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@ Area enclosed by a Jordan curve using Green's theorem.
@ Change of variables formula.

@ Examples, including the volume of a ball.
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Parametrisation of surfaces

o Let T C R? be a bounded region whose boundary is a
piecewise C! Jordan curve (i.e., simple closed regular curve).

o Def: A parametrised surface is (the range of) a piecewise C!
map A(u,v): T — R3 that is 1 — 1 on the interior.

e Example: r{u, v) = (sin(v) cos(v),sin(u)sin(v), cos(u)) where
(u,v) € T =[0,n] x [0,27]. The image is the unit sphere.
The map is not 1 — 1 on the boundary of T. This surface is a
“closed” surface, i.e., it has no “boundary”. On the other
hand, if T = [0, 5] x [0,27] then it is a hemisphere whose
boundary is a circle.

@ Def: A closed parametrised surface is a set such that near
every point it is a parametrised surface. So the sphere is a
closed parametrised surface.
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where (u, v) € [0,27] x [0, 1] is a right-circular cone with cone
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boundary as a circle.

@ Suppose dudv is an infinitesimal area element in the u — v
plane. Then the parallelogram formed in R3 has sides

= Ox Oy O = Ox Oy 9
rudu = du(§x, 8—{1, 92) and r,dv = dv(%%, a%, 9Z).
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Regular/Smooth surfaces

@ The infinitesimal area is ||r, x r,||dudv. Just as for regular
curves, we define regular surfaces as those with r, x r,, #0
everywhere. Such surfaces are also called “smooth”.

@ For a cone, 1, = v(—sin(«)sin(u), sin(«) cos(u),0) and
rv = (sin(«) cos(u), sin(«) sin(u), cos(«)).
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Regular/Smooth surfaces

@ The infinitesimal area is ||r, x r,||dudv. Just as for regular
curves, we define regular surfaces as those with r, x r,, #0
everywhere. Such surfaces are also called “smooth”.

@ For a cone, 1, = v(—sin(«)sin(u), sin(«) cos(u),0) and
7, = (sin(a) cos(u), sin(a) sin(u), cos(c)). Thus 7, x 7, =0
when v = 0. The vertex of the cone is not a smooth point.

e Example: Suppose z = f(x, y) where f is a C! function,

lu,v) = (u, v, f(u,v)).
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Regular/Smooth surfaces

@ The infinitesimal area is ||r, x r,||dudv. Just as for regular
curves, we define regular surfaces as those with r, x r,, #0
everywhere. Such surfaces are also called “smooth”.

@ For a cone, 1, = v(—sin(«)sin(u), sin(«) cos(u),0) and
ry = (sin(a) cos(u), sin(«) sin(u), cos()). Thus r, x 1, =0
when v = 0. The vertex of the cone is not a smooth point.

e Example: Suppose z = f(x, y) where f is a C! function,
u,v) = (u,v,f(u,v)). Then r, = (1,0, f,) and
F;/ = (07 17 fv)-
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Regular/Smooth surfaces

@ The infinitesimal area is ||r, x r,||dudv. Just as for regular
curves, we define regular surfaces as those with r, x r,, #0
everywhere. Such surfaces are also called “smooth”.

@ For a cone, 1, = v(—sin(«)sin(u), sin(«) cos(u),0) and
ry = (sin(a) cos(u), sin(«) sin(u), cos()). Thus r, x 1, =0
when v = 0. The vertex of the cone is not a smooth point.

e Example: Suppose z = f(x, y) where f is a C! function,
u,v) = (u,v,f(u,v)). Then r, = (1,0, f,) and
r,=(0,1,1,). Thus r, x r, = (—f,, —f,,1) and is hence
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e For instance, if we take z = /1 — x2 — y2, the function is not
differentiable at x =y = 0.
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the same unit normal as the previous one.
@ The infinitesimal area vector is dA = r,, x r,dudv.

@ The area of a parametric surface is [ [, |7, x 7/||dudv. For
instance, for a graph z = f(x, y), the area is

ff,/l—l—fxz—l-fyzdxdy.
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An example and scalar line integrals

@ Hemisphere:r'= (rsin(u) cos(v), rsin(u)sin(v), r cos(u)) and
hence r, = (rcos(u) cos(v), r cos(u)sin(v), —rsin(u)),
ry = (—rsin(u)sin(v), rsin(u) cos(v), 0).
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hence r, = (rcos(u) cos(v), r cos(u)sin(v), —rsin(u)),
ry = (—rsin(u)sin(v), rsin(u) cos(v),0). So
|7 % Fy|| = r?sin(v). Therefore, the area is 27r2.

o A digression: If ¥(t) is a piecewise C! regular path, and
f(x,y,z) is a bounded function along the path,
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@ A crucial point: The scalar line integral is reparametrisation
invariant: If t(7) is a reparametrisation, then
||dZ|| = ny( )|||d |. Thus the “new"” integral is
f[c d] NI (¢ )|H % |d7 which by the change of
varlables formula equals the “old” integral.
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r'= (vsin(«) cos(u), vsin(a)sin(u), v cos(a)) where
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