Lecture 38 - UM 102 (Spring 2021)

Vamsi Pritham Pingali

IISc

Recap

Recap

- Parametrised surfaces and examples. (

Recap

- Parametrised surfaces and examples. (Closed and non-closed ones too.)
- Parametrised surfaces and examples. (Closed and non-closed ones too.)
- Area (scalar and vector)
- Parametrised surfaces and examples. (Closed and non-closed ones too.)
- Area (scalar and vector) of regular parametrised surfaces.
- Parametrised surfaces and examples. (Closed and non-closed ones too.)
- Area (scalar and vector) of regular parametrised surfaces.
- Scalar line integral
- Parametrised surfaces and examples. (Closed and non-closed ones too.)
- Area (scalar and vector) of regular parametrised surfaces.
- Scalar line integral and scalar surface integral.

Reparametrisation invariance

Reparametrisation invariance

- Let $\vec{r}(u, v)$ be a piecewise C^{1} parametrised surface defined on $T \subset \mathbb{R}^{2}$.

Reparametrisation invariance

- Let $\vec{r}(u, v)$ be a piecewise C^{1} parametrised surface defined on $T \subset \mathbb{R}^{2}$. Let $\vec{G}(s, t)=(u(s, t), v(s, t)): T^{\prime} \rightarrow T$ be a

Reparametrisation invariance

- Let $\vec{r}(u, v)$ be a piecewise C^{1} parametrised surface defined on $T \subset \mathbb{R}^{2}$. Let $\vec{G}(s, t)=(u(s, t), v(s, t)): T^{\prime} \rightarrow T$ be a C^{1} map that is

Reparametrisation invariance

- Let $\vec{r}(u, v)$ be a piecewise C^{1} parametrised surface defined on $T \subset \mathbb{R}^{2}$. Let $\vec{G}(s, t)=(u(s, t), v(s, t)): T^{\prime} \rightarrow T$ be a C^{1} map that is $1-1$ onto on the interiors.

Reparametrisation invariance

- Let $\vec{r}(u, v)$ be a piecewise C^{1} parametrised surface defined on $T \subset \mathbb{R}^{2}$. Let $\vec{G}(s, t)=(u(s, t), v(s, t)): T^{\prime} \rightarrow T$ be a C^{1} map that is $1-1$ onto on the interiors. Assume that the Jacobian J of G is

Reparametrisation invariance

- Let $\vec{r}(u, v)$ be a piecewise C^{1} parametrised surface defined on $T \subset \mathbb{R}^{2}$. Let $\vec{G}(s, t)=(u(s, t), v(s, t)): T^{\prime} \rightarrow T$ be a C^{1} map that is $1-1$ onto on the interiors. Assume that the Jacobian J of G is nowhere 0 on the interior.

Reparametrisation invariance

- Let $\vec{r}(u, v)$ be a piecewise C^{1} parametrised surface defined on $T \subset \mathbb{R}^{2}$. Let $\vec{G}(s, t)=(u(s, t), v(s, t)): T^{\prime} \rightarrow T$ be a C^{1} map that is $1-1$ onto on the interiors. Assume that the Jacobian J of G is nowhere 0 on the interior. Then $\vec{R}(s, t)=\vec{r}(\vec{G}(s, t))$ is called a reparametrisation.

Reparametrisation invariance

- Let $\vec{r}(u, v)$ be a piecewise C^{1} parametrised surface defined on $T \subset \mathbb{R}^{2}$. Let $\vec{G}(s, t)=(u(s, t), v(s, t)): T^{\prime} \rightarrow T$ be a C^{1} map that is $1-1$ onto on the interiors. Assume that the Jacobian J of G is nowhere 0 on the interior. Then $\vec{R}(s, t)=\vec{r}(\vec{G}(s, t))$ is called a reparametrisation.
- Theorem:

Reparametrisation invariance

- Let $\vec{r}(u, v)$ be a piecewise C^{1} parametrised surface defined on $T \subset \mathbb{R}^{2}$. Let $\vec{G}(s, t)=(u(s, t), v(s, t)): T^{\prime} \rightarrow T$ be a C^{1} map that is $1-1$ onto on the interiors. Assume that the Jacobian J of G is nowhere 0 on the interior. Then $\vec{R}(s, t)=\vec{r}(\vec{G}(s, t))$ is called a reparametrisation.
- Theorem: $\vec{R}_{s} \times \vec{R}_{t}=\vec{r}_{u} \times \vec{r}_{v} J$.

Reparametrisation invariance

- Let $\vec{r}(u, v)$ be a piecewise C^{1} parametrised surface defined on $T \subset \mathbb{R}^{2}$. Let $\vec{G}(s, t)=(u(s, t), v(s, t)): T^{\prime} \rightarrow T$ be a C^{1} map that is $1-1$ onto on the interiors. Assume that the Jacobian J of G is nowhere 0 on the interior. Then $\vec{R}(s, t)=\vec{r}(\vec{G}(s, t))$ is called a reparametrisation.
- Theorem: $\vec{R}_{s} \times \vec{R}_{t}=\vec{r}_{u} \times \vec{r}_{v} J$.
- Proof:

Reparametrisation invariance

- Let $\vec{r}(u, v)$ be a piecewise C^{1} parametrised surface defined on $T \subset \mathbb{R}^{2}$. Let $\vec{G}(s, t)=(u(s, t), v(s, t)): T^{\prime} \rightarrow T$ be a C^{1} map that is $1-1$ onto on the interiors. Assume that the Jacobian J of G is nowhere 0 on the interior. Then $\vec{R}(s, t)=\vec{r}(\vec{G}(s, t))$ is called a reparametrisation.
- Theorem: $\vec{R}_{s} \times \vec{R}_{t}=\vec{r}_{u} \times \vec{r}_{v} J$.
- Proof: By the chain rule,

Reparametrisation invariance

- Let $\vec{r}(u, v)$ be a piecewise C^{1} parametrised surface defined on $T \subset \mathbb{R}^{2}$. Let $\vec{G}(s, t)=(u(s, t), v(s, t)): T^{\prime} \rightarrow T$ be a C^{1} map that is $1-1$ onto on the interiors. Assume that the Jacobian J of G is nowhere 0 on the interior. Then $\vec{R}(s, t)=\vec{r}(\vec{G}(s, t))$ is called a reparametrisation.
- Theorem: $\vec{R}_{s} \times \vec{R}_{t}=\vec{r}_{u} \times \vec{r}_{v} J$.
- Proof: By the chain rule, $\vec{R}_{s}=\vec{r}_{u} u_{s}+\vec{r}_{v} v_{s}, \vec{R}_{t}=\vec{r}_{u} u_{t}+\vec{r}_{v} v_{t}$.

Reparametrisation invariance

- Let $\vec{r}(u, v)$ be a piecewise C^{1} parametrised surface defined on $T \subset \mathbb{R}^{2}$. Let $\vec{G}(s, t)=(u(s, t), v(s, t)): T^{\prime} \rightarrow T$ be a C^{1} map that is $1-1$ onto on the interiors. Assume that the Jacobian J of G is nowhere 0 on the interior. Then $\vec{R}(s, t)=\vec{r}(\vec{G}(s, t))$ is called a reparametrisation.
- Theorem: $\vec{R}_{s} \times \vec{R}_{t}=\vec{r}_{u} \times \vec{r}_{v} J$.
- Proof: By the chain rule, $\vec{R}_{s}=\vec{r}_{u} u_{s}+\vec{r}_{v} v_{s}, \vec{R}_{t}=\vec{r}_{u} u_{t}+\vec{r}_{v} v_{t}$. Thus $\vec{R}_{s} \times \vec{R}_{t}=\vec{r}_{u} \times \vec{r}_{v}\left(u_{s} v_{t}-v_{s} u_{t}\right)$, and since

Reparametrisation invariance

- Let $\vec{r}(u, v)$ be a piecewise C^{1} parametrised surface defined on $T \subset \mathbb{R}^{2}$. Let $\vec{G}(s, t)=(u(s, t), v(s, t)): T^{\prime} \rightarrow T$ be a C^{1} map that is $1-1$ onto on the interiors. Assume that the Jacobian J of G is nowhere 0 on the interior. Then $\vec{R}(s, t)=\vec{r}(\vec{G}(s, t))$ is called a reparametrisation.
- Theorem: $\vec{R}_{s} \times \vec{R}_{t}=\vec{r}_{u} \times \vec{r}_{v} J$.
- Proof: By the chain rule, $\vec{R}_{s}=\vec{r}_{u} u_{s}+\vec{r}_{v} v_{s}, \vec{R}_{t}=\vec{r}_{u} u_{t}+\vec{r}_{v} v_{t}$. Thus $\vec{R}_{s} \times \vec{R}_{t}=\vec{r}_{u} \times \vec{r}_{v}\left(u_{s} v_{t}-v_{s} u_{t}\right)$, and since $J=u_{s} v_{t}-v_{s} u_{t}$, we are done.

Reparametrisation invariance

- Let $\vec{r}(u, v)$ be a piecewise C^{1} parametrised surface defined on $T \subset \mathbb{R}^{2}$. Let $\vec{G}(s, t)=(u(s, t), v(s, t)): T^{\prime} \rightarrow T$ be a C^{1} map that is $1-1$ onto on the interiors. Assume that the Jacobian J of G is nowhere 0 on the interior. Then $\vec{R}(s, t)=\vec{r}(\vec{G}(s, t))$ is called a reparametrisation.
- Theorem: $\vec{R}_{s} \times \vec{R}_{t}=\vec{r}_{u} \times \vec{r}_{v} J$.
- Proof: By the chain rule, $\vec{R}_{s}=\vec{r}_{u} u_{s}+\vec{r}_{v} v_{s}, \vec{R}_{t}=\vec{r}_{u} u_{t}+\vec{r}_{v} v_{t}$. Thus $\vec{R}_{s} \times \vec{R}_{t}=\vec{r}_{u} \times \vec{r}_{v}\left(u_{s} v_{t}-v_{s} u_{t}\right)$, and since $J=u_{s} v_{t}-v_{s} u_{t}$, we are done.
- Theorem:

Reparametrisation invariance

- Let $\vec{r}(u, v)$ be a piecewise C^{1} parametrised surface defined on $T \subset \mathbb{R}^{2}$. Let $\vec{G}(s, t)=(u(s, t), v(s, t)): T^{\prime} \rightarrow T$ be a C^{1} map that is $1-1$ onto on the interiors. Assume that the Jacobian J of G is nowhere 0 on the interior. Then $\vec{R}(s, t)=\vec{r}(\vec{G}(s, t))$ is called a reparametrisation.
- Theorem: $\vec{R}_{s} \times \vec{R}_{t}=\vec{r}_{u} \times \vec{r}_{v} J$.
- Proof: By the chain rule, $\vec{R}_{s}=\vec{r}_{u} u_{s}+\vec{r}_{v} v_{s}, \vec{R}_{t}=\vec{r}_{u} u_{t}+\vec{r}_{v} v_{t}$. Thus $\vec{R}_{s} \times \vec{R}_{t}=\vec{r}_{u} \times \vec{r}_{v}\left(u_{s} v_{t}-v_{s} u_{t}\right)$, and since $J=u_{s} v_{t}-v_{s} u_{t}$, we are done.
- Theorem: The surface integral is

Reparametrisation invariance

- Let $\vec{r}(u, v)$ be a piecewise C^{1} parametrised surface defined on $T \subset \mathbb{R}^{2}$. Let $\vec{G}(s, t)=(u(s, t), v(s, t)): T^{\prime} \rightarrow T$ be a C^{1} map that is $1-1$ onto on the interiors. Assume that the Jacobian J of G is nowhere 0 on the interior. Then $\vec{R}(s, t)=\vec{r}(\vec{G}(s, t))$ is called a reparametrisation.
- Theorem: $\vec{R}_{s} \times \vec{R}_{t}=\vec{r}_{u} \times \vec{r}_{v} J$.
- Proof: By the chain rule, $\vec{R}_{s}=\vec{r}_{u} u_{s}+\vec{r}_{v} v_{s}, \vec{R}_{t}=\vec{r}_{u} u_{t}+\vec{r}_{v} v_{t}$. Thus $\vec{R}_{s} \times \vec{R}_{t}=\vec{r}_{u} \times \vec{r}_{v}\left(u_{s} v_{t}-v_{s} u_{t}\right)$, and since $J=u_{s} v_{t}-v_{s} u_{t}$, we are done.
- Theorem: The surface integral is reparametrisation invariant.

Reparametrisation invariance

- Let $\vec{r}(u, v)$ be a piecewise C^{1} parametrised surface defined on $T \subset \mathbb{R}^{2}$. Let $\vec{G}(s, t)=(u(s, t), v(s, t)): T^{\prime} \rightarrow T$ be a C^{1} map that is $1-1$ onto on the interiors. Assume that the Jacobian J of G is nowhere 0 on the interior. Then $\vec{R}(s, t)=\vec{r}(\vec{G}(s, t))$ is called a reparametrisation.
- Theorem: $\vec{R}_{s} \times \vec{R}_{t}=\vec{r}_{u} \times \vec{r}_{v} J$.
- Proof: By the chain rule, $\vec{R}_{s}=\vec{r}_{u} u_{s}+\vec{r}_{v} v_{s}, \vec{R}_{t}=\vec{r}_{u} u_{t}+\vec{r}_{v} v_{t}$. Thus $\vec{R}_{s} \times \vec{R}_{t}=\vec{r}_{u} \times \vec{r}_{v}\left(u_{s} v_{t}-v_{s} u_{t}\right)$, and since $J=u_{s} v_{t}-v_{s} u_{t}$, we are done.
- Theorem: The surface integral is reparametrisation invariant.
- Proof:

Reparametrisation invariance

- Let $\vec{r}(u, v)$ be a piecewise C^{1} parametrised surface defined on $T \subset \mathbb{R}^{2}$. Let $\vec{G}(s, t)=(u(s, t), v(s, t)): T^{\prime} \rightarrow T$ be a C^{1} map that is $1-1$ onto on the interiors. Assume that the Jacobian J of G is nowhere 0 on the interior. Then $\vec{R}(s, t)=\vec{r}(\vec{G}(s, t))$ is called a reparametrisation.
- Theorem: $\vec{R}_{s} \times \vec{R}_{t}=\vec{r}_{u} \times \vec{r}_{v} J$.
- Proof: By the chain rule, $\vec{R}_{s}=\vec{r}_{u} u_{s}+\vec{r}_{v} v_{s}, \vec{R}_{t}=\vec{r}_{u} u_{t}+\vec{r}_{v} v_{t}$. Thus $\vec{R}_{s} \times \vec{R}_{t}=\vec{r}_{u} \times \vec{r}_{v}\left(u_{s} v_{t}-v_{s} u_{t}\right)$, and since $J=u_{s} v_{t}-v_{s} u_{t}$, we are done.
- Theorem: The surface integral is reparametrisation invariant.
- Proof: $\iint_{\vec{r}(T)} f d A=\iint_{T} f\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| d u d v$. By the change of variables formula,

Reparametrisation invariance

- Let $\vec{r}(u, v)$ be a piecewise C^{1} parametrised surface defined on $T \subset \mathbb{R}^{2}$. Let $\vec{G}(s, t)=(u(s, t), v(s, t)): T^{\prime} \rightarrow T$ be a C^{1} map that is $1-1$ onto on the interiors. Assume that the Jacobian J of G is nowhere 0 on the interior. Then $\vec{R}(s, t)=\vec{r}(\vec{G}(s, t))$ is called a reparametrisation.
- Theorem: $\vec{R}_{s} \times \vec{R}_{t}=\vec{r}_{u} \times \vec{r}_{v} J$.
- Proof: By the chain rule, $\vec{R}_{s}=\vec{r}_{u} u_{s}+\vec{r}_{v} v_{s}, \vec{R}_{t}=\vec{r}_{u} u_{t}+\vec{r}_{v} v_{t}$. Thus $\vec{R}_{s} \times \vec{R}_{t}=\vec{r}_{u} \times \vec{r}_{v}\left(u_{s} v_{t}-v_{s} u_{t}\right)$, and since $J=u_{s} v_{t}-v_{s} u_{t}$, we are done.
- Theorem: The surface integral is reparametrisation invariant.
- Proof: $\iint_{\vec{r}(T)} f d A=\iint_{T} f\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| d u d v$. By the change of variables formula, this integral equals $\iint_{T^{\prime}} f\left\|\vec{r}_{u} \times \vec{r}_{v}\right\||J| d s d t$.

Reparametrisation invariance

- Let $\vec{r}(u, v)$ be a piecewise C^{1} parametrised surface defined on $T \subset \mathbb{R}^{2}$. Let $\vec{G}(s, t)=(u(s, t), v(s, t)): T^{\prime} \rightarrow T$ be a C^{1} map that is $1-1$ onto on the interiors. Assume that the Jacobian J of G is nowhere 0 on the interior. Then $\vec{R}(s, t)=\vec{r}(\vec{G}(s, t))$ is called a reparametrisation.
- Theorem: $\vec{R}_{s} \times \vec{R}_{t}=\vec{r}_{u} \times \vec{r}_{v} J$.
- Proof: By the chain rule, $\vec{R}_{s}=\vec{r}_{u} u_{s}+\vec{r}_{v} v_{s}, \vec{R}_{t}=\vec{r}_{u} u_{t}+\vec{r}_{v} v_{t}$. Thus $\vec{R}_{s} \times \vec{R}_{t}=\vec{r}_{u} \times \vec{r}_{v}\left(u_{s} v_{t}-v_{s} u_{t}\right)$, and since $J=u_{s} v_{t}-v_{s} u_{t}$, we are done.
- Theorem: The surface integral is reparametrisation invariant.
- Proof: $\iint_{\vec{r}(T)} f d A=\iint_{T} f\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| d u d v$. By the change of variables formula, this integral equals $\iint_{T^{\prime}} f\left\|\vec{r}_{u} \times \vec{r}_{v}\right\||J| d s d t$. This is precisely the surface integral

Reparametrisation invariance

- Let $\vec{r}(u, v)$ be a piecewise C^{1} parametrised surface defined on $T \subset \mathbb{R}^{2}$. Let $\vec{G}(s, t)=(u(s, t), v(s, t)): T^{\prime} \rightarrow T$ be a C^{1} map that is $1-1$ onto on the interiors. Assume that the Jacobian J of G is nowhere 0 on the interior. Then $\vec{R}(s, t)=\vec{r}(\vec{G}(s, t))$ is called a reparametrisation.
- Theorem: $\vec{R}_{s} \times \vec{R}_{t}=\vec{r}_{u} \times \vec{r}_{v} J$.
- Proof: By the chain rule, $\vec{R}_{s}=\vec{r}_{u} u_{s}+\vec{r}_{v} v_{s}, \vec{R}_{t}=\vec{r}_{u} u_{t}+\vec{r}_{v} v_{t}$. Thus $\vec{R}_{s} \times \vec{R}_{t}=\vec{r}_{u} \times \vec{r}_{v}\left(u_{s} v_{t}-v_{s} u_{t}\right)$, and since $J=u_{s} v_{t}-v_{s} u_{t}$, we are done.
- Theorem: The surface integral is reparametrisation invariant.
- Proof: $\iint_{\vec{r}(T)} f d A=\iint_{T} f\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| d u d v$. By the change of variables formula, this integral equals $\iint_{T^{\prime}} f\left\|\vec{r}_{u} \times \vec{r}_{v}\right\||J| d s d t$. This is precisely the surface integral using the other parametrisation.

Flux/Vector surface integral

- Consider a fluid (

Flux/Vector surface integral

- Consider a fluid (can be charged too) moving through space

Flux/Vector surface integral

- Consider a fluid (can be charged too) moving through space with the velocity vector field $\vec{V}(x, y, z, t)$.

Flux/Vector surface integral

- Consider a fluid (can be charged too) moving through space with the velocity vector field $\vec{V}(x, y, z, t)$. If its density is ρ,
- Consider a fluid (can be charged too) moving through space with the velocity vector field $\vec{V}(x, y, z, t)$. If its density is ρ, the amount of fluid per unit area per unit time
- Consider a fluid (can be charged too) moving through space with the velocity vector field $\vec{V}(x, y, z, t)$. If its density is ρ, the amount of fluid per unit area per unit time moving along \vec{V} is $\vec{J}=\rho \vec{V}($
- Consider a fluid (can be charged too) moving through space with the velocity vector field $\vec{V}(x, y, z, t)$. If its density is ρ, the amount of fluid per unit area per unit time moving along \vec{V} is $\vec{J}=\rho \vec{V}$ (the flux density or
- Consider a fluid (can be charged too) moving through space with the velocity vector field $\vec{V}(x, y, z, t)$. If its density is ρ, the amount of fluid per unit area per unit time moving along \vec{V} is $\vec{J}=\rho \vec{V}$ (the flux density or the current vector).
- Consider a fluid (can be charged too) moving through space with the velocity vector field $\vec{V}(x, y, z, t)$. If its density is ρ, the amount of fluid per unit area per unit time moving along \vec{V} is $\vec{J}=\rho \vec{V}$ (the flux density or the current vector). The amount per unit time
- Consider a fluid (can be charged too) moving through space with the velocity vector field $\vec{V}(x, y, z, t)$. If its density is ρ, the amount of fluid per unit area per unit time moving along \vec{V} is $\vec{J}=\rho \vec{V}$ (the flux density or the current vector). The amount per unit time that moves
- Consider a fluid (can be charged too) moving through space with the velocity vector field $\vec{V}(x, y, z, t)$. If its density is ρ, the amount of fluid per unit area per unit time moving along \vec{V} is $\vec{J}=\rho \vec{V}$ (the flux density or the current vector). The amount per unit time that moves across an infinitesimal surface element $\overrightarrow{d A}$ is
- Consider a fluid (can be charged too) moving through space with the velocity vector field $\vec{V}(x, y, z, t)$. If its density is ρ, the amount of fluid per unit area per unit time moving along \vec{V} is $\vec{J}=\rho \vec{V}$ (the flux density or the current vector). The amount per unit time that moves across an infinitesimal surface element $\overrightarrow{d A}$ is $\vec{J} \cdot \overrightarrow{d A}$.
- Consider a fluid (can be charged too) moving through space with the velocity vector field $\vec{V}(x, y, z, t)$. If its density is ρ, the amount of fluid per unit area per unit time moving along \vec{V} is $\vec{J}=\rho \vec{V}$ (the flux density or the current vector). The amount per unit time that moves across an infinitesimal surface element $\overrightarrow{d A}$ is $\vec{J} \cdot \overrightarrow{d A}$. This quantity is the
- Consider a fluid (can be charged too) moving through space with the velocity vector field $\vec{V}(x, y, z, t)$. If its density is ρ, the amount of fluid per unit area per unit time moving along \vec{V} is $\vec{J}=\rho \vec{V}$ (the flux density or the current vector). The amount per unit time that moves across an infinitesimal surface element $\overrightarrow{d A}$ is $\vec{J} . \overrightarrow{d A}$. This quantity is the infinitesimal flux.
- Consider a fluid (can be charged too) moving through space with the velocity vector field $\vec{V}(x, y, z, t)$. If its density is ρ, the amount of fluid per unit area per unit time moving along \vec{V} is $\vec{J}=\rho \vec{V}$ (the flux density or the current vector). The amount per unit time that moves across an infinitesimal surface element $\overrightarrow{d A}$ is $\vec{J} \cdot \overrightarrow{d A}$. This quantity is the infinitesimal flux. Likewise, if \vec{E} is the electric field,
- Consider a fluid (can be charged too) moving through space with the velocity vector field $\vec{V}(x, y, z, t)$. If its density is ρ, the amount of fluid per unit area per unit time moving along \vec{V} is $\vec{J}=\rho \vec{V}$ (the flux density or the current vector). The amount per unit time that moves across an infinitesimal surface element $\overrightarrow{d A}$ is $\vec{J} \cdot \overrightarrow{d A}$. This quantity is the infinitesimal flux. Likewise, if \vec{E} is the electric field, $\vec{E} . \overrightarrow{d A}$ is also called flux (
- Consider a fluid (can be charged too) moving through space with the velocity vector field $\vec{V}(x, y, z, t)$. If its density is ρ, the amount of fluid per unit area per unit time moving along \vec{V} is $\vec{J}=\rho \vec{V}$ (the flux density or the current vector). The amount per unit time that moves across an infinitesimal surface element $\overrightarrow{d A}$ is $\vec{J} \cdot \overrightarrow{d A}$. This quantity is the infinitesimal flux. Likewise, if \vec{E} is the electric field, $\vec{E} . \overrightarrow{d A}$ is also called flux (roughly measures the "number of lines of force"
- Consider a fluid (can be charged too) moving through space with the velocity vector field $\vec{V}(x, y, z, t)$. If its density is ρ, the amount of fluid per unit area per unit time moving along \vec{V} is $\vec{J}=\rho \vec{V}$ (the flux density or the current vector). The amount per unit time that moves across an infinitesimal surface element $\overrightarrow{d A}$ is $\vec{J} \cdot \overrightarrow{d A}$. This quantity is the infinitesimal flux. Likewise, if \vec{E} is the electric field, $\vec{E} . \overrightarrow{d A}$ is also called flux (roughly measures the "number of lines of force" going through the surface element).
- Consider a fluid (can be charged too) moving through space with the velocity vector field $\vec{V}(x, y, z, t)$. If its density is ρ, the amount of fluid per unit area per unit time moving along \vec{V} is $\vec{J}=\rho \vec{V}$ (the flux density or the current vector). The amount per unit time that moves across an infinitesimal surface element $\overrightarrow{d A}$ is $\vec{J} \cdot \overrightarrow{d A}$. This quantity is the infinitesimal flux. Likewise, if \vec{E} is the electric field, $\vec{E} . \overrightarrow{d A}$ is also called flux (roughly measures the "number of lines of force" going through the surface element).
- Rigorously,
- Consider a fluid (can be charged too) moving through space with the velocity vector field $\vec{V}(x, y, z, t)$. If its density is ρ, the amount of fluid per unit area per unit time moving along \vec{V} is $\vec{J}=\rho \vec{V}$ (the flux density or the current vector). The amount per unit time that moves across an infinitesimal surface element $\overrightarrow{d A}$ is $\vec{J} \cdot \overrightarrow{d A}$. This quantity is the infinitesimal flux. Likewise, if \vec{E} is the electric field, $\vec{E} \cdot \overrightarrow{d A}$ is also called flux (roughly measures the "number of lines of force" going through the surface element).
- Rigorously, if $S \subset \mathbb{R}^{3}$ is a regular parametrised surface,
- Consider a fluid (can be charged too) moving through space with the velocity vector field $\vec{V}(x, y, z, t)$. If its density is ρ, the amount of fluid per unit area per unit time moving along \vec{V} is $\vec{J}=\rho \vec{V}$ (the flux density or the current vector). The amount per unit time that moves across an infinitesimal surface element $\overrightarrow{d A}$ is $\vec{J} \cdot \overrightarrow{d A}$. This quantity is the infinitesimal flux. Likewise, if \vec{E} is the electric field, $\vec{E} . \overrightarrow{d A}$ is also called flux (roughly measures the "number of lines of force" going through the surface element).
- Rigorously, if $S \subset \mathbb{R}^{3}$ is a regular parametrised surface, and \vec{F} is a bounded vector field

Flux/Vector surface integral

- Consider a fluid (can be charged too) moving through space with the velocity vector field $\vec{V}(x, y, z, t)$. If its density is ρ, the amount of fluid per unit area per unit time moving along \vec{V} is $\vec{J}=\rho \vec{V}$ (the flux density or the current vector). The amount per unit time that moves across an infinitesimal surface element $\overrightarrow{d A}$ is $\vec{J} \cdot \overrightarrow{d A}$. This quantity is the infinitesimal flux. Likewise, if \vec{E} is the electric field, $\vec{E} . \overrightarrow{d A}$ is also called flux (roughly measures the "number of lines of force" going through the surface element).
- Rigorously, if $S \subset \mathbb{R}^{3}$ is a regular parametrised surface, and \vec{F} is a bounded vector field on S, then the flux of \vec{F} through S is defined to be

Flux/Vector surface integral

- Consider a fluid (can be charged too) moving through space with the velocity vector field $\vec{V}(x, y, z, t)$. If its density is ρ, the amount of fluid per unit area per unit time moving along \vec{V} is $\vec{J}=\rho \vec{V}$ (the flux density or the current vector). The amount per unit time that moves across an infinitesimal surface element $\overrightarrow{d A}$ is $\vec{J} \cdot \overrightarrow{d A}$. This quantity is the infinitesimal flux. Likewise, if \vec{E} is the electric field, $\vec{E} . \overrightarrow{d A}$ is also called flux (roughly measures the "number of lines of force" going through the surface element).
- Rigorously, if $S \subset \mathbb{R}^{3}$ is a regular parametrised surface, and \vec{F} is a bounded vector field on S, then the flux of \vec{F} through S is defined to be $\iint_{T} \vec{F} .\left(\vec{r}_{u} \times \vec{r}_{v}\right) d u d v$.

Flux/Vector surface integral

- Consider a fluid (can be charged too) moving through space with the velocity vector field $\vec{V}(x, y, z, t)$. If its density is ρ, the amount of fluid per unit area per unit time moving along \vec{V} is $\vec{J}=\rho \vec{V}$ (the flux density or the current vector). The amount per unit time that moves across an infinitesimal surface element $\overrightarrow{d A}$ is $\vec{J} \cdot \overrightarrow{d A}$. This quantity is the infinitesimal flux. Likewise, if \vec{E} is the electric field, $\vec{E} . \overrightarrow{d A}$ is also called flux (roughly measures the "number of lines of force" going through the surface element).
- Rigorously, if $S \subset \mathbb{R}^{3}$ is a regular parametrised surface, and \vec{F} is a bounded vector field on S, then the flux of \vec{F} through S is defined to be $\iint_{T} \vec{F} .\left(\vec{r}_{u} \times \vec{r}_{v}\right) d u d v$.
- It is certainly not immediately clear
- Consider a fluid (can be charged too) moving through space with the velocity vector field $\vec{V}(x, y, z, t)$. If its density is ρ, the amount of fluid per unit area per unit time moving along \vec{V} is $\vec{J}=\rho \vec{V}$ (the flux density or the current vector). The amount per unit time that moves across an infinitesimal surface element $\overrightarrow{d A}$ is $\vec{J} \cdot \overrightarrow{d A}$. This quantity is the infinitesimal flux. Likewise, if \vec{E} is the electric field, $\vec{E} . \overrightarrow{d A}$ is also called flux (roughly measures the "number of lines of force" going through the surface element).
- Rigorously, if $S \subset \mathbb{R}^{3}$ is a regular parametrised surface, and \vec{F} is a bounded vector field on S, then the flux of \vec{F} through S is defined to be $\iint_{T} \vec{F} .\left(\vec{r}_{u} \times \vec{r}_{v}\right) d u d v$.
- It is certainly not immediately clear as to whether this quantity is reparametrisation invariant.

Reparametrisation invariance and an example

Reparametrisation invariance and an example

- As before, if $\vec{G}(s, t), \vec{R}(s, t)=\vec{r}(\vec{G}(s, t))$ are reparametrisation data

Reparametrisation invariance and an example

- As before, if $\vec{G}(s, t), \vec{R}(s, t)=\vec{r}(\vec{G}(s, t))$ are reparametrisation data, then $\iint_{\vec{r}(T)} \vec{F} \cdot \overrightarrow{d A}=$ $\iint_{T} \vec{F} .\left(\vec{r}_{u} \times \vec{r}_{v}\right) d u d v=\iint_{T^{\prime}} \vec{F} .\left(\vec{r}_{u} \times \vec{r}_{v}\right)|J| d s d t$.

Reparametrisation invariance and an example

- As before, if $\vec{G}(s, t), \vec{R}(s, t)=\vec{r}(\vec{G}(s, t))$ are reparametrisation data, then $\iint_{\vec{r}(T)} \vec{F} \cdot \overrightarrow{d A}=$ $\iint_{T} \vec{F} .\left(\vec{r}_{u} \times \vec{r}_{v}\right) d u d v=\iint_{T^{\prime}} \vec{F} .\left(\vec{r}_{u} \times \vec{r}_{v}\right)|J| d s d t$. However, $\vec{R}_{s} \times \vec{R}_{t}=\left(\vec{r}_{u} \times \vec{r}_{v}\right) J$.

Reparametrisation invariance and an example

- As before, if $\vec{G}(s, t), \vec{R}(s, t)=\vec{r}(\vec{G}(s, t))$ are reparametrisation data, then $\iint_{\vec{r}(T)} \vec{F} \cdot \overrightarrow{d A}=$
$\iint_{T} \vec{F} .\left(\vec{r}_{u} \times \vec{r}_{v}\right) d u d v=\iint_{T^{\prime}} \vec{F} .\left(\vec{r}_{u} \times \vec{r}_{v}\right)|J| d s d t$. However, $\vec{R}_{s} \times \vec{R}_{t}=\left(\vec{r}_{u} \times \vec{r}_{v}\right) J$. Therefore, there is a sign discrepancy.

Reparametrisation invariance and an example

- As before, if $\vec{G}(s, t), \vec{R}(s, t)=\vec{r}(\vec{G}(s, t))$ are reparametrisation data, then $\iint_{\vec{r}(T)} \vec{F} \cdot \overrightarrow{d A}=$
$\iint_{T} \vec{F} .\left(\vec{r}_{u} \times \vec{r}_{v}\right) d u d v=\iint_{T^{\prime}} \vec{F} .\left(\vec{r}_{u} \times \vec{r}_{v}\right)|J| d s d t$. However, $\vec{R}_{s} \times \vec{R}_{t}=\left(\vec{r}_{u} \times \vec{r}_{v}\right) J$. Therefore, there is a sign discrepancy. If $J>0$ throughout, then $|J|=J$ and

Reparametrisation invariance and an example

- As before, if $\vec{G}(s, t), \vec{R}(s, t)=\vec{r}(\vec{G}(s, t))$ are reparametrisation data, then $\iint_{\vec{r}(T)} \vec{F} \cdot \overrightarrow{d A}=$ $\iint_{T} \vec{F} .\left(\vec{r}_{u} \times \vec{r}_{v}\right) d u d v=\iint_{T^{\prime}} \vec{F} .\left(\vec{r}_{u} \times \vec{r}_{v}\right)|J| d s d t$. However, $\vec{R}_{s} \times \vec{R}_{t}=\left(\vec{r}_{u} \times \vec{r}_{v}\right) J$. Therefore, there is a sign discrepancy. If $J>0$ throughout, then $|J|=J$ and the flux integral is reparametrisation invariant.

Reparametrisation invariance and an example

- As before, if $\vec{G}(s, t), \vec{R}(s, t)=\vec{r}(\vec{G}(s, t))$ are reparametrisation data, then $\iint_{\vec{r}(T)} \vec{F} \cdot \overrightarrow{d A}=$ $\iint_{T} \vec{F} .\left(\vec{r}_{u} \times \vec{r}_{v}\right) d u d v=\iint_{T^{\prime}} \vec{F} .\left(\vec{r}_{u} \times \vec{r}_{v}\right)|J| d s d t$. However, $\vec{R}_{s} \times \vec{R}_{t}=\left(\vec{r}_{u} \times \vec{r}_{v}\right) J$. Therefore, there is a sign discrepancy. If $J>0$ throughout, then $|J|=J$ and the flux integral is reparametrisation invariant. If $J<0$ throughout, then the flux changes sign.

Reparametrisation invariance and an example

- As before, if $\vec{G}(s, t), \vec{R}(s, t)=\vec{r}(\vec{G}(s, t))$ are reparametrisation data, then $\iint_{\vec{r}(T)} \vec{F} \cdot \overrightarrow{d A}=$ $\iint_{T} \vec{F} .\left(\vec{r}_{u} \times \vec{r}_{v}\right) d u d v=\iint_{T^{\prime}} \vec{F} .\left(\vec{r}_{u} \times \vec{r}_{v}\right)|J| d s d t$. However, $\vec{R}_{s} \times \vec{R}_{t}=\left(\vec{r}_{u} \times \vec{r}_{v}\right) \mathrm{J}$. Therefore, there is a sign discrepancy. If $J>0$ throughout, then $|J|=J$ and the flux integral is reparametrisation invariant. If $J<0$ throughout, then the flux changes sign. The choice (outward vs inward) of normal

Reparametrisation invariance and an example

- As before, if $\vec{G}(s, t), \vec{R}(s, t)=\vec{r}(\vec{G}(s, t))$ are reparametrisation data, then $\iint_{\vec{r}(T)} \vec{F} \cdot \overrightarrow{d A}=$ $\iint_{T} \vec{F} .\left(\vec{r}_{u} \times \vec{r}_{v}\right) d u d v=\iint_{T^{\prime}} \vec{F} .\left(\vec{r}_{u} \times \vec{r}_{v}\right)|J| d s d t$. However, $\vec{R}_{s} \times \vec{R}_{t}=\left(\vec{r}_{u} \times \vec{r}_{v}\right) J$. Therefore, there is a sign discrepancy. If $J>0$ throughout, then $|J|=J$ and the flux integral is reparametrisation invariant. If $J<0$ throughout, then the flux changes sign. The choice (outward vs inward) of normal is thus important (

Reparametrisation invariance and an example

- As before, if $\vec{G}(s, t), \vec{R}(s, t)=\vec{r}(\vec{G}(s, t))$ are reparametrisation data, then $\iint_{\vec{r}(T)} \vec{F} \cdot \overrightarrow{d A}=$ $\iint_{T} \vec{F} .\left(\vec{r}_{u} \times \vec{r}_{v}\right) d u d v=\iint_{T^{\prime}} \vec{F} .\left(\vec{r}_{u} \times \vec{r}_{v}\right)|J| d s d t$. However, $\vec{R}_{s} \times \vec{R}_{t}=\left(\vec{r}_{u} \times \vec{r}_{v}\right) J$. Therefore, there is a sign discrepancy. If $J>0$ throughout, then $|J|=J$ and the flux integral is reparametrisation invariant. If $J<0$ throughout, then the flux changes sign. The choice (outward vs inward) of normal is thus important (akin to the vector line integral).

Reparametrisation invariance and an example

- As before, if $\vec{G}(s, t), \vec{R}(s, t)=\vec{r}(\vec{G}(s, t))$ are reparametrisation data, then $\iint_{\vec{r}(T)} \vec{F} \cdot \overrightarrow{d A}=$ $\iint_{T} \vec{F} .\left(\vec{r}_{u} \times \vec{r}_{v}\right) d u d v=\iint_{T^{\prime}} \vec{F} .\left(\vec{r}_{u} \times \vec{r}_{v}\right)|J| d s d t$. However, $\vec{R}_{s} \times \vec{R}_{t}=\left(\vec{r}_{u} \times \vec{r}_{v}\right) J$. Therefore, there is a sign discrepancy. If $J>0$ throughout, then $|J|=J$ and the flux integral is reparametrisation invariant. If $J<0$ throughout, then the flux changes sign. The choice (outward vs inward) of normal is thus important (akin to the vector line integral).
- Let S be the unit upper hemisphere

Reparametrisation invariance and an example

- As before, if $\vec{G}(s, t), \vec{R}(s, t)=\vec{r}(\vec{G}(s, t))$ are reparametrisation data, then $\iint_{\vec{r}(T)} \vec{F} \cdot \overrightarrow{d A}=$ $\iint_{T} \vec{F} .\left(\vec{r}_{u} \times \vec{r}_{v}\right) d u d v=\iint_{T^{\prime}} \vec{F} .\left(\vec{r}_{u} \times \vec{r}_{v}\right)|J| d s d t$. However, $\vec{R}_{s} \times \vec{R}_{t}=\left(\vec{r}_{u} \times \vec{r}_{v}\right) J$. Therefore, there is a sign discrepancy. If $J>0$ throughout, then $|J|=J$ and the flux integral is reparametrisation invariant. If $J<0$ throughout, then the flux changes sign. The choice (outward vs inward) of normal is thus important (akin to the vector line integral).
- Let S be the unit upper hemisphere parametrised by $(\sin (u) \cos (v), \sin (u) \sin (v), \cos (u))$ where $(u, v) \in T=\left[0, \frac{\pi}{2}\right] \times[0,2 \pi]$.

Reparametrisation invariance and an example

- As before, if $\vec{G}(s, t), \vec{R}(s, t)=\vec{r}(\vec{G}(s, t))$ are reparametrisation data, then $\iint_{\vec{r}(T)} \vec{F} \cdot \overrightarrow{d A}=$ $\iint_{T} \vec{F} .\left(\vec{r}_{u} \times \vec{r}_{v}\right) d u d v=\iint_{T^{\prime}} \vec{F} .\left(\vec{r}_{u} \times \vec{r}_{v}\right)|J| d s d t$. However, $\vec{R}_{s} \times \vec{R}_{t}=\left(\vec{r}_{u} \times \vec{r}_{v}\right) J$. Therefore, there is a sign discrepancy. If $J>0$ throughout, then $|J|=J$ and the flux integral is reparametrisation invariant. If $J<0$ throughout, then the flux changes sign. The choice (outward vs inward) of normal is thus important (akin to the vector line integral).
- Let S be the unit upper hemisphere parametrised by $(\sin (u) \cos (v), \sin (u) \sin (v), \cos (u))$ where $(u, v) \in T=\left[0, \frac{\pi}{2}\right] \times[0,2 \pi]$. Then $\vec{r}_{u} \times \vec{r}_{v}=\sin (u)(\sin (u) \cos (v), \sin (u) \sin (v), \cos (u))$.

Reparametrisation invariance and an example

- As before, if $\vec{G}(s, t), \vec{R}(s, t)=\vec{r}(\vec{G}(s, t))$ are reparametrisation data, then $\iint_{\vec{r}(T)} \vec{F} \cdot \overrightarrow{d A}=$ $\iint_{T} \vec{F} .\left(\vec{r}_{u} \times \vec{r}_{v}\right) d u d v=\iint_{T^{\prime}} \vec{F} .\left(\vec{r}_{u} \times \vec{r}_{v}\right)|J| d s d t$. However, $\vec{R}_{s} \times \vec{R}_{t}=\left(\vec{r}_{u} \times \vec{r}_{v}\right) J$. Therefore, there is a sign discrepancy. If $J>0$ throughout, then $|J|=J$ and the flux integral is reparametrisation invariant. If $J<0$ throughout, then the flux changes sign. The choice (outward vs inward) of normal is thus important (akin to the vector line integral).
- Let S be the unit upper hemisphere parametrised by $(\sin (u) \cos (v), \sin (u) \sin (v), \cos (u))$ where $(u, v) \in T=\left[0, \frac{\pi}{2}\right] \times[0,2 \pi]$. Then $\vec{r}_{u} \times \vec{r}_{v}=\sin (u)(\sin (u) \cos (v), \sin (u) \sin (v), \cos (u))$. Let $\vec{F}=x \hat{i}+y \hat{j}$. The flux of \vec{F}

Reparametrisation invariance and an example

- As before, if $\vec{G}(s, t), \vec{R}(s, t)=\vec{r}(\vec{G}(s, t))$ are reparametrisation data, then $\iint_{\vec{r}(T)} \vec{F} \cdot \overrightarrow{d A}=$ $\iint_{T} \vec{F} .\left(\vec{r}_{u} \times \vec{r}_{v}\right) d u d v=\iint_{T^{\prime}} \vec{F} .\left(\vec{r}_{u} \times \vec{r}_{v}\right)|J| d s d t$. However, $\vec{R}_{s} \times \vec{R}_{t}=\left(\vec{r}_{u} \times \vec{r}_{v}\right) J$. Therefore, there is a sign discrepancy. If $J>0$ throughout, then $|J|=J$ and the flux integral is reparametrisation invariant. If $J<0$ throughout, then the flux changes sign. The choice (outward vs inward) of normal is thus important (akin to the vector line integral).
- Let S be the unit upper hemisphere parametrised by $(\sin (u) \cos (v), \sin (u) \sin (v), \cos (u))$ where $(u, v) \in T=\left[0, \frac{\pi}{2}\right] \times[0,2 \pi]$. Then $\vec{r}_{u} \times \vec{r}_{V}=\sin (u)(\sin (u) \cos (v), \sin (u) \sin (v), \cos (u))$. Let $\vec{F}=x \hat{i}+y \hat{j}$. The flux of \vec{F} across S is

Reparametrisation invariance and an example

- As before, if $\vec{G}(s, t), \vec{R}(s, t)=\vec{r}(\vec{G}(s, t))$ are reparametrisation data, then $\iint_{\vec{r}(T)} \vec{F} \cdot \overrightarrow{d A}=$ $\iint_{T} \vec{F} .\left(\vec{r}_{u} \times \vec{r}_{v}\right) d u d v=\iint_{T^{\prime}} \vec{F} .\left(\vec{r}_{u} \times \vec{r}_{v}\right)|J| d s d t$. However, $\vec{R}_{s} \times \vec{R}_{t}=\left(\vec{r}_{u} \times \vec{r}_{v}\right) J$. Therefore, there is a sign discrepancy. If $J>0$ throughout, then $|J|=J$ and the flux integral is reparametrisation invariant. If $J<0$ throughout, then the flux changes sign. The choice (outward vs inward) of normal is thus important (akin to the vector line integral).
- Let S be the unit upper hemisphere parametrised by $(\sin (u) \cos (v), \sin (u) \sin (v), \cos (u))$ where $(u, v) \in T=\left[0, \frac{\pi}{2}\right] \times[0,2 \pi]$. Then $\vec{r}_{u} \times \vec{r}_{V}=\sin (u)(\sin (u) \cos (v), \sin (u) \sin (v), \cos (u))$. Let $\vec{F}=x \hat{i}+y \hat{j}$. The flux of \vec{F} across S is $\int_{0}^{2 \pi} \int_{0}^{\pi / 2} \sin ^{3}(u) d v d u=0$.

A prelude to Stokes' theorem

- Recall the one-variable FTC:

A prelude to Stokes' theorem

- Recall the one-variable FTC: $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$.

A prelude to Stokes' theorem

- Recall the one-variable FTC: $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$. Can we generalise it to

A prelude to Stokes' theorem

- Recall the one-variable FTC: $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$. Can we generalise it to regular curves?

A prelude to Stokes' theorem

- Recall the one-variable FTC: $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$. Can we generalise it to regular curves? Indeed we can:

A prelude to Stokes' theorem

- Recall the one-variable FTC: $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$. Can we generalise it to regular curves? Indeed we can: Let f be a C^{1} function defined in a neighbourhood of

A prelude to Stokes' theorem

- Recall the one-variable FTC: $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$. Can we generalise it to regular curves? Indeed we can: Let f be a C^{1} function defined in a neighbourhood of a regular parametrised curve $\vec{r}(t)$.

A prelude to Stokes' theorem

- Recall the one-variable FTC: $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$. Can we generalise it to regular curves? Indeed we can: Let f be a C^{1} function defined in a neighbourhood of a regular parametrised curve $\vec{r}(t)$. Then $\int_{a}^{b} \frac{d f}{d t} d t=f(b)-f(a)$ by the usual FTC.

A prelude to Stokes' theorem

- Recall the one-variable FTC: $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$. Can we generalise it to regular curves? Indeed we can: Let f be a C^{1} function defined in a neighbourhood of a regular parametrised curve $\vec{r}(t)$. Then $\int_{a}^{b} \frac{d f}{d t} d t=f(b)-f(a)$ by the usual FTC. Now $\frac{d f}{d t}=\left\langle\nabla f, \vec{r}^{\prime}(t)\right\rangle$. Thus

A prelude to Stokes' theorem

- Recall the one-variable FTC: $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$. Can we generalise it to regular curves? Indeed we can: Let f be a C^{1} function defined in a neighbourhood of a regular parametrised curve $\vec{r}(t)$. Then $\int_{a}^{b} \frac{d f}{d t} d t=f(b)-f(a)$ by the usual FTC. Now $\frac{d f}{d t}=\left\langle\nabla f, \vec{r}^{\prime}(t)\right\rangle$. Thus

$$
\int_{a}^{b}\left\langle\nabla f(\vec{r}(t)), \vec{r}^{\prime}(t)\right\rangle d t=f(b)-f(a), \text { i.e., }
$$

A prelude to Stokes' theorem

- Recall the one-variable FTC: $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$. Can we generalise it to regular curves? Indeed we can: Let f be a C^{1} function defined in a neighbourhood of a regular parametrised curve $\vec{r}(t)$. Then $\int_{a}^{b} \frac{d f}{d t} d t=f(b)-f(a)$ by the usual FTC. Now $\frac{d f}{d t}=\left\langle\nabla f, \vec{r}^{\prime}(t)\right\rangle$. Thus

$$
\begin{aligned}
& \int_{a}^{b}\left\langle\nabla f(\vec{r}(t)), \vec{r}^{\prime}(t)\right\rangle d t=f(b)-f(a), \text { i.e., } \\
& \int \nabla f . d \vec{r}=f(b)-f(a) .
\end{aligned}
$$

A prelude to Stokes' theorem

- Recall the one-variable FTC: $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$. Can we generalise it to regular curves? Indeed we can: Let f be a C^{1} function defined in a neighbourhood of a regular parametrised curve $\vec{r}(t)$. Then $\int_{a}^{b} \frac{d f}{d t} d t=f(b)-f(a)$ by the usual FTC. Now $\frac{d f}{d t}=\left\langle\nabla f, \vec{r}^{\prime}(t)\right\rangle$. Thus

$$
\begin{aligned}
& \int_{a}^{b}\left\langle\nabla f(\vec{r}(t)), \vec{r}^{\prime}(t)\right\rangle d t=f(b)-f(a) \text {, i.e., } \\
& \int \nabla f . d \vec{r}=f(b)-f(a) . \text { This integral }
\end{aligned}
$$

A prelude to Stokes' theorem

- Recall the one-variable FTC: $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$. Can we generalise it to regular curves? Indeed we can: Let f be a C^{1} function defined in a neighbourhood of a regular parametrised curve $\vec{r}(t)$. Then $\int_{a}^{b} \frac{d f}{d t} d t=f(b)-f(a)$ by the usual FTC. Now $\frac{d f}{d t}=\left\langle\nabla f, \vec{r}^{\prime}(t)\right\rangle$. Thus
$\int_{a}^{b}\left\langle\nabla f(\vec{r}(t)), \vec{r}^{\prime}(t)\right\rangle d t=f(b)-f(a)$, i.e., $\int \nabla f . d \vec{r}=f(b)-f(a)$. This integral depends only on the end-points of the curve! (

A prelude to Stokes' theorem

- Recall the one-variable FTC: $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$. Can we generalise it to regular curves? Indeed we can: Let f be a C^{1} function defined in a neighbourhood of a regular parametrised curve $\vec{r}(t)$. Then $\int_{a}^{b} \frac{d f}{d t} d t=f(b)-f(a)$ by the usual FTC. Now $\frac{d f}{d t}=\left\langle\nabla f, \vec{r}^{\prime}(t)\right\rangle$. Thus
$\int_{a}^{b}\left\langle\nabla f(\vec{r}(t)), \vec{r}^{\prime}(t)\right\rangle d t=f(b)-f(a)$, i.e.,
$\int \nabla f . d \vec{r}=f(b)-f(a)$. This integral depends only on the end-points of the curve! (as opposed to the curve itself).

A prelude to Stokes' theorem

- Recall the one-variable FTC: $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$. Can we generalise it to regular curves? Indeed we can: Let f be a C^{1} function defined in a neighbourhood of a regular parametrised curve $\vec{r}(t)$. Then $\int_{a}^{b} \frac{d f}{d t} d t=f(b)-f(a)$ by the usual FTC. Now $\frac{d f}{d t}=\left\langle\nabla f, \vec{r}^{\prime}(t)\right\rangle$. Thus
$\int_{a}^{b}\left\langle\nabla f(\vec{r}(t)), \vec{r}^{\prime}(t)\right\rangle d t=f(b)-f(a)$, i.e., $\int \nabla f . d \vec{r}=f(b)-f(a)$. This integral depends only on the end-points of the curve! (as opposed to the curve itself).
- Conversely,

A prelude to Stokes' theorem

- Recall the one-variable FTC: $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$. Can we generalise it to regular curves? Indeed we can: Let f be a C^{1} function defined in a neighbourhood of a regular parametrised curve $\vec{r}(t)$. Then $\int_{a}^{b} \frac{d f}{d t} d t=f(b)-f(a)$ by the usual FTC. Now $\frac{d f}{d t}=\left\langle\nabla f, \vec{r}^{\prime}(t)\right\rangle$. Thus
$\int_{a}^{b}\left\langle\nabla f(\vec{r}(t)), \vec{r}^{\prime}(t)\right\rangle d t=f(b)-f(a)$, i.e., $\int \nabla f . d \vec{r}=f(b)-f(a)$. This integral depends only on the end-points of the curve! (as opposed to the curve itself).
- Conversely, suppose the line integral of

A prelude to Stokes' theorem

- Recall the one-variable FTC: $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$. Can we generalise it to regular curves? Indeed we can: Let f be a C^{1} function defined in a neighbourhood of a regular parametrised curve $\vec{r}(t)$. Then $\int_{a}^{b} \frac{d f}{d t} d t=f(b)-f(a)$ by the usual FTC. Now $\frac{d f}{d t}=\left\langle\nabla f, \vec{r}^{\prime}(t)\right\rangle$. Thus $\int_{a}^{b}\left\langle\nabla f(\vec{r}(t)), \vec{r}^{\prime}(t)\right\rangle d t=f(b)-f(a)$, i.e., $\int \nabla f . d \vec{r}=f(b)-f(a)$. This integral depends only on the end-points of the curve! (as opposed to the curve itself).
- Conversely, suppose the line integral of a vector field \vec{F} on an open connected set

A prelude to Stokes' theorem

- Recall the one-variable FTC: $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$. Can we generalise it to regular curves? Indeed we can: Let f be a C^{1} function defined in a neighbourhood of a regular parametrised curve $\vec{r}(t)$. Then $\int_{a}^{b} \frac{d f}{d t} d t=f(b)-f(a)$ by the usual FTC. Now $\frac{d f}{d t}=\left\langle\nabla f, \vec{r}^{\prime}(t)\right\rangle$. Thus $\int_{a}^{b}\left\langle\nabla f(\vec{r}(t)), \vec{r}^{\prime}(t)\right\rangle d t=f(b)-f(a)$, i.e., $\int \nabla f . d \vec{r}=f(b)-f(a)$. This integral depends only on the end-points of the curve! (as opposed to the curve itself).
- Conversely, suppose the line integral of a vector field \vec{F} on an open connected set depends only on

A prelude to Stokes' theorem

- Recall the one-variable FTC: $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$. Can we generalise it to regular curves? Indeed we can: Let f be a C^{1} function defined in a neighbourhood of a regular parametrised curve $\vec{r}(t)$. Then $\int_{a}^{b} \frac{d f}{d t} d t=f(b)-f(a)$ by the usual FTC. Now $\frac{d f}{d t}=\left\langle\nabla f, \vec{r}^{\prime}(t)\right\rangle$. Thus $\int_{a}^{b}\left\langle\nabla f(\vec{r}(t)), \vec{r}^{\prime}(t)\right\rangle d t=f(b)-f(a)$, i.e., $\int \nabla f . d \vec{r}=f(b)-f(a)$. This integral depends only on the end-points of the curve! (as opposed to the curve itself).
- Conversely, suppose the line integral of a vector field \vec{F} on an open connected set depends only on the endpoints of the path

A prelude to Stokes' theorem

- Recall the one-variable FTC: $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$. Can we generalise it to regular curves? Indeed we can: Let f be a C^{1} function defined in a neighbourhood of a regular parametrised curve $\vec{r}(t)$. Then $\int_{a}^{b} \frac{d f}{d t} d t=f(b)-f(a)$ by the usual FTC. Now $\frac{d f}{d t}=\left\langle\nabla f, \vec{r}^{\prime}(t)\right\rangle$. Thus $\int_{a}^{b}\left\langle\nabla f(\vec{r}(t)), \vec{r}^{\prime}(t)\right\rangle d t=f(b)-f(a)$, i.e., $\int \nabla f . d \vec{r}=f(b)-f(a)$. This integral depends only on the end-points of the curve! (as opposed to the curve itself).
- Conversely, suppose the line integral of a vector field \vec{F} on an open connected set depends only on the endpoints of the path and not on the path itself (

A prelude to Stokes' theorem

- Recall the one-variable FTC: $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$. Can we generalise it to regular curves? Indeed we can: Let f be a C^{1} function defined in a neighbourhood of a regular parametrised curve $\vec{r}(t)$. Then $\int_{a}^{b} \frac{d f}{d t} d t=f(b)-f(a)$ by the usual FTC. Now $\frac{d f}{d t}=\left\langle\nabla f, \vec{r}^{\prime}(t)\right\rangle$. Thus $\int_{a}^{b}\left\langle\nabla f(\vec{r}(t)), \vec{r}^{\prime}(t)\right\rangle d t=f(b)-f(a)$, i.e., $\int \nabla f . d \vec{r}=f(b)-f(a)$. This integral depends only on the end-points of the curve! (as opposed to the curve itself).
- Conversely, suppose the line integral of a vector field \vec{F} on an open connected set depends only on the endpoints of the path and not on the path itself (a conservative vector field),

A prelude to Stokes' theorem

- Recall the one-variable FTC: $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$. Can we generalise it to regular curves? Indeed we can: Let f be a C^{1} function defined in a neighbourhood of a regular parametrised curve $\vec{r}(t)$. Then $\int_{a}^{b} \frac{d f}{d t} d t=f(b)-f(a)$ by the usual FTC. Now $\frac{d f}{d t}=\left\langle\nabla f, \vec{r}^{\prime}(t)\right\rangle$. Thus
$\int_{a}^{b}\left\langle\nabla f(\vec{r}(t)), \vec{r}^{\prime}(t)\right\rangle d t=f(b)-f(a)$, i.e., $\int \nabla f . d \vec{r}=f(b)-f(a)$. This integral depends only on the end-points of the curve! (as opposed to the curve itself).
- Conversely, suppose the line integral of a vector field \vec{F} on an open connected set depends only on the endpoints of the path and not on the path itself (a conservative vector field), then (let's restrict to \mathbb{R}^{3} for simplicity) define $\phi(x, y, z)=\int_{\left(x_{0}, y_{0}, z_{0}\right)}^{(x, y, z)} \vec{F} . \overrightarrow{d r}$.

A prelude to Stokes' theorem

- Recall the one-variable FTC: $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$. Can we generalise it to regular curves? Indeed we can: Let f be a C^{1} function defined in a neighbourhood of a regular parametrised curve $\vec{r}(t)$. Then $\int_{a}^{b} \frac{d f}{d t} d t=f(b)-f(a)$ by the usual FTC. Now $\frac{d f}{d t}=\left\langle\nabla f, \vec{r}^{\prime}(t)\right\rangle$. Thus
$\int_{a}^{b}\left\langle\nabla f(\vec{r}(t)), \vec{r}^{\prime}(t)\right\rangle d t=f(b)-f(a)$, i.e., $\int \nabla f . d \vec{r}=f(b)-f(a)$. This integral depends only on the end-points of the curve! (as opposed to the curve itself).
- Conversely, suppose the line integral of a vector field \vec{F} on an open connected set depends only on the endpoints of the path and not on the path itself (a conservative vector field), then (let's restrict to \mathbb{R}^{3} for simplicity) define $\phi(x, y, z)=\int_{\left(x_{0}, y_{0}, z_{0}\right)}^{(x, y, z)} \vec{F} \cdot \overrightarrow{d r}$.
$\phi(x+h, y, z)-\phi(x, y, z)=\int_{(x, y, z)}^{(x+h, y, z)} \vec{F} . \overrightarrow{d r}$ along a straight line.

A prelude to Stokes' theorem

- Recall the one-variable FTC: $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$. Can we generalise it to regular curves? Indeed we can: Let f be a C^{1} function defined in a neighbourhood of a regular parametrised curve $\vec{r}(t)$. Then $\int_{a}^{b} \frac{d f}{d t} d t=f(b)-f(a)$ by the usual FTC. Now $\frac{d f}{d t}=\left\langle\nabla f, \vec{r}^{\prime}(t)\right\rangle$. Thus
$\int_{a}^{b}\left\langle\nabla f(\vec{r}(t)), \vec{r}^{\prime}(t)\right\rangle d t=f(b)-f(a)$, i.e., $\int \nabla f . d \vec{r}=f(b)-f(a)$. This integral depends only on the end-points of the curve! (as opposed to the curve itself).
- Conversely, suppose the line integral of a vector field \vec{F} on an open connected set depends only on the endpoints of the path and not on the path itself (a conservative vector field), then (let's restrict to \mathbb{R}^{3} for simplicity) define $\phi(x, y, z)=\int_{\left(x_{0}, y_{0}, z_{0}\right)}^{(x, y, z)} \vec{F} \cdot \overrightarrow{d r}$.
$\phi(x+h, y, z)-\phi(x, y, z)=\int_{(x, y, z)}^{(x+h, y, z)} \vec{F} \cdot \overrightarrow{d r}$ along a straight line. Thus, $\phi_{x}=F_{1}$ by the FTC.

A prelude to Stokes' theorem

- Recall the one-variable FTC: $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$. Can we generalise it to regular curves? Indeed we can: Let f be a C^{1} function defined in a neighbourhood of a regular parametrised curve $\vec{r}(t)$. Then $\int_{a}^{b} \frac{d f}{d t} d t=f(b)-f(a)$ by the usual FTC. Now $\frac{d f}{d t}=\left\langle\nabla f, \vec{r}^{\prime}(t)\right\rangle$. Thus $\int_{a}^{b}\left\langle\nabla f(\vec{r}(t)), \vec{r}^{\prime}(t)\right\rangle d t=f(b)-f(a)$, i.e., $\int \nabla f . d \vec{r}=f(b)-f(a)$. This integral depends only on the end-points of the curve! (as opposed to the curve itself).
- Conversely, suppose the line integral of a vector field \vec{F} on an open connected set depends only on the endpoints of the path and not on the path itself (a conservative vector field), then (let's restrict to \mathbb{R}^{3} for simplicity) define $\phi(x, y, z)=\int_{\left(x_{0}, y_{0}, z_{0}\right)}^{(x, y, z)} \vec{F} \cdot \overrightarrow{d r}$.
$\phi(x+h, y, z)-\phi(x, y, z)=\int_{(x, y, z)}^{(x+h, y, z)} \vec{F} . \overrightarrow{d r}$ along a straight line. Thus, $\phi_{x}=F_{1}$ by the FTC. Likewise, for the other components and hence

A prelude to Stokes' theorem

- Recall the one-variable FTC: $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$. Can we generalise it to regular curves? Indeed we can: Let f be a C^{1} function defined in a neighbourhood of a regular parametrised curve $\vec{r}(t)$. Then $\int_{a}^{b} \frac{d f}{d t} d t=f(b)-f(a)$ by the usual FTC. Now $\frac{d f}{d t}=\left\langle\nabla f, \vec{r}^{\prime}(t)\right\rangle$. Thus $\int_{a}^{b}\left\langle\nabla f(\vec{r}(t)), \vec{r}^{\prime}(t)\right\rangle d t=f(b)-f(a)$, i.e., $\int \nabla f . d \vec{r}=f(b)-f(a)$. This integral depends only on the end-points of the curve! (as opposed to the curve itself).
- Conversely, suppose the line integral of a vector field \vec{F} on an open connected set depends only on the endpoints of the path and not on the path itself (a conservative vector field), then (let's restrict to \mathbb{R}^{3} for simplicity) define $\phi(x, y, z)=\int_{\left(x_{0}, y_{0}, z_{0}\right)}^{(x, y, z)} \vec{F} \cdot \overrightarrow{d r}$.
$\phi(x+h, y, z)-\phi(x, y, z)=\int_{(x, y, z)}^{(x+h, y, z)} \vec{F} . \overrightarrow{d r}$ along a straight line. Thus, $\phi_{x}=F_{1}$ by the FTC. Likewise, for the other components and hence $\vec{F}=\nabla \phi$.

A prelude to Stokes' theorem

- Recall the one-variable FTC: $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$. Can we generalise it to regular curves? Indeed we can: Let f be a C^{1} function defined in a neighbourhood of a regular parametrised curve $\vec{r}(t)$. Then $\int_{a}^{b} \frac{d f}{d t} d t=f(b)-f(a)$ by the usual FTC. Now $\frac{d f}{d t}=\left\langle\nabla f, \vec{r}^{\prime}(t)\right\rangle$. Thus $\int_{a}^{b}\left\langle\nabla f(\vec{r}(t)), \vec{r}^{\prime}(t)\right\rangle d t=f(b)-f(a)$, i.e., $\int \nabla f . d \vec{r}=f(b)-f(a)$. This integral depends only on the end-points of the curve! (as opposed to the curve itself).
- Conversely, suppose the line integral of a vector field \vec{F} on an open connected set depends only on the endpoints of the path and not on the path itself (a conservative vector field), then (let's restrict to \mathbb{R}^{3} for simplicity) define $\phi(x, y, z)=\int_{\left(x_{0}, y_{0}, z_{0}\right)}^{(x, y, z)} \vec{F} \cdot \overrightarrow{d r}$.
$\phi(x+h, y, z)-\phi(x, y, z)=\int_{(x, y, z)}^{(x+h, y, z)} \vec{F} . \overrightarrow{d r}$ along a straight line. Thus, $\phi_{x}=F_{1}$ by the FTC. Likewise, for the other components and hence $\vec{F}=\nabla \phi$. Such a ϕ is called a

A prelude to Stokes' theorem

- Recall the one-variable FTC: $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$. Can we generalise it to regular curves? Indeed we can: Let f be a C^{1} function defined in a neighbourhood of a regular parametrised curve $\vec{r}(t)$. Then $\int_{a}^{b} \frac{d f}{d t} d t=f(b)-f(a)$ by the usual FTC. Now $\frac{d f}{d t}=\left\langle\nabla f, \vec{r}^{\prime}(t)\right\rangle$. Thus $\int_{a}^{b}\left\langle\nabla f(\vec{r}(t)), \vec{r}^{\prime}(t)\right\rangle d t=f(b)-f(a)$, i.e., $\int \nabla f . d \vec{r}=f(b)-f(a)$. This integral depends only on the end-points of the curve! (as opposed to the curve itself).
- Conversely, suppose the line integral of a vector field \vec{F} on an open connected set depends only on the endpoints of the path and not on the path itself (a conservative vector field), then (let's restrict to \mathbb{R}^{3} for simplicity) define $\phi(x, y, z)=\int_{\left(x_{0}, y_{0}, z_{0}\right)}^{(x, y, z)} \vec{F} \cdot \overrightarrow{d r}$.
$\phi(x+h, y, z)-\phi(x, y, z)=\int_{(x, y, z)}^{(x+h, y, z)} \vec{F} . \overrightarrow{d r}$ along a straight line. Thus, $\phi_{x}=F_{1}$ by the FTC. Likewise, for the other components and hence $\vec{F}=\nabla \phi$. Such a ϕ is called a potential for \vec{F}.

Stokes' theorem

Stokes' theorem

- We want to generalise

Stokes' theorem

- We want to generalise Green's theorem to integrals over surfaces (

Stokes' theorem

- We want to generalise Green's theorem to integrals over surfaces (akin to the 1D prelude above).

Stokes' theorem

- We want to generalise Green's theorem to integrals over surfaces (akin to the 1D prelude above).
- Theorem:

Stokes' theorem

- We want to generalise Green's theorem to integrals over surfaces (akin to the 1D prelude above).
- Theorem: Let S be a C^{1} regular parametrised surface $S=\vec{r}(T)$ where
- We want to generalise Green's theorem to integrals over surfaces (akin to the 1D prelude above).
- Theorem: Let S be a C^{1} regular parametrised surface $S=\vec{r}(T)$ where $T \subset \mathbb{R}^{2}$ is an open set in
- We want to generalise Green's theorem to integrals over surfaces (akin to the 1D prelude above).
- Theorem: Let S be a C^{1} regular parametrised surface $S=\vec{r}(T)$ where $T \subset \mathbb{R}^{2}$ is an open set in $u-v$ plane bounded by a regular simple closed curve I.
- We want to generalise Green's theorem to integrals over surfaces (akin to the 1D prelude above).
- Theorem: Let S be a C^{1} regular parametrised surface $S=\vec{r}(T)$ where $T \subset \mathbb{R}^{2}$ is an open set in $u-v$ plane bounded by a regular simple closed curve I. Assume that \vec{r} is actually
- We want to generalise Green's theorem to integrals over surfaces (akin to the 1D prelude above).
- Theorem: Let S be a C^{1} regular parametrised surface $S=\vec{r}(T)$ where $T \subset \mathbb{R}^{2}$ is an open set in $u-v$ plane bounded by a regular simple closed curve I. Assume that \vec{r} is actually C^{2} on an open set containing $T \cup I$.
- We want to generalise Green's theorem to integrals over surfaces (akin to the 1D prelude above).
- Theorem: Let S be a C^{1} regular parametrised surface $S=\vec{r}(T)$ where $T \subset \mathbb{R}^{2}$ is an open set in $u-v$ plane bounded by a regular simple closed curve I. Assume that \vec{r} is actually C^{2} on an open set containing $T \cup I$. Let C be the curve $\vec{r}(I)$.
- We want to generalise Green's theorem to integrals over surfaces (akin to the 1D prelude above).
- Theorem: Let S be a C^{1} regular parametrised surface $S=\vec{r}(T)$ where $T \subset \mathbb{R}^{2}$ is an open set in $u-v$ plane bounded by a regular simple closed curve I. Assume that \vec{r} is actually C^{2} on an open set containing $T \cup I$. Let C be the curve $\vec{r}(I)$. Let P, Q, R be C^{1} scalar fields on S.
- We want to generalise Green's theorem to integrals over surfaces (akin to the 1D prelude above).
- Theorem: Let S be a C^{1} regular parametrised surface $S=\vec{r}(T)$ where $T \subset \mathbb{R}^{2}$ is an open set in $u-v$ plane bounded by a regular simple closed curve I. Assume that \vec{r} is actually C^{2} on an open set containing $T \cup I$. Let C be the curve $\vec{r}(I)$. Let P, Q, R be C^{1} scalar fields on S. Let $\vec{F}=(P, Q, R)$ and $\nabla \times \vec{F}=\left(R_{y}-Q_{z}, P_{z}-R_{x}, Q_{x}-P_{y}\right)$.
- We want to generalise Green's theorem to integrals over surfaces (akin to the 1D prelude above).
- Theorem: Let S be a C^{1} regular parametrised surface $S=\vec{r}(T)$ where $T \subset \mathbb{R}^{2}$ is an open set in $u-v$ plane bounded by a regular simple closed curve I. Assume that \vec{r} is actually C^{2} on an open set containing $T \cup I$. Let C be the curve $\vec{r}(I)$. Let P, Q, R be C^{1} scalar fields on S. Let $\vec{F}=(P, Q, R)$ and $\nabla \times \vec{F}=\left(R_{y}-Q_{z}, P_{z}-R_{x}, Q_{x}-P_{y}\right)$. Suppose C is oriented such that
- We want to generalise Green's theorem to integrals over surfaces (akin to the 1D prelude above).
- Theorem: Let S be a C^{1} regular parametrised surface $S=\vec{r}(T)$ where $T \subset \mathbb{R}^{2}$ is an open set in $u-v$ plane bounded by a regular simple closed curve I. Assume that \vec{r} is actually C^{2} on an open set containing $T \cup I$. Let C be the curve $\vec{r}(I)$. Let P, Q, R be C^{1} scalar fields on S. Let $\vec{F}=(P, Q, R)$ and $\nabla \times \vec{F}=\left(R_{y}-Q_{z}, P_{z}-R_{x}, Q_{x}-P_{y}\right)$. Suppose C is oriented such that the surface lies on its left.
- We want to generalise Green's theorem to integrals over surfaces (akin to the 1D prelude above).
- Theorem: Let S be a C^{1} regular parametrised surface $S=\vec{r}(T)$ where $T \subset \mathbb{R}^{2}$ is an open set in $u-v$ plane bounded by a regular simple closed curve I. Assume that \vec{r} is actually C^{2} on an open set containing $T \cup I$. Let C be the curve $\vec{r}(I)$. Let P, Q, R be C^{1} scalar fields on S. Let $\vec{F}=(P, Q, R)$ and $\nabla \times \vec{F}=\left(R_{y}-Q_{z}, P_{z}-R_{x}, Q_{x}-P_{y}\right)$. Suppose C is oriented such that the surface lies on its left. Then $\iint_{S}(\nabla \times \vec{F}) \cdot \overrightarrow{d A}=\int_{C} \vec{F} \cdot \overrightarrow{d r}$.
- We want to generalise Green's theorem to integrals over surfaces (akin to the 1D prelude above).
- Theorem: Let S be a C^{1} regular parametrised surface $S=\vec{r}(T)$ where $T \subset \mathbb{R}^{2}$ is an open set in $u-v$ plane bounded by a regular simple closed curve I. Assume that \vec{r} is actually C^{2} on an open set containing $T \cup I$. Let C be the curve $\vec{r}(I)$. Let P, Q, R be C^{1} scalar fields on S. Let $\vec{F}=(P, Q, R)$ and $\nabla \times \vec{F}=\left(R_{y}-Q_{z}, P_{z}-R_{x}, Q_{x}-P_{y}\right)$. Suppose C is oriented such that the surface lies on its left. Then $\iint_{S}(\nabla \times \vec{F}) \cdot \overrightarrow{d A}=\int_{C} \vec{F} \cdot \overrightarrow{d r}$.
- The line integral
- We want to generalise Green's theorem to integrals over surfaces (akin to the 1D prelude above).
- Theorem: Let S be a C^{1} regular parametrised surface $S=\vec{r}(T)$ where $T \subset \mathbb{R}^{2}$ is an open set in $u-v$ plane bounded by a regular simple closed curve I. Assume that \vec{r} is actually C^{2} on an open set containing $T \cup I$. Let C be the curve $\vec{r}(I)$. Let P, Q, R be C^{1} scalar fields on S. Let $\vec{F}=(P, Q, R)$ and $\nabla \times \vec{F}=\left(R_{y}-Q_{z}, P_{z}-R_{x}, Q_{x}-P_{y}\right)$. Suppose C is oriented such that the surface lies on its left. Then $\iint_{S}(\nabla \times \vec{F}) \cdot \overrightarrow{d A}=\int_{C} \vec{F} \cdot \overrightarrow{d r}$.
- The line integral is sometimes called
- We want to generalise Green's theorem to integrals over surfaces (akin to the 1D prelude above).
- Theorem: Let S be a C^{1} regular parametrised surface $S=\vec{r}(T)$ where $T \subset \mathbb{R}^{2}$ is an open set in $u-v$ plane bounded by a regular simple closed curve I. Assume that \vec{r} is actually C^{2} on an open set containing $T \cup I$. Let C be the curve $\vec{r}(I)$. Let P, Q, R be C^{1} scalar fields on S. Let $\vec{F}=(P, Q, R)$ and $\nabla \times \vec{F}=\left(R_{y}-Q_{z}, P_{z}-R_{x}, Q_{x}-P_{y}\right)$. Suppose C is oriented such that the surface lies on its left. Then $\iint_{S}(\nabla \times \vec{F}) \cdot \overrightarrow{d A}=\int_{C} \vec{F} \cdot \overrightarrow{d r}$.
- The line integral is sometimes called the circulation of \vec{F} because
- We want to generalise Green's theorem to integrals over surfaces (akin to the 1D prelude above).
- Theorem: Let S be a C^{1} regular parametrised surface $S=\vec{r}(T)$ where $T \subset \mathbb{R}^{2}$ is an open set in $u-v$ plane bounded by a regular simple closed curve I. Assume that \vec{r} is actually C^{2} on an open set containing $T \cup I$. Let C be the curve $\vec{r}(I)$. Let P, Q, R be C^{1} scalar fields on S. Let $\vec{F}=(P, Q, R)$ and $\nabla \times \vec{F}=\left(R_{y}-Q_{z}, P_{z}-R_{x}, Q_{x}-P_{y}\right)$. Suppose C is oriented such that the surface lies on its left. Then $\iint_{S}(\nabla \times \vec{F}) \cdot \overrightarrow{d A}=\int_{C} \vec{F} \cdot \overrightarrow{d r}$.
- The line integral is sometimes called the circulation of \vec{F} because if we consider $\vec{F}=(-y, x, 0)$ and C as the unit circle, then
- We want to generalise Green's theorem to integrals over surfaces (akin to the 1D prelude above).
- Theorem: Let S be a C^{1} regular parametrised surface $S=\vec{r}(T)$ where $T \subset \mathbb{R}^{2}$ is an open set in $u-v$ plane bounded by a regular simple closed curve I. Assume that \vec{r} is actually C^{2} on an open set containing $T \cup I$. Let C be the curve $\vec{r}(I)$. Let P, Q, R be C^{1} scalar fields on S. Let $\vec{F}=(P, Q, R)$ and $\nabla \times \vec{F}=\left(R_{y}-Q_{z}, P_{z}-R_{x}, Q_{x}-P_{y}\right)$. Suppose C is oriented such that the surface lies on its left. Then $\iint_{S}(\nabla \times \vec{F}) \cdot \overrightarrow{d A}=\int_{C} \vec{F} \cdot \overrightarrow{d r}$.
- The line integral is sometimes called the circulation of \vec{F} because if we consider $\vec{F}=(-y, x, 0)$ and C as the unit circle, then the line integral is non-zero
- We want to generalise Green's theorem to integrals over surfaces (akin to the 1D prelude above).
- Theorem: Let S be a C^{1} regular parametrised surface $S=\vec{r}(T)$ where $T \subset \mathbb{R}^{2}$ is an open set in $u-v$ plane bounded by a regular simple closed curve I. Assume that \vec{r} is actually C^{2} on an open set containing $T \cup I$. Let C be the curve $\vec{r}(I)$. Let P, Q, R be C^{1} scalar fields on S. Let $\vec{F}=(P, Q, R)$ and $\nabla \times \vec{F}=\left(R_{y}-Q_{z}, P_{z}-R_{x}, Q_{x}-P_{y}\right)$. Suppose C is oriented such that the surface lies on its left. Then $\iint_{S}(\nabla \times \vec{F}) \cdot \overrightarrow{d A}=\int_{C} \vec{F} \cdot \overrightarrow{d r}$.
- The line integral is sometimes called the circulation of \vec{F} because if we consider $\vec{F}=(-y, x, 0)$ and C as the unit circle, then the line integral is non-zero whereas for $\vec{F}=(x, y, 0)$ it is zero.
- We want to generalise Green's theorem to integrals over surfaces (akin to the 1D prelude above).
- Theorem: Let S be a C^{1} regular parametrised surface $S=\vec{r}(T)$ where $T \subset \mathbb{R}^{2}$ is an open set in $u-v$ plane bounded by a regular simple closed curve I. Assume that \vec{r} is actually C^{2} on an open set containing $T \cup I$. Let C be the curve $\vec{r}(I)$. Let P, Q, R be C^{1} scalar fields on S. Let $\vec{F}=(P, Q, R)$ and $\nabla \times \vec{F}=\left(R_{y}-Q_{z}, P_{z}-R_{x}, Q_{x}-P_{y}\right)$. Suppose C is oriented such that the surface lies on its left. Then $\iint_{S}(\nabla \times \vec{F}) \cdot \overrightarrow{d A}=\int_{C} \vec{F} \cdot \overrightarrow{d r}$.
- The line integral is sometimes called the circulation of \vec{F} because if we consider $\vec{F}=(-y, x, 0)$ and C as the unit circle, then the line integral is non-zero whereas for $\vec{F}=(x, y, 0)$ it is zero. James Clerk Maxwell called
- We want to generalise Green's theorem to integrals over surfaces (akin to the 1D prelude above).
- Theorem: Let S be a C^{1} regular parametrised surface $S=\vec{r}(T)$ where $T \subset \mathbb{R}^{2}$ is an open set in $u-v$ plane bounded by a regular simple closed curve I. Assume that \vec{r} is actually C^{2} on an open set containing $T \cup I$. Let C be the curve $\vec{r}(I)$. Let P, Q, R be C^{1} scalar fields on S. Let $\vec{F}=(P, Q, R)$ and $\nabla \times \vec{F}=\left(R_{y}-Q_{z}, P_{z}-R_{x}, Q_{x}-P_{y}\right)$. Suppose C is oriented such that the surface lies on its left. Then $\iint_{S}(\nabla \times \vec{F}) \cdot \overrightarrow{d A}=\int_{C} \vec{F} \cdot \overrightarrow{d r}$.
- The line integral is sometimes called the circulation of \vec{F} because if we consider $\vec{F}=(-y, x, 0)$ and C as the unit circle, then the line integral is non-zero whereas for $\vec{F}=(x, y, 0)$ it is zero. James Clerk Maxwell called $\nabla \times \vec{F}$ as the
- We want to generalise Green's theorem to integrals over surfaces (akin to the 1D prelude above).
- Theorem: Let S be a C^{1} regular parametrised surface $S=\vec{r}(T)$ where $T \subset \mathbb{R}^{2}$ is an open set in $u-v$ plane bounded by a regular simple closed curve I. Assume that \vec{r} is actually C^{2} on an open set containing $T \cup I$. Let C be the curve $\vec{r}(I)$. Let P, Q, R be C^{1} scalar fields on S. Let $\vec{F}=(P, Q, R)$ and $\nabla \times \vec{F}=\left(R_{y}-Q_{z}, P_{z}-R_{x}, Q_{x}-P_{y}\right)$. Suppose C is oriented such that the surface lies on its left. Then $\iint_{S}(\nabla \times \vec{F}) \cdot \overrightarrow{d A}=\int_{C} \vec{F} \cdot \overrightarrow{d r}$.
- The line integral is sometimes called the circulation of \vec{F} because if we consider $\vec{F}=(-y, x, 0)$ and C as the unit circle, then the line integral is non-zero whereas for $\vec{F}=(x, y, 0)$ it is zero. James Clerk Maxwell called $\nabla \times \vec{F}$ as the "curl" of \vec{F} (
- We want to generalise Green's theorem to integrals over surfaces (akin to the 1D prelude above).
- Theorem: Let S be a C^{1} regular parametrised surface $S=\vec{r}(T)$ where $T \subset \mathbb{R}^{2}$ is an open set in $u-v$ plane bounded by a regular simple closed curve I. Assume that \vec{r} is actually C^{2} on an open set containing $T \cup I$. Let C be the curve $\vec{r}(I)$. Let P, Q, R be C^{1} scalar fields on S. Let $\vec{F}=(P, Q, R)$ and $\nabla \times \vec{F}=\left(R_{y}-Q_{z}, P_{z}-R_{x}, Q_{x}-P_{y}\right)$. Suppose C is oriented such that the surface lies on its left. Then $\iint_{S}(\nabla \times \vec{F}) \cdot \overrightarrow{d A}=\int_{C} \vec{F} \cdot \overrightarrow{d r}$.
- The line integral is sometimes called the circulation of \vec{F} because if we consider $\vec{F}=(-y, x, 0)$ and C as the unit circle, then the line integral is non-zero whereas for $\vec{F}=(x, y, 0)$ it is zero. James Clerk Maxwell called $\nabla \times \vec{F}$ as the "curl" of \vec{F} (because it is like the
- We want to generalise Green's theorem to integrals over surfaces (akin to the 1D prelude above).
- Theorem: Let S be a C^{1} regular parametrised surface $S=\vec{r}(T)$ where $T \subset \mathbb{R}^{2}$ is an open set in $u-v$ plane bounded by a regular simple closed curve I. Assume that \vec{r} is actually C^{2} on an open set containing $T \cup I$. Let C be the curve $\vec{r}(I)$. Let P, Q, R be C^{1} scalar fields on S. Let $\vec{F}=(P, Q, R)$ and $\nabla \times \vec{F}=\left(R_{y}-Q_{z}, P_{z}-R_{x}, Q_{x}-P_{y}\right)$. Suppose C is oriented such that the surface lies on its left. Then $\iint_{S}(\nabla \times \vec{F}) \cdot \overrightarrow{d A}=\int_{C} \vec{F} \cdot \overrightarrow{d r}$.
- The line integral is sometimes called the circulation of \vec{F} because if we consider $\vec{F}=(-y, x, 0)$ and C as the unit circle, then the line integral is non-zero whereas for $\vec{F}=(x, y, 0)$ it is zero. James Clerk Maxwell called $\nabla \times \vec{F}$ as the "curl" of \vec{F} (because it is like the "circulation density").

Stokes' theorem

Stokes' theorem

- It is easy to see that

Stokes' theorem

- It is easy to see that if S is a planar surface, then

Stokes' theorem

- It is easy to see that if S is a planar surface, then Stokes=Green.

Stokes' theorem

- It is easy to see that if S is a planar surface, then Stokes=Green.
- The proof of Stokes:
- It is easy to see that if S is a planar surface, then Stokes=Green.
- The proof of Stokes: By linearity in \vec{F} and the symmetry of the expression,
- It is easy to see that if S is a planar surface, then Stokes=Green.
- The proof of Stokes: By linearity in \vec{F} and the symmetry of the expression, it is enough to prove it for $\vec{F}=P \hat{i}$.
- It is easy to see that if S is a planar surface, then Stokes=Green.
- The proof of Stokes: By linearity in \vec{F} and the symmetry of the expression, it is enough to prove it for $\vec{F}=P \hat{i}$.
- Now $\nabla \times \vec{F}=\left(0, P_{z},-P_{y}\right)$ and hence
- It is easy to see that if S is a planar surface, then Stokes=Green.
- The proof of Stokes: By linearity in \vec{F} and the symmetry of the expression, it is enough to prove it for $\vec{F}=P \hat{i}$.
- Now $\nabla \times \vec{F}=\left(0, P_{z},-P_{y}\right)$ and hence $\nabla \times \vec{F} \cdot \overrightarrow{d A}=-P_{y}\left(x_{u} y_{v}-x_{v} y_{u}\right)+P_{z}\left(z_{u} y_{v}-z_{v} y_{u}\right)$ which is $\left(P x_{v}\right)_{u}-\left(P x_{u}\right)_{v}(H W)$.
- It is easy to see that if S is a planar surface, then Stokes=Green.
- The proof of Stokes: By linearity in \vec{F} and the symmetry of the expression, it is enough to prove it for $\vec{F}=P \hat{i}$.
- Now $\nabla \times \vec{F}=\left(0, P_{z},-P_{y}\right)$ and hence
$\nabla \times \vec{F} \cdot \overrightarrow{d A}=-P_{y}\left(x_{u} y_{v}-x_{v} y_{u}\right)+P_{z}\left(z_{u} y_{v}-z_{v} y_{u}\right)$ which is $\left(P x_{v}\right)_{u}-\left(P x_{u}\right)_{v}(H W)$. Apply Green to $\iint_{T}\left(\left(P x_{v}\right)_{u}-\left(P x_{u}\right)_{v}\right) d u d v$ to get
- It is easy to see that if S is a planar surface, then Stokes=Green.
- The proof of Stokes: By linearity in \vec{F} and the symmetry of the expression, it is enough to prove it for $\vec{F}=P \hat{i}$.
- Now $\nabla \times \vec{F}=\left(0, P_{z},-P_{y}\right)$ and hence
$\nabla \times \vec{F} \cdot \overrightarrow{d A}=-P_{y}\left(x_{u} y_{v}-x_{v} y_{u}\right)+P_{z}\left(z_{u} y_{v}-z_{v} y_{u}\right)$ which is $\left(P x_{v}\right)_{u}-\left(P x_{u}\right)_{v}(H W)$. Apply Green to $\iint_{T}\left(\left(P x_{v}\right)_{u}-\left(P x_{u}\right)_{v}\right) d u d v$ to get $\int_{C}\left(P X_{u} d u+P X_{v} d v\right)=\int_{C} P d x$.

