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Recap

Parametrised surfaces and examples. (Closed and non-closed
ones too.)

Area (scalar and vector) of regular parametrised surfaces.

Scalar line integral and scalar surface integral.
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Reparametrisation invariance

Let ~r(u, v) be a piecewise C 1 parametrised surface defined on
T ⊂ R2. Let ~G (s, t) = (u(s, t), v(s, t)) : T ′ → T be a C 1

map that is 1− 1 onto on the interiors. Assume that the
Jacobian J of G is nowhere 0 on the interior. Then
~R(s, t) = ~r( ~G (s, t)) is called a reparametrisation.

Theorem: ~Rs × ~Rt = ~ru × ~rvJ.

Proof: By the chain rule, ~Rs = ~ruus + ~rvvs , ~Rt = ~ruut + ~rvvt .
Thus ~Rs × ~Rt = ~ru × ~rv (usvt − vsut), and since
J = usvt − vsut , we are done.

Theorem: The surface integral is reparametrisation invariant.

Proof:
∫ ∫

~r(T ) fdA =
∫ ∫

T f ‖~ru × ~rv‖dudv . By the change of

variables formula, this integral equals
∫ ∫

T ′ f ‖~ru × ~rv‖|J|dsdt.
This is precisely the surface integral using the other
parametrisation.
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Flux/Vector surface integral

Consider a fluid (can be charged too) moving through space
with the velocity vector field ~V (x , y , z , t). If its density is ρ,
the amount of fluid per unit area per unit time moving along
~V is ~J = ρ ~V (the flux density or the current vector). The
amount per unit time that moves across an infinitesimal
surface element ~dA is ~J. ~dA. This quantity is the infinitesimal
flux. Likewise, if ~E is the electric field, ~E . ~dA is also called flux
(roughly measures the “number of lines of force” going
through the surface element).

Rigorously, if S ⊂ R3 is a regular parametrised surface, and ~F
is a bounded vector field on S , then the flux of ~F through S is
defined to be

∫ ∫
T
~F .(~ru × ~rv )dudv .

It is certainly not immediately clear as to whether this
quantity is reparametrisation invariant.
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Reparametrisation invariance and an example

As before, if ~G (s, t), ~R(s, t) = ~r( ~G (s, t)) are
reparametrisation data , then

∫ ∫
~r(T )

~F . ~dA =∫ ∫
T
~F .(~ru × ~rv )dudv =

∫ ∫
T ′
~F .(~ru × ~rv )|J|dsdt. However,

~Rs × ~Rt = (~ru × ~rv )J. Therefore, there is a sign discrepancy.
If J > 0 throughout, then |J| = J and the flux integral is
reparametrisation invariant. If J < 0 throughout, then the flux
changes sign. The choice (outward vs inward) of normal is
thus important (akin to the vector line integral).

Let S be the unit upper hemisphere parametrised by
(sin(u) cos(v), sin(u) sin(v), cos(u)) where
(u, v) ∈ T = [0, π2 ]× [0, 2π]. Then
~ru × ~rv = sin(u)(sin(u) cos(v), sin(u) sin(v), cos(u)). Let
~F = x î + y ĵ . The flux of ~F across S is∫ 2π
0

∫ π/2
0 sin3(u)dvdu = 0.
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~F = x î + y ĵ . The flux of ~F across S is∫ 2π
0

∫ π/2
0 sin3(u)dvdu = 0.

Vamsi Pritham Pingali Lecture 38 5/8



Reparametrisation invariance and an example

As before, if ~G (s, t), ~R(s, t) = ~r( ~G (s, t)) are
reparametrisation data , then

∫ ∫
~r(T )

~F . ~dA =∫ ∫
T
~F .(~ru × ~rv )dudv =

∫ ∫
T ′
~F .(~ru × ~rv )|J|dsdt. However,

~Rs × ~Rt = (~ru × ~rv )J. Therefore, there is a sign discrepancy.
If J > 0 throughout, then |J| = J and the flux integral is
reparametrisation invariant. If J < 0 throughout, then the flux
changes sign. The choice (outward vs inward) of normal is
thus important (akin to the vector line integral).

Let S be the unit upper hemisphere parametrised by
(sin(u) cos(v), sin(u) sin(v), cos(u)) where
(u, v) ∈ T = [0, π2 ]× [0, 2π]. Then
~ru × ~rv = sin(u)(sin(u) cos(v), sin(u) sin(v), cos(u)). Let
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A prelude to Stokes’ theorem

Recall the one-variable FTC:
∫ b
a f ′(x)dx = f (b)− f (a). Can

we generalise it to regular curves? Indeed we can: Let f be a
C 1 function defined in a neighbourhood of a regular
parametrised curve ~r(t). Then

∫ b
a

df
dt dt = f (b)− f (a) by the

usual FTC. Now df
dt = 〈∇f , ~r ′(t)〉. Thus∫ b

a 〈∇f (~r(t)), ~r ′(t)〉dt = f (b)− f (a), i.e.,∫
∇f .d~r = f (b)− f (a). This integral depends only on the

end-points of the curve! (as opposed to the curve itself).
Conversely, suppose the line integral of a vector field ~F on an
open connected set depends only on the endpoints of the path
and not on the path itself (a conservative vector field), then
(let’s restrict to R3 for simplicity) define

φ(x , y , z) =
∫ (x ,y ,z)
(x0,y0,z0)

~F . ~dr .

φ(x + h, y , z)− φ(x , y , z) =
∫ (x+h,y ,z)
(x ,y ,z)

~F . ~dr along a straight
line. Thus, φx = F1 by the FTC. Likewise, for the other
components and hence ~F = ∇φ. Such a φ is called a
potential for ~F .
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Stokes’ theorem

We want to generalise Green’s theorem to integrals over
surfaces (akin to the 1D prelude above).

Theorem: Let S be a C 1 regular parametrised surface
S = ~r(T ) where T ⊂ R2 is an open set in u − v plane
bounded by a regular simple closed curve I . Assume that ~r is
actually C 2 on an open set containing T ∪ I . Let C be the
curve ~r(I ). Let P,Q,R be C 1 scalar fields on S . Let
~F = (P,Q,R) and ∇× ~F = (Ry − Qz ,Pz − Rx ,Qx − Py ).
Suppose C is oriented such that the surface lies on its left.
Then

∫ ∫
S(∇× ~F ). ~dA =

∫
C
~F . ~dr .

The line integral is sometimes called the circulation of ~F
because if we consider ~F = (−y , x , 0) and C as the unit circle,
then the line integral is non-zero whereas for ~F = (x , y , 0) it is
zero. James Clerk Maxwell called ∇× ~F as the “curl” of ~F
(because it is like the “circulation density”).
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Stokes’ theorem

It is easy to see that if S is a planar surface, then
Stokes=Green.

The proof of Stokes: By linearity in ~F and the symmetry of
the expression, it is enough to prove it for ~F = Pî .

Now ∇× ~F = (0,Pz ,−Py ) and hence

∇× ~F . ~dA = −Py (xuyv − xvyu) + Pz(zuyv − zvyu) which is
(Pxv )u − (Pxu)v (HW). Apply Green to∫ ∫

T ((Pxv )u − (Pxu)v )dudv to get∫
C (PXudu + PXvdv) =

∫
C Pdx .
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