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Recap

Recalled the definition (and examples/non-examples) of a
linear map.

Linear maps and matrices.

Matrix operations.

Null space and Range.

Nullity-Rank theorem.
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Inner products

How does one prove that e ix , e2ix , . . . , e inx are linearly
independent in the vector space of continuous functions on
[0, 2π] ? Induction is one way. A nicer way is (due to Fourier)
: If

∑
k cke

ikx = 0, then multiply by e−imx and integrate from
0 to 2π. Then cm2π = 0 and hence cm = 0.

This proof is like taking a dot product with a bunch of vectors
and isolating each component.

So it is fruitful to define the notion of a dot product on
arbitrary vector spaces (over R or C. This notion does not
make sense for all fields).
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Inner products over (not necessarily f.d) real vector spaces

Let V be a vector space over R. An inner product (a dot
product) is a function 〈, 〉 : V × V → R that satisfies the
following properties.

Symmetry : 〈x , y〉 = 〈y , x〉.
Additive Linearity : 〈x , y + z〉 = 〈x , y〉+ 〈x , z〉.
Scalar linearity : 〈cx , y〉 = c〈x , y〉.
Positivity : 〈x , x〉 > 0 when x 6= 0. (Note that
〈0, 0〉 = 0〈0, 0〉 = 0.)
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Inner products over (not necessarily f.d) complex vector
spaces

Let V be a vector space over C. An inner product (a dot
product) is a function 〈, 〉 : V × V → C that satisfies the
following properties.

Hermitian symmetry : 〈x , y〉 = 〈y , x〉.
Additive Linearity : 〈x , y + z〉 = 〈x , y〉+ 〈x , z〉.
Scalar sesquilinearity : 〈cx , y〉 = c〈x , y〉.
Positivity : 〈x , x〉 > 0 when x 6= 0. (Note that
〈0, 0〉 = 0〈0, 0〉 = 0.)
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Examples and non-examples

The “usual” dot product in Rn. A nice way of writing it is
:〈v ,w〉 = vTw , where vT is the transpose of v , i.e., one
converts rows to columns to get a new matrix.

〈x , y〉 = x1ȳ1 + x2ȳ2 + . . . in Cn is an inner product
(corresponding to 〈x , y〉 = xT ȳ) but x1y1 + x2y2 + . . . is NOT.

On R2 : 〈v ,w〉 = 2v1w1 + v1w2 + w1v2 + v2w2 is an inner
product but v1w1 + 1

2(v1w2 + v2w1) + 1
8v2w2 is NOT.

On the space of continuous real-valued functions on [0, 1] :

〈f , g〉 =
∫ 1
0 f (t)g(t)dt is an inner product.

More generally, given a positive continuous function w(t),∫ 1
0 w(t)f (t)g(t)dt is an inner product.

On the space of continuous complex-valued functions on [0, 1]

: 〈f , g〉 =
∫ 1
0 f (t)ḡ(t)dt is an inner product.
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0 f (t)ḡ(t)dt is an inner product.

Vamsi Pritham Pingali Lecture 3 6/11



Examples and non-examples

The “usual” dot product in Rn. A nice way of writing it is
:〈v ,w〉 = vTw , where vT is the transpose of v , i.e., one
converts rows to columns to get a new matrix.
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〈x , y〉 = x1ȳ1 + x2ȳ2 + . . . in Cn is an inner product
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What an inner product looks like in a basis

Suppose V is a real f.d vector space, and 〈, 〉 is an inner
product. Let e1, . . . , en be a basis.

Then 〈v ,w〉 = 〈
∑

i viei ,
∑

j wjej〉 =
∑

viwj〈ei , ej〉.
Define the matrix Hij = 〈ei , ej〉. Then Hij = Hji , i.e.,
H = HT . Such a square matrix is called symmetric.

Thus, 〈v ,w〉 = vTHw . Since 〈v , v〉 > 0 when v 6= 0,
vTHv ≥ 0 with equality if and only if v = 0.

Such a matrix H is called positive-definite. It turns out that
every inner product on V is obtained through positive-definite
matrices this way (HW).
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The Cauchy-Schwarz inequality

In R2 and R3, one can prove using elementary
geometry/calculus that (v .w)2 = (v .v)(w .w) cos2(θ).

As a consequence, (v .w)2 ≤ (v .v)(w .w) with equality if and
only if θ = 0, that is, v and w are parallel, i.e., v = λw or
w = λv .

While there is no elementary geometric picture for general
vector spaces, one can still prove this inequality (the
Cauchy-Schwarz inequality) : Suppose 〈, 〉 is an inner product
on a real or a complex vector space V (not necessarily f.d)
then |〈v ,w〉|2 ≤ 〈v , v〉〈w ,w〉 with equality if and only if
v = λw or w = λv for some λ ∈ F.

As a consequence, (
∫ 1
0 fgdx)2 ≤

∫ 1
0 f 2dx

∫ 1
0 g2dx !
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vector spaces, one can still prove this inequality (the
Cauchy-Schwarz inequality) : Suppose 〈, 〉 is an inner product
on a real or a complex vector space V (not necessarily f.d)
then |〈v ,w〉|2 ≤ 〈v , v〉〈w ,w〉 with equality if and only if
v = λw or w = λv for some λ ∈ F.

As a consequence, (
∫ 1
0 fgdx)2 ≤

∫ 1
0 f 2dx

∫ 1
0 g2dx !
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Norms

A small interlude before the proof of CS.

Define the norm ‖x‖ = 〈x , x〉1/2. So CS is |〈x , y〉| ≤ ‖x‖‖y‖.
The norm obeys the following:

Positivity: ‖x‖ ≥ 0 with equality if and only if x = 0. (Easy)
Homogeneity: ‖cx‖ = |c |‖x‖ (Easy)
Triangle Inequality (TI) : ‖x + y‖ ≤ ‖x‖+ ‖y‖. (In fact,
equality holds in the TI iff x , y are parallel.) :
‖x + y‖2 = 〈x + y , x + y〉 = ‖x‖2 + ‖y‖2 + 〈x , y〉+ 〈y , x〉. By
CS and completing the square, we get the result.

In fact, one can define a norm on a vector space without even
defining an inner product but not all norms arise out of an
inner product. (An example is the “taxi-cab” norm).
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Proof of the Cauchy-Schwarz inequality in the real case

Assume that w 6= 0 w LOG. (If w = 0 then
〈v ,w〉2 = 0 = 〈v , v〉〈w ,w〉 and w = 0v .)

This technique is called “Arbitrage” (Terence Tao’s term) :
The only inequality available to us is 〈x , x〉 ≥ 0. The only way
to get v ,w into the picture is to take a linear combination.

So for every positive real t > 0, we have a wimpy little
inequality for free : 〈v + tw , v + tw〉 ≥ 0.

We shall choose the “worst-case” t and apply the silly
inequality above, i.e., we shall minimise
f (t) = 〈v + tw , v + tw〉2.

f (t) = ‖v‖2 + t2‖w‖2 + 2t〈v ,w〉. f ′(t) = 0 implies that

t = − 〈v ,w〉‖w‖2 .
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The only inequality available to us is 〈x , x〉 ≥ 0. The only way
to get v ,w into the picture is to take a linear combination.

So for every positive real t > 0, we have a wimpy little
inequality for free : 〈v + tw , v + tw〉 ≥ 0.

We shall choose the “worst-case” t and apply the silly
inequality above, i.e., we shall minimise
f (t) = 〈v + tw , v + tw〉2.

f (t) = ‖v‖2 + t2‖w‖2 + 2t〈v ,w〉. f ′(t) = 0 implies that

t = − 〈v ,w〉‖w‖2 .
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Proof of the Cauchy-Schwarz inequality

So ‖v‖2 + 〈v ,w〉2
‖w‖2 − 2 〈v ,w〉

2

‖w‖2 ≥ 0.

Hence 〈v ,w〉2 ≤ ‖v‖2‖w‖2. Equality holds precisely when
v + tw = 0, i.e., v = −tw .

For the complex case, choose t = − 〈v ,w〉‖w‖2 as before.
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