Lecture 2 - UM 102 (Spring 2021)

Vamsi Pritham Pingali

IISc

Recap

- Recalled the definition of a vector space V over a field \mathbb{F} (usually reals or complex numbers).
- Recalled the definition of a vector space V over a field \mathbb{F} (usually reals or complex numbers). By the way, using induction and associativity, $\sum_{i=1}^{n} c_{i} v_{i}$ can be defined unambiguously.
- Recalled the definition of a vector space V over a field \mathbb{F} (usually reals or complex numbers). By the way, using induction and associativity, $\sum_{i=1}^{n} c_{i} v_{i}$ can be defined unambiguously.
- Subspaces and the linear span of a set.

Recap

- Recalled the definition of a vector space V over a field \mathbb{F} (usually reals or complex numbers). By the way, using induction and associativity, $\sum_{i=1}^{n} c_{i} v_{i}$ can be defined unambiguously.
- Subspaces and the linear span of a set.
- Finite-dimensional vector spaces, dimension, and the notion of a basis.

Recap

- Recalled the definition of a vector space V over a field \mathbb{F} (usually reals or complex numbers). By the way, using induction and associativity, $\sum_{i=1}^{n} c_{i} v_{i}$ can be defined unambiguously.
- Subspaces and the linear span of a set.
- Finite-dimensional vector spaces, dimension, and the notion of a basis.
- Ordered bases and components.

Linear Transformations/Maps

Linear Transformations/Maps

- Recall that one of the aims of defining vector spaces was to solve linear equations in general.

Linear Transformations/Maps

- Recall that one of the aims of defining vector spaces was to solve linear equations in general. Often, this involves adding/subtracting to get "new variables" that can be solved for.

Linear Transformations/Maps

- Recall that one of the aims of defining vector spaces was to solve linear equations in general. Often, this involves adding/subtracting to get "new variables" that can be solved for.
- Moreover, given two vector spaces, are they the same vector space in disguise? (

Linear Transformations/Maps

- Recall that one of the aims of defining vector spaces was to solve linear equations in general. Often, this involves adding/subtracting to get "new variables" that can be solved for.
- Moreover, given two vector spaces, are they the same vector space in disguise? (Is Aragon being called Strider ?)

Linear Transformations/Maps

- Recall that one of the aims of defining vector spaces was to solve linear equations in general. Often, this involves adding/subtracting to get "new variables" that can be solved for.
- Moreover, given two vector spaces, are they the same vector space in disguise? (Is Aragon being called Strider ?)
- To this end, we neeed to define maps/functions/transformations between vector spaces that preserve the vector space structure.

Linear Transformations/Maps

- Recall that one of the aims of defining vector spaces was to solve linear equations in general. Often, this involves adding/subtracting to get "new variables" that can be solved for.
- Moreover, given two vector spaces, are they the same vector space in disguise? (Is Aragon being called Strider ?)
- To this end, we neeed to define maps/functions/transformations between vector spaces that preserve the vector space structure.
- Recall that if V, W are vector spaces (over the same field), then

Linear Transformations/Maps

- Recall that one of the aims of defining vector spaces was to solve linear equations in general. Often, this involves adding/subtracting to get "new variables" that can be solved for.
- Moreover, given two vector spaces, are they the same vector space in disguise? (Is Aragon being called Strider ?)
- To this end, we neeed to define maps/functions/transformations between vector spaces that preserve the vector space structure.
- Recall that if V, W are vector spaces (over the same field), then a function $T: V \rightarrow W$ is called a linear transformation/linear map if $T(a v)=a T(v)$ for all $a \in \mathbb{F}, v \in V$ and $T(v+w)=T(v)+T(w)$

Linear Transformations/Maps

- Recall that one of the aims of defining vector spaces was to solve linear equations in general. Often, this involves adding/subtracting to get "new variables" that can be solved for.
- Moreover, given two vector spaces, are they the same vector space in disguise? (Is Aragon being called Strider ?)
- To this end, we neeed to define maps/functions/transformations between vector spaces that preserve the vector space structure.
- Recall that if V, W are vector spaces (over the same field), then a function $T: V \rightarrow W$ is called a linear transformation/linear map if $T(a v)=a T(v)$ for all $a \in \mathbb{F}, v \in V$ and $T(v+w)=T(v)+T(w)$ or alternatively, $T(a v+b w)=a T(v)+b T(w)$.

Linear Transformations/Maps

- Recall that one of the aims of defining vector spaces was to solve linear equations in general. Often, this involves adding/subtracting to get "new variables" that can be solved for.
- Moreover, given two vector spaces, are they the same vector space in disguise? (Is Aragon being called Strider ?)
- To this end, we neeed to define maps/functions/transformations between vector spaces that preserve the vector space structure.
- Recall that if V, W are vector spaces (over the same field), then a function $T: V \rightarrow W$ is called a linear transformation/linear map if $T(a v)=a T(v)$ for all $a \in \mathbb{F}, v \in V$ and $T(v+w)=T(v)+T(w)$ or alternatively, $T(a v+b w)=a T(v)+b T(w)$. So $T(0)=T(0 . v)=0 . T(v)=0$.

Linear Transformations/Maps

Linear Transformations/Maps

- The image $T(V)$ is a subspace of W :

Linear Transformations/Maps

- The image $T(V)$ is a subspace of W :If $T(v), T(w) \in T(V)$, then $a T(v)+b T(w)=T(a v+b w) \in T(V)$.

Linear Transformations/Maps

- The image $T(V)$ is a subspace of W :If $T(v), T(w) \in T(V)$, then $a T(v)+b T(w)=T(a v+b w) \in T(V)$.
- $T\left(\sum_{i} c_{i} v_{i}\right)=\sum_{i} T\left(c_{i} v_{i}\right)$:

Linear Transformations/Maps

- The image $T(V)$ is a subspace of W :If $T(v), T(w) \in T(V)$, then $a T(v)+b T(w)=T(a v+b w) \in T(V)$.
- $T\left(\sum_{i} c_{i} v_{i}\right)=\sum_{i} T\left(c_{i} v_{i}\right)$: We prove by induction. For $n=1$, it follows from definition.

Linear Transformations/Maps

- The image $T(V)$ is a subspace of W :If $T(v), T(w) \in T(V)$, then $a T(v)+b T(w)=T(a v+b w) \in T(V)$.
- $T\left(\sum_{i} c_{i} v_{i}\right)=\sum_{i} T\left(c_{i} v_{i}\right)$: We prove by induction. For $n=1$, it follows from definition. Assume truth for n.

Linear Transformations/Maps

- The image $T(V)$ is a subspace of W :If $T(v), T(w) \in T(V)$, then $a T(v)+b T(w)=T(a v+b w) \in T(V)$.
- $T\left(\sum_{i} c_{i} v_{i}\right)=\sum_{i} T\left(c_{i} v_{i}\right)$: We prove by induction. For $n=1$, it follows from definition. Assume truth for n. For $n+1$, $T\left(\sum_{i=1}^{n+1} c_{i} v_{i}\right)=T\left(\sum_{i=1}^{n} c_{i} v_{i}+c_{n+1} v_{n+1}\right)=$ $\sum_{i=1}^{n} c_{i} T\left(v_{i}\right)+c_{n+1} T\left(v_{n+1}\right)$.

Examples and Non-examples of Linear Transformations

Examples and Non-examples of Linear Transformations

- If $V=\mathbb{R}^{n}, W=\mathbb{R}^{m}$, and A is an $m \times n$ real matrix, then $T(x)=A x$, i.e,

Examples and Non-examples of Linear Transformations

- If $V=\mathbb{R}^{n}, W=\mathbb{R}^{m}$, and A is an $m \times n$ real matrix, then $T(x)=A x$, i.e, $(T(x))_{i}=\sum_{j} A_{i j} x_{j}$ is a linear map. (

Examples and Non-examples of Linear Transformations

- If $V=\mathbb{R}^{n}, W=\mathbb{R}^{m}$, and A is an $m \times n$ real matrix, then $T(x)=A x$, i.e, $(T(x))_{i}=\sum_{j} A_{i j} x_{j}$ is a linear map. (In fact, all linear maps between these particular V and W arise this way.)

Examples and Non-examples of Linear Transformations

- If $V=\mathbb{R}^{n}, W=\mathbb{R}^{m}$, and A is an $m \times n$ real matrix, then $T(x)=A x$, i.e, $(T(x))_{i}=\sum_{j} A_{i j} x_{j}$ is a linear map. (In fact, all linear maps between these particular V and W arise this way.) However, $T(x)=A x+b$ is NOT linear.

Examples and Non-examples of Linear Transformations

- If $V=\mathbb{R}^{n}, W=\mathbb{R}^{m}$, and A is an $m \times n$ real matrix, then $T(x)=A x$, i.e, $(T(x))_{i}=\sum_{j} A_{i j} x_{j}$ is a linear map. (In fact, all linear maps between these particular V and W arise this way.) However, $T(x)=A x+b$ is NOT linear.
- If V is the space of continuous $f:[0,1] \rightarrow \mathbb{R}$ and $W=\mathbb{R}$, then $T(f)=\int_{0}^{1} f(x) d x$ is a linear map.

Examples and Non-examples of Linear Transformations

- If $V=\mathbb{R}^{n}, W=\mathbb{R}^{m}$, and A is an $m \times n$ real matrix, then $T(x)=A x$, i.e, $(T(x))_{i}=\sum_{j} A_{i j} x_{j}$ is a linear map. (In fact, all linear maps between these particular V and W arise this way.) However, $T(x)=A x+b$ is NOT linear.
- If V is the space of continuous $f:[0,1] \rightarrow \mathbb{R}$ and $W=\mathbb{R}$, then $T(f)=\int_{0}^{1} f(x) d x$ is a linear map. However, $\int_{0}^{1} f^{2} d x$ is NOT linear.

Examples and Non-examples of Linear Transformations

- If $V=\mathbb{R}^{n}, W=\mathbb{R}^{m}$, and A is an $m \times n$ real matrix, then $T(x)=A x$, i.e, $(T(x))_{i}=\sum_{j} A_{i j} x_{j}$ is a linear map. (In fact, all linear maps between these particular V and W arise this way.) However, $T(x)=A x+b$ is NOT linear.
- If V is the space of continuous $f:[0,1] \rightarrow \mathbb{R}$ and $W=\mathbb{R}$, then $T(f)=\int_{0}^{1} f(x) d x$ is a linear map. However, $\int_{0}^{1} f^{2} d x$ is NOT linear.
- If V is the space of real polynomials of degree ≤ 5 and $W=\mathbb{R}$, then

Examples and Non-examples of Linear Transformations

- If $V=\mathbb{R}^{n}, W=\mathbb{R}^{m}$, and A is an $m \times n$ real matrix, then $T(x)=A x$, i.e, $(T(x))_{i}=\sum_{j} A_{i j} x_{j}$ is a linear map. (In fact, all linear maps between these particular V and W arise this way.) However, $T(x)=A x+b$ is NOT linear.
- If V is the space of continuous $f:[0,1] \rightarrow \mathbb{R}$ and $W=\mathbb{R}$, then $T(f)=\int_{0}^{1} f(x) d x$ is a linear map. However, $\int_{0}^{1} f^{2} d x$ is NOT linear.
- If V is the space of real polynomials of degree ≤ 5 and $W=\mathbb{R}$, then $T(p)=p(0)$ is a linear map. (

Examples and Non-examples of Linear Transformations

- If $V=\mathbb{R}^{n}, W=\mathbb{R}^{m}$, and A is an $m \times n$ real matrix, then $T(x)=A x$, i.e, $(T(x))_{i}=\sum_{j} A_{i j} x_{j}$ is a linear map. (In fact, all linear maps between these particular V and W arise this way.) However, $T(x)=A x+b$ is NOT linear.
- If V is the space of continuous $f:[0,1] \rightarrow \mathbb{R}$ and $W=\mathbb{R}$, then $T(f)=\int_{0}^{1} f(x) d x$ is a linear map. However, $\int_{0}^{1} f^{2} d x$ is NOT linear.
- If V is the space of real polynomials of degree ≤ 5 and $W=\mathbb{R}$, then $T(p)=p(0)$ is a linear map. (It is called an evaluation map.)

Algebraic operations on Linear maps

Algebraic operations on Linear maps

- If V, W are vector spaces over the same field,

Algebraic operations on Linear maps

- If V, W are vector spaces over the same field, $T, H: V \rightarrow W$ are linear maps,

Algebraic operations on Linear maps

- If V, W are vector spaces over the same field, $T, H: V \rightarrow W$ are linear maps, then $T+H$ is linear and so is $c T$ for all $c \in \mathbb{F}$.

Algebraic operations on Linear maps

- If V, W are vector spaces over the same field, $T, H: V \rightarrow W$ are linear maps, then $T+H$ is linear and so is $c T$ for all $c \in \mathbb{F}$.
- One can verify that the set of all linear maps $L(V, W)$ forms a vector space in its own right.

Algebraic operations on Linear maps

- If V, W are vector spaces over the same field, $T, H: V \rightarrow W$ are linear maps, then $T+H$ is linear and so is $c T$ for all $c \in \mathbb{F}$.
- One can verify that the set of all linear maps $L(V, W)$ forms a vector space in its own right.
- If V, W, X are vector spaces, and $T: V \rightarrow W, U: W \rightarrow X$ are linear maps,

Algebraic operations on Linear maps

- If V, W are vector spaces over the same field, $T, H: V \rightarrow W$ are linear maps, then $T+H$ is linear and so is $c T$ for all $c \in \mathbb{F}$.
- One can verify that the set of all linear maps $L(V, W)$ forms a vector space in its own right.
- If V, W, X are vector spaces, and $T: V \rightarrow W, U: W \rightarrow X$ are linear maps, then $U \circ T: V \rightarrow X$ is linear.

Algebraic operations on Linear maps

- If V, W are vector spaces over the same field, $T, H: V \rightarrow W$ are linear maps, then $T+H$ is linear and so is $c T$ for all $c \in \mathbb{F}$.
- One can verify that the set of all linear maps $L(V, W)$ forms a vector space in its own right.
- If V, W, X are vector spaces, and $T: V \rightarrow W, U: W \rightarrow X$ are linear maps, then $U \circ T: V \rightarrow X$ is linear.
- $R(S T)=(R S) T$, i.e., associativity holds. Moreover,

Algebraic operations on Linear maps

- If V, W are vector spaces over the same field, $T, H: V \rightarrow W$ are linear maps, then $T+H$ is linear and so is $c T$ for all $c \in \mathbb{F}$.
- One can verify that the set of all linear maps $L(V, W)$ forms a vector space in its own right.
- If V, W, X are vector spaces, and $T: V \rightarrow W, U: W \rightarrow X$ are linear maps, then $U \circ T: V \rightarrow X$ is linear.
- $R(S T)=(R S) T$, i.e., associativity holds. Moreover, $(R+S) T=R T+S T$ and $R(S+T)=R S+R T$.

Linear maps and matrices for finite-dimensional vector spaces

Linear maps and matrices for finite-dimensional vector spaces

- Given ordered bases e_{1}, \ldots, e_{n} for V and f_{1}, \ldots, f_{m} for W,

Linear maps and matrices for finite-dimensional vector spaces

- Given ordered bases e_{1}, \ldots, e_{n} for V and f_{1}, \ldots, f_{m} for W, $T\left(\sum_{k} c_{k} e_{k}\right)=\sum_{k} c_{k} T\left(e_{k}\right)$ and hence it is enough to know what $T\left(e_{k}\right)$ are.

Linear maps and matrices for finite-dimensional vector spaces

- Given ordered bases e_{1}, \ldots, e_{n} for V and f_{1}, \ldots, f_{m} for W, $T\left(\sum_{k} c_{k} e_{k}\right)=\sum_{k} c_{k} T\left(e_{k}\right)$ and hence it is enough to know what $T\left(e_{k}\right)$ are. Let $T\left(e_{k}\right)=\sum_{j} T_{j k} f_{j}$.

Linear maps and matrices for finite-dimensional vector spaces

- Given ordered bases e_{1}, \ldots, e_{n} for V and f_{1}, \ldots, f_{m} for W, $T\left(\sum_{k} c_{k} e_{k}\right)=\sum_{k} c_{k} T\left(e_{k}\right)$ and hence it is enough to know what $T\left(e_{k}\right)$ are. Let $T\left(e_{k}\right)=\sum_{j} T_{j k} f_{j}$. Then $T\left(\sum_{k} c_{k} e_{k}\right)=\sum_{k} c_{k} \sum_{j} T_{j k} f_{j}=\sum_{j}\left(\sum_{k} T_{j k} c_{k}\right) f_{j}$.

Linear maps and matrices for finite-dimensional vector spaces

- Given ordered bases e_{1}, \ldots, e_{n} for V and f_{1}, \ldots, f_{m} for W, $T\left(\sum_{k} c_{k} e_{k}\right)=\sum_{k} c_{k} T\left(e_{k}\right)$ and hence it is enough to know what $T\left(e_{k}\right)$ are. Let $T\left(e_{k}\right)=\sum_{j} T_{j k} f_{j}$. Then $T\left(\sum_{k} c_{k} e_{k}\right)=\sum_{k} c_{k} \sum_{j} T_{j k} f_{j}=\sum_{j}\left(\sum_{k} T_{j k} c_{k}\right) f_{j}$.
- The matrix $T_{j k}$ determines T and vice-versa.

Linear maps and matrices for finite-dimensional vector spaces

- Given ordered bases e_{1}, \ldots, e_{n} for V and f_{1}, \ldots, f_{m} for W, $T\left(\sum_{k} c_{k} e_{k}\right)=\sum_{k} c_{k} T\left(e_{k}\right)$ and hence it is enough to know what $T\left(e_{k}\right)$ are. Let $T\left(e_{k}\right)=\sum_{j} T_{j k} f_{j}$. Then $T\left(\sum_{k} c_{k} e_{k}\right)=\sum_{k} c_{k} \sum_{j} T_{j k} f_{j}=\sum_{j}\left(\sum_{k} T_{j k} c_{k}\right) f_{j}$.
- The matrix $T_{j k}$ determines T and vice-versa. The components c_{k}, if represented by a column vector (as is usually the case),

Linear maps and matrices for finite-dimensional vector spaces

- Given ordered bases e_{1}, \ldots, e_{n} for V and f_{1}, \ldots, f_{m} for W, $T\left(\sum_{k} c_{k} e_{k}\right)=\sum_{k} c_{k} T\left(e_{k}\right)$ and hence it is enough to know what $T\left(e_{k}\right)$ are. Let $T\left(e_{k}\right)=\sum_{j} T_{j k} f_{j}$. Then $T\left(\sum_{k} c_{k} e_{k}\right)=\sum_{k} c_{k} \sum_{j} T_{j k} f_{j}=\sum_{j}\left(\sum_{k} T_{j k} c_{k}\right) f_{j}$.
- The matrix $T_{j k}$ determines T and vice-versa. The components c_{k}, if represented by a column vector (as is usually the case), go to a new component-column-vector d_{j} as $d=[T] c$.

Linear maps and matrices for finite-dimensional vector spaces

- Given ordered bases e_{1}, \ldots, e_{n} for V and f_{1}, \ldots, f_{m} for W, $T\left(\sum_{k} c_{k} e_{k}\right)=\sum_{k} c_{k} T\left(e_{k}\right)$ and hence it is enough to know what $T\left(e_{k}\right)$ are. Let $T\left(e_{k}\right)=\sum_{j} T_{j k} f_{j}$. Then $T\left(\sum_{k} c_{k} e_{k}\right)=\sum_{k} c_{k} \sum_{j} T_{j k} f_{j}=\sum_{j}\left(\sum_{k} T_{j k} c_{k}\right) f_{j}$.
- The matrix $T_{j k}$ determines T and vice-versa. The components c_{k}, if represented by a column vector (as is usually the case), go to a new component-column-vector d_{j} as $d=[T]$ c.
- So to link linear maps and matrices, one needs to choose ordered bases for both,

Linear maps and matrices for finite-dimensional vector spaces

- Given ordered bases e_{1}, \ldots, e_{n} for V and f_{1}, \ldots, f_{m} for W, $T\left(\sum_{k} c_{k} e_{k}\right)=\sum_{k} c_{k} T\left(e_{k}\right)$ and hence it is enough to know what $T\left(e_{k}\right)$ are. Let $T\left(e_{k}\right)=\sum_{j} T_{j k} f_{j}$. Then $T\left(\sum_{k} c_{k} e_{k}\right)=\sum_{k} c_{k} \sum_{j} T_{j k} f_{j}=\sum_{j}\left(\sum_{k} T_{j k} c_{k}\right) f_{j}$.
- The matrix $T_{j k}$ determines T and vice-versa. The components c_{k}, if represented by a column vector (as is usually the case), go to a new component-column-vector d_{j} as $d=[T]$ c.
- So to link linear maps and matrices, one needs to choose ordered bases for both, the image AND the target.

Linear maps and matrices for finite-dimensional vector spaces

- Given ordered bases e_{1}, \ldots, e_{n} for V and f_{1}, \ldots, f_{m} for W, $T\left(\sum_{k} c_{k} e_{k}\right)=\sum_{k} c_{k} T\left(e_{k}\right)$ and hence it is enough to know what $T\left(e_{k}\right)$ are. Let $T\left(e_{k}\right)=\sum_{j} T_{j k} f_{j}$. Then $T\left(\sum_{k} c_{k} e_{k}\right)=\sum_{k} c_{k} \sum_{j} T_{j k} f_{j}=\sum_{j}\left(\sum_{k} T_{j k} c_{k}\right) f_{j}$.
- The matrix $T_{j k}$ determines T and vice-versa. The components c_{k}, if represented by a column vector (as is usually the case), go to a new component-column-vector d_{j} as $d=[T]$ c.
- So to link linear maps and matrices, one needs to choose ordered bases for both, the image AND the target.
- Different choices of ordered bases give rise to different matrices representing the same linear map.

Examples of matrix-representation of linear maps

Examples of matrix-representation of linear maps

- The algorithm is as follows: The first column of the matrix is obtained by

Examples of matrix-representation of linear maps

- The algorithm is as follows: The first column of the matrix is obtained by calculating $T\left(e_{1}\right)$ and

Examples of matrix-representation of linear maps

- The algorithm is as follows: The first column of the matrix is obtained by calculating $T\left(e_{1}\right)$ and writing its components as a column vector in the given ordered basis of the target.

Examples of matrix-representation of linear maps

- The algorithm is as follows: The first column of the matrix is obtained by calculating $T\left(e_{1}\right)$ and writing its components as a column vector in the given ordered basis of the target. Likewise for the other columns.

Examples of matrix-representation of linear maps

- The algorithm is as follows: The first column of the matrix is obtained by calculating $T\left(e_{1}\right)$ and writing its components as a column vector in the given ordered basis of the target. Likewise for the other columns.
- So if we consider the differentiation linear map from degree ≤ 2 polynomials to itself

Examples of matrix-representation of linear maps

- The algorithm is as follows: The first column of the matrix is obtained by calculating $T\left(e_{1}\right)$ and writing its components as a column vector in the given ordered basis of the target. Likewise for the other columns.
- So if we consider the differentiation linear map from degree ≤ 2 polynomials to itself with an ordered basis $\left\{1, x, x^{2}\right\}$,

Examples of matrix-representation of linear maps

- The algorithm is as follows: The first column of the matrix is obtained by calculating $T\left(e_{1}\right)$ and writing its components as a column vector in the given ordered basis of the target. Likewise for the other columns.
- So if we consider the differentiation linear map from degree ≤ 2 polynomials to itself with an ordered basis $\left\{1, x, x^{2}\right\}$, $T(1)=0=0.1+0 . x+0 . x^{2}$,

Examples of matrix-representation of linear maps

- The algorithm is as follows: The first column of the matrix is obtained by calculating $T\left(e_{1}\right)$ and writing its components as a column vector in the given ordered basis of the target. Likewise for the other columns.
- So if we consider the differentiation linear map from degree ≤ 2 polynomials to itself with an ordered basis $\left\{1, x, x^{2}\right\}$, $T(1)=0=0.1+0 . x+0 . x^{2}, T(x)=1=1.1+0 . x+0 . x^{2}$, and

Examples of matrix-representation of linear maps

- The algorithm is as follows: The first column of the matrix is obtained by calculating $T\left(e_{1}\right)$ and writing its components as a column vector in the given ordered basis of the target. Likewise for the other columns.
- So if we consider the differentiation linear map from degree ≤ 2 polynomials to itself with an ordered basis $\left\{1, x, x^{2}\right\}$, $T(1)=0=0.1+0 . x+0 . x^{2}, T(x)=1=1.1+0 . x+0 . x^{2}$, and $T\left(x^{2}\right)=2 x=0.1+2 . x+0 . x^{2}$.

Examples of matrix-representation of linear maps

- The algorithm is as follows: The first column of the matrix is obtained by calculating $T\left(e_{1}\right)$ and writing its components as a column vector in the given ordered basis of the target. Likewise for the other columns.
- So if we consider the differentiation linear map from degree ≤ 2 polynomials to itself with an ordered basis $\left\{1, x, x^{2}\right\}$, $T(1)=0=0.1+0 . x+0 . x^{2}, T(x)=1=1.1+0 . x+0 . x^{2}$, and $T\left(x^{2}\right)=2 x=0.1+2 . x+0 . x^{2}$.
- Thus the matrix is $[T]=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0\end{array}\right]$

Matrix operations

Matrix operations

- If A, B are two $m \times n$ matrices with entries in \mathbb{F}, then

Matrix operations

- If A, B are two $m \times n$ matrices with entries in \mathbb{F}, then $[A+B]_{i j}:=[A]_{i j}+[B]_{i j}$ and if $c \in \mathbb{F}$, then $[c A]_{i j}:=c[A]_{i j}$.

Matrix operations

- If A, B are two $m \times n$ matrices with entries in \mathbb{F}, then $[A+B]_{i j}:=[A]_{i j}+[B]_{i j}$ and if $c \in \mathbb{F}$, then $[c A]_{i j}:=c[A]_{i j}$.
- If we choose ordered bases $\left\{e_{i}\right\},\left\{f_{j}\right\},\left\{g_{k}\right\}$ for f.d vector spaces V, W, X, and

Matrix operations

- If A, B are two $m \times n$ matrices with entries in \mathbb{F}, then $[A+B]_{i j}:=[A]_{i j}+[B]_{i j}$ and if $c \in \mathbb{F}$, then $[c A]_{i j}:=c[A]_{i j}$.
- If we choose ordered bases $\left\{e_{i}\right\},\left\{f_{j}\right\},\left\{g_{k}\right\}$ for f.d vector spaces V, W, X, and if $T: V \rightarrow W, U: W \rightarrow X$ are linear maps, then

Matrix operations

- If A, B are two $m \times n$ matrices with entries in \mathbb{F}, then $[A+B]_{i j}:=[A]_{i j}+[B]_{i j}$ and if $c \in \mathbb{F}$, then $[c A]_{i j}:=c[A]_{i j}$.
- If we choose ordered bases $\left\{e_{i}\right\},\left\{f_{j}\right\},\left\{g_{k}\right\}$ for f .d vector spaces V, W, X, and if $T: V \rightarrow W, U: W \rightarrow X$ are linear maps, then then we get two matrices [T] and [U] representing the maps.

Matrix operations

- If A, B are two $m \times n$ matrices with entries in \mathbb{F}, then $[A+B]_{i j}:=[A]_{i j}+[B]_{i j}$ and if $c \in \mathbb{F}$, then $[c A]_{i j}:=c[A]_{i j}$.
- If we choose ordered bases $\left\{e_{i}\right\},\left\{f_{j}\right\},\left\{g_{k}\right\}$ for f .d vector spaces V, W, X, and if $T: V \rightarrow W, U: W \rightarrow X$ are linear maps, then then we get two matrices [T] and [U] representing the maps.
- It turns out that $U \circ T$ is represented by $[U][T]$ where multiplication is in the sense of matrix multiplication,

Matrix operations

- If A, B are two $m \times n$ matrices with entries in \mathbb{F}, then $[A+B]_{i j}:=[A]_{i j}+[B]_{i j}$ and if $c \in \mathbb{F}$, then $[c A]_{i j}:=c[A]_{i j}$.
- If we choose ordered bases $\left\{e_{i}\right\},\left\{f_{j}\right\},\left\{g_{k}\right\}$ for f .d vector spaces V, W, X, and if $T: V \rightarrow W, U: W \rightarrow X$ are linear maps, then then we get two matrices $[T]$ and $[U]$ representing the maps.
- It turns out that $U \circ T$ is represented by $[U][T]$ where multiplication is in the sense of matrix multiplication, i.e., $([A][B])_{i j}=\sum_{k}[A]_{i k}[B]_{k j}:$

Matrix operations

- If A, B are two $m \times n$ matrices with entries in \mathbb{F}, then $[A+B]_{i j}:=[A]_{i j}+[B]_{i j}$ and if $c \in \mathbb{F}$, then $[c A]_{i j}:=c[A]_{i j}$.
- If we choose ordered bases $\left\{e_{i}\right\},\left\{f_{j}\right\},\left\{g_{k}\right\}$ for f .d vector spaces V, W, X, and if $T: V \rightarrow W, U: W \rightarrow X$ are linear maps, then then we get two matrices $[T]$ and $[U]$ representing the maps.
- It turns out that $U \circ T$ is represented by $[U][T]$ where multiplication is in the sense of matrix multiplication, i.e., $([A][B])_{i j}=\sum_{k}[A]_{i k}[B]_{k j}$: Indeed, $U\left(T\left(e_{i}\right)\right)=U\left(\sum_{j} T_{j i} f_{j}\right)=\sum_{j} T_{j i} U\left(f_{j}\right)=\sum_{j} T_{j i} \sum_{k} U_{k j} g_{k}=$ $\sum_{j, k} U_{k j} T_{j i} g_{k}$.

Matrix operations

- If A, B are two $m \times n$ matrices with entries in \mathbb{F}, then $[A+B]_{i j}:=[A]_{i j}+[B]_{i j}$ and if $c \in \mathbb{F}$, then $[c A]_{i j}:=c[A]_{i j}$.
- If we choose ordered bases $\left\{e_{i}\right\},\left\{f_{j}\right\},\left\{g_{k}\right\}$ for f .d vector spaces V, W, X, and if $T: V \rightarrow W, U: W \rightarrow X$ are linear maps, then then we get two matrices $[T]$ and $[U]$ representing the maps.
- It turns out that $U \circ T$ is represented by $[U][T]$ where multiplication is in the sense of matrix multiplication, i.e., $([A][B])_{i j}=\sum_{k}[A]_{i k}[B]_{k j}$: Indeed, $U\left(T\left(e_{i}\right)\right)=U\left(\sum_{j} T_{j i} f_{j}\right)=\sum_{j} T_{j i} U\left(f_{j}\right)=\sum_{j} T_{j i} \sum_{k} U_{k j} g_{k}=$ $\sum_{j, k} U_{k j} T_{j i} g_{k}$. In fact, matrix multiplication is defined so that this happens.

Properties of matrix multiplication

Properties of matrix multiplication

- $A(B C)=(A B) C$ whenever it makes sense.

Properties of matrix multiplication

- $A(B C)=(A B) C$ whenever it makes sense.
- $(A+B) C=A C+B C$ and $C(A+B)=C A+C B$ whenever it makes sense.

Properties of matrix multiplication

- $A(B C)=(A B) C$ whenever it makes sense.
- $(A+B) C=A C+B C$ and $C(A+B)=C A+C B$ whenever it makes sense.
- The simplest proof is to interpret each of the matrices as linear maps between appropriate vector spaces and use the fact that $[U \circ T]=[U][T]$.

Null space/Kernel of a linear map

Null space/Kernel of a linear map

- Suppose we consider the equation $2 x+3 y=1$.

Null space/Kernel of a linear map

- Suppose we consider the equation $2 x+3 y=1$. How many solutions does it have?

Null space/Kernel of a linear map

- Suppose we consider the equation $2 x+3 y=1$. How many solutions does it have? Infinitely many.

Null space/Kernel of a linear map

- Suppose we consider the equation $2 x+3 y=1$. How many solutions does it have? Infinitely many.
- What about $2 x+3 y=1,4 x+6 y=3$?

Null space/Kernel of a linear map

- Suppose we consider the equation $2 x+3 y=1$. How many solutions does it have ? Infinitely many.
- What about $2 x+3 y=1,4 x+6 y=3$? Zero.

Null space/Kernel of a linear map

- Suppose we consider the equation $2 x+3 y=1$. How many solutions does it have ? Infinitely many.
- What about $2 x+3 y=1,4 x+6 y=3$? Zero.
- What about $2 x+3 y=1,4 x+6 y=2$?

Null space/Kernel of a linear map

- Suppose we consider the equation $2 x+3 y=1$. How many solutions does it have? Infinitely many.
- What about $2 x+3 y=1,4 x+6 y=3$? Zero.
- What about $2 x+3 y=1,4 x+6 y=2$? Infinitely many.

Null space/Kernel of a linear map

- Suppose we consider the equation $2 x+3 y=1$. How many solutions does it have ? Infinitely many.
- What about $2 x+3 y=1,4 x+6 y=3$? Zero.
- What about $2 x+3 y=1,4 x+6 y=2$? Infinitely many.
- What about $2 x+3 y=1, x-y=0$?

Null space/Kernel of a linear map

- Suppose we consider the equation $2 x+3 y=1$. How many solutions does it have ? Infinitely many.
- What about $2 x+3 y=1,4 x+6 y=3$? Zero.
- What about $2 x+3 y=1,4 x+6 y=2$? Infinitely many.
- What about $2 x+3 y=1, x-y=0$? Exactly one.

Null space/Kernel of a linear map

- Suppose we consider the equation $2 x+3 y=1$. How many solutions does it have ? Infinitely many.
- What about $2 x+3 y=1,4 x+6 y=3$? Zero.
- What about $2 x+3 y=1,4 x+6 y=2$? Infinitely many.
- What about $2 x+3 y=1, x-y=0$? Exactly one.
- More generally, $T: V \rightarrow W$ need not be surjective or injective.

Null space/Kernel of a linear map

- Suppose we consider the equation $2 x+3 y=1$. How many solutions does it have ? Infinitely many.
- What about $2 x+3 y=1,4 x+6 y=3$? Zero.
-What about $2 x+3 y=1,4 x+6 y=2$? Infinitely many.
- What about $2 x+3 y=1, x-y=0$? Exactly one.
- More generally, $T: V \rightarrow W$ need not be surjective or injective.
- Suppose $T(v)=w$.

Null space/Kernel of a linear map

- Suppose we consider the equation $2 x+3 y=1$. How many solutions does it have ? Infinitely many.
- What about $2 x+3 y=1,4 x+6 y=3$? Zero.
- What about $2 x+3 y=1,4 x+6 y=2$? Infinitely many.
- What about $2 x+3 y=1, x-y=0$? Exactly one.
- More generally, $T: V \rightarrow W$ need not be surjective or injective.
- Suppose $T(v)=w$. How many solutions does this equation have if it has one?

Null space/Kernel of a linear map

- Suppose we consider the equation $2 x+3 y=1$. How many solutions does it have ? Infinitely many.
- What about $2 x+3 y=1,4 x+6 y=3$? Zero.
- What about $2 x+3 y=1,4 x+6 y=2$? Infinitely many.
- What about $2 x+3 y=1, x-y=0$? Exactly one.
- More generally, $T: V \rightarrow W$ need not be surjective or injective.
- Suppose $T(v)=w$. How many solutions does this equation have if it has one ? Note that if $T\left(v_{1}\right)=T\left(v_{2}\right)=w$, then $T\left(v_{1}-v_{2}\right)=0$.

Null space/Kernel of a linear map

- Suppose we consider the equation $2 x+3 y=1$. How many solutions does it have? Infinitely many.
- What about $2 x+3 y=1,4 x+6 y=3$? Zero.
- What about $2 x+3 y=1,4 x+6 y=2$? Infinitely many.
- What about $2 x+3 y=1, x-y=0$? Exactly one.
- More generally, $T: V \rightarrow W$ need not be surjective or injective.
- Suppose $T(v)=w$. How many solutions does this equation have if it has one ? Note that if $T\left(v_{1}\right)=T\left(v_{2}\right)=w$, then $T\left(v_{1}-v_{2}\right)=0$.
- Motivated by this observation,

Null space/Kernel of a linear map

- Suppose we consider the equation $2 x+3 y=1$. How many solutions does it have ? Infinitely many.
- What about $2 x+3 y=1,4 x+6 y=3$? Zero.
- What about $2 x+3 y=1,4 x+6 y=2$? Infinitely many.
- What about $2 x+3 y=1, x-y=0$? Exactly one.
- More generally, $T: V \rightarrow W$ need not be surjective or injective.
- Suppose $T(v)=w$. How many solutions does this equation have if it has one? Note that if $T\left(v_{1}\right)=T\left(v_{2}\right)=w$, then $T\left(v_{1}-v_{2}\right)=0$.
- Motivated by this observation, we define the null space $N(T) \subset V$ as the set $v \in V$ so that $T(v)=0$.

Null space/Kernel of a linear map

- Suppose we consider the equation $2 x+3 y=1$. How many solutions does it have? Infinitely many.
- What about $2 x+3 y=1,4 x+6 y=3$? Zero.
- What about $2 x+3 y=1,4 x+6 y=2$? Infinitely many.
- What about $2 x+3 y=1, x-y=0$? Exactly one.
- More generally, $T: V \rightarrow W$ need not be surjective or injective.
- Suppose $T(v)=w$. How many solutions does this equation have if it has one ? Note that if $T\left(v_{1}\right)=T\left(v_{2}\right)=w$, then $T\left(v_{1}-v_{2}\right)=0$.
- Motivated by this observation, we define the null space $N(T) \subset V$ as the set $v \in V$ so that $T(v)=0$. If $T(v)=T(w)=0$, then

Null space/Kernel of a linear map

- Suppose we consider the equation $2 x+3 y=1$. How many solutions does it have ? Infinitely many.
- What about $2 x+3 y=1,4 x+6 y=3$? Zero.
- What about $2 x+3 y=1,4 x+6 y=2$? Infinitely many.
- What about $2 x+3 y=1, x-y=0$? Exactly one.
- More generally, $T: V \rightarrow W$ need not be surjective or injective.
- Suppose $T(v)=w$. How many solutions does this equation have if it has one? Note that if $T\left(v_{1}\right)=T\left(v_{2}\right)=w$, then $T\left(v_{1}-v_{2}\right)=0$.
- Motivated by this observation, we define the null space $N(T) \subset V$ as the set $v \in V$ so that $T(v)=0$. If $T(v)=T(w)=0$, then $T(a v+b w)=a T(v)+b T(w)=0$ and hence $N(T)$ is a subspace of V.

Nullity and Rank

Nullity and Rank

- Note that T is $1-1$ if and only if $N(T)=\{0\}$:

Nullity and Rank

- Note that T is $1-1$ if and only if $N(T)=\{0\}$:If T is $1-1$, then $T(0)=0$ and hence $N(T)=\{0\}$.

Nullity and Rank

- Note that T is $1-1$ if and only if $N(T)=\{0\}$:If T is $1-1$, then $T(0)=0$ and hence $N(T)=\{0\}$. If $N(T)=\{0\}$ and if $T(v)=T(w)$, then $T(v-w)=0$ and hence $v-w \in N(T)$ implying that $v=w$. Hence T is $1-1$.

Nullity and Rank

- Note that T is $1-1$ if and only if $N(T)=\{0\}$:If T is $1-1$, then $T(0)=0$ and hence $N(T)=\{0\}$. If $N(T)=\{0\}$ and if $T(v)=T(w)$, then $T(v-w)=0$ and hence $v-w \in N(T)$ implying that $v=w$. Hence T is $1-1$.
- The dimension of the null space/Kernel of $T: V \rightarrow W$ (where V, W are f.d) is called the nullity of T.

Nullity and Rank

- Note that T is $1-1$ if and only if $N(T)=\{0\}$:If T is $1-1$, then $T(0)=0$ and hence $N(T)=\{0\}$. If $N(T)=\{0\}$ and if $T(v)=T(w)$, then $T(v-w)=0$ and hence $v-w \in N(T)$ implying that $v=w$. Hence T is $1-1$.
- The dimension of the null space/Kernel of $T: V \rightarrow W$ (where V, W are f.d) is called the nullity of T. It measures the failure of injectivity of T.

Nullity and Rank

- Note that T is $1-1$ if and only if $N(T)=\{0\}$:If T is $1-1$, then $T(0)=0$ and hence $N(T)=\{0\}$. If $N(T)=\{0\}$ and if $T(v)=T(w)$, then $T(v-w)=0$ and hence $v-w \in N(T)$ implying that $v=w$. Hence T is $1-1$.
- The dimension of the null space/Kernel of $T: V \rightarrow W$ (where V, W are f.d) is called the nullity of T. It measures the failure of injectivity of T. It is basically the number of "free parameters".

Nullity and Rank

- Note that T is $1-1$ if and only if $N(T)=\{0\}$:If T is $1-1$, then $T(0)=0$ and hence $N(T)=\{0\}$. If $N(T)=\{0\}$ and if $T(v)=T(w)$, then $T(v-w)=0$ and hence $v-w \in N(T)$ implying that $v=w$. Hence T is $1-1$.
- The dimension of the null space/Kernel of $T: V \rightarrow W$ (where V, W are f.d) is called the nullity of T. It measures the failure of injectivity of T. It is basically the number of "free parameters".
- The dimension of the image is called the rank of T.

Nullity and Rank

- Note that T is $1-1$ if and only if $N(T)=\{0\}$:If T is $1-1$, then $T(0)=0$ and hence $N(T)=\{0\}$. If $N(T)=\{0\}$ and if $T(v)=T(w)$, then $T(v-w)=0$ and hence $v-w \in N(T)$ implying that $v=w$. Hence T is $1-1$.
- The dimension of the null space/Kernel of $T: V \rightarrow W$ (where V, W are f.d) is called the nullity of T. It measures the failure of injectivity of T. It is basically the number of "free parameters".
- The dimension of the image is called the rank of T. It measures the failure of surjectivity of T.

Nullity and Rank

- Note that T is $1-1$ if and only if $N(T)=\{0\}$:If T is $1-1$, then $T(0)=0$ and hence $N(T)=\{0\}$. If $N(T)=\{0\}$ and if $T(v)=T(w)$, then $T(v-w)=0$ and hence $v-w \in N(T)$ implying that $v=w$. Hence T is $1-1$.
- The dimension of the null space/Kernel of $T: V \rightarrow W$ (where V, W are f.d) is called the nullity of T. It measures the failure of injectivity of T. It is basically the number of "free parameters".
- The dimension of the image is called the rank of T. It measures the failure of surjectivity of T.
- An important result is the Nullity-Rank Theorem :

Nullity and Rank

- Note that T is $1-1$ if and only if $N(T)=\{0\}$:If T is $1-1$, then $T(0)=0$ and hence $N(T)=\{0\}$. If $N(T)=\{0\}$ and if $T(v)=T(w)$, then $T(v-w)=0$ and hence $v-w \in N(T)$ implying that $v=w$. Hence T is $1-1$.
- The dimension of the null space/Kernel of $T: V \rightarrow W$ (where V, W are f.d) is called the nullity of T. It measures the failure of injectivity of T. It is basically the number of "free parameters".
- The dimension of the image is called the rank of T. It measures the failure of surjectivity of T.
- An important result is the Nullity-Rank Theorem :The Nullity of $T+$ the Rank of T equals $\operatorname{dim}(V)$.

Nullity and Rank Theorem : Proof

Nullity and Rank Theorem : Proof

- Suppose e_{1}, \ldots, e_{k} is a basis of $N(T)$.

Nullity and Rank Theorem : Proof

- Suppose e_{1}, \ldots, e_{k} is a basis of $N(T)$. Extend it to a basis e_{k+1}, \ldots, e_{n} of V.

Nullity and Rank Theorem : Proof

- Suppose e_{1}, \ldots, e_{k} is a basis of $N(T)$. Extend it to a basis e_{k+1}, \ldots, e_{n} of V. We claim that $f_{1}=T\left(e_{k+1}\right), f_{2}=T\left(e_{k+2}\right), \ldots, f_{n-k}=T\left(e_{n}\right)$ is a basis of $R(T)$.

Nullity and Rank Theorem : Proof

- Suppose e_{1}, \ldots, e_{k} is a basis of $N(T)$. Extend it to a basis e_{k+1}, \ldots, e_{n} of V. We claim that $f_{1}=T\left(e_{k+1}\right), f_{2}=T\left(e_{k+2}\right), \ldots, f_{n-k}=T\left(e_{n}\right)$ is a basis of $R(T)$. Indeed, f_{i} are linearly independent:

Nullity and Rank Theorem : Proof

- Suppose e_{1}, \ldots, e_{k} is a basis of $N(T)$. Extend it to a basis e_{k+1}, \ldots, e_{n} of V. We claim that $f_{1}=T\left(e_{k+1}\right), f_{2}=T\left(e_{k+2}\right), \ldots, f_{n-k}=T\left(e_{n}\right)$ is a basis of $R(T)$. Indeed, f_{i} are linearly independent: If $\sum_{i} c_{i} f_{i}=0$, then

Nullity and Rank Theorem : Proof

- Suppose e_{1}, \ldots, e_{k} is a basis of $N(T)$. Extend it to a basis e_{k+1}, \ldots, e_{n} of V. We claim that $f_{1}=T\left(e_{k+1}\right), f_{2}=T\left(e_{k+2}\right), \ldots, f_{n-k}=T\left(e_{n}\right)$ is a basis of $R(T)$. Indeed, f_{i} are linearly independent: If $\sum_{i} c_{i} f_{i}=0$, then $T\left(\sum_{i=k+1}^{n} c_{i} e_{i}\right)=0$ and hence $\sum_{i=k+1}^{n} c_{i} e_{i} \in N(T)$ which implies that $\sum_{i=k+1}^{n} c_{i} e_{i}=\sum_{i=1}^{k} d_{i} e_{i}$ and hence by linear independence,

Nullity and Rank Theorem : Proof

- Suppose e_{1}, \ldots, e_{k} is a basis of $N(T)$. Extend it to a basis e_{k+1}, \ldots, e_{n} of V. We claim that $f_{1}=T\left(e_{k+1}\right), f_{2}=T\left(e_{k+2}\right), \ldots, f_{n-k}=T\left(e_{n}\right)$ is a basis of $R(T)$. Indeed, f_{i} are linearly independent: If $\sum_{i} c_{i} f_{i}=0$, then $T\left(\sum_{i=k+1}^{n} c_{i} e_{i}\right)=0$ and hence $\sum_{i=k+1}^{n} c_{i} e_{i} \in N(T)$ which implies that $\sum_{i=k+1}^{n} c_{i} e_{i}=\sum_{i=1}^{k} d_{i} e_{i}$ and hence by linear independence, $c_{i}=d_{j}=0 \forall i, j$.

Nullity and Rank Theorem : Proof

- Suppose e_{1}, \ldots, e_{k} is a basis of $N(T)$. Extend it to a basis e_{k+1}, \ldots, e_{n} of V. We claim that $f_{1}=T\left(e_{k+1}\right), f_{2}=T\left(e_{k+2}\right), \ldots, f_{n-k}=T\left(e_{n}\right)$ is a basis of $R(T)$. Indeed, f_{i} are linearly independent: If $\sum_{i} c_{i} f_{i}=0$, then $T\left(\sum_{i=k+1}^{n} c_{i} e_{i}\right)=0$ and hence $\sum_{i=k+1}^{n} c_{i} e_{i} \in N(T)$ which implies that $\sum_{i=k+1}^{n} c_{i} e_{i}=\sum_{i=1}^{k} d_{i} e_{i}$ and hence by linear independence, $c_{i}=d_{j}=0 \forall i, j$. Moreover, f_{i} span $R(T)$:

Nullity and Rank Theorem : Proof

- Suppose e_{1}, \ldots, e_{k} is a basis of $N(T)$. Extend it to a basis e_{k+1}, \ldots, e_{n} of V. We claim that $f_{1}=T\left(e_{k+1}\right), f_{2}=T\left(e_{k+2}\right), \ldots, f_{n-k}=T\left(e_{n}\right)$ is a basis of $R(T)$. Indeed, f_{i} are linearly independent: If $\sum_{i} c_{i} f_{i}=0$, then $T\left(\sum_{i=k+1}^{n} c_{i} e_{i}\right)=0$ and hence $\sum_{i=k+1}^{n} c_{i} e_{i} \in N(T)$ which implies that $\sum_{i=k+1}^{n} c_{i} e_{i}=\sum_{i=1}^{k} d_{i} e_{i}$ and hence by linear independence, $c_{i}=d_{j}=0 \forall i, j$. Moreover, f_{i} span $R(T): T(v)=T\left(\sum_{i=1}^{n} c_{i} e_{i}\right)=$ $T\left(\sum_{i=1}^{k} c_{i} e_{i}\right)+T\left(\sum_{i=k+1}^{n} c_{i} e_{i}\right)=0+\sum_{i} c_{i} f_{i}$.

