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@ Parametrised surfaces and examples. (Closed and non-closed
ones too.)

@ Area (scalar and vector) of regular parametrised surfaces.

@ Scalar line integral and scalar surface integral.
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o Let A(u,v) be a piecewise C' parametrised surface defined on
T CR2 Let G(s,t) = (u(s, t),v(s, 1)) : T — T be a C1
map that is 1 — 1 onto on the interiors. Assume that the
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@ Theorem: R’; X R’; =1, xnd.
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Reparametrisation invariance

o Let A(u,v) be a piecewise C' parametrised surface defined on
T CR2 Let G(s,t) = (u(s, t),v(s, 1)) : T — T be a C1
map that is 1 — 1 onto on the interiors. Assume that the
Jacobian J of G is nowhere 0 on the interior. Then

R(s,t) = 7(G(s, t)) is called a reparametrisation.

Theorem: R’; X R’; =1, xnd.

Proof: By the chain rule, Rs = F,us + ryvs, Ry = Fyus + Fyvy.

o

Thus Rs x Ry = ry x ry,(usve — vsuy), and since

J = usvy — vsuy, we are done. ]
@ Theorem: The surface integral is reparametrisation invariant.

Proof: [ fF(T) fdA = [ [} f|f. x r||dudv. By the change of
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Reparametrisation invariance

o Let A(u,v) be a piecewise C' parametrised surface defined on
T C R2. Let G(s,t) = (u(s,t),v(s,t)): T — T bea C!
map that is 1 — 1 onto on the interiors. Assume that the
Jacobian J of G is nowhere 0 on the interior. Then
R(s,t) = r{G(s,t)) is called a reparametrisation.

@ Theorem: R’; X R’; =1, xnd.

@ Proof: By the chain rule, Rs = Fus + Fyvs, Ry = Fup + 7 vy
Thus Rs x Ry = ry x ry,(usve — vsuy), and since
J = usvy — vsuy, we are done. ]

@ Theorem: The surface integral is reparametrisation invariant.

e Proof: [ fF(T) fdA = [ [} f|f. x r||dudv. By the change of
variables formula, this integral equals [ [+, f||r, x 7, |||J|dsdt.
This is precisely the surface integral using the other
parametrisation. ]
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Flux /Vector surface integral

e Consider a fluid (can be charged too) moving through space
with the velocity vector field \7(X y,z,t). If its density is p,
the amount of fluid per unit area per unit time moving along
Vis J'= pV (the flux density or the current vector). The
amount per unit time that moves across an infinitesimal
surface element dA is J.dA. This quantity is the infinitesimal
flux. Likewise, if E is the electric field, E.dA is also called flux
(roughly measures the “number of lines of force” going
through the surface element).

@ Rigorously, if S C R3 is a regular parametrised surface, and F
is a bounded vector field on S, then the flux of F through S is
defined to be [ [ F.(7, x F,)dudv.

@ It is certainly not immediately clear as to whether this
quantity is reparametrisation invariant.
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Reparametrisation invariance and an example
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bounded by a regular simple closed curve /. Assume that 7 is
actually C? on an open set containing T U /. Let C be the
curve F(1). Let P, Q, R be C! scalar fields on S.
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@ The line integral is sometimes called the circulation of F
because if we consider F = (—y, x,0) and C as the unit circle,
then the line integral is non-zero whereas for F = (x,y,0) it is
zero.
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then the line integral is non-zero whereas for F = (x,y,0) it is
zero. James Clerk Maxwell called V x F as the “curl” of F
(because it is like the “circulation density”).
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@ It is easy to see that if S is a planar surface, then
Stokes=Green.

@ The proof of Stokes: By linearity in F and the symmetry of
the expression, it is enough to prove it for F = Pi.

e Now V x F = (0, P,, —Py) and hence
V x F.dA = —Py(xuyy — xvyu) + Pz(zuyv — zyyu) which is
(Pxy)u — (qu)v (HW). Apply Green to
J J7((Pxv)u — (Pxu)v)dudv to get
Jc(PXudu + PX,dv) = [, Pdx.
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