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Recalled the definition (and examples/non-examples) of a
linear map.

Linear maps and matrices.

°
@ Matrix operations.

@ Null space and Range.
°

Nullity-Rank theorem.
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Inner products

@ How does one prove that e, e?* ... ™ are linearly
independent in the vector space of continuous functions on
[0,27] 7 Induction is one way. A nicer way is (due to Fourier)
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@ This proof is like taking a dot product with a bunch of vectors
and isolating each component.

Vamsi Pritham Pingali Lecture 3 3/11



Inner products

@ How does one prove that e, e?* ... ™ are linearly
independent in the vector space of continuous functions on
[0,27] 7 Induction is one way. A nicer way is (due to Fourier)
:1f Y0, cke™ =0, then multiply by e=™ and integrate from
0 to 27. Then ¢,,2m = 0 and hence ¢, = 0.

@ This proof is like taking a dot product with a bunch of vectors
and isolating each component.

@ So it is fruitful to define the notion of a dot product on
arbitrary vector spaces (over R or C. This notion does not
make sense for all fields).
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Inner products over (not necessarily f.d) real vector spaces

@ Let V be a vector space over R. An inner product (a dot
product) is a function (,) : V x V — R that satisfies the
following properties.

@ Symmetry : (x,y) = (y, x).

e Additive Linearity : (x,y + z) = (x,y) + (x, z).

@ Scalar linearity : (cx,y) = c(x,y).

e Positivity : (x,x) > 0 when x # 0. (Note that
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Examples and non-examples

@ The “usual” dot product in R”. A nice way of writing it is
Tw, where vT is the transpose of v, i.e., one
converts rows to columns to get a new matrix.

(v,w) =v

e (x,y) =x1y1 + xo¥2 + ... in C" is an inner product
(corresponding to (x,y) = x"¥) but xyy1 +xayo +. .. is NOT.

e OnR?: (v,w) =2viwy + viws + wyva + vaws is an inner
product but viw; + %(V1W2 + V2W1) + %V2W2 is NOT.

° On the space of continuous real-valued functions on [0, 1] :

fo f(t)g(t)dt is an inner product.

° I\/Iore generally, given a positive continuous function w(t),
fol w(t)f(t)g(t)dt is an inner product.

° On the space of continuous complex-valued functions on [0, 1]

fo t)dt is an inner product.
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What an inner product looks like in a basis

Suppose V is a real f.d vector space, and (,) is an inner
product. Let eq,..., e, be a basis.

Then (v, w) = (3_; viei, >_; wjej) = > viwj(ei, ).
Define the matrix Hj; = (ej, €j). Then Hjj = Hj;, i.e.,

H = HT. Such a square matrix is called symmetric.
Thus, (v,w) = vT Hw. Since (v,v) > 0 when v # 0,
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What an inner product looks like in a basis

Suppose V is a real f.d vector space, and (,) is an inner
product. Let eq,..., e, be a basis.

Then (v, w) = (3_; viei, >_; wjej) = > viwj(ei, ).
Define the matrix Hj; = (ej, €j). Then Hjj = Hj;, i.e.,

H = HT. Such a square matrix is called symmetric.
Thus, (v,w) = vT Hw. Since (v,v) > 0 when v # 0,
vT Hv > 0 with equality if and only if v = 0.

@ Such a matrix H is called positive-definite. It turns out that
every inner product on V is obtained through positive-definite
matrices this way (HW).
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The Cauchy-Schwarz inequality

@ In R? and R3, one can prove using elementary
geometry/calculus that (v.w)? = (v.v)(w.w) cos?(#).

o As a consequence, (v.w)? < (v.v)(w.w) with equality if and
only if 8 = 0, that is, v and w are parallel, i.e., v = Aw or
w = Av.

@ While there is no elementary geometric picture for general
vector spaces, one can still prove this inequality (the
Cauchy-Schwarz inequality) : Suppose (,) is an inner product
on a real or a complex vector space V' (not necessarily f.d)
then |(v, w)|? < (v, v){w, w) with equality if and only if
v =Aw or w = Av for some A\ € F.

o As a consequence, ([ fgdx)? < [ f2dx [} g2dx !
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@ A small interlude before the proof of CS.
o Define the norm ||x|| = (x,x)¥2. So CS'is [(x, y)| < [|x||lly]-
@ The norm obeys the following:
o Positivity: ||x|| > 0 with equality if and only if x = 0. (Easy)
o Homogeneity: ||cx|| = |c]||x]| (Easy)
o Triangle Inequality (TI) : || x + y|| < |Ix]| + llyll- (In fact,
equality holds in the Tl iff x, y are parallel.) :
x4+ VI = (x + y,x+ ) = X2 + Iyl + (x.v) + (y,%). By
CS and completing the square, we get the result.
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@ A small interlude before the proof of CS.
o Define the norm ||x|| = (x,x)¥2. So CS'is [(x, y)| < [|x||lly]-
@ The norm obeys the following:
o Positivity: ||x|| > 0 with equality if and only if x = 0. (Easy)
o Homogeneity: ||cx|| = |c]||x]| (Easy)
o Triangle Inequality (TI) : || x + y|| < |Ix]| + llyll- (In fact,
equality holds in the Tl iff x, y are parallel.) :
Ix+yl? = (x+y,x+y) = x>+ Iyl* + (x,y) + (v, x). By
CS and completing the square, we get the result.
@ In fact, one can define a norm on a vector space without even
defining an inner product but not all norms arise out of an
inner product. (An example is the “taxi-cab” norm).
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Proof of the Cauchy-Schwarz inequality in the real case

Assume that w # 0 w LOG. (If w = 0 then

(v,w)2 =0 = {v,v)(w,w) and w = Ov.)

This technique is called “Arbitrage” (Terence Tao's term) :
The only inequality available to us is (x, x) > 0. The only way
to get v, w into the picture is to take a linear combination.
So for every positive real t > 0, we have a wimpy little
inequality for free : (v + tw,v + tw) > 0.

We shall choose the “worst-case” t and apply the silly
inequality above, i.e., we shall minimise

f(t) = (v+ tw, v + tw)?,
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Proof of the Cauchy-Schwarz inequality in the real case

Assume that w # 0 w LOG. (If w = 0 then

(v,w)2 =0= (v,v){w,w) and w = 0v.)

This technique is called “Arbitrage” (Terence Tao's term) :
The only inequality available to us is (x, x) > 0. The only way
to get v, w into the picture is to take a linear combination.

So for every positive real t > 0, we have a wimpy little
inequality for free : (v + tw,v + tw) > 0.

We shall choose the “worst-case” t and apply the silly
inequality above, i.e., we shall minimise

f(t) = (v+ tw, v + tw)?,

f(t) = ||v||® + t?||w|?> + 2t(v, w). f'(t) = 0 implies that

— _{vw
t=— .
wll®
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o Hence (v, w)? < [[v|]?||w].
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o So ||v||2 + Lewlt _plvm® s g

[[wi* [Iwl?
@ Hence (v, w)? < ||v||?||w||?. Equality holds precisely when
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Proof of the Cauchy-Schwarz inequality

o So [|v]|2 4+ L — plvw® > g

wll® Iwl® =
@ Hence (v, w)? < ||v||?||w||?. Equality holds precisely when
v+tw =0, ie, v=—tw.
o For the complex case, choose t = — %) as before.

[[wi*
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