sin (u) \sin (v), r \cos (u))$ and hence $\vec{r}_{u}=(r \cos (u) \cos (v), r \cos (u) \sin (v),-r \sin (u))$, $\vec{r}_{v}=(-r \sin (u) \sin (v), r \sin (u) \cos (v), 0)$. So $\left\|\vec{r}_{u} \times \vec{r}_{v}\right\|=r^{2} \sin (v)$. Therefore, the area is $2 \pi r^{2}$.
- A digression: If $\vec{\gamma}(t)$ is a piecewise C^{1} regular path, and $f(x, y, z)$ is a bounded function along the path,

An example and scalar line integrals

- Hemisphere: $\vec{r}=(r \sin (u) \cos (v), r \sin (u) \sin (v), r \cos (u))$ and hence $\vec{r}_{u}=(r \cos (u) \cos (v), r \cos (u) \sin (v),-r \sin (u))$, $\vec{r}_{v}=(-r \sin (u) \sin (v), r \sin (u) \cos (v), 0)$. So $\left\|\vec{r}_{u} \times \vec{r}_{v}\right\|=r^{2} \sin (v)$. Therefore, the area is $2 \pi r^{2}$.
- A digression: If $\vec{\gamma}(t)$ is a piecewise C^{1} regular path, and $f(x, y, z)$ is a bounded function along the path, then $\int f d s=\int_{a}^{b} f(\gamma(t))\left\|\gamma^{\prime}(t)\right\| d t$ is called the scalar line integral of f along γ. (

An example and scalar line integrals

- Hemisphere: $\vec{r}=(r \sin (u) \cos (v), r \sin (u) \sin (v), r \cos (u))$ and hence $\vec{r}_{u}=(r \cos (u) \cos (v), r \cos (u) \sin (v),-r \sin (u))$, $\vec{r}_{v}=(-r \sin (u) \sin (v), r \sin (u) \cos (v), 0)$. So $\left\|\vec{r}_{u} \times \vec{r}_{v}\right\|=r^{2} \sin (v)$. Therefore, the area is $2 \pi r^{2}$.
- A digression: If $\vec{\gamma}(t)$ is a piecewise C^{1} regular path, and $f(x, y, z)$ is a bounded function along the path, then $\int f d s=\int_{a}^{b} f(\gamma(t))\left\|\gamma^{\prime}(t)\right\| d t$ is called the scalar line integral of f along γ. (For instance, the charge on a wire.)

An example and scalar line integrals

- Hemisphere: $\vec{r}=(r \sin (u) \cos (v), r \sin (u) \sin (v), r \cos (u))$ and hence $\vec{r}_{u}=(r \cos (u) \cos (v), r \cos (u) \sin (v),-r \sin (u))$, $\vec{r}_{v}=(-r \sin (u) \sin (v), r \sin (u) \cos (v), 0)$. So $\left\|\vec{r}_{u} \times \vec{r}_{v}\right\|=r^{2} \sin (v)$. Therefore, the area is $2 \pi r^{2}$.
- A digression: If $\vec{\gamma}(t)$ is a piecewise C^{1} regular path, and $f(x, y, z)$ is a bounded function along the path, then $\int f d s=\int_{a}^{b} f(\gamma(t))\left\|\gamma^{\prime}(t)\right\| d t$ is called the scalar line integral of f along γ. (For instance, the charge on a wire.)
- A crucial point:

An example and scalar line integrals

- Hemisphere: $\vec{r}=(r \sin (u) \cos (v), r \sin (u) \sin (v), r \cos (u))$ and hence $\vec{r}_{u}=(r \cos (u) \cos (v), r \cos (u) \sin (v),-r \sin (u))$, $\vec{r}_{v}=(-r \sin (u) \sin (v), r \sin (u) \cos (v), 0)$. So $\left\|\vec{r}_{u} \times \vec{r}_{v}\right\|=r^{2} \sin (v)$. Therefore, the area is $2 \pi r^{2}$.
- A digression: If $\vec{\gamma}(t)$ is a piecewise C^{1} regular path, and $f(x, y, z)$ is a bounded function along the path, then $\int f d s=\int_{a}^{b} f(\gamma(t))\left\|\gamma^{\prime}(t)\right\| d t$ is called the scalar line integral of f along γ. (For instance, the charge on a wire.)
- A crucial point: The scalar line integral is

An example and scalar line integrals

- Hemisphere: $\vec{r}=(r \sin (u) \cos (v), r \sin (u) \sin (v), r \cos (u))$ and hence $\vec{r}_{u}=(r \cos (u) \cos (v), r \cos (u) \sin (v),-r \sin (u))$, $\vec{r}_{v}=(-r \sin (u) \sin (v), r \sin (u) \cos (v), 0)$. So $\left\|\vec{r}_{u} \times \vec{r}_{v}\right\|=r^{2} \sin (v)$. Therefore, the area is $2 \pi r^{2}$.
- A digression: If $\vec{\gamma}(t)$ is a piecewise C^{1} regular path, and $f(x, y, z)$ is a bounded function along the path, then $\int f d s=\int_{a}^{b} f(\gamma(t))\left\|\gamma^{\prime}(t)\right\| d t$ is called the scalar line integral of f along γ. (For instance, the charge on a wire.)
- A crucial point: The scalar line integral is reparametrisation invariant:

An example and scalar line integrals

- Hemisphere: $\vec{r}=(r \sin (u) \cos (v), r \sin (u) \sin (v), r \cos (u))$ and hence $\vec{r}_{u}=(r \cos (u) \cos (v), r \cos (u) \sin (v),-r \sin (u))$, $\vec{r}_{v}=(-r \sin (u) \sin (v), r \sin (u) \cos (v), 0)$. So $\left\|\vec{r}_{u} \times \vec{r}_{v}\right\|=r^{2} \sin (v)$. Therefore, the area is $2 \pi r^{2}$.
- A digression: If $\vec{\gamma}(t)$ is a piecewise C^{1} regular path, and $f(x, y, z)$ is a bounded function along the path, then $\int f d s=\int_{a}^{b} f(\gamma(t))\left\|\gamma^{\prime}(t)\right\| d t$ is called the scalar line integral of f along γ. (For instance, the charge on a wire.)
- A crucial point: The scalar line integral is reparametrisation invariant: If $t(\tau)$ is a reparametrisation,

An example and scalar line integrals

- Hemisphere: $\vec{r}=(r \sin (u) \cos (v), r \sin (u) \sin (v), r \cos (u))$ and hence $\vec{r}_{u}=(r \cos (u) \cos (v), r \cos (u) \sin (v),-r \sin (u))$, $\vec{r}_{v}=(-r \sin (u) \sin (v), r \sin (u) \cos (v), 0)$. So $\left\|\vec{r}_{u} \times \vec{r}_{v}\right\|=r^{2} \sin (v)$. Therefore, the area is $2 \pi r^{2}$.
- A digression: If $\vec{\gamma}(t)$ is a piecewise C^{1} regular path, and $f(x, y, z)$ is a bounded function along the path, then $\int f d s=\int_{a}^{b} f(\gamma(t))\left\|\gamma^{\prime}(t)\right\| d t$ is called the scalar line integral of f along γ. (For instance, the charge on a wire.)
- A crucial point: The scalar line integral is reparametrisation invariant: If $t(\tau)$ is a reparametrisation, then $\left\|\frac{d \gamma}{d \tau}\right\|=\left\|\gamma^{\prime}(t)\right\|\left|\frac{d t}{d \tau}\right|$. Thus

An example and scalar line integrals

- Hemisphere: $\vec{r}=(r \sin (u) \cos (v), r \sin (u) \sin (v), r \cos (u))$ and hence $\vec{r}_{u}=(r \cos (u) \cos (v), r \cos (u) \sin (v),-r \sin (u))$, $\vec{r}_{v}=(-r \sin (u) \sin (v), r \sin (u) \cos (v), 0)$. So $\left\|\vec{r}_{u} \times \vec{r}_{v}\right\|=r^{2} \sin (v)$. Therefore, the area is $2 \pi r^{2}$.
- A digression: If $\vec{\gamma}(t)$ is a piecewise C^{1} regular path, and $f(x, y, z)$ is a bounded function along the path, then $\int f d s=\int_{a}^{b} f(\gamma(t))\left\|\gamma^{\prime}(t)\right\| d t$ is called the scalar line integral of f along γ. (For instance, the charge on a wire.)
- A crucial point: The scalar line integral is reparametrisation invariant: If $t(\tau)$ is a reparametrisation, then $\left\|\frac{d \gamma}{d \tau}\right\|=\left\|\gamma^{\prime}(t)\right\|\left|\frac{d t}{d \tau}\right|$. Thus the "new" integral is $\int_{[c, d]} f(\gamma(t(\tau)))\left\|\gamma^{\prime}(t)\right\|\left|\frac{d t}{d \tau}\right| d \tau$ which by

An example and scalar line integrals

- Hemisphere: $\vec{r}=(r \sin (u) \cos (v), r \sin (u) \sin (v), r \cos (u))$ and hence $\vec{r}_{u}=(r \cos (u) \cos (v), r \cos (u) \sin (v),-r \sin (u))$, $\vec{r}_{v}=(-r \sin (u) \sin (v), r \sin (u) \cos (v), 0)$. So $\left\|\vec{r}_{u} \times \vec{r}_{v}\right\|=r^{2} \sin (v)$. Therefore, the area is $2 \pi r^{2}$.
- A digression: If $\vec{\gamma}(t)$ is a piecewise C^{1} regular path, and $f(x, y, z)$ is a bounded function along the path, then $\int f d s=\int_{a}^{b} f(\gamma(t))\left\|\gamma^{\prime}(t)\right\| d t$ is called the scalar line integral of f along γ. (For instance, the charge on a wire.)
- A crucial point: The scalar line integral is reparametrisation invariant: If $t(\tau)$ is a reparametrisation, then $\left\|\frac{d \gamma}{d \tau}\right\|=\left\|\gamma^{\prime}(t)\right\|\left|\frac{d t}{d \tau}\right|$. Thus the "new" integral is $\left.\int_{[c, d]} f(\gamma(t(\tau)))\left\|\gamma^{\prime}(t)\right\|| | \frac{d t}{d \tau} \right\rvert\, d \tau$ which by the change of variables formula equals the "old" integral.

Scalar surface integral and examples

Scalar surface integral and examples

- Let $S=\vec{r}(T)$ be a parametrised surface and

Scalar surface integral and examples

- Let $S=\vec{r}(T)$ be a parametrised surface and let f be a bounded scalar field on S.

Scalar surface integral and examples

- Let $S=\vec{r}(T)$ be a parametrised surface and let f be a bounded scalar field on S. Then $\iint_{S} f d A:=\iint_{T} f(\vec{r}(u, v))\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| d u d v$.

Scalar surface integral and examples

- Let $S=\vec{r}(T)$ be a parametrised surface and let f be a bounded scalar field on S. Then $\iint_{S} f d A:=\iint_{T} f(\vec{r}(u, v))\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| d u d v$.
- When $f=1$,

Scalar surface integral and examples

- Let $S=\vec{r}(T)$ be a parametrised surface and let f be a bounded scalar field on S. Then $\iint_{S} f d A:=\iint_{T} f(\vec{r}(u, v))\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| d u d v$.
- When $f=1$, we get the area. (

Scalar surface integral and examples

- Let $S=\vec{r}(T)$ be a parametrised surface and let f be a bounded scalar field on S. Then $\iint_{S} f d A:=\iint_{T} f(\vec{r}(u, v))\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| d u d v$.
- When $f=1$, we get the area. (Akin to the length

Scalar surface integral and examples

- Let $S=\vec{r}(T)$ be a parametrised surface and let f be a bounded scalar field on S. Then $\iint_{S} f d A:=\iint_{T} f(\vec{r}(u, v))\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| d u d v$.
- When $f=1$, we get the area. (Akin to the length of a regular curve

Scalar surface integral and examples

- Let $S=\vec{r}(T)$ be a parametrised surface and let f be a bounded scalar field on S. Then $\iint_{S} f d A:=\iint_{T} f(\vec{r}(u, v))\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| d u d v$.
- When $f=1$, we get the area. (Akin to the length of a regular curve in the case of line integrals.)

Scalar surface integral and examples

- Let $S=\vec{r}(T)$ be a parametrised surface and let f be a bounded scalar field on S. Then $\iint_{S} f d A:=\iint_{T} f(\vec{r}(u, v))\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| d u d v$.
- When $f=1$, we get the area. (Akin to the length of a regular curve in the case of line integrals.)
- Centre of mass:

Scalar surface integral and examples

- Let $S=\vec{r}(T)$ be a parametrised surface and let f be a bounded scalar field on S. Then $\iint_{S} f d A:=\iint_{T} f(\vec{r}(u, v))\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| d u d v$.
- When $f=1$, we get the area. (Akin to the length of a regular curve in the case of line integrals.)
- Centre of mass: If f is the density,

Scalar surface integral and examples

- Let $S=\vec{r}(T)$ be a parametrised surface and let f be a bounded scalar field on S. Then $\iint_{S} f d A:=\iint_{T} f(\vec{r}(u, v))\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| d u d v$.
- When $f=1$, we get the area. (Akin to the length of a regular curve in the case of line integrals.)
- Centre of mass: If f is the density, then $x_{C M}=\iint x f d A$ and likewise for other coordinates.

Scalar surface integral and examples

- Let $S=\vec{r}(T)$ be a parametrised surface and let f be a bounded scalar field on S. Then

$$
\iint_{S} f d A:=\iint_{T} f(\vec{r}(u, v))\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| d u d v
$$

- When $f=1$, we get the area. (Akin to the length of a regular curve in the case of line integrals.)
- Centre of mass: If f is the density, then $x_{C M}=\iint x f d A$ and likewise for other coordinates. For instance, for a cone $\vec{r}=(v \sin (\alpha) \cos (u), v \sin (\alpha) \sin (u), v \cos (\alpha))$ where $(u, v) \in[0,2 \pi] \times[0, I]$, we see that $d A=v \sin (\alpha) d u d v$.

Scalar surface integral and examples

- Let $S=\vec{r}(T)$ be a parametrised surface and let f be a bounded scalar field on S. Then $\iint_{S} f d A:=\iint_{T} f(\vec{r}(u, v))\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| d u d v$.
- When $f=1$, we get the area. (Akin to the length of a regular curve in the case of line integrals.)
- Centre of mass: If f is the density, then $x_{C M}=\iint x f d A$ and likewise for other coordinates. For instance, for a cone $\vec{r}=(v \sin (\alpha) \cos (u), v \sin (\alpha) \sin (u), v \cos (\alpha))$ where $(u, v) \in[0,2 \pi] \times[0, I]$, we see that $d A=v \sin (\alpha) d u d v$. Thus if $f=1$ (uniform density),

Scalar surface integral and examples

- Let $S=\vec{r}(T)$ be a parametrised surface and let f be a bounded scalar field on S. Then

$$
\iint_{S} f d A:=\iint_{T} f(\vec{r}(u, v))\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| d u d v
$$

- When $f=1$, we get the area. (Akin to the length of a regular curve in the case of line integrals.)
- Centre of mass: If f is the density, then $x_{C M}=\iint x f d A$ and likewise for other coordinates. For instance, for a cone $\vec{r}=(v \sin (\alpha) \cos (u), v \sin (\alpha) \sin (u), v \cos (\alpha))$ where $(u, v) \in[0,2 \pi] \times[0, I]$, we see that $d A=v \sin (\alpha) d u d v$. Thus if $f=1$ (uniform density), then
$\iint z d A=\int_{0}^{l} \int_{0}^{2 \pi} v^{2} \cos (\alpha) \sin (\alpha) d u d v=\frac{\pi}{3} \sin (2 \alpha)$.

Scalar surface integral and examples

- Let $S=\vec{r}(T)$ be a parametrised surface and let f be a bounded scalar field on S. Then
$\iint_{S} f d A:=\iint_{T} f(\vec{r}(u, v))\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| d u d v$.
- When $f=1$, we get the area. (Akin to the length of a regular curve in the case of line integrals.)
- Centre of mass: If f is the density, then $x_{C M}=\iint x f d A$ and likewise for other coordinates. For instance, for a cone $\vec{r}=(v \sin (\alpha) \cos (u), v \sin (\alpha) \sin (u), v \cos (\alpha))$ where $(u, v) \in[0,2 \pi] \times[0, I]$, we see that $d A=v \sin (\alpha) d u d v$. Thus if $f=1$ (uniform density), then
$\iint z d A=\int_{0}^{l} \int_{0}^{2 \pi} v^{2} \cos (\alpha) \sin (\alpha) d u d v=\frac{\pi}{3} \sin (2 \alpha)$. It is easy to see that

Scalar surface integral and examples

- Let $S=\vec{r}(T)$ be a parametrised surface and let f be a bounded scalar field on S. Then
$\iint_{S} f d A:=\iint_{T} f(\vec{r}(u, v))\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| d u d v$.
- When $f=1$, we get the area. (Akin to the length of a regular curve in the case of line integrals.)
- Centre of mass: If f is the density, then $x_{C M}=\iint x f d A$ and likewise for other coordinates. For instance, for a cone $\vec{r}=(v \sin (\alpha) \cos (u), v \sin (\alpha) \sin (u), v \cos (\alpha))$ where $(u, v) \in[0,2 \pi] \times[0, I]$, we see that $d A=v \sin (\alpha) d u d v$. Thus if $f=1$ (uniform density), then
$\iint z d A=\int_{0}^{l} \int_{0}^{2 \pi} v^{2} \cos (\alpha) \sin (\alpha) d u d v=\frac{\pi}{3} \sin (2 \alpha)$. It is easy to see that $x_{C M}=y_{C M}=0$.

Scalar surface integral and examples

- Let $S=\vec{r}(T)$ be a parametrised surface and let f be a bounded scalar field on S. Then
$\iint_{S} f d A:=\iint_{T} f(\vec{r}(u, v))\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| d u d v$.
- When $f=1$, we get the area. (Akin to the length of a regular curve in the case of line integrals.)
- Centre of mass: If f is the density, then $x_{C M}=\iint x f d A$ and likewise for other coordinates. For instance, for a cone $\vec{r}=(v \sin (\alpha) \cos (u), v \sin (\alpha) \sin (u), v \cos (\alpha))$ where $(u, v) \in[0,2 \pi] \times[0, I]$, we see that $d A=v \sin (\alpha) d u d v$. Thus if $f=1$ (uniform density), then
$\iint z d A=\int_{0}^{l} \int_{0}^{2 \pi} v^{2} \cos (\alpha) \sin (\alpha) d u d v=\frac{\pi}{3} \sin (2 \alpha)$. It is easy to see that $x_{C M}=y_{C M}=0$. Thus the centre of mass

Scalar surface integral and examples

- Let $S=\vec{r}(T)$ be a parametrised surface and let f be a bounded scalar field on S. Then
$\iint_{S} f d A:=\iint_{T} f(\vec{r}(u, v))\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| d u d v$.
- When $f=1$, we get the area. (Akin to the length of a regular curve in the case of line integrals.)
- Centre of mass: If f is the density, then $x_{C M}=\iint x f d A$ and likewise for other coordinates. For instance, for a cone $\vec{r}=(v \sin (\alpha) \cos (u), v \sin (\alpha) \sin (u), v \cos (\alpha))$ where $(u, v) \in[0,2 \pi] \times[0, I]$, we see that $d A=v \sin (\alpha) d u d v$. Thus if $f=1$ (uniform density), then $\iint z d A=\int_{0}^{l} \int_{0}^{2 \pi} v^{2} \cos (\alpha) \sin (\alpha) d u d v=\frac{\pi}{3} \sin (2 \alpha)$. It is easy to see that $x_{C M}=y_{C M}=0$. Thus the centre of mass can lie outside the surface.

