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Recap

Recalled the definition of a vector space V over a field F
(usually reals or complex numbers). By the way, using
induction and associativity,

∑n
i=1 civi can be defined

unambiguously.

Subspaces and the linear span of a set.

Finite-dimensional vector spaces, dimension, and the notion of
a basis.

Ordered bases and components.
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Linear Transformations/Maps

Recall that one of the aims of defining vector spaces was to
solve linear equations in general. Often, this involves
adding/subtracting to get “new variables” that can be solved
for.

Moreover, given two vector spaces, are they the same vector
space in disguise ? (Is Aragon being called Strider ?)

To this end, we neeed to define
maps/functions/transformations between vector spaces that
preserve the vector space structure.

Recall that if V ,W are vector spaces (over the same field),
then a function T : V →W is called a linear
transformation/linear map if T (av) = aT (v) for all
a ∈ F, v ∈ V and T (v + w) = T (v) + T (w) or alternatively,
T (av + bw) = aT (v) + bT (w). So
T (0) = T (0.v) = 0.T (v) = 0.
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Linear Transformations/Maps

The image T (V ) is a subspace of W :If T (v),T (w) ∈ T (V ),
then aT (v) + bT (w) = T (av + bw) ∈ T (V ).

T (
∑

i civi ) =
∑

i T (civi ) : We prove by induction. For n = 1,
it follows from definition. Assume truth for n. For n + 1,
T (

∑n+1
i=1 civi ) = T (

∑n
i=1 civi + cn+1vn+1) =∑n

i=1 ciT (vi ) + cn+1T (vn+1).
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Examples and Non-examples of Linear Transformations

If V = Rn,W = Rm, and A is an m × n real matrix, then
T (x) = Ax , i.e, (T (x))i =

∑
j Aijxj is a linear map. (In fact,

all linear maps between these particular V and W arise this
way.) However, T (x) = Ax + b is NOT linear.

If V is the space of continuous f : [0, 1]→ R and W = R,

then T (f ) =
∫ 1
0 f (x)dx is a linear map. However,

∫ 1
0 f 2dx is

NOT linear.

If V is the space of real polynomials of degree ≤ 5 and
W = R, then T (p) = p(0) is a linear map. (It is called an
evaluation map.)
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Algebraic operations on Linear maps

If V ,W are vector spaces over the same field, T ,H : V →W
are linear maps, then T + H is linear and so is cT for all
c ∈ F.

One can verify that the set of all linear maps L(V ,W ) forms a
vector space in its own right.

If V ,W ,X are vector spaces, and T : V →W , U : W → X
are linear maps, then U ◦ T : V → X is linear.

R(ST ) = (RS)T , i.e., associativity holds. Moreover,
(R + S)T = RT + ST and R(S + T ) = RS + RT .
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Linear maps and matrices for finite-dimensional vector
spaces

Given ordered bases e1, . . . , en for V and f1, . . . , fm for W ,
T (

∑
k ckek) =

∑
k ckT (ek) and hence it is enough to know

what T (ek) are. Let T (ek) =
∑

j Tjk fj . Then
T (

∑
k ckek) =

∑
k ck

∑
j Tjk fj =

∑
j(
∑

k Tjkck)fj .

The matrix Tjk determines T and vice-versa. The components
ck , if represented by a column vector (as is usually the case),
go to a new component-column-vector dj as d = [T ]c.

So to link linear maps and matrices, one needs to choose
ordered bases for both, the image AND the target.

Different choices of ordered bases give rise to different
matrices representing the same linear map.
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Examples of matrix-representation of linear maps

The algorithm is as follows : The first column of the matrix is
obtained by calculating T (e1) and writing its components as a
column vector in the given ordered basis of the target.
Likewise for the other columns.

So if we consider the differentiation linear map from degree≤ 2
polynomials to itself with an ordered basis {1, x , x2},
T (1) = 0 = 0.1 + 0.x + 0.x2, T (x) = 1 = 1.1 + 0.x + 0.x2,
and T (x2) = 2x = 0.1 + 2.x + 0.x2.

Thus the matrix is [T ] =

 0 1 0
0 0 2
0 0 0


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Matrix operations

If A,B are two m × n matrices with entries in F, then
[A + B]ij := [A]ij + [B]ij and if c ∈ F, then [cA]ij := c[A]ij .

If we choose ordered bases {ei}, {fj}, {gk} for f.d vector
spaces V ,W ,X , and if T : V →W , U : W → X are linear
maps, then then we get two matrices [T ] and [U] representing
the maps.

It turns out that U ◦ T is represented by [U][T ] where
multiplication is in the sense of matrix multiplication, i.e.,
([A][B])ij =

∑
k [A]ik [B]kj : Indeed,

U(T (ei )) = U(
∑

j Tji fj) =
∑

j TjiU(fj) =
∑

j Tji
∑

k Ukjgk =∑
j ,k UkjTjigk . In fact, matrix multiplication is defined so that

this happens.
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maps, then then we get two matrices [T ] and [U] representing
the maps.

It turns out that U ◦ T is represented by [U][T ] where
multiplication is in the sense of matrix multiplication, i.e.,
([A][B])ij =

∑
k [A]ik [B]kj :

Indeed,
U(T (ei )) = U(

∑
j Tji fj) =

∑
j TjiU(fj) =

∑
j Tji

∑
k Ukjgk =∑

j ,k UkjTjigk . In fact, matrix multiplication is defined so that
this happens.
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Properties of matrix multiplication

A(BC ) = (AB)C whenever it makes sense.

(A + B)C = AC + BC and C (A + B) = CA + CB whenever it
makes sense.

The simplest proof is to interpret each of the matrices as
linear maps between appropriate vector spaces and use the
fact that [U ◦ T ] = [U][T ].
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Null space/Kernel of a linear map

Suppose we consider the equation 2x + 3y = 1. How many
solutions does it have ? Infinitely many.

What about 2x + 3y = 1, 4x + 6y = 3 ? Zero.

What about 2x + 3y = 1, 4x + 6y = 2 ? Infinitely many.

What about 2x + 3y = 1, x − y = 0 ? Exactly one.

More generally, T : V →W need not be surjective or
injective.

Suppose T (v) = w . How many solutions does this equation
have if it has one ? Note that if T (v1) = T (v2) = w , then
T (v1 − v2) = 0.

Motivated by this observation, we define the null space
N(T ) ⊂ V as the set v ∈ V so that T (v) = 0. If
T (v) = T (w) = 0, then T (av + bw) = aT (v) + bT (w) = 0
and hence N(T ) is a subspace of V .
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Nullity and Rank

Note that T is 1− 1 if and only if N(T ) = {0} :If T is 1− 1,
then T (0) = 0 and hence N(T ) = {0}. If N(T ) = {0} and if
T (v) = T (w), then T (v − w) = 0 and hence v − w ∈ N(T )
implying that v = w . Hence T is 1− 1.

The dimension of the null space/Kernel of T : V →W
(where V , W are f.d) is called the nullity of T . It measures
the failure of injectivity of T . It is basically the number of
“free parameters”.

The dimension of the image is called the rank of T . It
measures the failure of surjectivity of T .

An important result is the Nullity-Rank Theorem :The Nullity
of T + the Rank of T equals dim(V ).
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Nullity and Rank Theorem : Proof

Suppose e1, . . . , ek is a basis of N(T ). Extend it to a basis
ek+1, . . . , en of V . We claim that
f1 = T (ek+1), f2 = T (ek+2), . . . , fn−k = T (en) is a basis of
R(T ). Indeed, fi are linearly independent : If

∑
i ci fi = 0,

then T (
∑n

i=k+1 ciei ) = 0 and hence
∑n

i=k+1 ciei ∈ N(T )

which implies that
∑n

i=k+1 ciei =
∑k

i=1 diei and hence by
linear independence, ci = dj = 0 ∀ i , j . Moreover, fi span
R(T ) : T (v) = T (

∑n
i=1 ciei ) =

T (
∑k

i=1 ciei ) + T (
∑n

i=k+1 ciei ) = 0 +
∑

i ci fi .
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