Lecture 2 - UM 102 (Spring 2021)

Vamsi Pritham Pingali

IISc

Recap

< E > < E >

æ

Recalled the definition of a vector space V over a field F
 (usually reals or complex numbers). By the way, using
 induction and associativity, ∑ⁿ_{i=1} c_iv_i can be defined
 unambiguously.

- Recalled the definition of a vector space V over a field F
 (usually reals or complex numbers). By the way, using
 induction and associativity, ∑ⁿ_{i=1} c_iv_i can be defined
 unambiguously.
- Subspaces and the linear span of a set.

- Recalled the definition of a vector space V over a field F
 (usually reals or complex numbers). By the way, using
 induction and associativity, ∑ⁿ_{i=1} c_iv_i can be defined
 unambiguously.
- Subspaces and the linear span of a set.
- Finite-dimensional vector spaces, dimension, and the notion of a basis.

- Recalled the definition of a vector space V over a field F
 (usually reals or complex numbers). By the way, using
 induction and associativity, ∑ⁿ_{i=1} c_iv_i can be defined
 unambiguously.
- Subspaces and the linear span of a set.
- Finite-dimensional vector spaces, dimension, and the notion of a basis.
- Ordered bases and components.

æ

• Recall that one of the aims of defining vector spaces was to solve linear equations in general.

• Recall that one of the aims of defining vector spaces was to solve linear equations in general. Often, this involves adding/subtracting to get "new variables" that can be solved for.

- Recall that one of the aims of defining vector spaces was to solve linear equations in general. Often, this involves adding/subtracting to get "new variables" that can be solved for.
- Moreover, given two vector spaces, are they the same vector space in disguise ? (

- Recall that one of the aims of defining vector spaces was to solve linear equations in general. Often, this involves adding/subtracting to get "new variables" that can be solved for.
- Moreover, given two vector spaces, are they the same vector space in disguise ? (Is Aragon being called Strider ?)

- Recall that one of the aims of defining vector spaces was to solve linear equations in general. Often, this involves adding/subtracting to get "new variables" that can be solved for.
- Moreover, given two vector spaces, are they the same vector space in disguise ? (Is Aragon being called Strider ?)
- To this end, we neeed to define maps/functions/transformations between vector spaces that preserve the vector space structure.

- Recall that one of the aims of defining vector spaces was to solve linear equations in general. Often, this involves adding/subtracting to get "new variables" that can be solved for.
- Moreover, given two vector spaces, are they the same vector space in disguise ? (Is Aragon being called Strider ?)
- To this end, we neeed to define maps/functions/transformations between vector spaces that preserve the vector space structure.
- Recall that if *V*, *W* are vector spaces (over the same field), then

- Recall that one of the aims of defining vector spaces was to solve linear equations in general. Often, this involves adding/subtracting to get "new variables" that can be solved for.
- Moreover, given two vector spaces, are they the same vector space in disguise ? (Is Aragon being called Strider ?)
- To this end, we neeed to define maps/functions/transformations between vector spaces that preserve the vector space structure.
- Recall that if V, W are vector spaces (over the same field), then a function T : V → W is called a linear transformation/linear map if T(av) = aT(v) for all a ∈ F, v ∈ V and T(v + w) = T(v) + T(w)

- Recall that one of the aims of defining vector spaces was to solve linear equations in general. Often, this involves adding/subtracting to get "new variables" that can be solved for.
- Moreover, given two vector spaces, are they the same vector space in disguise ? (Is Aragon being called Strider ?)
- To this end, we neeed to define maps/functions/transformations between vector spaces that preserve the vector space structure.
- Recall that if V, W are vector spaces (over the same field), then a function T : V → W is called a linear transformation/linear map if T(av) = aT(v) for all a ∈ 𝔅, v ∈ V and T(v + w) = T(v) + T(w) or alternatively, T(av + bw) = aT(v) + bT(w).

- Recall that one of the aims of defining vector spaces was to solve linear equations in general. Often, this involves adding/subtracting to get "new variables" that can be solved for.
- Moreover, given two vector spaces, are they the same vector space in disguise ? (Is Aragon being called Strider ?)
- To this end, we neeed to define maps/functions/transformations between vector spaces that preserve the vector space structure.
- Recall that if V, W are vector spaces (over the same field), then a function $T: V \to W$ is called a linear transformation/linear map if T(av) = aT(v) for all $a \in \mathbb{F}, v \in V$ and T(v + w) = T(v) + T(w) or alternatively, T(av + bw) = aT(v) + bT(w). So T(0) = T(0.v) = 0. T(v) = 0.

æ

• The image T(V) is a subspace of W:

 The image T(V) is a subspace of W : If T(v), T(w) ∈ T(V), then aT(v) + bT(w) = T(av + bw) ∈ T(V).

 The image T(V) is a subspace of W : If T(v), T(w) ∈ T(V), then aT(v) + bT(w) = T(av + bw) ∈ T(V).

•
$$T(\sum_i c_i v_i) = \sum_i T(c_i v_i)$$
:

- The image T(V) is a subspace of W : If T(v), T(w) ∈ T(V), then aT(v) + bT(w) = T(av + bw) ∈ T(V).
- $T(\sum_{i} c_{i}v_{i}) = \sum_{i} T(c_{i}v_{i})$: We prove by induction. For n = 1, it follows from definition.

- The image T(V) is a subspace of W : If T(v), T(w) ∈ T(V), then aT(v) + bT(w) = T(av + bw) ∈ T(V).
- $T(\sum_{i} c_{i}v_{i}) = \sum_{i} T(c_{i}v_{i})$: We prove by induction. For n = 1, it follows from definition. Assume truth for n.

- The image T(V) is a subspace of W : If T(v), T(w) ∈ T(V), then aT(v) + bT(w) = T(av + bw) ∈ T(V).
- $T(\sum_i c_i v_i) = \sum_i T(c_i v_i)$: We prove by induction. For n = 1, it follows from definition. Assume truth for n. For n + 1, $T(\sum_{i=1}^{n+1} c_i v_i) = T(\sum_{i=1}^{n} c_i v_i + c_{n+1} v_{n+1}) =$ $\sum_{i=1}^{n} c_i T(v_i) + c_{n+1} T(v_{n+1})$.

• If $V = \mathbb{R}^n$, $W = \mathbb{R}^m$, and A is an $m \times n$ real matrix, then T(x) = Ax, i.e,

• If $V = \mathbb{R}^n$, $W = \mathbb{R}^m$, and A is an $m \times n$ real matrix, then T(x) = Ax, i.e, $(T(x))_i = \sum_j A_{ij}x_j$ is a linear map. (

• If $V = \mathbb{R}^n$, $W = \mathbb{R}^m$, and A is an $m \times n$ real matrix, then T(x) = Ax, i.e, $(T(x))_i = \sum_j A_{ij}x_j$ is a linear map. (In fact, *all* linear maps between these particular V and W arise this way.)

• If $V = \mathbb{R}^n$, $W = \mathbb{R}^m$, and A is an $m \times n$ real matrix, then T(x) = Ax, i.e, $(T(x))_i = \sum_j A_{ij}x_j$ is a linear map. (In fact, *all* linear maps between these particular V and W arise this way.) However, T(x) = Ax + b is NOT linear.

- If $V = \mathbb{R}^n$, $W = \mathbb{R}^m$, and A is an $m \times n$ real matrix, then T(x) = Ax, i.e, $(T(x))_i = \sum_j A_{ij}x_j$ is a linear map. (In fact, *all* linear maps between these particular V and W arise this way.) However, T(x) = Ax + b is NOT linear.
- If V is the space of continuous $f : [0, 1] \to \mathbb{R}$ and $W = \mathbb{R}$, then $T(f) = \int_0^1 f(x) dx$ is a linear map.

- If $V = \mathbb{R}^n$, $W = \mathbb{R}^m$, and A is an $m \times n$ real matrix, then T(x) = Ax, i.e, $(T(x))_i = \sum_j A_{ij}x_j$ is a linear map. (In fact, *all* linear maps between these particular V and W arise this way.) However, T(x) = Ax + b is NOT linear.
- If V is the space of continuous $f : [0,1] \to \mathbb{R}$ and $W = \mathbb{R}$, then $T(f) = \int_0^1 f(x) dx$ is a linear map. However, $\int_0^1 f^2 dx$ is NOT linear.

- If $V = \mathbb{R}^n$, $W = \mathbb{R}^m$, and A is an $m \times n$ real matrix, then T(x) = Ax, i.e, $(T(x))_i = \sum_j A_{ij}x_j$ is a linear map. (In fact, *all* linear maps between these particular V and W arise this way.) However, T(x) = Ax + b is NOT linear.
- If V is the space of continuous $f : [0,1] \to \mathbb{R}$ and $W = \mathbb{R}$, then $T(f) = \int_0^1 f(x) dx$ is a linear map. However, $\int_0^1 f^2 dx$ is NOT linear.
- If V is the space of real polynomials of degree ≤ 5 and $W = \mathbb{R}$, then

- If $V = \mathbb{R}^n$, $W = \mathbb{R}^m$, and A is an $m \times n$ real matrix, then T(x) = Ax, i.e, $(T(x))_i = \sum_j A_{ij}x_j$ is a linear map. (In fact, *all* linear maps between these particular V and W arise this way.) However, T(x) = Ax + b is NOT linear.
- If V is the space of continuous $f : [0,1] \to \mathbb{R}$ and $W = \mathbb{R}$, then $T(f) = \int_0^1 f(x) dx$ is a linear map. However, $\int_0^1 f^2 dx$ is NOT linear.
- If V is the space of real polynomials of degree ≤ 5 and $W = \mathbb{R}$, then T(p) = p(0) is a linear map. (

- If $V = \mathbb{R}^n$, $W = \mathbb{R}^m$, and A is an $m \times n$ real matrix, then T(x) = Ax, i.e, $(T(x))_i = \sum_j A_{ij}x_j$ is a linear map. (In fact, *all* linear maps between these particular V and W arise this way.) However, T(x) = Ax + b is NOT linear.
- If V is the space of continuous $f : [0,1] \to \mathbb{R}$ and $W = \mathbb{R}$, then $T(f) = \int_0^1 f(x) dx$ is a linear map. However, $\int_0^1 f^2 dx$ is NOT linear.
- If V is the space of real polynomials of degree ≤ 5 and $W = \mathbb{R}$, then T(p) = p(0) is a linear map. (It is called an evaluation map.)

Algebraic operations on Linear maps

• If V, W are vector spaces over the same field,

• If V, W are vector spaces over the same field, $T, H: V \rightarrow W$ are linear maps,

• If V, W are vector spaces over the same field, $T, H : V \to W$ are linear maps, then T + H is linear and so is cT for all $c \in \mathbb{F}$.

- If V, W are vector spaces over the same field, $T, H : V \to W$ are linear maps, then T + H is linear and so is cT for all $c \in \mathbb{F}$.
- One can verify that the set of all linear maps L(V, W) forms a vector space in its own right.

6/13

- If V, W are vector spaces over the same field, $T, H : V \to W$ are linear maps, then T + H is linear and so is cT for all $c \in \mathbb{F}$.
- One can verify that the set of all linear maps L(V, W) forms a vector space in its own right.
- If V, W, X are vector spaces, and $T: V \rightarrow W, U: W \rightarrow X$ are linear maps,

- If V, W are vector spaces over the same field, $T, H : V \to W$ are linear maps, then T + H is linear and so is cT for all $c \in \mathbb{F}$.
- One can verify that the set of all linear maps L(V, W) forms a vector space in its own right.
- If V, W, X are vector spaces, and T : V → W, U : W → X are linear maps, then U ∘ T : V → X is linear.

- If V, W are vector spaces over the same field, $T, H : V \to W$ are linear maps, then T + H is linear and so is cT for all $c \in \mathbb{F}$.
- One can verify that the set of all linear maps L(V, W) forms a vector space in its own right.
- If V, W, X are vector spaces, and T : V → W, U : W → X are linear maps, then U ∘ T : V → X is linear.
- R(ST) = (RS)T, i.e., associativity holds. Moreover,

- If V, W are vector spaces over the same field, T, H: V → W are linear maps, then T + H is linear and so is cT for all c ∈ F.
- One can verify that the set of all linear maps L(V, W) forms a vector space in its own right.
- If V, W, X are vector spaces, and T : V → W, U : W → X are linear maps, then U ∘ T : V → X is linear.
- R(ST) = (RS)T, i.e., associativity holds. Moreover, (R+S)T = RT + ST and R(S+T) = RS + RT.

• Given ordered bases e_1, \ldots, e_n for V and f_1, \ldots, f_m for W,

• Given ordered bases e_1, \ldots, e_n for V and f_1, \ldots, f_m for W, $T(\sum_k c_k e_k) = \sum_k c_k T(e_k)$ and hence it is enough to know what $T(e_k)$ are.

• Given ordered bases e_1, \ldots, e_n for V and f_1, \ldots, f_m for W, $T(\sum_k c_k e_k) = \sum_k c_k T(e_k)$ and hence it is enough to know what $T(e_k)$ are. Let $T(e_k) = \sum_j T_{jk} f_j$.

• Given ordered bases e_1, \ldots, e_n for V and f_1, \ldots, f_m for W, $T(\sum_k c_k e_k) = \sum_k c_k T(e_k)$ and hence it is enough to know what $T(e_k)$ are. Let $T(e_k) = \sum_j T_{jk} f_j$. Then $T(\sum_k c_k e_k) = \sum_k c_k \sum_j T_{jk} f_j = \sum_j (\sum_k T_{jk} c_k) f_j$.

- Given ordered bases e_1, \ldots, e_n for V and f_1, \ldots, f_m for W, $T(\sum_k c_k e_k) = \sum_k c_k T(e_k)$ and hence it is enough to know what $T(e_k)$ are. Let $T(e_k) = \sum_j T_{jk} f_j$. Then $T(\sum_k c_k e_k) = \sum_k c_k \sum_j T_{jk} f_j = \sum_j (\sum_k T_{jk} c_k) f_j$.
- The matrix T_{jk} determines T and vice-versa.

- Given ordered bases e_1, \ldots, e_n for V and f_1, \ldots, f_m for W, $T(\sum_k c_k e_k) = \sum_k c_k T(e_k)$ and hence it is enough to know what $T(e_k)$ are. Let $T(e_k) = \sum_j T_{jk} f_j$. Then $T(\sum_k c_k e_k) = \sum_k c_k \sum_j T_{jk} f_j = \sum_j (\sum_k T_{jk} c_k) f_j$.
- The matrix T_{jk} determines T and vice-versa. The components c_k , if represented by a column vector (as is usually the case),

- Given ordered bases e_1, \ldots, e_n for V and f_1, \ldots, f_m for W, $T(\sum_k c_k e_k) = \sum_k c_k T(e_k)$ and hence it is enough to know what $T(e_k)$ are. Let $T(e_k) = \sum_j T_{jk} f_j$. Then $T(\sum_k c_k e_k) = \sum_k c_k \sum_j T_{jk} f_j = \sum_j (\sum_k T_{jk} c_k) f_j$.
- The matrix T_{jk} determines T and vice-versa. The components c_k , if represented by a column vector (as is usually the case), go to a *new* component-column-vector d_j as d = [T]c.

- Given ordered bases e_1, \ldots, e_n for V and f_1, \ldots, f_m for W, $T(\sum_k c_k e_k) = \sum_k c_k T(e_k)$ and hence it is enough to know what $T(e_k)$ are. Let $T(e_k) = \sum_j T_{jk} f_j$. Then $T(\sum_k c_k e_k) = \sum_k c_k \sum_j T_{jk} f_j = \sum_j (\sum_k T_{jk} c_k) f_j$.
- The matrix T_{jk} determines T and vice-versa. The components c_k , if represented by a column vector (as is usually the case), go to a *new* component-column-vector d_j as d = [T]c.
- So to link linear maps and matrices, one needs to *choose* ordered bases for *both*,

7/13

- Given ordered bases e_1, \ldots, e_n for V and f_1, \ldots, f_m for W, $T(\sum_k c_k e_k) = \sum_k c_k T(e_k)$ and hence it is enough to know what $T(e_k)$ are. Let $T(e_k) = \sum_j T_{jk} f_j$. Then $T(\sum_k c_k e_k) = \sum_k c_k \sum_j T_{jk} f_j = \sum_j (\sum_k T_{jk} c_k) f_j$.
- The matrix T_{jk} determines T and vice-versa. The components c_k , if represented by a column vector (as is usually the case), go to a *new* component-column-vector d_j as d = [T]c.
- So to link linear maps and matrices, one needs to *choose* ordered bases for *both*, the image AND the target.

- Given ordered bases e_1, \ldots, e_n for V and f_1, \ldots, f_m for W, $T(\sum_k c_k e_k) = \sum_k c_k T(e_k)$ and hence it is enough to know what $T(e_k)$ are. Let $T(e_k) = \sum_j T_{jk} f_j$. Then $T(\sum_k c_k e_k) = \sum_k c_k \sum_j T_{jk} f_j = \sum_j (\sum_k T_{jk} c_k) f_j$.
- The matrix T_{jk} determines T and vice-versa. The components c_k , if represented by a column vector (as is usually the case), go to a *new* component-column-vector d_j as d = [T]c.
- So to link linear maps and matrices, one needs to *choose* ordered bases for *both*, the image AND the target.
- Different choices of ordered bases give rise to *different* matrices representing the *same* linear map.

• The algorithm is as follows : The first column of the matrix is obtained by

• The algorithm is as follows : The first column of the matrix is obtained by calculating $T(e_1)$ and

• The algorithm is as follows : The first column of the matrix is obtained by calculating $T(e_1)$ and writing its components as a column vector in the given ordered basis of the target.

• The algorithm is as follows : The first column of the matrix is obtained by calculating $T(e_1)$ and writing its components as a column vector in the given ordered basis of the target. Likewise for the other columns.

- The algorithm is as follows : The first column of the matrix is obtained by calculating $T(e_1)$ and writing its components as a column vector in the given ordered basis of the target. Likewise for the other columns.
- So if we consider the *differentiation* linear map from degree ≤ 2 polynomials to itself

8/13

- The algorithm is as follows : The first column of the matrix is obtained by calculating $T(e_1)$ and writing its components as a column vector in the given ordered basis of the target. Likewise for the other columns.
- So if we consider the *differentiation* linear map from degree ≤ 2 polynomials to itself with an ordered basis $\{1, x, x^2\}$,

- The algorithm is as follows : The first column of the matrix is obtained by calculating $T(e_1)$ and writing its components as a column vector in the given ordered basis of the target. Likewise for the other columns.
- So if we consider the *differentiation* linear map from degree ≤ 2 polynomials to itself with an ordered basis $\{1, x, x^2\}$, $T(1) = 0 = 0.1 + 0.x + 0.x^2$,

8/13

- The algorithm is as follows : The first column of the matrix is obtained by calculating $T(e_1)$ and writing its components as a column vector in the given ordered basis of the target. Likewise for the other columns.
- So if we consider the *differentiation* linear map from degree ≤ 2 polynomials to itself with an ordered basis $\{1, x, x^2\}$, $T(1) = 0 = 0.1 + 0.x + 0.x^2$, $T(x) = 1 = 1.1 + 0.x + 0.x^2$, and

8/13

- The algorithm is as follows : The first column of the matrix is obtained by calculating $T(e_1)$ and writing its components as a column vector in the given ordered basis of the target. Likewise for the other columns.
- So if we consider the *differentiation* linear map from degree ≤ 2 polynomials to itself with an ordered basis $\{1, x, x^2\}$, $T(1) = 0 = 0.1 + 0.x + 0.x^2$, $T(x) = 1 = 1.1 + 0.x + 0.x^2$, and $T(x^2) = 2x = 0.1 + 2.x + 0.x^2$.

- The algorithm is as follows : The first column of the matrix is obtained by calculating $T(e_1)$ and writing its components as a column vector in the given ordered basis of the target. Likewise for the other columns.
- So if we consider the *differentiation* linear map from degree ≤ 2 polynomials to itself with an ordered basis $\{1, x, x^2\}$, $T(1) = 0 = 0.1 + 0.x + 0.x^2$, $T(x) = 1 = 1.1 + 0.x + 0.x^2$, and $T(x^2) = 2x = 0.1 + 2.x + 0.x^2$.

• Thus the matrix is
$$[T] = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

æ

• If A, B are two $m \times n$ matrices with entries in \mathbb{F} , then

• If A, B are two $m \times n$ matrices with entries in \mathbb{F} , then $[A + B]_{ij} := [A]_{ij} + [B]_{ij}$ and if $c \in \mathbb{F}$, then $[cA]_{ij} := c[A]_{ij}$.

- If A, B are two $m \times n$ matrices with entries in \mathbb{F} , then $[A + B]_{ij} := [A]_{ij} + [B]_{ij}$ and if $c \in \mathbb{F}$, then $[cA]_{ij} := c[A]_{ij}$.
- If we choose ordered bases $\{e_i\}, \{f_j\}, \{g_k\}$ for f.d vector spaces V, W, X, and

- If A, B are two $m \times n$ matrices with entries in \mathbb{F} , then $[A + B]_{ij} := [A]_{ij} + [B]_{ij}$ and if $c \in \mathbb{F}$, then $[cA]_{ij} := c[A]_{ij}$.
- If we choose ordered bases $\{e_i\}, \{f_j\}, \{g_k\}$ for f.d vector spaces V, W, X, and if $T : V \to W, U : W \to X$ are linear maps, then

- If A, B are two $m \times n$ matrices with entries in \mathbb{F} , then $[A + B]_{ij} := [A]_{ij} + [B]_{ij}$ and if $c \in \mathbb{F}$, then $[cA]_{ij} := c[A]_{ij}$.
- If we choose ordered bases {e_i}, {f_j}, {g_k} for f.d vector spaces V, W, X, and if T : V → W, U : W → X are linear maps, then then we get two matrices [T] and [U] representing the maps.

- If A, B are two $m \times n$ matrices with entries in \mathbb{F} , then $[A + B]_{ij} := [A]_{ij} + [B]_{ij}$ and if $c \in \mathbb{F}$, then $[cA]_{ij} := c[A]_{ij}$.
- If we choose ordered bases {e_i}, {f_j}, {g_k} for f.d vector spaces V, W, X, and if T : V → W, U : W → X are linear maps, then then we get two matrices [T] and [U] representing the maps.
- It turns out that U ∘ T is represented by [U][T] where multiplication is in the sense of matrix multiplication,

9/13

Matrix operations

- If A, B are two $m \times n$ matrices with entries in \mathbb{F} , then $[A + B]_{ij} := [A]_{ij} + [B]_{ij}$ and if $c \in \mathbb{F}$, then $[cA]_{ij} := c[A]_{ij}$.
- If we choose ordered bases {e_i}, {f_j}, {g_k} for f.d vector spaces V, W, X, and if T : V → W, U : W → X are linear maps, then then we get two matrices [T] and [U] representing the maps.
- It turns out that $U \circ T$ is represented by [U][T] where multiplication is in the sense of *matrix multiplication*, i.e., $([A][B])_{ij} = \sum_{k} [A]_{ik} [B]_{kj}$:

Matrix operations

- If A, B are two $m \times n$ matrices with entries in \mathbb{F} , then $[A + B]_{ij} := [A]_{ij} + [B]_{ij}$ and if $c \in \mathbb{F}$, then $[cA]_{ij} := c[A]_{ij}$.
- If we choose ordered bases {e_i}, {f_j}, {g_k} for f.d vector spaces V, W, X, and if T : V → W, U : W → X are linear maps, then then we get two matrices [T] and [U] representing the maps.
- It turns out that $U \circ T$ is represented by [U][T] where multiplication is in the sense of *matrix multiplication*, i.e., $([A][B])_{ij} = \sum_k [A]_{ik} [B]_{kj}$: Indeed, $U(T(e_i)) = U(\sum_j T_{ji} f_j) = \sum_j T_{ji} U(f_j) = \sum_j T_{ji} \sum_k U_{kj} g_k = \sum_{j,k} U_{kj} T_{ji} g_k.$

Matrix operations

- If A, B are two $m \times n$ matrices with entries in \mathbb{F} , then $[A + B]_{ij} := [A]_{ij} + [B]_{ij}$ and if $c \in \mathbb{F}$, then $[cA]_{ij} := c[A]_{ij}$.
- If we choose ordered bases {e_i}, {f_j}, {g_k} for f.d vector spaces V, W, X, and if T : V → W, U : W → X are linear maps, then then we get two matrices [T] and [U] representing the maps.
- It turns out that $U \circ T$ is represented by [U][T] where multiplication is in the sense of *matrix multiplication*, i.e., $([A][B])_{ij} = \sum_k [A]_{ik} [B]_{kj}$: Indeed, $U(T(e_i)) = U(\sum_j T_{ji}f_j) = \sum_j T_{ji} U(f_j) = \sum_j T_{ji} \sum_k U_{kj}g_k = \sum_{j,k} U_{kj}T_{ji}g_k$. In fact, matrix multiplication is defined so that this happens.

Properties of matrix multiplication

• A(BC) = (AB)C whenever it makes sense.

- A(BC) = (AB)C whenever it makes sense.
- (A+B)C = AC + BC and C(A+B) = CA + CB whenever it makes sense.

- A(BC) = (AB)C whenever it makes sense.
- (A+B)C = AC + BC and C(A+B) = CA + CB whenever it makes sense.
- The simplest proof is to interpret each of the matrices as linear maps between appropriate vector spaces and use the fact that [U ∘ T] = [U][T].

10/13

• Suppose we consider the equation 2x + 3y = 1.

• Suppose we consider the equation 2x + 3y = 1. How many solutions does it have ?

• Suppose we consider the equation 2x + 3y = 1. How many solutions does it have ? Infinitely many.

- Suppose we consider the equation 2x + 3y = 1. How many solutions does it have ? Infinitely many.
- What about 2x + 3y = 1, 4x + 6y = 3?

- Suppose we consider the equation 2x + 3y = 1. How many solutions does it have ? Infinitely many.
- What about 2x + 3y = 1, 4x + 6y = 3? Zero.

- Suppose we consider the equation 2x + 3y = 1. How many solutions does it have ? Infinitely many.
- What about 2x + 3y = 1, 4x + 6y = 3? Zero.
- What about 2x + 3y = 1, 4x + 6y = 2 ?

- Suppose we consider the equation 2x + 3y = 1. How many solutions does it have ? Infinitely many.
- What about 2x + 3y = 1, 4x + 6y = 3? Zero.
- What about 2x + 3y = 1, 4x + 6y = 2? Infinitely many.

- Suppose we consider the equation 2x + 3y = 1. How many solutions does it have ? Infinitely many.
- What about 2x + 3y = 1, 4x + 6y = 3? Zero.
- What about 2x + 3y = 1, 4x + 6y = 2? Infinitely many.
- What about 2x + 3y = 1, x y = 0?

- Suppose we consider the equation 2x + 3y = 1. How many solutions does it have ? Infinitely many.
- What about 2x + 3y = 1, 4x + 6y = 3? Zero.
- What about 2x + 3y = 1, 4x + 6y = 2? Infinitely many.
- What about 2x + 3y = 1, x y = 0? Exactly one.

- Suppose we consider the equation 2x + 3y = 1. How many solutions does it have ? Infinitely many.
- What about 2x + 3y = 1, 4x + 6y = 3? Zero.
- What about 2x + 3y = 1, 4x + 6y = 2? Infinitely many.
- What about 2x + 3y = 1, x y = 0? Exactly one.
- More generally, $T: V \rightarrow W$ need not be surjective or injective.

- Suppose we consider the equation 2x + 3y = 1. How many solutions does it have ? Infinitely many.
- What about 2x + 3y = 1, 4x + 6y = 3? Zero.
- What about 2x + 3y = 1, 4x + 6y = 2? Infinitely many.
- What about 2x + 3y = 1, x y = 0? Exactly one.
- More generally, $T: V \rightarrow W$ need not be surjective or injective.

• Suppose
$$T(v) = w$$
.

- Suppose we consider the equation 2x + 3y = 1. How many solutions does it have ? Infinitely many.
- What about 2x + 3y = 1, 4x + 6y = 3? Zero.
- What about 2x + 3y = 1, 4x + 6y = 2? Infinitely many.
- What about 2x + 3y = 1, x y = 0? Exactly one.
- More generally, $T: V \rightarrow W$ need not be surjective or injective.
- Suppose T(v) = w. How many solutions does this equation have if it has one ?

- Suppose we consider the equation 2x + 3y = 1. How many solutions does it have ? Infinitely many.
- What about 2x + 3y = 1, 4x + 6y = 3? Zero.
- What about 2x + 3y = 1, 4x + 6y = 2? Infinitely many.
- What about 2x + 3y = 1, x y = 0? Exactly one.
- More generally, *T* : *V* → *W* need not be surjective or injective.
- Suppose T(v) = w. How many solutions does this equation have if it has one ? Note that if $T(v_1) = T(v_2) = w$, then $T(v_1 v_2) = 0$.

- Suppose we consider the equation 2x + 3y = 1. How many solutions does it have ? Infinitely many.
- What about 2x + 3y = 1, 4x + 6y = 3? Zero.
- What about 2x + 3y = 1, 4x + 6y = 2? Infinitely many.
- What about 2x + 3y = 1, x y = 0? Exactly one.
- More generally, $T: V \rightarrow W$ need not be surjective or injective.
- Suppose T(v) = w. How many solutions does this equation have if it has one ? Note that if $T(v_1) = T(v_2) = w$, then $T(v_1 v_2) = 0$.
- Motivated by this observation,

- Suppose we consider the equation 2x + 3y = 1. How many solutions does it have ? Infinitely many.
- What about 2x + 3y = 1, 4x + 6y = 3? Zero.
- What about 2x + 3y = 1, 4x + 6y = 2? Infinitely many.
- What about 2x + 3y = 1, x y = 0? Exactly one.
- More generally, $T: V \rightarrow W$ need not be surjective or injective.
- Suppose T(v) = w. How many solutions does this equation have if it has one ? Note that if $T(v_1) = T(v_2) = w$, then $T(v_1 v_2) = 0$.
- Motivated by this observation, we define the null space N(T) ⊂ V as the set v ∈ V so that T(v) = 0.

- Suppose we consider the equation 2x + 3y = 1. How many solutions does it have ? Infinitely many.
- What about 2x + 3y = 1, 4x + 6y = 3? Zero.
- What about 2x + 3y = 1, 4x + 6y = 2? Infinitely many.
- What about 2x + 3y = 1, x y = 0? Exactly one.
- More generally, $T: V \rightarrow W$ need not be surjective or injective.
- Suppose T(v) = w. How many solutions does this equation have if it has one ? Note that if $T(v_1) = T(v_2) = w$, then $T(v_1 v_2) = 0$.
- Motivated by this observation, we define the *null space* $N(T) \subset V$ as the set $v \in V$ so that T(v) = 0. If T(v) = T(w) = 0, then

- Suppose we consider the equation 2x + 3y = 1. How many solutions does it have ? Infinitely many.
- What about 2x + 3y = 1, 4x + 6y = 3? Zero.
- What about 2x + 3y = 1, 4x + 6y = 2? Infinitely many.
- What about 2x + 3y = 1, x y = 0? Exactly one.
- More generally, $T: V \rightarrow W$ need not be surjective or injective.
- Suppose T(v) = w. How many solutions does this equation have if it has one ? Note that if $T(v_1) = T(v_2) = w$, then $T(v_1 v_2) = 0$.
- Motivated by this observation, we define the null space N(T) ⊂ V as the set v ∈ V so that T(v) = 0. If T(v) = T(w) = 0, then T(av + bw) = aT(v) + bT(w) = 0 and hence N(T) is a subspace of V.

< E

æ

_ र ≣ ≯

• Note that T is 1 - 1 if and only if $N(T) = \{0\}$:

- ▲ 문 ▶ - ▲ 문 ▶

æ

• Note that T is 1-1 if and only if $N(T) = \{0\}$: If T is 1-1, then T(0) = 0 and hence $N(T) = \{0\}$.

A B + A B +

• Note that T is 1-1 if and only if $N(T) = \{0\}$: If T is 1-1, then T(0) = 0 and hence $N(T) = \{0\}$. If $N(T) = \{0\}$ and if T(v) = T(w), then T(v - w) = 0 and hence $v - w \in N(T)$ implying that v = w. Hence T is 1-1.

- Note that T is 1-1 if and only if $N(T) = \{0\}$: If T is 1-1, then T(0) = 0 and hence $N(T) = \{0\}$. If $N(T) = \{0\}$ and if T(v) = T(w), then T(v - w) = 0 and hence $v - w \in N(T)$ implying that v = w. Hence T is 1-1.
- The dimension of the null space/Kernel of T : V → W (where V, W are f.d) is called the *nullity* of T.

- Note that T is 1-1 if and only if $N(T) = \{0\}$: If T is 1-1, then T(0) = 0 and hence $N(T) = \{0\}$. If $N(T) = \{0\}$ and if T(v) = T(w), then T(v - w) = 0 and hence $v - w \in N(T)$ implying that v = w. Hence T is 1-1.
- The dimension of the null space/Kernel of T : V → W (where V, W are f.d) is called the *nullity* of T. It measures the failure of injectivity of T.

- Note that T is 1-1 if and only if $N(T) = \{0\}$: If T is 1-1, then T(0) = 0 and hence $N(T) = \{0\}$. If $N(T) = \{0\}$ and if T(v) = T(w), then T(v - w) = 0 and hence $v - w \in N(T)$ implying that v = w. Hence T is 1-1.
- The dimension of the null space/Kernel of T : V → W (where V, W are f.d) is called the *nullity* of T. It measures the failure of injectivity of T. It is basically the number of "free parameters".

- Note that T is 1-1 if and only if $N(T) = \{0\}$: If T is 1-1, then T(0) = 0 and hence $N(T) = \{0\}$. If $N(T) = \{0\}$ and if T(v) = T(w), then T(v - w) = 0 and hence $v - w \in N(T)$ implying that v = w. Hence T is 1-1.
- The dimension of the null space/Kernel of T : V → W (where V, W are f.d) is called the *nullity* of T. It measures the failure of injectivity of T. It is basically the number of "free parameters".
- The dimension of the image is called the *rank* of *T*.

- Note that T is 1-1 if and only if $N(T) = \{0\}$: If T is 1-1, then T(0) = 0 and hence $N(T) = \{0\}$. If $N(T) = \{0\}$ and if T(v) = T(w), then T(v - w) = 0 and hence $v - w \in N(T)$ implying that v = w. Hence T is 1-1.
- The dimension of the null space/Kernel of T : V → W (where V, W are f.d) is called the *nullity* of T. It measures the failure of injectivity of T. It is basically the number of "free parameters".
- The dimension of the image is called the *rank* of *T*. It measures the failure of surjectivity of *T*.

- Note that T is 1-1 if and only if $N(T) = \{0\}$: If T is 1-1, then T(0) = 0 and hence $N(T) = \{0\}$. If $N(T) = \{0\}$ and if T(v) = T(w), then T(v - w) = 0 and hence $v - w \in N(T)$ implying that v = w. Hence T is 1-1.
- The dimension of the null space/Kernel of T : V → W (where V, W are f.d) is called the *nullity* of T. It measures the failure of injectivity of T. It is basically the number of "free parameters".
- The dimension of the image is called the *rank* of *T*. It measures the failure of surjectivity of *T*.
- An important result is the Nullity-Rank Theorem :

- Note that T is 1-1 if and only if $N(T) = \{0\}$: If T is 1-1, then T(0) = 0 and hence $N(T) = \{0\}$. If $N(T) = \{0\}$ and if T(v) = T(w), then T(v - w) = 0 and hence $v - w \in N(T)$ implying that v = w. Hence T is 1-1.
- The dimension of the null space/Kernel of T : V → W (where V, W are f.d) is called the *nullity* of T. It measures the failure of injectivity of T. It is basically the number of "free parameters".
- The dimension of the image is called the *rank* of *T*. It measures the failure of surjectivity of *T*.
- An important result is the Nullity-Rank Theorem : The Nullity of T + the Rank of T equals dim(V).

æ

• Suppose e_1, \ldots, e_k is a basis of N(T).

'문▶' ★ 문▶

э

• Suppose e_1, \ldots, e_k is a basis of N(T). Extend it to a basis e_{k+1}, \ldots, e_n of V.

• Suppose e_1, \ldots, e_k is a basis of N(T). Extend it to a basis e_{k+1}, \ldots, e_n of V. We claim that $f_1 = T(e_{k+1}), f_2 = T(e_{k+2}), \ldots, f_{n-k} = T(e_n)$ is a basis of R(T).

• Suppose e_1, \ldots, e_k is a basis of N(T). Extend it to a basis e_{k+1}, \ldots, e_n of V. We claim that $f_1 = T(e_{k+1}), f_2 = T(e_{k+2}), \ldots, f_{n-k} = T(e_n)$ is a basis of R(T). Indeed, f_i are linearly independent :

• Suppose e_1, \ldots, e_k is a basis of N(T). Extend it to a basis e_{k+1}, \ldots, e_n of V. We claim that $f_1 = T(e_{k+1}), f_2 = T(e_{k+2}), \ldots, f_{n-k} = T(e_n)$ is a basis of R(T). Indeed, f_i are linearly independent : If $\sum_i c_i f_i = 0$, then

• Suppose e_1, \ldots, e_k is a basis of N(T). Extend it to a basis e_{k+1}, \ldots, e_n of V. We claim that $f_1 = T(e_{k+1}), f_2 = T(e_{k+2}), \ldots, f_{n-k} = T(e_n)$ is a basis of R(T). Indeed, f_i are linearly independent : If $\sum_i c_i f_i = 0$, then $T(\sum_{i=k+1}^n c_i e_i) = 0$ and hence $\sum_{i=k+1}^n c_i e_i \in N(T)$ which implies that $\sum_{i=k+1}^n c_i e_i = \sum_{i=1}^k d_i e_i$ and hence by linear independence,

13/13

• Suppose e_1, \ldots, e_k is a basis of N(T). Extend it to a basis e_{k+1}, \ldots, e_n of V. We claim that $f_1 = T(e_{k+1}), f_2 = T(e_{k+2}), \ldots, f_{n-k} = T(e_n)$ is a basis of R(T). Indeed, f_i are linearly independent : If $\sum_i c_i f_i = 0$, then $T(\sum_{i=k+1}^n c_i e_i) = 0$ and hence $\sum_{i=k+1}^n c_i e_i \in N(T)$ which implies that $\sum_{i=k+1}^n c_i e_i = \sum_{i=1}^k d_i e_i$ and hence by linear independence, $c_i = d_i = 0 \forall i, j$.

• Suppose e_1, \ldots, e_k is a basis of N(T). Extend it to a basis e_{k+1}, \ldots, e_n of V. We claim that $f_1 = T(e_{k+1}), f_2 = T(e_{k+2}), \ldots, f_{n-k} = T(e_n)$ is a basis of R(T). Indeed, f_i are linearly independent : If $\sum_i c_i f_i = 0$, then $T(\sum_{i=k+1}^n c_i e_i) = 0$ and hence $\sum_{i=k+1}^n c_i e_i \in N(T)$ which implies that $\sum_{i=k+1}^n c_i e_i = \sum_{i=1}^k d_i e_i$ and hence by linear independence, $c_i = d_j = 0 \forall i, j$. Moreover, f_i span R(T) :

• Suppose e_1, \ldots, e_k is a basis of N(T). Extend it to a basis e_{k+1}, \ldots, e_n of V. We claim that $f_1 = T(e_{k+1}), f_2 = T(e_{k+2}), \ldots, f_{n-k} = T(e_n)$ is a basis of R(T). Indeed, f_i are linearly independent : If $\sum_i c_i f_i = 0$, then $T(\sum_{i=k+1}^n c_i e_i) = 0$ and hence $\sum_{i=k+1}^n c_i e_i \in N(T)$ which implies that $\sum_{i=k+1}^n c_i e_i = \sum_{i=1}^k d_i e_i$ and hence by linear independence, $c_i = d_j = 0 \forall i, j$. Moreover, f_i span R(T): $T(v) = T(\sum_{i=1}^n c_i e_i) = 1 + T(\sum_{i=1}^n c_i e_i) = 1 + T(\sum_{i=1}^n c_i e_i) = T(\sum_{i=1}^k c_i e_i) + T(\sum_{i=k+1}^n c_i e_i) = 0 + \sum_i c_i f_i$.