3.36pt

Lecture 3 - UM 102 (Spring 2021)

Vamsi Pritham Pingali

IISc

Recap

- Recalled the definition (and examples/non-examples) of a linear map.

Recap

- Recalled the definition (and examples/non-examples) of a linear map.
- Linear maps and matrices.

Recap

- Recalled the definition (and examples/non-examples) of a linear map.
- Linear maps and matrices.
- Matrix operations.
- Recalled the definition (and examples/non-examples) of a linear map.
- Linear maps and matrices.
- Matrix operations.
- Null space and Range.
- Recalled the definition (and examples/non-examples) of a linear map.
- Linear maps and matrices.
- Matrix operations.
- Null space and Range.
- Nullity-Rank theorem.

Inner products

Inner products

- How does one prove that $e^{i x}, e^{2 i x}, \ldots, e^{i n x}$ are linearly independent in the vector space of continuous functions on $[0,2 \pi]$?

Inner products

- How does one prove that $e^{i x}, e^{2 i x}, \ldots, e^{i n x}$ are linearly independent in the vector space of continuous functions on $[0,2 \pi]$? Induction is one way.

Inner products

- How does one prove that $e^{i x}, e^{2 i x}, \ldots, e^{i n x}$ are linearly independent in the vector space of continuous functions on $[0,2 \pi]$? Induction is one way. A nicer way is (due to Fourier)

Inner products

- How does one prove that $e^{i x}, e^{2 i x}, \ldots, e^{i n x}$ are linearly independent in the vector space of continuous functions on $[0,2 \pi]$? Induction is one way. A nicer way is (due to Fourier) : If $\sum_{k} c_{k} e^{i k x}=0$, then multiply by $e^{-i m x}$ and integrate from 0 to 2π.

Inner products

- How does one prove that $e^{i x}, e^{2 i x}, \ldots, e^{i n x}$ are linearly independent in the vector space of continuous functions on $[0,2 \pi]$? Induction is one way. A nicer way is (due to Fourier) : If $\sum_{k} c_{k} e^{i k x}=0$, then multiply by $e^{-i m x}$ and integrate from 0 to 2π. Then $c_{m} 2 \pi=0$ and hence $c_{m}=0$.

Inner products

- How does one prove that $e^{i x}, e^{2 i x}, \ldots, e^{i n x}$ are linearly independent in the vector space of continuous functions on $[0,2 \pi]$? Induction is one way. A nicer way is (due to Fourier) : If $\sum_{k} c_{k} e^{i k x}=0$, then multiply by $e^{-i m x}$ and integrate from 0 to 2π. Then $c_{m} 2 \pi=0$ and hence $c_{m}=0$.
- This proof is like taking a dot product with a bunch of vectors and isolating each component.
- How does one prove that $e^{i x}, e^{2 i x}, \ldots, e^{i n x}$ are linearly independent in the vector space of continuous functions on $[0,2 \pi]$? Induction is one way. A nicer way is (due to Fourier) : If $\sum_{k} c_{k} e^{i k x}=0$, then multiply by $e^{-i m x}$ and integrate from 0 to 2π. Then $c_{m} 2 \pi=0$ and hence $c_{m}=0$.
- This proof is like taking a dot product with a bunch of vectors and isolating each component.
- So it is fruitful to define the notion of a dot product on arbitrary vector spaces (over \mathbb{R} or \mathbb{C}. This notion does not make sense for all fields).

Inner products over (not necessarily f.d) real vector spaces

Inner products over (not necessarily f.d) real vector spaces

- Let V be a vector space over \mathbb{R}.

Inner products over (not necessarily f.d) real vector spaces

- Let V be a vector space over \mathbb{R}. An inner product (a dot product) is a function $\langle\rangle:, V \times V \rightarrow \mathbb{R}$ that satisfies the following properties.

Inner products over (not necessarily f.d) real vector spaces

- Let V be a vector space over \mathbb{R}. An inner product (a dot product) is a function $\langle\rangle:, V \times V \rightarrow \mathbb{R}$ that satisfies the following properties.
- Symmetry: $\langle x, y\rangle=\langle y, x\rangle$.

Inner products over (not necessarily f.d) real vector spaces

- Let V be a vector space over \mathbb{R}. An inner product (a dot product) is a function $\langle\rangle:, V \times V \rightarrow \mathbb{R}$ that satisfies the following properties.
- Symmetry: $\langle x, y\rangle=\langle y, x\rangle$.
- Additive Linearity : $\langle x, y+z\rangle=\langle x, y\rangle+\langle x, z\rangle$.

Inner products over (not necessarily f.d) real vector spaces

- Let V be a vector space over \mathbb{R}. An inner product (a dot product) is a function $\langle\rangle:, V \times V \rightarrow \mathbb{R}$ that satisfies the following properties.
- Symmetry: $\langle x, y\rangle=\langle y, x\rangle$.
- Additive Linearity : $\langle x, y+z\rangle=\langle x, y\rangle+\langle x, z\rangle$.
- Scalar linearity : $\langle c x, y\rangle=c\langle x, y\rangle$.

Inner products over (not necessarily f.d) real vector spaces

- Let V be a vector space over \mathbb{R}. An inner product (a dot product) is a function $\langle\rangle:, V \times V \rightarrow \mathbb{R}$ that satisfies the following properties.
- Symmetry: $\langle x, y\rangle=\langle y, x\rangle$.
- Additive Linearity: $\langle x, y+z\rangle=\langle x, y\rangle+\langle x, z\rangle$.
- Scalar linearity : $\langle c x, y\rangle=c\langle x, y\rangle$.
- Positivity: $\langle x, x\rangle>0$ when $x \neq 0$. (

Inner products over (not necessarily f.d) real vector spaces

- Let V be a vector space over \mathbb{R}. An inner product (a dot product) is a function $\langle\rangle:, V \times V \rightarrow \mathbb{R}$ that satisfies the following properties.
- Symmetry: $\langle x, y\rangle=\langle y, x\rangle$.
- Additive Linearity : $\langle x, y+z\rangle=\langle x, y\rangle+\langle x, z\rangle$.
- Scalar linearity : $\langle c x, y\rangle=c\langle x, y\rangle$.
- Positivity: $\langle x, x\rangle>0$ when $x \neq 0$. (Note that $\langle 0,0\rangle=0\langle 0,0\rangle=0$.)

Inner products over (not necessarily f.d) complex vector spaces

Inner products over (not necessarily f.d) complex vector spaces

- Let V be a vector space over \mathbb{C}.

Inner products over (not necessarily f.d) complex vector spaces

- Let V be a vector space over \mathbb{C}. An inner product (a dot product) is a function $\langle\rangle:, V \times V \rightarrow \mathbb{C}$ that satisfies the following properties.

Inner products over (not necessarily f.d) complex vector spaces

- Let V be a vector space over \mathbb{C}. An inner product (a dot product) is a function $\langle\rangle:, V \times V \rightarrow \mathbb{C}$ that satisfies the following properties.
- Hermitian symmetry : $\langle x, y\rangle=\overline{\langle y, x\rangle}$.

Inner products over (not necessarily f.d) complex vector spaces

- Let V be a vector space over \mathbb{C}. An inner product (a dot product) is a function $\langle\rangle:, V \times V \rightarrow \mathbb{C}$ that satisfies the following properties.
- Hermitian symmetry : $\langle x, y\rangle=\overline{\langle y, x\rangle}$.
- Additive Linearity : $\langle x, y+z\rangle=\langle x, y\rangle+\langle x, z\rangle$.

Inner products over (not necessarily f.d) complex vector spaces

- Let V be a vector space over \mathbb{C}. An inner product (a dot product) is a function $\langle\rangle:, V \times V \rightarrow \mathbb{C}$ that satisfies the following properties.
- Hermitian symmetry : $\langle x, y\rangle=\overline{\langle y, x\rangle}$.
- Additive Linearity : $\langle x, y+z\rangle=\langle x, y\rangle+\langle x, z\rangle$.
- Scalar sesquilinearity : $\langle c x, y\rangle=c\langle x, y\rangle$.

Inner products over (not necessarily f.d) complex vector spaces

- Let V be a vector space over \mathbb{C}. An inner product (a dot product) is a function $\langle\rangle:, V \times V \rightarrow \mathbb{C}$ that satisfies the following properties.
- Hermitian symmetry : $\langle x, y\rangle=\overline{\langle y, x\rangle}$.
- Additive Linearity : $\langle x, y+z\rangle=\langle x, y\rangle+\langle x, z\rangle$.
- Scalar sesquilinearity : $\langle c x, y\rangle=c\langle x, y\rangle$.
- Positivity: $\langle x, x\rangle>0$ when $x \neq 0$. (

Inner products over (not necessarily f.d) complex vector spaces

- Let V be a vector space over \mathbb{C}. An inner product (a dot product) is a function $\langle\rangle:, V \times V \rightarrow \mathbb{C}$ that satisfies the following properties.
- Hermitian symmetry : $\langle x, y\rangle=\overline{\langle y, x\rangle}$.
- Additive Linearity : $\langle x, y+z\rangle=\langle x, y\rangle+\langle x, z\rangle$.
- Scalar sesquilinearity : $\langle c x, y\rangle=c\langle x, y\rangle$.
- Positivity : $\langle x, x\rangle>0$ when $x \neq 0$. (Note that $\langle 0,0\rangle=0\langle 0,0\rangle=0$.)

Examples and non-examples

Examples and non-examples

- The "usual" dot product in \mathbb{R}^{n}.

Examples and non-examples

- The "usual" dot product in \mathbb{R}^{n}. A nice way of writing it is $:\langle v, w\rangle=v^{\top} w$, where v^{\top} is the transpose of v, i.e., one converts rows to columns to get a new matrix.

Examples and non-examples

- The "usual" dot product in \mathbb{R}^{n}. A nice way of writing it is $:\langle v, w\rangle=v^{T} w$, where v^{T} is the transpose of v, i.e., one converts rows to columns to get a new matrix.
- $\langle x, y\rangle=x_{1} \bar{y}_{1}+x_{2} \bar{y}_{2}+\ldots$ in \mathbb{C}^{n} is an inner product (

Examples and non-examples

- The "usual" dot product in \mathbb{R}^{n}. A nice way of writing it is $:\langle v, w\rangle=v^{\top} w$, where v^{\top} is the transpose of v, i.e., one converts rows to columns to get a new matrix.
- $\langle x, y\rangle=x_{1} \bar{y}_{1}+x_{2} \bar{y}_{2}+\ldots$ in \mathbb{C}^{n} is an inner product (corresponding to $\langle x, y\rangle=x^{T} \bar{y}$) but

Examples and non-examples

- The "usual" dot product in \mathbb{R}^{n}. A nice way of writing it is $:\langle v, w\rangle=v^{\top} w$, where v^{\top} is the transpose of v, i.e., one converts rows to columns to get a new matrix.
- $\langle x, y\rangle=x_{1} \bar{y}_{1}+x_{2} \bar{y}_{2}+\ldots$ in \mathbb{C}^{n} is an inner product (corresponding to $\langle x, y\rangle=x^{T} \bar{y}$) but $x_{1} y_{1}+x_{2} y_{2}+\ldots$ is NOT.

Examples and non-examples

- The "usual" dot product in \mathbb{R}^{n}. A nice way of writing it is $:\langle v, w\rangle=v^{\top} w$, where v^{\top} is the transpose of v, i.e., one converts rows to columns to get a new matrix.
- $\langle x, y\rangle=x_{1} \bar{y}_{1}+x_{2} \bar{y}_{2}+\ldots$ in \mathbb{C}^{n} is an inner product (corresponding to $\langle x, y\rangle=x^{\top} \bar{y}$) but $x_{1} y_{1}+x_{2} y_{2}+\ldots$ is NOT.
- On $\mathbb{R}^{2}:\langle v, w\rangle=2 v_{1} w_{1}+v_{1} w_{2}+w_{1} v_{2}+v_{2} w_{2}$ is an inner product but

Examples and non-examples

- The "usual" dot product in \mathbb{R}^{n}. A nice way of writing it is $:\langle v, w\rangle=v^{\top} w$, where v^{\top} is the transpose of v, i.e., one converts rows to columns to get a new matrix.
- $\langle x, y\rangle=x_{1} \bar{y}_{1}+x_{2} \bar{y}_{2}+\ldots$ in \mathbb{C}^{n} is an inner product (corresponding to $\langle x, y\rangle=x^{\top} \bar{y}$) but $x_{1} y_{1}+x_{2} y_{2}+\ldots$ is NOT.
- On $\mathbb{R}^{2}:\langle v, w\rangle=2 v_{1} w_{1}+v_{1} w_{2}+w_{1} v_{2}+v_{2} w_{2}$ is an inner product but $v_{1} w_{1}+\frac{1}{2}\left(v_{1} w_{2}+v_{2} w_{1}\right)+\frac{1}{8} v_{2} w_{2}$ is NOT.

Examples and non-examples

- The "usual" dot product in \mathbb{R}^{n}. A nice way of writing it is $:\langle v, w\rangle=v^{\top} w$, where v^{\top} is the transpose of v, i.e., one converts rows to columns to get a new matrix.
- $\langle x, y\rangle=x_{1} \bar{y}_{1}+x_{2} \bar{y}_{2}+\ldots$ in \mathbb{C}^{n} is an inner product (corresponding to $\langle x, y\rangle=x^{\top} \bar{y}$) but $x_{1} y_{1}+x_{2} y_{2}+\ldots$ is NOT.
- On $\mathbb{R}^{2}:\langle v, w\rangle=2 v_{1} w_{1}+v_{1} w_{2}+w_{1} v_{2}+v_{2} w_{2}$ is an inner product but $v_{1} w_{1}+\frac{1}{2}\left(v_{1} w_{2}+v_{2} w_{1}\right)+\frac{1}{8} v_{2} w_{2}$ is NOT.
- On the space of continuous real-valued functions on $[0,1]$:

Examples and non-examples

- The "usual" dot product in \mathbb{R}^{n}. A nice way of writing it is $:\langle v, w\rangle=v^{\top} w$, where v^{\top} is the transpose of v, i.e., one converts rows to columns to get a new matrix.
- $\langle x, y\rangle=x_{1} \bar{y}_{1}+x_{2} \bar{y}_{2}+\ldots$ in \mathbb{C}^{n} is an inner product (corresponding to $\langle x, y\rangle=x^{\top} \bar{y}$) but $x_{1} y_{1}+x_{2} y_{2}+\ldots$ is NOT.
- On $\mathbb{R}^{2}:\langle v, w\rangle=2 v_{1} w_{1}+v_{1} w_{2}+w_{1} v_{2}+v_{2} w_{2}$ is an inner product but $v_{1} w_{1}+\frac{1}{2}\left(v_{1} w_{2}+v_{2} w_{1}\right)+\frac{1}{8} v_{2} w_{2}$ is NOT.
- On the space of continuous real-valued functions on $[0,1]$: $\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t$ is an inner product.

Examples and non-examples

- The "usual" dot product in \mathbb{R}^{n}. A nice way of writing it is $:\langle v, w\rangle=v^{\top} w$, where v^{\top} is the transpose of v, i.e., one converts rows to columns to get a new matrix.
- $\langle x, y\rangle=x_{1} \bar{y}_{1}+x_{2} \bar{y}_{2}+\ldots$ in \mathbb{C}^{n} is an inner product (corresponding to $\langle x, y\rangle=x^{\top} \bar{y}$) but $x_{1} y_{1}+x_{2} y_{2}+\ldots$ is NOT.
- On $\mathbb{R}^{2}:\langle v, w\rangle=2 v_{1} w_{1}+v_{1} w_{2}+w_{1} v_{2}+v_{2} w_{2}$ is an inner product but $v_{1} w_{1}+\frac{1}{2}\left(v_{1} w_{2}+v_{2} w_{1}\right)+\frac{1}{8} v_{2} w_{2}$ is NOT.
- On the space of continuous real-valued functions on $[0,1]$: $\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t$ is an inner product.
- More generally, given a positive continuous function $w(t)$,

Examples and non-examples

- The "usual" dot product in \mathbb{R}^{n}. A nice way of writing it is $:\langle v, w\rangle=v^{\top} w$, where v^{\top} is the transpose of v, i.e., one converts rows to columns to get a new matrix.
- $\langle x, y\rangle=x_{1} \bar{y}_{1}+x_{2} \bar{y}_{2}+\ldots$ in \mathbb{C}^{n} is an inner product (corresponding to $\langle x, y\rangle=x^{\top} \bar{y}$) but $x_{1} y_{1}+x_{2} y_{2}+\ldots$ is NOT.
- On $\mathbb{R}^{2}:\langle v, w\rangle=2 v_{1} w_{1}+v_{1} w_{2}+w_{1} v_{2}+v_{2} w_{2}$ is an inner product but $v_{1} w_{1}+\frac{1}{2}\left(v_{1} w_{2}+v_{2} w_{1}\right)+\frac{1}{8} v_{2} w_{2}$ is NOT.
- On the space of continuous real-valued functions on $[0,1]$: $\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t$ is an inner product.
- More generally, given a positive continuous function $w(t)$, $\int_{0}^{1} w(t) f(t) g(t) d t$ is an inner product.

Examples and non-examples

- The "usual" dot product in \mathbb{R}^{n}. A nice way of writing it is $:\langle v, w\rangle=v^{\top} w$, where v^{\top} is the transpose of v, i.e., one converts rows to columns to get a new matrix.
- $\langle x, y\rangle=x_{1} \bar{y}_{1}+x_{2} \bar{y}_{2}+\ldots$ in \mathbb{C}^{n} is an inner product (corresponding to $\langle x, y\rangle=x^{\top} \bar{y}$) but $x_{1} y_{1}+x_{2} y_{2}+\ldots$ is NOT.
- On $\mathbb{R}^{2}:\langle v, w\rangle=2 v_{1} w_{1}+v_{1} w_{2}+w_{1} v_{2}+v_{2} w_{2}$ is an inner product but $v_{1} w_{1}+\frac{1}{2}\left(v_{1} w_{2}+v_{2} w_{1}\right)+\frac{1}{8} v_{2} w_{2}$ is NOT.
- On the space of continuous real-valued functions on $[0,1]$: $\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t$ is an inner product.
- More generally, given a positive continuous function $w(t)$, $\int_{0}^{1} w(t) f(t) g(t) d t$ is an inner product.
- On the space of continuous complex-valued functions on $[0,1]$

Examples and non-examples

- The "usual" dot product in \mathbb{R}^{n}. A nice way of writing it is $:\langle v, w\rangle=v^{\top} w$, where v^{\top} is the transpose of v, i.e., one converts rows to columns to get a new matrix.
- $\langle x, y\rangle=x_{1} \bar{y}_{1}+x_{2} \bar{y}_{2}+\ldots$ in \mathbb{C}^{n} is an inner product (corresponding to $\langle x, y\rangle=x^{\top} \bar{y}$) but $x_{1} y_{1}+x_{2} y_{2}+\ldots$ is NOT.
- On $\mathbb{R}^{2}:\langle v, w\rangle=2 v_{1} w_{1}+v_{1} w_{2}+w_{1} v_{2}+v_{2} w_{2}$ is an inner product but $v_{1} w_{1}+\frac{1}{2}\left(v_{1} w_{2}+v_{2} w_{1}\right)+\frac{1}{8} v_{2} w_{2}$ is NOT.
- On the space of continuous real-valued functions on $[0,1]$: $\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t$ is an inner product.
- More generally, given a positive continuous function $w(t)$, $\int_{0}^{1} w(t) f(t) g(t) d t$ is an inner product.
- On the space of continuous complex-valued functions on $[0,1]$ $:\langle f, g\rangle=\int_{0}^{1} f(t) \bar{g}(t) d t$ is an inner product.

What an inner product looks like in a basis

What an inner product looks like in a basis

- Suppose V is a real f.d vector space, and \langle,$\rangle is an inner$ product.

What an inner product looks like in a basis

- Suppose V is a real f.d vector space, and \langle,$\rangle is an inner$ product. Let e_{1}, \ldots, e_{n} be a basis.

What an inner product looks like in a basis

- Suppose V is a real f.d vector space, and \langle,$\rangle is an inner$ product. Let e_{1}, \ldots, e_{n} be a basis.
- Then $\langle v, w\rangle=\left\langle\sum_{i} v_{i} e_{i}, \sum_{j} w_{j} e_{j}\right\rangle=\sum v_{i} w_{j}\left\langle e_{i}, e_{j}\right\rangle$.

What an inner product looks like in a basis

- Suppose V is a real f.d vector space, and \langle,$\rangle is an inner$ product. Let e_{1}, \ldots, e_{n} be a basis.
- Then $\langle v, w\rangle=\left\langle\sum_{i} v_{i} e_{i}, \sum_{j} w_{j} e_{j}\right\rangle=\sum v_{i} w_{j}\left\langle e_{i}, e_{j}\right\rangle$.
- Define the matrix $H_{i j}=\left\langle e_{i}, e_{j}\right\rangle$.

What an inner product looks like in a basis

- Suppose V is a real f.d vector space, and \langle,$\rangle is an inner$ product. Let e_{1}, \ldots, e_{n} be a basis.
- Then $\langle v, w\rangle=\left\langle\sum_{i} v_{i} e_{i}, \sum_{j} w_{j} e_{j}\right\rangle=\sum v_{i} w_{j}\left\langle e_{i}, e_{j}\right\rangle$.
- Define the matrix $H_{i j}=\left\langle e_{i}, e_{j}\right\rangle$. Then $H_{i j}=H_{j i}$, i.e., $H=H^{\top}$.

What an inner product looks like in a basis

- Suppose V is a real f.d vector space, and \langle,$\rangle is an inner$ product. Let e_{1}, \ldots, e_{n} be a basis.
- Then $\langle v, w\rangle=\left\langle\sum_{i} v_{i} e_{i}, \sum_{j} w_{j} e_{j}\right\rangle=\sum v_{i} w_{j}\left\langle e_{i}, e_{j}\right\rangle$.
- Define the matrix $H_{i j}=\left\langle e_{i}, e_{j}\right\rangle$. Then $H_{i j}=H_{j i}$, i.e., $H=H^{T}$. Such a square matrix is called symmetric.

What an inner product looks like in a basis

- Suppose V is a real f.d vector space, and \langle,$\rangle is an inner$ product. Let e_{1}, \ldots, e_{n} be a basis.
- Then $\langle v, w\rangle=\left\langle\sum_{i} v_{i} e_{i}, \sum_{j} w_{j} e_{j}\right\rangle=\sum v_{i} w_{j}\left\langle e_{i}, e_{j}\right\rangle$.
- Define the matrix $H_{i j}=\left\langle e_{i}, e_{j}\right\rangle$. Then $H_{i j}=H_{j i}$, i.e., $H=H^{T}$. Such a square matrix is called symmetric.
- Thus, $\langle v, w\rangle=v^{\top} H w$.

What an inner product looks like in a basis

- Suppose V is a real f.d vector space, and \langle,$\rangle is an inner$ product. Let e_{1}, \ldots, e_{n} be a basis.
- Then $\langle v, w\rangle=\left\langle\sum_{i} v_{i} e_{i}, \sum_{j} w_{j} e_{j}\right\rangle=\sum v_{i} w_{j}\left\langle e_{i}, e_{j}\right\rangle$.
- Define the matrix $H_{i j}=\left\langle e_{i}, e_{j}\right\rangle$. Then $H_{i j}=H_{j i}$, i.e., $H=H^{T}$. Such a square matrix is called symmetric.
- Thus, $\langle v, w\rangle=v^{\top} H w$. Since $\langle v, v\rangle>0$ when $v \neq 0$,

What an inner product looks like in a basis

- Suppose V is a real f.d vector space, and \langle,$\rangle is an inner$ product. Let e_{1}, \ldots, e_{n} be a basis.
- Then $\langle v, w\rangle=\left\langle\sum_{i} v_{i} e_{i}, \sum_{j} w_{j} e_{j}\right\rangle=\sum v_{i} w_{j}\left\langle e_{i}, e_{j}\right\rangle$.
- Define the matrix $H_{i j}=\left\langle e_{i}, e_{j}\right\rangle$. Then $H_{i j}=H_{j i}$, i.e., $H=H^{T}$. Such a square matrix is called symmetric.
- Thus, $\langle v, w\rangle=v^{T} H w$. Since $\langle v, v\rangle>0$ when $v \neq 0$, $v^{\top} H v \geq 0$ with equality if and only if $v=0$.

What an inner product looks like in a basis

- Suppose V is a real f.d vector space, and \langle,$\rangle is an inner$ product. Let e_{1}, \ldots, e_{n} be a basis.
- Then $\langle v, w\rangle=\left\langle\sum_{i} v_{i} e_{i}, \sum_{j} w_{j} e_{j}\right\rangle=\sum v_{i} w_{j}\left\langle e_{i}, e_{j}\right\rangle$.
- Define the matrix $H_{i j}=\left\langle e_{i}, e_{j}\right\rangle$. Then $H_{i j}=H_{j i}$, i.e., $H=H^{T}$. Such a square matrix is called symmetric.
- Thus, $\langle v, w\rangle=v^{T} H w$. Since $\langle v, v\rangle>0$ when $v \neq 0$, $v^{\top} H v \geq 0$ with equality if and only if $v=0$.
- Such a matrix H is called positive-definite.

What an inner product looks like in a basis

- Suppose V is a real f.d vector space, and \langle,$\rangle is an inner$ product. Let e_{1}, \ldots, e_{n} be a basis.
- Then $\langle v, w\rangle=\left\langle\sum_{i} v_{i} e_{i}, \sum_{j} w_{j} e_{j}\right\rangle=\sum v_{i} w_{j}\left\langle e_{i}, e_{j}\right\rangle$.
- Define the matrix $H_{i j}=\left\langle e_{i}, e_{j}\right\rangle$. Then $H_{i j}=H_{j i}$, i.e., $H=H^{T}$. Such a square matrix is called symmetric.
- Thus, $\langle v, w\rangle=v^{T} H w$. Since $\langle v, v\rangle>0$ when $v \neq 0$, $v^{\top} H v \geq 0$ with equality if and only if $v=0$.
- Such a matrix H is called positive-definite. It turns out that every inner product on V is obtained through positive-definite matrices this way (HW).

The Cauchy-Schwarz inequality

The Cauchy-Schwarz inequality

- $\ln \mathbb{R}^{2}$ and \mathbb{R}^{3},

The Cauchy-Schwarz inequality

- $\ln \mathbb{R}^{2}$ and \mathbb{R}^{3}, one can prove using elementary geometry/calculus that

The Cauchy-Schwarz inequality

- $\ln \mathbb{R}^{2}$ and \mathbb{R}^{3}, one can prove using elementary geometry/calculus that $(v . w)^{2}=(v . v)(w . w) \cos ^{2}(\theta)$.
- $\ln \mathbb{R}^{2}$ and \mathbb{R}^{3}, one can prove using elementary geometry/calculus that $(v . w)^{2}=(v . v)(w . w) \cos ^{2}(\theta)$.
- As a consequence, $(v \cdot w)^{2} \leq(v \cdot v)(w \cdot w)$ with equality if and only if $\theta=0$, that is,
- $\ln \mathbb{R}^{2}$ and \mathbb{R}^{3}, one can prove using elementary geometry/calculus that $(v . w)^{2}=(v . v)(w . w) \cos ^{2}(\theta)$.
- As a consequence, $(v . w)^{2} \leq(v . v)(w . w)$ with equality if and only if $\theta=0$, that is, v and w are parallel, i.e., $v=\lambda w$ or $w=\lambda v$.

The Cauchy-Schwarz inequality

- $\ln \mathbb{R}^{2}$ and \mathbb{R}^{3}, one can prove using elementary geometry/calculus that $(v . w)^{2}=(v . v)(w . w) \cos ^{2}(\theta)$.
- As a consequence, $(v . w)^{2} \leq(v . v)(w . w)$ with equality if and only if $\theta=0$, that is, v and w are parallel, i.e., $v=\lambda w$ or $w=\lambda v$.
- While there is no elementary geometric picture for general vector spaces,

The Cauchy-Schwarz inequality

- In \mathbb{R}^{2} and \mathbb{R}^{3}, one can prove using elementary geometry/calculus that $(v . w)^{2}=(v . v)(w . w) \cos ^{2}(\theta)$.
- As a consequence, $(v . w)^{2} \leq(v . v)(w . w)$ with equality if and only if $\theta=0$, that is, v and w are parallel, i.e., $v=\lambda w$ or $w=\lambda v$.
- While there is no elementary geometric picture for general vector spaces, one can still prove this inequality (the Cauchy-Schwarz inequality):

The Cauchy-Schwarz inequality

- $\ln \mathbb{R}^{2}$ and \mathbb{R}^{3}, one can prove using elementary geometry/calculus that $(v . w)^{2}=(v . v)(w . w) \cos ^{2}(\theta)$.
- As a consequence, $(v . w)^{2} \leq(v \cdot v)(w \cdot w)$ with equality if and only if $\theta=0$, that is, v and w are parallel, i.e., $v=\lambda w$ or $w=\lambda v$.
- While there is no elementary geometric picture for general vector spaces, one can still prove this inequality (the Cauchy-Schwarz inequality): Suppose \langle,$\rangle is an inner product$ on a real or a complex vector space V (not necessarily f.d)

The Cauchy-Schwarz inequality

- $\ln \mathbb{R}^{2}$ and \mathbb{R}^{3}, one can prove using elementary geometry/calculus that $(v . w)^{2}=(v . v)(w . w) \cos ^{2}(\theta)$.
- As a consequence, $(v . w)^{2} \leq(v . v)(w \cdot w)$ with equality if and only if $\theta=0$, that is, v and w are parallel, i.e., $v=\lambda w$ or $w=\lambda v$.
- While there is no elementary geometric picture for general vector spaces, one can still prove this inequality (the Cauchy-Schwarz inequality): Suppose \langle,$\rangle is an inner product$ on a real or a complex vector space V (not necessarily f.d) then $|\langle v, w\rangle|^{2} \leq\langle v, v\rangle\langle w, w\rangle$ with equality if and only if

The Cauchy-Schwarz inequality

- $\ln \mathbb{R}^{2}$ and \mathbb{R}^{3}, one can prove using elementary geometry/calculus that $(v . w)^{2}=(v . v)(w . w) \cos ^{2}(\theta)$.
- As a consequence, $(v . w)^{2} \leq(v . v)(w \cdot w)$ with equality if and only if $\theta=0$, that is, v and w are parallel, i.e., $v=\lambda w$ or $w=\lambda v$.
- While there is no elementary geometric picture for general vector spaces, one can still prove this inequality (the Cauchy-Schwarz inequality): Suppose \langle,$\rangle is an inner product$ on a real or a complex vector space V (not necessarily f.d) then $|\langle v, w\rangle|^{2} \leq\langle v, v\rangle\langle w, w\rangle$ with equality if and only if $v=\lambda w$ or $w=\lambda v$ for some $\lambda \in \mathbb{F}$.

The Cauchy-Schwarz inequality

- $\ln \mathbb{R}^{2}$ and \mathbb{R}^{3}, one can prove using elementary geometry/calculus that $(v . w)^{2}=(v . v)(w . w) \cos ^{2}(\theta)$.
- As a consequence, $(v . w)^{2} \leq(v . v)(w \cdot w)$ with equality if and only if $\theta=0$, that is, v and w are parallel, i.e., $v=\lambda w$ or $w=\lambda v$.
- While there is no elementary geometric picture for general vector spaces, one can still prove this inequality (the Cauchy-Schwarz inequality) : Suppose \langle,$\rangle is an inner product$ on a real or a complex vector space V (not necessarily f.d) then $|\langle v, w\rangle|^{2} \leq\langle v, v\rangle\langle w, w\rangle$ with equality if and only if $v=\lambda w$ or $w=\lambda v$ for some $\lambda \in \mathbb{F}$.
- As a consequence, $\left(\int_{0}^{1} f g d x\right)^{2} \leq \int_{0}^{1} f^{2} d x \int_{0}^{1} g^{2} d x$!

Norms

Norms

- A small interlude before the proof of CS.
- A small interlude before the proof of CS.
- Define the norm $\|x\|=\langle x, x\rangle^{1 / 2}$.
- A small interlude before the proof of CS.
- Define the norm $\|x\|=\langle x, x\rangle^{1 / 2}$. So CS is $|\langle x, y\rangle| \leq\|x\|\|y\|$.
- A small interlude before the proof of CS.
- Define the norm $\|x\|=\langle x, x\rangle^{1 / 2}$. So CS is $|\langle x, y\rangle| \leq\|x\|\|y\|$.
- The norm obeys the following:
- A small interlude before the proof of CS.
- Define the norm $\|x\|=\langle x, x\rangle^{1 / 2}$. So CS is $|\langle x, y\rangle| \leq\|x\|\|y\|$.
- The norm obeys the following:
- Positivity: $\|x\| \geq 0$ with equality if and only if $x=0$. (Easy)
- A small interlude before the proof of CS.
- Define the norm $\|x\|=\langle x, x\rangle^{1 / 2}$. So CS is $|\langle x, y\rangle| \leq\|x\|\|y\|$.
- The norm obeys the following:
- Positivity: $\|x\| \geq 0$ with equality if and only if $x=0$. (Easy)
- Homogeneity: $\|c x\|=|c|\|x\|$ (Easy)

Norms

- A small interlude before the proof of CS.
- Define the norm $\|x\|=\langle x, x\rangle^{1 / 2}$. So CS is $|\langle x, y\rangle| \leq\|x\|\|y\|$.
- The norm obeys the following:
- Positivity: $\|x\| \geq 0$ with equality if and only if $x=0$. (Easy)
- Homogeneity: $\|c x\|=|c|\|x\|$ (Easy)
- Triangle Inequality (TI) : $\|x+y\| \leq\|x\|+\|y\|$.
- A small interlude before the proof of CS.
- Define the norm $\|x\|=\langle x, x\rangle^{1 / 2}$. So CS is $|\langle x, y\rangle| \leq\|x\|\|y\|$.
- The norm obeys the following:
- Positivity: $\|x\| \geq 0$ with equality if and only if $x=0$. (Easy)
- Homogeneity: $\|c x\|=|c|\|x\|$ (Easy)
- Triangle Inequality (TI) : $\|x+y\| \leq\|x\|+\|y\|$. (In fact, equality holds in the TI iff x, y are parallel.) :

Norms

- A small interlude before the proof of CS.
- Define the norm $\|x\|=\langle x, x\rangle^{1 / 2}$. So CS is $|\langle x, y\rangle| \leq\|x\|\|y\|$.
- The norm obeys the following:
- Positivity: $\|x\| \geq 0$ with equality if and only if $x=0$. (Easy)
- Homogeneity: $\|c x\|=|c|\|x\|$ (Easy)
- Triangle Inequality (TI) : $\|x+y\| \leq\|x\|+\|y\|$. (In fact, equality holds in the TI iff x, y are parallel.) :

$$
\|x+y\|^{2}=\langle x+y, x+y\rangle=\|x\|^{2}+\|y\|^{2}+\langle x, y\rangle+\langle y, x\rangle .
$$

Norms

- A small interlude before the proof of CS.
- Define the norm $\|x\|=\langle x, x\rangle^{1 / 2}$. So CS is $|\langle x, y\rangle| \leq\|x\|\|y\|$.
- The norm obeys the following:
- Positivity: $\|x\| \geq 0$ with equality if and only if $x=0$. (Easy)
- Homogeneity: $\|c x\|=|c|\|x\|$ (Easy)
- Triangle Inequality (TI) : $\|x+y\| \leq\|x\|+\|y\|$. (In fact, equality holds in the TI iff x, y are parallel.) :

$$
\|x+y\|^{2}=\langle x+y, x+y\rangle=\|x\|^{2}+\|y\|^{2}+\langle x, y\rangle+\langle y, x\rangle . \mathrm{By}
$$

CS and completing the square, we get the result.

Norms

- A small interlude before the proof of CS.
- Define the norm $\|x\|=\langle x, x\rangle^{1 / 2}$. So CS is $|\langle x, y\rangle| \leq\|x\|\|y\|$.
- The norm obeys the following:
- Positivity: $\|x\| \geq 0$ with equality if and only if $x=0$. (Easy)
- Homogeneity: $\|c x\|=|c|\|x\|$ (Easy)
- Triangle Inequality (TI) : $\|x+y\| \leq\|x\|+\|y\|$. (In fact, equality holds in the TI iff x, y are parallel.) :

$$
\|x+y\|^{2}=\langle x+y, x+y\rangle=\|x\|^{2}+\|y\|^{2}+\langle x, y\rangle+\langle y, x\rangle . \mathrm{By}
$$

CS and completing the square, we get the result.

- In fact, one can define a norm on a vector space without even defining an inner product

Norms

- A small interlude before the proof of CS.
- Define the norm $\|x\|=\langle x, x\rangle^{1 / 2}$. So CS is $|\langle x, y\rangle| \leq\|x\|\|y\|$.
- The norm obeys the following:
- Positivity: $\|x\| \geq 0$ with equality if and only if $x=0$. (Easy)
- Homogeneity: $\|c x\|=|c|\|x\|$ (Easy)
- Triangle Inequality (TI) : $\|x+y\| \leq\|x\|+\|y\|$. (In fact, equality holds in the TI iff x, y are parallel.) :

$$
\|x+y\|^{2}=\langle x+y, x+y\rangle=\|x\|^{2}+\|y\|^{2}+\langle x, y\rangle+\langle y, x\rangle . \mathrm{By}
$$

CS and completing the square, we get the result.

- In fact, one can define a norm on a vector space without even defining an inner product but not all norms arise out of an inner product. (

Norms

- A small interlude before the proof of CS.
- Define the norm $\|x\|=\langle x, x\rangle^{1 / 2}$. So CS is $|\langle x, y\rangle| \leq\|x\|\|y\|$.
- The norm obeys the following:
- Positivity: $\|x\| \geq 0$ with equality if and only if $x=0$. (Easy)
- Homogeneity: $\|c x\|=|c|\|x\|$ (Easy)
- Triangle Inequality (TI) : $\|x+y\| \leq\|x\|+\|y\|$. (In fact, equality holds in the TI iff x, y are parallel.) :

$$
\|x+y\|^{2}=\langle x+y, x+y\rangle=\|x\|^{2}+\|y\|^{2}+\langle x, y\rangle+\langle y, x\rangle . \mathrm{By}
$$

CS and completing the square, we get the result.

- In fact, one can define a norm on a vector space without even defining an inner product but not all norms arise out of an inner product. (An example is the "taxi-cab" norm).

Proof of the Cauchy-Schwarz inequality in the real case

Proof of the Cauchy-Schwarz inequality in the real case

- Assume that $w \neq 0$ w LOG. (
- Assume that $w \neq 0 \mathrm{w}$ LOG. (If $w=0$ then

$$
\left.\langle v, w\rangle^{2}=0=\langle v, v\rangle\langle w, w\rangle \text { and } w=0 v .\right)
$$

- Assume that $w \neq 0 \mathrm{w}$ LOG. (If $w=0$ then

$$
\left.\langle v, w\rangle^{2}=0=\langle v, v\rangle\langle w, w\rangle \text { and } w=0 v .\right)
$$

- This technique is called "Arbitrage" (Terence Tao's term) :
- Assume that $w \neq 0 \mathrm{w}$ LOG. (If $w=0$ then

$$
\left.\langle v, w\rangle^{2}=0=\langle v, v\rangle\langle w, w\rangle \text { and } w=0 v .\right)
$$

- This technique is called "Arbitrage" (Terence Tao's term) : The only inequality available to us is $\langle x, x\rangle \geq 0$.
- Assume that $w \neq 0 \mathrm{w}$ LOG. (If $w=0$ then

$$
\left.\langle v, w\rangle^{2}=0=\langle v, v\rangle\langle w, w\rangle \text { and } w=0 v .\right)
$$

- This technique is called "Arbitrage" (Terence Tao's term) : The only inequality available to us is $\langle x, x\rangle \geq 0$. The only way to get v, w into the picture is to take a linear combination.
- Assume that $w \neq 0 \mathrm{w}$ LOG. (If $w=0$ then

$$
\left.\langle v, w\rangle^{2}=0=\langle v, v\rangle\langle w, w\rangle \text { and } w=0 v .\right)
$$

- This technique is called "Arbitrage" (Terence Tao's term) : The only inequality available to us is $\langle x, x\rangle \geq 0$. The only way to get v, w into the picture is to take a linear combination.
- So for every positive real $t>0$, we have a wimpy little inequality for free :
- Assume that $w \neq 0 \mathrm{w}$ LOG. (If $w=0$ then

$$
\left.\langle v, w\rangle^{2}=0=\langle v, v\rangle\langle w, w\rangle \text { and } w=0 v .\right)
$$

- This technique is called "Arbitrage" (Terence Tao's term) : The only inequality available to us is $\langle x, x\rangle \geq 0$. The only way to get v, w into the picture is to take a linear combination.
- So for every positive real $t>0$, we have a wimpy little inequality for free: $\langle v+t w, v+t w\rangle \geq 0$.

Proof of the Cauchy-Schwarz inequality in the real case

- Assume that $w \neq 0 \mathrm{w}$ LOG. (If $w=0$ then $\langle v, w\rangle^{2}=0=\langle v, v\rangle\langle w, w\rangle$ and $\left.w=0 v.\right)$
- This technique is called "Arbitrage" (Terence Tao's term) : The only inequality available to us is $\langle x, x\rangle \geq 0$. The only way to get v, w into the picture is to take a linear combination.
- So for every positive real $t>0$, we have a wimpy little inequality for free: $\langle v+t w, v+t w\rangle \geq 0$.
- We shall choose the "worst-case" t and apply the silly inequality above, i.e.,

Proof of the Cauchy-Schwarz inequality in the real case

- Assume that $w \neq 0 \mathrm{w}$ LOG. (If $w=0$ then $\langle v, w\rangle^{2}=0=\langle v, v\rangle\langle w, w\rangle$ and $\left.w=0 v.\right)$
- This technique is called "Arbitrage" (Terence Tao's term) : The only inequality available to us is $\langle x, x\rangle \geq 0$. The only way to get v, w into the picture is to take a linear combination.
- So for every positive real $t>0$, we have a wimpy little inequality for free: $\langle v+t w, v+t w\rangle \geq 0$.
- We shall choose the "worst-case" t and apply the silly inequality above, i.e., we shall minimise

$$
f(t)=\langle v+t w, v+t w\rangle^{2}
$$

Proof of the Cauchy-Schwarz inequality in the real case

- Assume that $w \neq 0 w$ LOG. (If $w=0$ then $\langle v, w\rangle^{2}=0=\langle v, v\rangle\langle w, w\rangle$ and $\left.w=0 v.\right)$
- This technique is called "Arbitrage" (Terence Tao's term) : The only inequality available to us is $\langle x, x\rangle \geq 0$. The only way to get v, w into the picture is to take a linear combination.
- So for every positive real $t>0$, we have a wimpy little inequality for free: $\langle v+t w, v+t w\rangle \geq 0$.
- We shall choose the "worst-case" t and apply the silly inequality above, i.e., we shall minimise $f(t)=\langle v+t w, v+t w\rangle^{2}$.
- $f(t)=\|v\|^{2}+t^{2}\|w\|^{2}+2 t\langle v, w\rangle$.
- Assume that $w \neq 0 \mathrm{w}$ LOG. (If $w=0$ then $\langle v, w\rangle^{2}=0=\langle v, v\rangle\langle w, w\rangle$ and $w=0 v$. .)
- This technique is called "Arbitrage" (Terence Tao's term) : The only inequality available to us is $\langle x, x\rangle \geq 0$. The only way to get v, w into the picture is to take a linear combination.
- So for every positive real $t>0$, we have a wimpy little inequality for free: $\langle v+t w, v+t w\rangle \geq 0$.
- We shall choose the "worst-case" t and apply the silly inequality above, i.e., we shall minimise $f(t)=\langle v+t w, v+t w\rangle^{2}$.
- $f(t)=\|v\|^{2}+t^{2}\|w\|^{2}+2 t\langle v, w\rangle . f^{\prime}(t)=0$ implies that $t=-\frac{\langle v, w\rangle}{\|w\|^{2}}$.

Proof of the Cauchy-Schwarz inequality

Proof of the Cauchy-Schwarz inequality

- So $\|v\|^{2}+\frac{\langle v, w\rangle^{2}}{\|w\|^{2}}-2 \frac{\langle v, w\rangle^{2}}{\|w\|^{2}} \geq 0$.

Proof of the Cauchy-Schwarz inequality

- So $\|v\|^{2}+\frac{\langle v, w\rangle^{2}}{\|w\|^{2}}-2 \frac{\langle v, w\rangle^{2}}{\|w\|^{2}} \geq 0$.
- Hence $\langle v, w\rangle^{2} \leq\|v\|^{2}\|w\|^{2}$.

Proof of the Cauchy-Schwarz inequality

- So $\|v\|^{2}+\frac{\langle v, w\rangle^{2}}{\|w\|^{2}}-2 \frac{\langle v, w\rangle^{2}}{\|w\|^{2}} \geq 0$.
- Hence $\langle v, w\rangle^{2} \leq\|v\|^{2}\|w\|^{2}$. Equality holds precisely when $v+t w=0$, i.e., $v=-t w$.

Proof of the Cauchy-Schwarz inequality

- So $\|v\|^{2}+\frac{\langle v, w\rangle^{2}}{\|w\|^{2}}-2 \frac{\langle v, w\rangle^{2}}{\|w\|^{2}} \geq 0$.
- Hence $\langle v, w\rangle^{2} \leq\|v\|^{2}\|w\|^{2}$. Equality holds precisely when $v+t w=0$, i.e., $v=-t w$.
- For the complex case, choose $t=-\frac{\langle v, w\rangle}{\|w\|^{2}}$ as before.

