Lecture 37 - UM 102 (Spring 2021)

Vamsi Pritham Pingali

IISc

Recap

▲御▶ ▲ 臣▶ ▲ 臣▶

æ

• Area enclosed by a Jordan curve

• Area enclosed by a Jordan curve using Green's theorem.

- Area enclosed by a Jordan curve using Green's theorem.
- Change of variables formula.

- Area enclosed by a Jordan curve using Green's theorem.
- Change of variables formula.
- Examples, including

- Area enclosed by a Jordan curve using Green's theorem.
- Change of variables formula.
- Examples, including the volume of a ball.

æ

• Let
$$T \subset \mathbb{R}^2$$
 be a

æ

 \bullet Let $\mathcal{T} \subset \mathbb{R}^2$ be a bounded region whose boundary is a

• Let $T \subset \mathbb{R}^2$ be a bounded region whose boundary is a piecewise C^1 Jordan curve (

Let T ⊂ ℝ² be a bounded region whose boundary is a piecewise C¹ Jordan curve (i.e., simple closed regular curve).

- Let T ⊂ ℝ² be a bounded region whose boundary is a piecewise C¹ Jordan curve (i.e., simple closed regular curve).
- Def:

- Let T ⊂ ℝ² be a bounded region whose boundary is a piecewise C¹ Jordan curve (i.e., simple closed regular curve).
- Def: A parametrised surface

- Let T ⊂ ℝ² be a bounded region whose boundary is a piecewise C¹ Jordan curve (i.e., simple closed regular curve).
- Def: A parametrised surface is (the range of) a piecewise C¹ map r(u, v) : T → ℝ³ that

- Let T ⊂ ℝ² be a bounded region whose boundary is a piecewise C¹ Jordan curve (i.e., simple closed regular curve).
- Def: A parametrised surface is (the range of) a piecewise C¹ map r(u, v): T → ℝ³ that is 1 − 1 on the interior.

- Let T ⊂ ℝ² be a bounded region whose boundary is a piecewise C¹ Jordan curve (i.e., simple closed regular curve).
- Def: A parametrised surface is (the range of) a piecewise C¹ map r(u, v) : T → ℝ³ that is 1 − 1 on the interior.
- Example:

- Let T ⊂ ℝ² be a bounded region whose boundary is a piecewise C¹ Jordan curve (i.e., simple closed regular curve).
- Def: A parametrised surface is (the range of) a piecewise C¹ map r
 [˜](u, v) : T → ℝ³ that is 1 − 1 on the interior.
- Example: $\vec{r}(u, v) = (\sin(u) \cos(v), \sin(u) \sin(v), \cos(u))$ where $(u, v) \in T = [0, \pi] \times [0, 2\pi].$

- Let T ⊂ ℝ² be a bounded region whose boundary is a piecewise C¹ Jordan curve (i.e., simple closed regular curve).
- Def: A parametrised surface is (the range of) a piecewise C¹ map r
 [˜](u, v) : T → ℝ³ that is 1 − 1 on the interior.
- Example: $\vec{r}(u, v) = (\sin(u)\cos(v), \sin(u)\sin(v), \cos(u))$ where $(u, v) \in T = [0, \pi] \times [0, 2\pi]$. The image is the unit sphere.

- Let T ⊂ ℝ² be a bounded region whose boundary is a piecewise C¹ Jordan curve (i.e., simple closed regular curve).
- Def: A parametrised surface is (the range of) a piecewise C¹ map r(u, v) : T → ℝ³ that is 1 − 1 on the interior.
- Example: r(u, v) = (sin(u) cos(v), sin(u) sin(v), cos(u)) where (u, v) ∈ T = [0, π] × [0, 2π]. The image is the unit sphere. The map is not 1 − 1 on the boundary of T.

- Let T ⊂ ℝ² be a bounded region whose boundary is a piecewise C¹ Jordan curve (i.e., simple closed regular curve).
- Def: A parametrised surface is (the range of) a piecewise C¹ map r
 [˜](u, v) : T → ℝ³ that is 1 − 1 on the interior.
- Example: r(u, v) = (sin(u) cos(v), sin(u) sin(v), cos(u)) where (u, v) ∈ T = [0, π] × [0, 2π]. The image is the unit sphere. The map is not 1 − 1 on the boundary of T. This surface is a "closed" surface, i.e.,

- Let T ⊂ ℝ² be a bounded region whose boundary is a piecewise C¹ Jordan curve (i.e., simple closed regular curve).
- Def: A parametrised surface is (the range of) a piecewise C¹ map r
 [˜](u, v) : T → ℝ³ that is 1 − 1 on the interior.
- Example: r(u, v) = (sin(u) cos(v), sin(u) sin(v), cos(u)) where (u, v) ∈ T = [0, π] × [0, 2π]. The image is the unit sphere. The map is not 1 − 1 on the boundary of T. This surface is a "closed" surface, i.e., it has no "boundary".

- Let T ⊂ ℝ² be a bounded region whose boundary is a piecewise C¹ Jordan curve (i.e., simple closed regular curve).
- Def: A parametrised surface is (the range of) a piecewise C¹ map r(u, v) : T → ℝ³ that is 1 − 1 on the interior.
- Example: r(u, v) = (sin(u) cos(v), sin(u) sin(v), cos(u)) where (u, v) ∈ T = [0, π] × [0, 2π]. The image is the unit sphere. The map is not 1 − 1 on the boundary of T. This surface is a "closed" surface, i.e., it has no "boundary". On the other hand,

- Let T ⊂ ℝ² be a bounded region whose boundary is a piecewise C¹ Jordan curve (i.e., simple closed regular curve).
- Def: A parametrised surface is (the range of) a piecewise C¹ map r
 [˜](u, v) : T → ℝ³ that is 1 − 1 on the interior.
- Example: r(u, v) = (sin(u) cos(v), sin(u) sin(v), cos(u)) where (u, v) ∈ T = [0, π] × [0, 2π]. The image is the unit sphere. The map is not 1 − 1 on the boundary of T. This surface is a "closed" surface, i.e., it has no "boundary". On the other hand, if T = [0, π/2] × [0, 2π] then it is a hemisphere whose

- Let T ⊂ ℝ² be a bounded region whose boundary is a piecewise C¹ Jordan curve (i.e., simple closed regular curve).
- Def: A parametrised surface is (the range of) a piecewise C¹ map r
 [˜](u, v) : T → ℝ³ that is 1 − 1 on the interior.
- Example: r(u, v) = (sin(u) cos(v), sin(u) sin(v), cos(u)) where (u, v) ∈ T = [0, π] × [0, 2π]. The image is the unit sphere. The map is not 1 − 1 on the boundary of T. This surface is a "closed" surface, i.e., it has no "boundary". On the other hand, if T = [0, π/2] × [0, 2π] then it is a hemisphere whose boundary is a circle.

- Let T ⊂ ℝ² be a bounded region whose boundary is a piecewise C¹ Jordan curve (i.e., simple closed regular curve).
- Def: A parametrised surface is (the range of) a piecewise C¹ map r(u, v) : T → ℝ³ that is 1 − 1 on the interior.
- Example: r(u, v) = (sin(u) cos(v), sin(u) sin(v), cos(u)) where (u, v) ∈ T = [0, π] × [0, 2π]. The image is the unit sphere. The map is not 1 − 1 on the boundary of T. This surface is a "closed" surface, i.e., it has no "boundary". On the other hand, if T = [0, π/2] × [0, 2π] then it is a hemisphere whose boundary is a circle.
- Def:

- Let T ⊂ ℝ² be a bounded region whose boundary is a piecewise C¹ Jordan curve (i.e., simple closed regular curve).
- Def: A parametrised surface is (the range of) a piecewise C¹ map r
 [˜](u, v) : T → ℝ³ that is 1 − 1 on the interior.
- Example: r(u, v) = (sin(u) cos(v), sin(u) sin(v), cos(u)) where (u, v) ∈ T = [0, π] × [0, 2π]. The image is the unit sphere. The map is not 1 − 1 on the boundary of T. This surface is a "closed" surface, i.e., it has no "boundary". On the other hand, if T = [0, π/2] × [0, 2π] then it is a hemisphere whose boundary is a circle.
- Def: A closed parametrised surface

- Let T ⊂ ℝ² be a bounded region whose boundary is a piecewise C¹ Jordan curve (i.e., simple closed regular curve).
- Def: A parametrised surface is (the range of) a piecewise C¹ map r
 [˜](u, v) : T → ℝ³ that is 1 − 1 on the interior.
- Example: r(u, v) = (sin(u) cos(v), sin(u) sin(v), cos(u)) where (u, v) ∈ T = [0, π] × [0, 2π]. The image is the unit sphere. The map is not 1 − 1 on the boundary of T. This surface is a "closed" surface, i.e., it has no "boundary". On the other hand, if T = [0, π/2] × [0, 2π] then it is a hemisphere whose boundary is a circle.
- Def: A closed parametrised surface is a set such that near

- Let T ⊂ ℝ² be a bounded region whose boundary is a piecewise C¹ Jordan curve (i.e., simple closed regular curve).
- Def: A parametrised surface is (the range of) a piecewise C¹ map r
 [˜](u, v) : T → ℝ³ that is 1 − 1 on the interior.
- Example: r(u, v) = (sin(u) cos(v), sin(u) sin(v), cos(u)) where (u, v) ∈ T = [0, π] × [0, 2π]. The image is the unit sphere. The map is not 1 − 1 on the boundary of T. This surface is a "closed" surface, i.e., it has no "boundary". On the other hand, if T = [0, π/2] × [0, 2π] then it is a hemisphere whose boundary is a circle.
- Def: A closed parametrised surface is a set such that near every point it is

- Let T ⊂ ℝ² be a bounded region whose boundary is a piecewise C¹ Jordan curve (i.e., simple closed regular curve).
- Def: A parametrised surface is (the range of) a piecewise C¹ map r
 [˜](u, v) : T → ℝ³ that is 1 − 1 on the interior.
- Example: r(u, v) = (sin(u) cos(v), sin(u) sin(v), cos(u)) where (u, v) ∈ T = [0, π] × [0, 2π]. The image is the unit sphere. The map is not 1 − 1 on the boundary of T. This surface is a "closed" surface, i.e., it has no "boundary". On the other hand, if T = [0, π/2] × [0, 2π] then it is a hemisphere whose boundary is a circle.
- Def: A closed parametrised surface is a set such that near every point it is a parametrised surface.

- Let T ⊂ ℝ² be a bounded region whose boundary is a piecewise C¹ Jordan curve (i.e., simple closed regular curve).
- Def: A parametrised surface is (the range of) a piecewise C¹ map r
 [˜](u, v) : T → ℝ³ that is 1 − 1 on the interior.
- Example: r(u, v) = (sin(u) cos(v), sin(u) sin(v), cos(u)) where (u, v) ∈ T = [0, π] × [0, 2π]. The image is the unit sphere. The map is not 1 − 1 on the boundary of T. This surface is a "closed" surface, i.e., it has no "boundary". On the other hand, if T = [0, π/2] × [0, 2π] then it is a hemisphere whose boundary is a circle.
- Def: A closed parametrised surface is a set such that near every point it is a parametrised surface. So the sphere is a closed parametrised surface.

æ

• Example:

• Example:
$$\vec{r}(u, v) = (\cos(u), \sin(u), v)$$
 where $(u, v) \in [0, 2\pi] \times [0, 1]$.

æ

• Example: $\vec{r}(u, v) = (\cos(u), \sin(u), v)$ where $(u, v) \in [0, 2\pi] \times [0, 1]$. It is a right-circular cylinder

 Example: r(u, v) = (cos(u), sin(u), v) where (u, v) ∈ [0, 2π] × [0, 1]. It is a right-circular cylinder with boundary being two circles. (
Example: r(u, v) = (cos(u), sin(u), v) where (u, v) ∈ [0, 2π] × [0, 1]. It is a right-circular cylinder with boundary being two circles. (It is not a closed parametrised surface.)

- Example: r(u, v) = (cos(u), sin(u), v) where (u, v) ∈ [0, 2π] × [0, 1]. It is a right-circular cylinder with boundary being two circles. (It is not a closed parametrised surface.)
- Example:

- Example: r(u, v) = (cos(u), sin(u), v) where (u, v) ∈ [0, 2π] × [0, 1]. It is a right-circular cylinder with boundary being two circles. (It is not a closed parametrised surface.)
- Example: $\vec{r}(u, v) = (v \sin(\alpha) \cos(u), v \sin(\alpha) \sin(u), v \cos(\alpha))$ where $(u, v) \in [0, 2\pi] \times [0, 1]$

- Example: r(u, v) = (cos(u), sin(u), v) where (u, v) ∈ [0, 2π] × [0, 1]. It is a right-circular cylinder with boundary being two circles. (It is not a closed parametrised surface.)
- Example: r
 [˜](u, v) = (v sin(α) cos(u), v sin(α) sin(u), v cos(α)) where (u, v) ∈ [0, 2π] × [0, 1] is a right-circular cone with cone angle α.

- Example: r(u, v) = (cos(u), sin(u), v) where (u, v) ∈ [0, 2π] × [0, 1]. It is a right-circular cylinder with boundary being two circles. (It is not a closed parametrised surface.)
- Example: r
 [˜](u, v) = (v sin(α) cos(u), v sin(α) sin(u), v cos(α)) where (u, v) ∈ [0, 2π] × [0, 1] is a right-circular cone with cone angle α. It is a (non-closed) parametrised surface

- Example: r(u, v) = (cos(u), sin(u), v) where (u, v) ∈ [0, 2π] × [0, 1]. It is a right-circular cylinder with boundary being two circles. (It is not a closed parametrised surface.)
- Example: r
 [¬](u, v) = (v sin(α) cos(u), v sin(α) sin(u), v cos(α)) where (u, v) ∈ [0, 2π] × [0, 1] is a right-circular cone with cone angle α. It is a (non-closed) parametrised surface with boundary as a circle.

- Example: r
 [˜](u, v) = (cos(u), sin(u), v) where
 (u, v) ∈ [0, 2π] × [0, 1]. It is a right-circular cylinder with
 boundary being two circles. (It is not a closed parametrised
 surface.)
- Example: r
 [¬](u, v) = (v sin(α) cos(u), v sin(α) sin(u), v cos(α)) where (u, v) ∈ [0, 2π] × [0, 1] is a right-circular cone with cone angle α. It is a (non-closed) parametrised surface with boundary as a circle.
- Suppose dudv is an infinitesimal area element

- Example: r(u, v) = (cos(u), sin(u), v) where (u, v) ∈ [0, 2π] × [0, 1]. It is a right-circular cylinder with boundary being two circles. (It is not a closed parametrised surface.)
- Example: r
 [¬](u, v) = (v sin(α) cos(u), v sin(α) sin(u), v cos(α)) where (u, v) ∈ [0, 2π] × [0, 1] is a right-circular cone with cone angle α. It is a (non-closed) parametrised surface with boundary as a circle.
- Suppose dudv is an infinitesimal area element in the u v plane.

- Example: r(u, v) = (cos(u), sin(u), v) where (u, v) ∈ [0, 2π] × [0, 1]. It is a right-circular cylinder with boundary being two circles. (It is not a closed parametrised surface.)
- Example: r
 [¬](u, v) = (v sin(α) cos(u), v sin(α) sin(u), v cos(α)) where (u, v) ∈ [0, 2π] × [0, 1] is a right-circular cone with cone angle α. It is a (non-closed) parametrised surface with boundary as a circle.
- Suppose dudv is an infinitesimal area element in the u v plane. Then the parallelogram formed

- Example: r
 [˜](u, v) = (cos(u), sin(u), v) where (u, v) ∈ [0, 2π] × [0, 1]. It is a right-circular cylinder with boundary being two circles. (It is not a closed parametrised surface.)
- Example: r
 [¬](u, v) = (v sin(α) cos(u), v sin(α) sin(u), v cos(α)) where (u, v) ∈ [0, 2π] × [0, 1] is a right-circular cone with cone angle α. It is a (non-closed) parametrised surface with boundary as a circle.
- Suppose dudv is an infinitesimal area element in the u v plane. Then the parallelogram formed in \mathbb{R}^3 has sides

- Example: r
 [˜](u, v) = (cos(u), sin(u), v) where (u, v) ∈ [0, 2π] × [0, 1]. It is a right-circular cylinder with boundary being two circles. (It is not a closed parametrised surface.)
- Example: r
 [˜](u, v) = (v sin(α) cos(u), v sin(α) sin(u), v cos(α)) where (u, v) ∈ [0, 2π] × [0, 1] is a right-circular cone with cone angle α. It is a (non-closed) parametrised surface with boundary as a circle.
- Suppose dudv is an infinitesimal area element in the u vplane. Then the parallelogram formed in \mathbb{R}^3 has sides $\vec{r}_u du = du(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}, \frac{\partial z}{\partial u})$ and $\vec{r}_v dv = dv(\frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}, \frac{\partial z}{\partial v})$.

æ

• The infinitesimal area is $\|\vec{r}_u \times \vec{r}_v\| du dv$.

• The infinitesimal area is $\|\vec{r_u} \times \vec{r_v}\| du dv$. Just as for regular curves,

• The infinitesimal area is $\|\vec{r_u} \times \vec{r_v}\| dudv$. Just as for regular curves, we define regular surfaces as

• The infinitesimal area is $\|\vec{r_u} \times \vec{r_v}\|$ dudv. Just as for regular curves, we define regular surfaces as those with $\vec{r_u} \times \vec{r_v} \neq 0$ everywhere.

• The infinitesimal area is $\|\vec{r_u} \times \vec{r_v}\| dudv$. Just as for regular curves, we define regular surfaces as those with $\vec{r_u} \times \vec{r_v} \neq 0$ everywhere. Such surfaces are also called "smooth".

- The infinitesimal area is $\|\vec{r_u} \times \vec{r_v}\| dudv$. Just as for regular curves, we define regular surfaces as those with $\vec{r_u} \times \vec{r_v} \neq 0$ everywhere. Such surfaces are also called "smooth".
- For a cone,

- The infinitesimal area is $\|\vec{r_u} \times \vec{r_v}\| dudv$. Just as for regular curves, we define regular surfaces as those with $\vec{r_u} \times \vec{r_v} \neq 0$ everywhere. Such surfaces are also called "smooth".
- For a cone, $\vec{r_u} = v(-\sin(\alpha)\sin(u), \sin(\alpha)\cos(u), 0)$ and $\vec{r_v} = (\sin(\alpha)\cos(u), \sin(\alpha)\sin(u), \cos(\alpha))$.

- The infinitesimal area is $\|\vec{r_u} \times \vec{r_v}\| dudv$. Just as for regular curves, we define regular surfaces as those with $\vec{r_u} \times \vec{r_v} \neq 0$ everywhere. Such surfaces are also called "smooth".
- For a cone, $\vec{r_u} = v(-\sin(\alpha)\sin(u), \sin(\alpha)\cos(u), 0)$ and $\vec{r_v} = (\sin(\alpha)\cos(u), \sin(\alpha)\sin(u), \cos(\alpha))$. Thus $\vec{r_u} \times \vec{r_v} = \vec{0}$ when v = 0.

- The infinitesimal area is $\|\vec{r_u} \times \vec{r_v}\| dudv$. Just as for regular curves, we define regular surfaces as those with $\vec{r_u} \times \vec{r_v} \neq 0$ everywhere. Such surfaces are also called "smooth".
- For a cone, $\vec{r_u} = v(-\sin(\alpha)\sin(u), \sin(\alpha)\cos(u), 0)$ and $\vec{r_v} = (\sin(\alpha)\cos(u), \sin(\alpha)\sin(u), \cos(\alpha))$. Thus $\vec{r_u} \times \vec{r_v} = \vec{0}$ when v = 0. The vertex of the cone

- The infinitesimal area is $\|\vec{r_u} \times \vec{r_v}\| dudv$. Just as for regular curves, we define regular surfaces as those with $\vec{r_u} \times \vec{r_v} \neq 0$ everywhere. Such surfaces are also called "smooth".
- For a cone, $\vec{r_u} = v(-\sin(\alpha)\sin(u), \sin(\alpha)\cos(u), 0)$ and $\vec{r_v} = (\sin(\alpha)\cos(u), \sin(\alpha)\sin(u), \cos(\alpha))$. Thus $\vec{r_u} \times \vec{r_v} = \vec{0}$ when v = 0. The vertex of the cone is not a smooth point.

- The infinitesimal area is $\|\vec{r_u} \times \vec{r_v}\| dudv$. Just as for regular curves, we define regular surfaces as those with $\vec{r_u} \times \vec{r_v} \neq 0$ everywhere. Such surfaces are also called "smooth".
- For a cone, $\vec{r_u} = v(-\sin(\alpha)\sin(u), \sin(\alpha)\cos(u), 0)$ and $\vec{r_v} = (\sin(\alpha)\cos(u), \sin(\alpha)\sin(u), \cos(\alpha))$. Thus $\vec{r_u} \times \vec{r_v} = \vec{0}$ when v = 0. The vertex of the cone is not a smooth point.
- Example:

- The infinitesimal area is $\|\vec{r_u} \times \vec{r_v}\| dudv$. Just as for regular curves, we define regular surfaces as those with $\vec{r_u} \times \vec{r_v} \neq 0$ everywhere. Such surfaces are also called "smooth".
- For a cone, $\vec{r_u} = v(-\sin(\alpha)\sin(u), \sin(\alpha)\cos(u), 0)$ and $\vec{r_v} = (\sin(\alpha)\cos(u), \sin(\alpha)\sin(u), \cos(\alpha))$. Thus $\vec{r_u} \times \vec{r_v} = \vec{0}$ when v = 0. The vertex of the cone is not a smooth point.
- Example: Suppose z = f(x, y) where f is a C^1 function,

- The infinitesimal area is $\|\vec{r_u} \times \vec{r_v}\| dudv$. Just as for regular curves, we define regular surfaces as those with $\vec{r_u} \times \vec{r_v} \neq 0$ everywhere. Such surfaces are also called "smooth".
- For a cone, $\vec{r_u} = v(-\sin(\alpha)\sin(u), \sin(\alpha)\cos(u), 0)$ and $\vec{r_v} = (\sin(\alpha)\cos(u), \sin(\alpha)\sin(u), \cos(\alpha))$. Thus $\vec{r_u} \times \vec{r_v} = \vec{0}$ when v = 0. The vertex of the cone is not a smooth point.
- Example: Suppose z = f(x, y) where f is a C^1 function, $\vec{r}(u, v) = (u, v, f(u, v))$.

- The infinitesimal area is $\|\vec{r_u} \times \vec{r_v}\| dudv$. Just as for regular curves, we define regular surfaces as those with $\vec{r_u} \times \vec{r_v} \neq 0$ everywhere. Such surfaces are also called "smooth".
- For a cone, $\vec{r_u} = v(-\sin(\alpha)\sin(u), \sin(\alpha)\cos(u), 0)$ and $\vec{r_v} = (\sin(\alpha)\cos(u), \sin(\alpha)\sin(u), \cos(\alpha))$. Thus $\vec{r_u} \times \vec{r_v} = \vec{0}$ when v = 0. The vertex of the cone is not a smooth point.
- Example: Suppose z = f(x, y) where f is a C^1 function, $\vec{r}(u, v) = (u, v, f(u, v))$. Then $\vec{r}_u = (1, 0, f_u)$ and $\vec{r}_v = (0, 1, f_v)$.

- The infinitesimal area is $\|\vec{r}_u \times \vec{r}_v\| dudv$. Just as for regular curves, we define regular surfaces as those with $\vec{r}_u \times \vec{r}_v \neq 0$ everywhere. Such surfaces are also called "smooth".
- For a cone, $\vec{r_u} = v(-\sin(\alpha)\sin(u), \sin(\alpha)\cos(u), 0)$ and $\vec{r_v} = (\sin(\alpha)\cos(u), \sin(\alpha)\sin(u), \cos(\alpha))$. Thus $\vec{r_u} \times \vec{r_v} = \vec{0}$ when v = 0. The vertex of the cone is not a smooth point.
- Example: Suppose z = f(x, y) where f is a C^1 function, $\vec{r}(u, v) = (u, v, f(u, v))$. Then $\vec{r}_u = (1, 0, f_u)$ and $\vec{r}_v = (0, 1, f_v)$. Thus $\vec{r}_u \times \vec{r}_v = (-f_u, -f_v, 1)$ and is hence

- The infinitesimal area is $\|\vec{r}_u \times \vec{r}_v\| dudv$. Just as for regular curves, we define regular surfaces as those with $\vec{r}_u \times \vec{r}_v \neq 0$ everywhere. Such surfaces are also called "smooth".
- For a cone, $\vec{r_u} = v(-\sin(\alpha)\sin(u), \sin(\alpha)\cos(u), 0)$ and $\vec{r_v} = (\sin(\alpha)\cos(u), \sin(\alpha)\sin(u), \cos(\alpha))$. Thus $\vec{r_u} \times \vec{r_v} = \vec{0}$ when v = 0. The vertex of the cone is not a smooth point.
- Example: Suppose z = f(x, y) where f is a C^1 function, $\vec{r}(u, v) = (u, v, f(u, v))$. Then $\vec{r}_u = (1, 0, f_u)$ and $\vec{r}_v = (0, 1, f_v)$. Thus $\vec{r}_u \times \vec{r}_v = (-f_u, -f_v, 1)$ and is hence never zero.

- The infinitesimal area is $\|\vec{r}_u \times \vec{r}_v\| dudv$. Just as for regular curves, we define regular surfaces as those with $\vec{r}_u \times \vec{r}_v \neq 0$ everywhere. Such surfaces are also called "smooth".
- For a cone, $\vec{r_u} = v(-\sin(\alpha)\sin(u), \sin(\alpha)\cos(u), 0)$ and $\vec{r_v} = (\sin(\alpha)\cos(u), \sin(\alpha)\sin(u), \cos(\alpha))$. Thus $\vec{r_u} \times \vec{r_v} = \vec{0}$ when v = 0. The vertex of the cone is not a smooth point.
- Example: Suppose z = f(x, y) where f is a C^1 function, $\vec{r}(u, v) = (u, v, f(u, v))$. Then $\vec{r}_u = (1, 0, f_u)$ and $\vec{r}_v = (0, 1, f_v)$. Thus $\vec{r}_u \times \vec{r}_v = (-f_u, -f_v, 1)$ and is hence never zero. So the graph of a

- The infinitesimal area is $\|\vec{r}_u \times \vec{r}_v\| dudv$. Just as for regular curves, we define regular surfaces as those with $\vec{r}_u \times \vec{r}_v \neq 0$ everywhere. Such surfaces are also called "smooth".
- For a cone, $\vec{r_u} = v(-\sin(\alpha)\sin(u), \sin(\alpha)\cos(u), 0)$ and $\vec{r_v} = (\sin(\alpha)\cos(u), \sin(\alpha)\sin(u), \cos(\alpha))$. Thus $\vec{r_u} \times \vec{r_v} = \vec{0}$ when v = 0. The vertex of the cone is not a smooth point.
- Example: Suppose z = f(x, y) where f is a C^1 function, $\vec{r}(u, v) = (u, v, f(u, v))$. Then $\vec{r}_u = (1, 0, f_u)$ and $\vec{r}_v = (0, 1, f_v)$. Thus $\vec{r}_u \times \vec{r}_v = (-f_u, -f_v, 1)$ and is hence never zero. So the graph of a C^1 function is

- The infinitesimal area is $\|\vec{r}_u \times \vec{r}_v\| dudv$. Just as for regular curves, we define regular surfaces as those with $\vec{r}_u \times \vec{r}_v \neq 0$ everywhere. Such surfaces are also called "smooth".
- For a cone, $\vec{r_u} = v(-\sin(\alpha)\sin(u), \sin(\alpha)\cos(u), 0)$ and $\vec{r_v} = (\sin(\alpha)\cos(u), \sin(\alpha)\sin(u), \cos(\alpha))$. Thus $\vec{r_u} \times \vec{r_v} = \vec{0}$ when v = 0. The vertex of the cone is not a smooth point.
- Example: Suppose z = f(x, y) where f is a C^1 function, $\vec{r}(u, v) = (u, v, f(u, v))$. Then $\vec{r}_u = (1, 0, f_u)$ and $\vec{r}_v = (0, 1, f_v)$. Thus $\vec{r}_u \times \vec{r}_v = (-f_u, -f_v, 1)$ and is hence never zero. So the graph of a C^1 function is a regular parameterised surface.

- The infinitesimal area is $\|\vec{r}_u \times \vec{r}_v\| dudv$. Just as for regular curves, we define regular surfaces as those with $\vec{r}_u \times \vec{r}_v \neq 0$ everywhere. Such surfaces are also called "smooth".
- For a cone, $\vec{r_u} = v(-\sin(\alpha)\sin(u), \sin(\alpha)\cos(u), 0)$ and $\vec{r_v} = (\sin(\alpha)\cos(u), \sin(\alpha)\sin(u), \cos(\alpha))$. Thus $\vec{r_u} \times \vec{r_v} = \vec{0}$ when v = 0. The vertex of the cone is not a smooth point.
- Example: Suppose z = f(x, y) where f is a C^1 function, $\vec{r}(u, v) = (u, v, f(u, v))$. Then $\vec{r}_u = (1, 0, f_u)$ and $\vec{r}_v = (0, 1, f_v)$. Thus $\vec{r}_u \times \vec{r}_v = (-f_u, -f_v, 1)$ and is hence never zero. So the graph of a C^1 function is a regular parameterised surface.
- For instance,

- The infinitesimal area is $\|\vec{r}_u \times \vec{r}_v\| dudv$. Just as for regular curves, we define regular surfaces as those with $\vec{r}_u \times \vec{r}_v \neq 0$ everywhere. Such surfaces are also called "smooth".
- For a cone, $\vec{r_u} = v(-\sin(\alpha)\sin(u), \sin(\alpha)\cos(u), 0)$ and $\vec{r_v} = (\sin(\alpha)\cos(u), \sin(\alpha)\sin(u), \cos(\alpha))$. Thus $\vec{r_u} \times \vec{r_v} = \vec{0}$ when v = 0. The vertex of the cone is not a smooth point.
- Example: Suppose z = f(x, y) where f is a C^1 function, $\vec{r}(u, v) = (u, v, f(u, v))$. Then $\vec{r}_u = (1, 0, f_u)$ and $\vec{r}_v = (0, 1, f_v)$. Thus $\vec{r}_u \times \vec{r}_v = (-f_u, -f_v, 1)$ and is hence never zero. So the graph of a C^1 function is a regular parameterised surface.
- For instance, if we take $z = \sqrt{1 x^2 y^2}$, the function is

- The infinitesimal area is $\|\vec{r}_u \times \vec{r}_v\| dudv$. Just as for regular curves, we define regular surfaces as those with $\vec{r}_u \times \vec{r}_v \neq 0$ everywhere. Such surfaces are also called "smooth".
- For a cone, $\vec{r_u} = v(-\sin(\alpha)\sin(u), \sin(\alpha)\cos(u), 0)$ and $\vec{r_v} = (\sin(\alpha)\cos(u), \sin(\alpha)\sin(u), \cos(\alpha))$. Thus $\vec{r_u} \times \vec{r_v} = \vec{0}$ when v = 0. The vertex of the cone is not a smooth point.
- Example: Suppose z = f(x, y) where f is a C^1 function, $\vec{r}(u, v) = (u, v, f(u, v))$. Then $\vec{r}_u = (1, 0, f_u)$ and $\vec{r}_v = (0, 1, f_v)$. Thus $\vec{r}_u \times \vec{r}_v = (-f_u, -f_v, 1)$ and is hence never zero. So the graph of a C^1 function is a regular parameterised surface.
- For instance, if we take $z = \sqrt{1 x^2 y^2}$, the function is not differentiable at x = y = 0.

5/8

- The infinitesimal area is $\|\vec{r}_u \times \vec{r}_v\| dudv$. Just as for regular curves, we define regular surfaces as those with $\vec{r}_u \times \vec{r}_v \neq 0$ everywhere. Such surfaces are also called "smooth".
- For a cone, $\vec{r_u} = v(-\sin(\alpha)\sin(u), \sin(\alpha)\cos(u), 0)$ and $\vec{r_v} = (\sin(\alpha)\cos(u), \sin(\alpha)\sin(u), \cos(\alpha))$. Thus $\vec{r_u} \times \vec{r_v} = \vec{0}$ when v = 0. The vertex of the cone is not a smooth point.
- Example: Suppose z = f(x, y) where f is a C^1 function, $\vec{r}(u, v) = (u, v, f(u, v))$. Then $\vec{r}_u = (1, 0, f_u)$ and $\vec{r}_v = (0, 1, f_v)$. Thus $\vec{r}_u \times \vec{r}_v = (-f_u, -f_v, 1)$ and is hence never zero. So the graph of a C^1 function is a regular parameterised surface.
- For instance, if we take $z = \sqrt{1 x^2 y^2}$, the function is not differentiable at x = y = 0. The problem here lies

- The infinitesimal area is $\|\vec{r}_u \times \vec{r}_v\| dudv$. Just as for regular curves, we define regular surfaces as those with $\vec{r}_u \times \vec{r}_v \neq 0$ everywhere. Such surfaces are also called "smooth".
- For a cone, $\vec{r_u} = v(-\sin(\alpha)\sin(u), \sin(\alpha)\cos(u), 0)$ and $\vec{r_v} = (\sin(\alpha)\cos(u), \sin(\alpha)\sin(u), \cos(\alpha))$. Thus $\vec{r_u} \times \vec{r_v} = \vec{0}$ when v = 0. The vertex of the cone is not a smooth point.
- Example: Suppose z = f(x, y) where f is a C^1 function, $\vec{r}(u, v) = (u, v, f(u, v))$. Then $\vec{r}_u = (1, 0, f_u)$ and $\vec{r}_v = (0, 1, f_v)$. Thus $\vec{r}_u \times \vec{r}_v = (-f_u, -f_v, 1)$ and is hence never zero. So the graph of a C^1 function is a regular parameterised surface.
- For instance, if we take $z = \sqrt{1 x^2 y^2}$, the function is not differentiable at x = y = 0. The problem here lies with this *particular* parametrisation because

何 ト イヨ ト イヨ ト
- The infinitesimal area is $\|\vec{r}_u \times \vec{r}_v\| dudv$. Just as for regular curves, we define regular surfaces as those with $\vec{r}_u \times \vec{r}_v \neq 0$ everywhere. Such surfaces are also called "smooth".
- For a cone, $\vec{r_u} = v(-\sin(\alpha)\sin(u), \sin(\alpha)\cos(u), 0)$ and $\vec{r_v} = (\sin(\alpha)\cos(u), \sin(\alpha)\sin(u), \cos(\alpha))$. Thus $\vec{r_u} \times \vec{r_v} = \vec{0}$ when v = 0. The vertex of the cone is not a smooth point.
- Example: Suppose z = f(x, y) where f is a C^1 function, $\vec{r}(u, v) = (u, v, f(u, v))$. Then $\vec{r}_u = (1, 0, f_u)$ and $\vec{r}_v = (0, 1, f_v)$. Thus $\vec{r}_u \times \vec{r}_v = (-f_u, -f_v, 1)$ and is hence never zero. So the graph of a C^1 function is a regular parameterised surface.
- For instance, if we take $z = \sqrt{1 x^2 y^2}$, the function is not differentiable at x = y = 0. The problem here lies with this *particular* parametrisation because we already saw the the sphere

向下 イヨト イヨト

- The infinitesimal area is $\|\vec{r_u} \times \vec{r_v}\| dudv$. Just as for regular curves, we define regular surfaces as those with $\vec{r_u} \times \vec{r_v} \neq 0$ everywhere. Such surfaces are also called "smooth".
- For a cone, $\vec{r_u} = v(-\sin(\alpha)\sin(u), \sin(\alpha)\cos(u), 0)$ and $\vec{r_v} = (\sin(\alpha)\cos(u), \sin(\alpha)\sin(u), \cos(\alpha))$. Thus $\vec{r_u} \times \vec{r_v} = \vec{0}$ when v = 0. The vertex of the cone is not a smooth point.
- Example: Suppose z = f(x, y) where f is a C^1 function, $\vec{r}(u, v) = (u, v, f(u, v))$. Then $\vec{r}_u = (1, 0, f_u)$ and $\vec{r}_v = (0, 1, f_v)$. Thus $\vec{r}_u \times \vec{r}_v = (-f_u, -f_v, 1)$ and is hence never zero. So the graph of a C^1 function is a regular parameterised surface.
- For instance, if we take $z = \sqrt{1 x^2 y^2}$, the function is not differentiable at x = y = 0. The problem here lies with this *particular* parametrisation because we already saw the the sphere can be parametrised even near

御 と く ヨ と く ヨ と

3

- The infinitesimal area is $\|\vec{r_u} \times \vec{r_v}\| dudv$. Just as for regular curves, we define regular surfaces as those with $\vec{r_u} \times \vec{r_v} \neq 0$ everywhere. Such surfaces are also called "smooth".
- For a cone, $\vec{r_u} = v(-\sin(\alpha)\sin(u), \sin(\alpha)\cos(u), 0)$ and $\vec{r_v} = (\sin(\alpha)\cos(u), \sin(\alpha)\sin(u), \cos(\alpha))$. Thus $\vec{r_u} \times \vec{r_v} = \vec{0}$ when v = 0. The vertex of the cone is not a smooth point.
- Example: Suppose z = f(x, y) where f is a C^1 function, $\vec{r}(u, v) = (u, v, f(u, v))$. Then $\vec{r}_u = (1, 0, f_u)$ and $\vec{r}_v = (0, 1, f_v)$. Thus $\vec{r}_u \times \vec{r}_v = (-f_u, -f_v, 1)$ and is hence never zero. So the graph of a C^1 function is a regular parameterised surface.
- For instance, if we take $z = \sqrt{1 x^2 y^2}$, the function is not differentiable at x = y = 0. The problem here lies with this *particular* parametrisation because we already saw the the sphere can be parametrised even near the equator as a regular surface.

- The infinitesimal area is $\|\vec{r_u} \times \vec{r_v}\| dudv$. Just as for regular curves, we define regular surfaces as those with $\vec{r_u} \times \vec{r_v} \neq 0$ everywhere. Such surfaces are also called "smooth".
- For a cone, $\vec{r_u} = v(-\sin(\alpha)\sin(u), \sin(\alpha)\cos(u), 0)$ and $\vec{r_v} = (\sin(\alpha)\cos(u), \sin(\alpha)\sin(u), \cos(\alpha))$. Thus $\vec{r_u} \times \vec{r_v} = \vec{0}$ when v = 0. The vertex of the cone is not a smooth point.
- Example: Suppose z = f(x, y) where f is a C^1 function, $\vec{r}(u, v) = (u, v, f(u, v))$. Then $\vec{r}_u = (1, 0, f_u)$ and $\vec{r}_v = (0, 1, f_v)$. Thus $\vec{r}_u \times \vec{r}_v = (-f_u, -f_v, 1)$ and is hence never zero. So the graph of a C^1 function is a regular parameterised surface.
- For instance, if we take $z = \sqrt{1 x^2 y^2}$, the function is not differentiable at x = y = 0. The problem here lies with this *particular* parametrisation because we already saw the the sphere can be parametrised even near the equator as a regular surface. So the choice of

- The infinitesimal area is $\|\vec{r}_{\mu} \times \vec{r}_{\nu}\|$ dudv. Just as for regular curves, we define regular surfaces as those with $\vec{r}_{\mu} \times \vec{r}_{\nu} \neq 0$ everywhere. Such surfaces are also called "smooth".
- For a cone, $\vec{r}_{\mu} = v(-\sin(\alpha)\sin(u), \sin(\alpha)\cos(u), 0)$ and $\vec{r}_{v} = (\sin(\alpha)\cos(u), \sin(\alpha)\sin(u), \cos(\alpha))$. Thus $\vec{r}_{u} \times \vec{r}_{v} = \vec{0}$ when v = 0. The vertex of the cone is not a smooth point.
- Example: Suppose z = f(x, y) where f is a C^1 function, $\vec{r}(u, v) = (u, v, f(u, v))$. Then $\vec{r}_{\mu} = (1, 0, f_{\mu})$ and $\vec{r_v} = (0, 1, f_v)$. Thus $\vec{r_u} \times \vec{r_v} = (-f_u, -f_v, 1)$ and is hence never zero. So the graph of a C^1 function is a regular parameterised surface.
- For instance, if we take $z = \sqrt{1 x^2 y^2}$, the function is not differentiable at x = y = 0. The problem here lies with this particular parametrisation because we already saw the the sphere can be parametrised even near the equator as a regular surface. So the choice of a parametrisation is important.

æ

• $\vec{r}_u \times \vec{r}_v$ is normal to the surface.

• $\vec{r}_u \times \vec{r}_v$ is normal to the surface. Indeed, let (u(t), v(t)) be a C^1 path on the surface passing through p.

• $\vec{r}_u \times \vec{r}_v$ is normal to the surface. Indeed, let (u(t), v(t)) be a C^1 path on the surface passing through p. Then $\frac{d\vec{r}}{dt} = \vec{r}_u u' + \vec{r}_v v'$. Thus

• $\vec{r}_u \times \vec{r}_v$ is normal to the surface. Indeed, let (u(t), v(t)) be a C^1 path on the surface passing through p. Then $\frac{d\vec{r}}{dt} = \vec{r}_u u' + \vec{r}_v v'$. Thus \vec{r}' is perpendicular to $\vec{r}_u \times \vec{r}_v$.

- $\vec{r}_u \times \vec{r}_v$ is normal to the surface. Indeed, let (u(t), v(t)) be a C^1 path on the surface passing through p. Then $\frac{d\vec{r}}{dt} = \vec{r}_u u' + \vec{r}_v v'$. Thus \vec{r}' is perpendicular to $\vec{r}_u \times \vec{r}_v$.
- This is another way

- $\vec{r}_u \times \vec{r}_v$ is normal to the surface. Indeed, let (u(t), v(t)) be a C^1 path on the surface passing through p. Then $\frac{d\vec{r}}{dt} = \vec{r}_u u' + \vec{r}_v v'$. Thus \vec{r}' is perpendicular to $\vec{r}_u \times \vec{r}_v$.
- This is another way to study normals to surfaces.

- $\vec{r}_u \times \vec{r}_v$ is normal to the surface. Indeed, let (u(t), v(t)) be a C^1 path on the surface passing through p. Then $\frac{d\vec{r}}{dt} = \vec{r}_u u' + \vec{r}_v v'$. Thus \vec{r}' is perpendicular to $\vec{r}_u \times \vec{r}_v$.
- This is another way to study normals to surfaces. The same surface can be

- $\vec{r}_u \times \vec{r}_v$ is normal to the surface. Indeed, let (u(t), v(t)) be a C^1 path on the surface passing through p. Then $\frac{d\vec{r}}{dt} = \vec{r}_u u' + \vec{r}_v v'$. Thus \vec{r}' is perpendicular to $\vec{r}_u \times \vec{r}_v$.
- This is another way to study normals to surfaces. The same surface can be given in two ways:

- $\vec{r}_u \times \vec{r}_v$ is normal to the surface. Indeed, let (u(t), v(t)) be a C^1 path on the surface passing through p. Then $\frac{d\vec{r}}{dt} = \vec{r}_u u' + \vec{r}_v v'$. Thus \vec{r}' is perpendicular to $\vec{r}_u \times \vec{r}_v$.
- This is another way to study normals to surfaces. The same surface can be given in two ways: F(x, y, z) = 0 and as (x(u, v), y(u, v), z(u, v)). The normals are

- $\vec{r}_u \times \vec{r}_v$ is normal to the surface. Indeed, let (u(t), v(t)) be a C^1 path on the surface passing through p. Then $\frac{d\vec{r}}{dt} = \vec{r}_u u' + \vec{r}_v v'$. Thus \vec{r}' is perpendicular to $\vec{r}_u \times \vec{r}_v$.
- This is another way to study normals to surfaces. The same surface can be given in two ways: F(x, y, z) = 0 and as (x(u, v), y(u, v), z(u, v)). The normals are ∇F and $\vec{r_u} \times \vec{r_v}$.

- $\vec{r}_u \times \vec{r}_v$ is normal to the surface. Indeed, let (u(t), v(t)) be a C^1 path on the surface passing through p. Then $\frac{d\vec{r}}{dt} = \vec{r}_u u' + \vec{r}_v v'$. Thus \vec{r}' is perpendicular to $\vec{r}_u \times \vec{r}_v$.
- This is another way to study normals to surfaces. The same surface can be given in two ways: F(x, y, z) = 0 and as (x(u, v), y(u, v), z(u, v)). The normals are ∇F and r_u × r_v. For instance, even for a graph,

- $\vec{r}_u \times \vec{r}_v$ is normal to the surface. Indeed, let (u(t), v(t)) be a C^1 path on the surface passing through p. Then $\frac{d\vec{r}}{dt} = \vec{r}_u u' + \vec{r}_v v'$. Thus \vec{r}' is perpendicular to $\vec{r}_u \times \vec{r}_v$.
- This is another way to study normals to surfaces. The same surface can be given in two ways: F(x, y, z) = 0 and as (x(u, v), y(u, v), z(u, v)). The normals are ∇F and r_u × r_v. For instance, even for a graph, F(x, y, z) = z f(x, y) gives the same

6/8

- $\vec{r}_u \times \vec{r}_v$ is normal to the surface. Indeed, let (u(t), v(t)) be a C^1 path on the surface passing through p. Then $\frac{d\vec{r}}{dt} = \vec{r}_u u' + \vec{r}_v v'$. Thus \vec{r}' is perpendicular to $\vec{r}_u \times \vec{r}_v$.
- This is another way to study normals to surfaces. The same surface can be given in two ways: F(x, y, z) = 0 and as (x(u, v), y(u, v), z(u, v)). The normals are ∇F and r_u × r_v. For instance, even for a graph, F(x, y, z) = z f(x, y) gives the same unit normal as the previous one.

- $\vec{r}_u \times \vec{r}_v$ is normal to the surface. Indeed, let (u(t), v(t)) be a C^1 path on the surface passing through p. Then $\frac{d\vec{r}}{dt} = \vec{r}_u u' + \vec{r}_v v'$. Thus \vec{r}' is perpendicular to $\vec{r}_u \times \vec{r}_v$.
- This is another way to study normals to surfaces. The same surface can be given in two ways: F(x, y, z) = 0 and as (x(u, v), y(u, v), z(u, v)). The normals are ∇F and r_u × r_v. For instance, even for a graph, F(x, y, z) = z f(x, y) gives the same unit normal as the previous one.
- The infinitesimal area vector

- $\vec{r}_u \times \vec{r}_v$ is normal to the surface. Indeed, let (u(t), v(t)) be a C^1 path on the surface passing through p. Then $\frac{d\vec{r}}{dt} = \vec{r}_u u' + \vec{r}_v v'$. Thus \vec{r}' is perpendicular to $\vec{r}_u \times \vec{r}_v$.
- This is another way to study normals to surfaces. The same surface can be given in two ways: F(x, y, z) = 0 and as (x(u, v), y(u, v), z(u, v)). The normals are ∇F and r_u × r_v. For instance, even for a graph, F(x, y, z) = z f(x, y) gives the same unit normal as the previous one.
- The infinitesimal area vector is $d\vec{A} = \vec{r_u} \times \vec{r_v} du dv$.

- $\vec{r}_u \times \vec{r}_v$ is normal to the surface. Indeed, let (u(t), v(t)) be a C^1 path on the surface passing through p. Then $\frac{d\vec{r}}{dt} = \vec{r}_u u' + \vec{r}_v v'$. Thus \vec{r}' is perpendicular to $\vec{r}_u \times \vec{r}_v$.
- This is another way to study normals to surfaces. The same surface can be given in two ways: F(x, y, z) = 0 and as (x(u, v), y(u, v), z(u, v)). The normals are ∇F and r_u × r_v. For instance, even for a graph, F(x, y, z) = z f(x, y) gives the same unit normal as the previous one.
- The infinitesimal area vector is $d\vec{A} = \vec{r_u} \times \vec{r_v} du dv$.
- The area of a parametric surface is

- $\vec{r}_u \times \vec{r}_v$ is normal to the surface. Indeed, let (u(t), v(t)) be a C^1 path on the surface passing through p. Then $\frac{d\vec{r}}{dt} = \vec{r}_u u' + \vec{r}_v v'$. Thus \vec{r}' is perpendicular to $\vec{r}_u \times \vec{r}_v$.
- This is another way to study normals to surfaces. The same surface can be given in two ways: F(x, y, z) = 0 and as (x(u, v), y(u, v), z(u, v)). The normals are ∇F and r_u × r_v. For instance, even for a graph, F(x, y, z) = z f(x, y) gives the same unit normal as the previous one.
- The infinitesimal area vector is $d\vec{A} = \vec{r_u} \times \vec{r_v} du dv$.
- The area of a parametric surface is $\int \int_T \|\vec{r_u} \times \vec{r_v}\| du dv$. For instance,

- $\vec{r}_u \times \vec{r}_v$ is normal to the surface. Indeed, let (u(t), v(t)) be a C^1 path on the surface passing through p. Then $\frac{d\vec{r}}{dt} = \vec{r}_u u' + \vec{r}_v v'$. Thus \vec{r}' is perpendicular to $\vec{r}_u \times \vec{r}_v$.
- This is another way to study normals to surfaces. The same surface can be given in two ways: F(x, y, z) = 0 and as (x(u, v), y(u, v), z(u, v)). The normals are ∇F and r_u × r_v. For instance, even for a graph, F(x, y, z) = z f(x, y) gives the same unit normal as the previous one.
- The infinitesimal area vector is $d\vec{A} = \vec{r_u} \times \vec{r_v} du dv$.
- The area of a parametric surface is $\int \int_T \|\vec{r_u} \times \vec{r_v}\| du dv$. For instance, for a graph z = f(x, y), the area is

- $\vec{r}_u \times \vec{r}_v$ is normal to the surface. Indeed, let (u(t), v(t)) be a C^1 path on the surface passing through p. Then $\frac{d\vec{r}}{dt} = \vec{r}_u u' + \vec{r}_v v'$. Thus \vec{r}' is perpendicular to $\vec{r}_u \times \vec{r}_v$.
- This is another way to study normals to surfaces. The same surface can be given in two ways: F(x, y, z) = 0 and as (x(u, v), y(u, v), z(u, v)). The normals are ∇F and r_u × r_v. For instance, even for a graph, F(x, y, z) = z f(x, y) gives the same unit normal as the previous one.
- The infinitesimal area vector is $d\vec{A} = \vec{r_u} \times \vec{r_v} du dv$.
- The area of a parametric surface is $\int \int_{\mathcal{T}} \|\vec{r_u} \times \vec{r_v}\| du dv$. For instance, for a graph z = f(x, y), the area is $\int \int \sqrt{1 + f_x^2 + f_y^2} dx dy$.

æ

• Hemisphere:

≣ । ह

• Hemisphere: $\vec{r} = (r \sin(u) \cos(v), r \sin(u) \sin(v), r \cos(u))$ and hence $\vec{r}_u = (r \cos(u) \cos(v), r \cos(u) \sin(v), -r \sin(u)),$ $\vec{r}_v = (-r \sin(u) \sin(v), r \sin(u) \cos(v), 0).$

• Hemisphere: $\vec{r} = (r \sin(u) \cos(v), r \sin(u) \sin(v), r \cos(u))$ and hence $\vec{r}_u = (r \cos(u) \cos(v), r \cos(u) \sin(v), -r \sin(u))$, $\vec{r}_v = (-r \sin(u) \sin(v), r \sin(u) \cos(v), 0)$. So $\|\vec{r}_u \times \vec{r}_v\| = r^2 \sin(v)$. Therefore,

• Hemisphere: $\vec{r} = (r \sin(u) \cos(v), r \sin(u) \sin(v), r \cos(u))$ and hence $\vec{r}_u = (r \cos(u) \cos(v), r \cos(u) \sin(v), -r \sin(u))$, $\vec{r}_v = (-r \sin(u) \sin(v), r \sin(u) \cos(v), 0)$. So $\|\vec{r}_u \times \vec{r}_v\| = r^2 \sin(v)$. Therefore, the area is $2\pi r^2$.

- Hemisphere: $\vec{r} = (r \sin(u) \cos(v), r \sin(u) \sin(v), r \cos(u))$ and hence $\vec{r}_u = (r \cos(u) \cos(v), r \cos(u) \sin(v), -r \sin(u))$, $\vec{r}_v = (-r \sin(u) \sin(v), r \sin(u) \cos(v), 0)$. So $\|\vec{r}_u \times \vec{r}_v\| = r^2 \sin(v)$. Therefore, the area is $2\pi r^2$.
- A digression:

- Hemisphere: $\vec{r} = (r \sin(u) \cos(v), r \sin(u) \sin(v), r \cos(u))$ and hence $\vec{r_u} = (r \cos(u) \cos(v), r \cos(u) \sin(v), -r \sin(u))$, $\vec{r_v} = (-r \sin(u) \sin(v), r \sin(u) \cos(v), 0)$. So $\|\vec{r_u} \times \vec{r_v}\| = r^2 \sin(v)$. Therefore, the area is $2\pi r^2$.
- A digression: If $\vec{\gamma}(t)$ is a piecewise C^1 regular path,

- Hemisphere: $\vec{r} = (r \sin(u) \cos(v), r \sin(u) \sin(v), r \cos(u))$ and hence $\vec{r}_u = (r \cos(u) \cos(v), r \cos(u) \sin(v), -r \sin(u))$, $\vec{r}_v = (-r \sin(u) \sin(v), r \sin(u) \cos(v), 0)$. So $\|\vec{r}_u \times \vec{r}_v\| = r^2 \sin(v)$. Therefore, the area is $2\pi r^2$.
- A digression: If $\vec{\gamma}(t)$ is a piecewise C^1 regular path, and f(x, y, z) is a bounded function along the path,

- Hemisphere: $\vec{r} = (r \sin(u) \cos(v), r \sin(u) \sin(v), r \cos(u))$ and hence $\vec{r}_u = (r \cos(u) \cos(v), r \cos(u) \sin(v), -r \sin(u))$, $\vec{r}_v = (-r \sin(u) \sin(v), r \sin(u) \cos(v), 0)$. So $\|\vec{r}_u \times \vec{r}_v\| = r^2 \sin(v)$. Therefore, the area is $2\pi r^2$.
- A digression: If $\vec{\gamma}(t)$ is a piecewise C^1 regular path, and f(x, y, z) is a bounded function along the path, then $\int f ds = \int_a^b f(\gamma(t)) \|\gamma'(t)\| dt$ is called the scalar line integral of f along γ . (

- Hemisphere: $\vec{r} = (r \sin(u) \cos(v), r \sin(u) \sin(v), r \cos(u))$ and hence $\vec{r}_u = (r \cos(u) \cos(v), r \cos(u) \sin(v), -r \sin(u))$, $\vec{r}_v = (-r \sin(u) \sin(v), r \sin(u) \cos(v), 0)$. So $\|\vec{r}_u \times \vec{r}_v\| = r^2 \sin(v)$. Therefore, the area is $2\pi r^2$.
- A digression: If $\vec{\gamma}(t)$ is a piecewise C^1 regular path, and f(x, y, z) is a bounded function along the path, then $\int f ds = \int_a^b f(\gamma(t)) || \gamma'(t) || dt$ is called the scalar line integral of f along γ . (For instance, the charge on a wire.)

- Hemisphere: $\vec{r} = (r \sin(u) \cos(v), r \sin(u) \sin(v), r \cos(u))$ and hence $\vec{r}_u = (r \cos(u) \cos(v), r \cos(u) \sin(v), -r \sin(u))$, $\vec{r}_v = (-r \sin(u) \sin(v), r \sin(u) \cos(v), 0)$. So $\|\vec{r}_u \times \vec{r}_v\| = r^2 \sin(v)$. Therefore, the area is $2\pi r^2$.
- A digression: If $\vec{\gamma}(t)$ is a piecewise C^1 regular path, and f(x, y, z) is a bounded function along the path, then $\int f ds = \int_a^b f(\gamma(t)) || \gamma'(t) || dt$ is called the scalar line integral of f along γ . (For instance, the charge on a wire.)
- A crucial point:

7/8
- Hemisphere: $\vec{r} = (r \sin(u) \cos(v), r \sin(u) \sin(v), r \cos(u))$ and hence $\vec{r}_u = (r \cos(u) \cos(v), r \cos(u) \sin(v), -r \sin(u))$, $\vec{r}_v = (-r \sin(u) \sin(v), r \sin(u) \cos(v), 0)$. So $\|\vec{r}_u \times \vec{r}_v\| = r^2 \sin(v)$. Therefore, the area is $2\pi r^2$.
- A digression: If $\vec{\gamma}(t)$ is a piecewise C^1 regular path, and f(x, y, z) is a bounded function along the path, then $\int f ds = \int_a^b f(\gamma(t)) || \gamma'(t) || dt$ is called the scalar line integral of f along γ . (For instance, the charge on a wire.)
- A crucial point: The scalar line integral is

- Hemisphere: $\vec{r} = (r \sin(u) \cos(v), r \sin(u) \sin(v), r \cos(u))$ and hence $\vec{r}_u = (r \cos(u) \cos(v), r \cos(u) \sin(v), -r \sin(u))$, $\vec{r}_v = (-r \sin(u) \sin(v), r \sin(u) \cos(v), 0)$. So $\|\vec{r}_u \times \vec{r}_v\| = r^2 \sin(v)$. Therefore, the area is $2\pi r^2$.
- A digression: If $\vec{\gamma}(t)$ is a piecewise C^1 regular path, and f(x, y, z) is a bounded function along the path, then $\int f ds = \int_a^b f(\gamma(t)) || \gamma'(t) || dt$ is called the scalar line integral of f along γ . (For instance, the charge on a wire.)
- A crucial point: The scalar line integral is reparametrisation invariant:

7/8

- Hemisphere: $\vec{r} = (r \sin(u) \cos(v), r \sin(u) \sin(v), r \cos(u))$ and hence $\vec{r}_u = (r \cos(u) \cos(v), r \cos(u) \sin(v), -r \sin(u))$, $\vec{r}_v = (-r \sin(u) \sin(v), r \sin(u) \cos(v), 0)$. So $\|\vec{r}_u \times \vec{r}_v\| = r^2 \sin(v)$. Therefore, the area is $2\pi r^2$.
- A digression: If $\vec{\gamma}(t)$ is a piecewise C^1 regular path, and f(x, y, z) is a bounded function along the path, then $\int f ds = \int_a^b f(\gamma(t)) || \gamma'(t) || dt$ is called the scalar line integral of f along γ . (For instance, the charge on a wire.)
- A crucial point: The scalar line integral is reparametrisation invariant: If $t(\tau)$ is a reparametrisation,

- Hemisphere: $\vec{r} = (r \sin(u) \cos(v), r \sin(u) \sin(v), r \cos(u))$ and hence $\vec{r}_u = (r \cos(u) \cos(v), r \cos(u) \sin(v), -r \sin(u))$, $\vec{r}_v = (-r \sin(u) \sin(v), r \sin(u) \cos(v), 0)$. So $\|\vec{r}_u \times \vec{r}_v\| = r^2 \sin(v)$. Therefore, the area is $2\pi r^2$.
- A digression: If $\vec{\gamma}(t)$ is a piecewise C^1 regular path, and f(x, y, z) is a bounded function along the path, then $\int f ds = \int_a^b f(\gamma(t)) || \gamma'(t) || dt$ is called the scalar line integral of f along γ . (For instance, the charge on a wire.)
- A crucial point: The scalar line integral is reparametrisation invariant: If $t(\tau)$ is a reparametrisation, then $\|\frac{d\gamma}{d\tau}\| = \|\gamma'(t)\||\frac{dt}{d\tau}|$. Thus

- Hemisphere: $\vec{r} = (r \sin(u) \cos(v), r \sin(u) \sin(v), r \cos(u))$ and hence $\vec{r}_u = (r \cos(u) \cos(v), r \cos(u) \sin(v), -r \sin(u))$, $\vec{r}_v = (-r \sin(u) \sin(v), r \sin(u) \cos(v), 0)$. So $\|\vec{r}_u \times \vec{r}_v\| = r^2 \sin(v)$. Therefore, the area is $2\pi r^2$.
- A digression: If $\vec{\gamma}(t)$ is a piecewise C^1 regular path, and f(x, y, z) is a bounded function along the path, then $\int f ds = \int_a^b f(\gamma(t)) || \gamma'(t) || dt$ is called the scalar line integral of f along γ . (For instance, the charge on a wire.)
- A crucial point: The scalar line integral is reparametrisation invariant: If $t(\tau)$ is a reparametrisation, then $\|\frac{d\gamma}{d\tau}\| = \|\gamma'(t)\||\frac{dt}{d\tau}|$. Thus the "new" integral is $\int_{[c,d]} f(\gamma(t(\tau))) \|\gamma'(t)\||\frac{dt}{d\tau}|d\tau$ which by

- Hemisphere: $\vec{r} = (r \sin(u) \cos(v), r \sin(u) \sin(v), r \cos(u))$ and hence $\vec{r}_u = (r \cos(u) \cos(v), r \cos(u) \sin(v), -r \sin(u))$, $\vec{r}_v = (-r \sin(u) \sin(v), r \sin(u) \cos(v), 0)$. So $\|\vec{r}_u \times \vec{r}_v\| = r^2 \sin(v)$. Therefore, the area is $2\pi r^2$.
- A digression: If $\vec{\gamma}(t)$ is a piecewise C^1 regular path, and f(x, y, z) is a bounded function along the path, then $\int f ds = \int_a^b f(\gamma(t)) || \gamma'(t) || dt$ is called the scalar line integral of f along γ . (For instance, the charge on a wire.)
- A crucial point: The scalar line integral is reparametrisation invariant: If $t(\tau)$ is a reparametrisation, then $\|\frac{d\gamma}{d\tau}\| = \|\gamma'(t)\||\frac{dt}{d\tau}|$. Thus the "new" integral is $\int_{[c,d]} f(\gamma(t(\tau)))\|\gamma'(t)\||\frac{dt}{d\tau}|d\tau$ which by the change of variables formula equals the "old" integral.

æ

• Let $S = \vec{r}(T)$ be a parametrised surface and

• Let $S = \vec{r}(T)$ be a parametrised surface and let f be a bounded scalar field on S.

Let S = r(T) be a parametrised surface and let f be a bounded scalar field on S. Then
 ∫ ∫_S fdA := ∫ ∫_T f(r(u, v)) ||ru × rv||dudv.

- Let $S = \vec{r}(T)$ be a parametrised surface and let f be a bounded scalar field on S. Then $\int \int_{S} f dA := \int \int_{T} f(\vec{r}(u, v)) \|\vec{r}_{u} \times \vec{r}_{v}\| du dv.$
- When f = 1,

- Let $S = \vec{r}(T)$ be a parametrised surface and let f be a bounded scalar field on S. Then $\int \int_{S} f dA := \int \int_{T} f(\vec{r}(u, v)) \|\vec{r}_{u} \times \vec{r}_{v}\| du dv.$
- When f = 1, we get the area. (

- Let $S = \vec{r}(T)$ be a parametrised surface and let f be a bounded scalar field on S. Then $\int \int_{S} f dA := \int \int_{T} f(\vec{r}(u, v)) \|\vec{r}_{u} \times \vec{r}_{v}\| du dv.$
- When f = 1, we get the area. (Akin to the length

- Let $S = \vec{r}(T)$ be a parametrised surface and let f be a bounded scalar field on S. Then $\int \int_{S} f dA := \int \int_{T} f(\vec{r}(u, v)) \|\vec{r_{u}} \times \vec{r_{v}}\| du dv.$
- When *f* = 1, we get the area. (Akin to the length of a regular curve

- Let $S = \vec{r}(T)$ be a parametrised surface and let f be a bounded scalar field on S. Then $\int \int_{S} f dA := \int \int_{T} f(\vec{r}(u, v)) \|\vec{r}_{u} \times \vec{r}_{v}\| du dv.$
- When f = 1, we get the area. (Akin to the length of a regular curve in the case of line integrals.)

- Let $S = \vec{r}(T)$ be a parametrised surface and let f be a bounded scalar field on S. Then $\int \int_{S} f dA := \int \int_{T} f(\vec{r}(u, v)) \|\vec{r}_{u} \times \vec{r}_{v}\| du dv.$
- When f = 1, we get the area. (Akin to the length of a regular curve in the case of line integrals.)
- Centre of mass:

- Let $S = \vec{r}(T)$ be a parametrised surface and let f be a bounded scalar field on S. Then $\int \int_{S} f dA := \int \int_{T} f(\vec{r}(u, v)) \|\vec{r}_{u} \times \vec{r}_{v}\| du dv.$
- When f = 1, we get the area. (Akin to the length of a regular curve in the case of line integrals.)
- Centre of mass: If f is the density,

- Let $S = \vec{r}(T)$ be a parametrised surface and let f be a bounded scalar field on S. Then $\int \int_{S} f dA := \int \int_{T} f(\vec{r}(u, v)) \|\vec{r}_{u} \times \vec{r}_{v}\| du dv.$
- When f = 1, we get the area. (Akin to the length of a regular curve in the case of line integrals.)
- Centre of mass: If f is the density, then $x_{CM} = \int \int x f dA$ and likewise for other coordinates.

8/8

- Let $S = \vec{r}(T)$ be a parametrised surface and let f be a bounded scalar field on S. Then $\int \int_{S} f dA := \int \int_{T} f(\vec{r}(u, v)) \|\vec{r}_{u} \times \vec{r}_{v}\| du dv.$
- When f = 1, we get the area. (Akin to the length of a regular curve in the case of line integrals.)
- Centre of mass: If f is the density, then x_{CM} = ∫ ∫ xfdA and likewise for other coordinates. For instance, for a cone r
 ⁱ = (v sin(α) cos(u), v sin(α) sin(u), v cos(α)) where
 (u, v) ∈ [0, 2π] × [0, I], we see that dA = v sin(α)dudv.

- Let $S = \vec{r}(T)$ be a parametrised surface and let f be a bounded scalar field on S. Then $\int \int_{S} f dA := \int \int_{T} f(\vec{r}(u, v)) \|\vec{r}_{u} \times \vec{r}_{v}\| du dv.$
- When f = 1, we get the area. (Akin to the length of a regular curve in the case of line integrals.)
- Centre of mass: If f is the density, then x_{CM} = ∫ ∫ xfdA and likewise for other coordinates. For instance, for a cone r
 [¯] = (v sin(α) cos(u), v sin(α) sin(u), v cos(α)) where (u, v) ∈ [0, 2π] × [0, I], we see that dA = v sin(α)dudv. Thus if f = 1 (uniform density),

- Let $S = \vec{r}(T)$ be a parametrised surface and let f be a bounded scalar field on S. Then $\int \int_{S} f dA := \int \int_{T} f(\vec{r}(u, v)) \|\vec{r}_{u} \times \vec{r}_{v}\| du dv.$
- When f = 1, we get the area. (Akin to the length of a regular curve in the case of line integrals.)
- Centre of mass: If f is the density, then $x_{CM} = \int \int x f dA$ and likewise for other coordinates. For instance, for a cone $\vec{r} = (v \sin(\alpha) \cos(u), v \sin(\alpha) \sin(u), v \cos(\alpha))$ where $(u, v) \in [0, 2\pi] \times [0, I]$, we see that $dA = v \sin(\alpha) du dv$. Thus if f = 1 (uniform density), then $\int \int z dA = \int_0^I \int_0^{2\pi} v^2 \cos(\alpha) \sin(\alpha) du dv = \frac{\pi}{3} \sin(2\alpha)$.

- Let $S = \vec{r}(T)$ be a parametrised surface and let f be a bounded scalar field on S. Then $\int \int_{S} f dA := \int \int_{T} f(\vec{r}(u, v)) \|\vec{r}_{u} \times \vec{r}_{v}\| du dv.$
- When f = 1, we get the area. (Akin to the length of a regular curve in the case of line integrals.)
- Centre of mass: If f is the density, then $x_{CM} = \int \int x dA$ and likewise for other coordinates. For instance, for a cone $\vec{r} = (v \sin(\alpha) \cos(u), v \sin(\alpha) \sin(u), v \cos(\alpha))$ where $(u, v) \in [0, 2\pi] \times [0, I]$, we see that $dA = v \sin(\alpha) du dv$. Thus if f = 1 (uniform density), then $\int \int z dA = \int_0^I \int_0^{2\pi} v^2 \cos(\alpha) \sin(\alpha) du dv = \frac{\pi}{3} \sin(2\alpha)$. It is easy to see that

- Let $S = \vec{r}(T)$ be a parametrised surface and let f be a bounded scalar field on S. Then $\int \int_{S} f dA := \int \int_{T} f(\vec{r}(u, v)) \|\vec{r}_{u} \times \vec{r}_{v}\| du dv.$
- When f = 1, we get the area. (Akin to the length of a regular curve in the case of line integrals.)
- Centre of mass: If f is the density, then $x_{CM} = \int \int x dA$ and likewise for other coordinates. For instance, for a cone $\vec{r} = (v \sin(\alpha) \cos(u), v \sin(\alpha) \sin(u), v \cos(\alpha))$ where $(u, v) \in [0, 2\pi] \times [0, I]$, we see that $dA = v \sin(\alpha) du dv$. Thus if f = 1 (uniform density), then $\int \int z dA = \int_0^I \int_0^{2\pi} v^2 \cos(\alpha) \sin(\alpha) du dv = \frac{\pi}{3} \sin(2\alpha)$. It is easy to see that $x_{CM} = y_{CM} = 0$.

8/8

- Let $S = \vec{r}(T)$ be a parametrised surface and let f be a bounded scalar field on S. Then $\int \int_{S} f dA := \int \int_{T} f(\vec{r}(u, v)) \|\vec{r}_{u} \times \vec{r}_{v}\| du dv.$
- When f = 1, we get the area. (Akin to the length of a regular curve in the case of line integrals.)
- Centre of mass: If f is the density, then $x_{CM} = \int \int x dA$ and likewise for other coordinates. For instance, for a cone $\vec{r} = (v \sin(\alpha) \cos(u), v \sin(\alpha) \sin(u), v \cos(\alpha))$ where $(u, v) \in [0, 2\pi] \times [0, I]$, we see that $dA = v \sin(\alpha) du dv$. Thus if f = 1 (uniform density), then $\int \int z dA = \int_0^I \int_0^{2\pi} v^2 \cos(\alpha) \sin(\alpha) du dv = \frac{\pi}{3} \sin(2\alpha)$. It is easy to see that $x_{CM} = y_{CM} = 0$. Thus the centre of mass

- Let $S = \vec{r}(T)$ be a parametrised surface and let f be a bounded scalar field on S. Then $\int \int_{S} f dA := \int \int_{T} f(\vec{r}(u, v)) \|\vec{r}_{u} \times \vec{r}_{v}\| du dv.$
- When f = 1, we get the area. (Akin to the length of a regular curve in the case of line integrals.)
- Centre of mass: If f is the density, then $x_{CM} = \int \int x f dA$ and likewise for other coordinates. For instance, for a cone $\vec{r} = (v \sin(\alpha) \cos(u), v \sin(\alpha) \sin(u), v \cos(\alpha))$ where $(u, v) \in [0, 2\pi] \times [0, I]$, we see that $dA = v \sin(\alpha) du dv$. Thus if f = 1 (uniform density), then $\int \int z dA = \int_0^I \int_0^{2\pi} v^2 \cos(\alpha) \sin(\alpha) du dv = \frac{\pi}{3} \sin(2\alpha)$. It is easy to see that $x_{CM} = y_{CM} = 0$. Thus the centre of mass can lie outside the surface.