Lecture 4 - UM 102 (Spring 2021)

Vamsi Pritham Pingali

IISc

Recap

- Defined inner products over real and complex vector spaces.
- Defined inner products over real and complex vector spaces.
- Wrote the expression for an inner product (for a real vector space) in terms of a basis using positive-definite matrices.

Recap

- Defined inner products over real and complex vector spaces.
- Wrote the expression for an inner product (for a real vector space) in terms of a basis using positive-definite matrices.
- Stated and proved the Cauchy-Schwarz inequality.

Recap

- Defined inner products over real and complex vector spaces.
- Wrote the expression for an inner product (for a real vector space) in terms of a basis using positive-definite matrices.
- Stated and proved the Cauchy-Schwarz inequality.
- Defined norms and proved their properties (including the triangle inequality).

Orthogonality

Orthogonality

- In \mathbb{R}^{2}, the basis \hat{i}, \hat{j} is special because

Orthogonality

- In \mathbb{R}^{2}, the basis \hat{i}, \hat{j} is special because $\hat{i} \cdot \hat{i}=\hat{j} . \hat{j}=1$ and $\hat{i} \cdot \hat{j}=0$. Thus

Orthogonality

- In \mathbb{R}^{2}, the basis \hat{i}, \hat{j} is special because $\hat{i} . \hat{i}=\hat{j} . \hat{j}=1$ and $\hat{i} . \hat{j}=0$. Thus $v . w=v_{1} w_{1}+v_{2} w_{2}$.

Orthogonality

- In \mathbb{R}^{2}, the basis \hat{i}, \hat{j} is special because $\hat{i} . \hat{i}=\hat{j} . \hat{j}=1$ and $\hat{i} . \hat{j}=0$. Thus $v . w=v_{1} w_{1}+v_{2} w_{2}$.
- Motivated by this observation, we defined the notion of Orthogonality:

Orthogonality

- In \mathbb{R}^{2}, the basis \hat{i}, \hat{j} is special because $\hat{i} . \hat{i}=\hat{j} . \hat{j}=1$ and $\hat{i} . \hat{j}=0$. Thus $v . w=v_{1} w_{1}+v_{2} w_{2}$.
- Motivated by this observation, we defined the notion of Orthogonality: In an inner product space $V, v, w \in V$ are said to be orthogonal to each other if $\langle v, w\rangle=0$.

Orthogonality

- In \mathbb{R}^{2}, the basis \hat{i}, \hat{j} is special because $\hat{i} . \hat{i}=\hat{j} . \hat{j}=1$ and $\hat{i} . \hat{j}=0$. Thus $v . w=v_{1} w_{1}+v_{2} w_{2}$.
- Motivated by this observation, we defined the notion of Orthogonality: In an inner product space $V, v, w \in V$ are said to be orthogonal to each other if $\langle v, w\rangle=0$. A subset $S \subseteq V$ is said to be orthogonal if any pair of distinct elements are orthogonal to each other.

Orthogonality

- In \mathbb{R}^{2}, the basis \hat{i}, \hat{j} is special because $\hat{i} . \hat{i}=\hat{j} . \hat{j}=1$ and $\hat{i} \cdot \hat{j}=0$. Thus $v . w=v_{1} w_{1}+v_{2} w_{2}$.
- Motivated by this observation, we defined the notion of Orthogonality: In an inner product space $V, v, w \in V$ are said to be orthogonal to each other if $\langle v, w\rangle=0$. A subset $S \subseteq V$ is said to be orthogonal if any pair of distinct elements are orthogonal to each other. A subset $S \subseteq V$ is said to be orthonormal if it is orthogonal and each element has unit norm.

Orthogonality

- In \mathbb{R}^{2}, the basis \hat{i}, \hat{j} is special because $\hat{i} . \hat{i}=\hat{j} . \hat{j}=1$ and $\hat{i} \cdot \hat{j}=0$. Thus $v . w=v_{1} w_{1}+v_{2} w_{2}$.
- Motivated by this observation, we defined the notion of Orthogonality: In an inner product space $V, v, w \in V$ are said to be orthogonal to each other if $\langle v, w\rangle=0$. A subset $S \subseteq V$ is said to be orthogonal if any pair of distinct elements are orthogonal to each other. A subset $S \subseteq V$ is said to be orthonormal if it is orthogonal and each element has unit norm.
- An important result is:

Orthogonality

- In \mathbb{R}^{2}, the basis \hat{i}, \hat{j} is special because $\hat{i} . \hat{i}=\hat{j} . \hat{j}=1$ and $\hat{i} . \hat{j}=0$. Thus $v . w=v_{1} w_{1}+v_{2} w_{2}$.
- Motivated by this observation, we defined the notion of Orthogonality: In an inner product space $V, v, w \in V$ are said to be orthogonal to each other if $\langle v, w\rangle=0$. A subset $S \subseteq V$ is said to be orthogonal if any pair of distinct elements are orthogonal to each other. A subset $S \subseteq V$ is said to be orthonormal if it is orthogonal and each element has unit norm.
- An important result is: In an inner product space (V,\langle,$\rangle), an$ orthogonal set of nonzero elements is linearly independent.

Orthogonality

- In \mathbb{R}^{2}, the basis \hat{i}, \hat{j} is special because $\hat{i} . \hat{i}=\hat{j} . \hat{j}=1$ and $\hat{i} \cdot \hat{j}=0$. Thus $v . w=v_{1} w_{1}+v_{2} w_{2}$.
- Motivated by this observation, we defined the notion of Orthogonality: In an inner product space $V, v, w \in V$ are said to be orthogonal to each other if $\langle v, w\rangle=0$. A subset $S \subseteq V$ is said to be orthogonal if any pair of distinct elements are orthogonal to each other. A subset $S \subseteq V$ is said to be orthonormal if it is orthogonal and each element has unit norm.
- An important result is: In an inner product space (V,\langle,$\rangle), an$ orthogonal set of nonzero elements is linearly independent. In particular, if V is f .d with $\operatorname{dim}(V)=n$,

Orthogonality

- In \mathbb{R}^{2}, the basis \hat{i}, \hat{j} is special because $\hat{i} . \hat{i}=\hat{j} . \hat{j}=1$ and $\hat{i} \cdot \hat{j}=0$. Thus $v . w=v_{1} w_{1}+v_{2} w_{2}$.
- Motivated by this observation, we defined the notion of Orthogonality: In an inner product space $V, v, w \in V$ are said to be orthogonal to each other if $\langle v, w\rangle=0$. A subset $S \subseteq V$ is said to be orthogonal if any pair of distinct elements are orthogonal to each other. A subset $S \subseteq V$ is said to be orthonormal if it is orthogonal and each element has unit norm.
- An important result is: In an inner product space (V,\langle,$\rangle), an$ orthogonal set of nonzero elements is linearly independent. In particular, if V is f .d with $\operatorname{dim}(V)=n$, any orthogonal set of nonzero elements of size n forms a basis.

Orthogonality

Orthogonality

- Proof: Suppose $\sum_{k} c_{k} v_{k}=0$ where $v_{k} \in S$.

Orthogonality

- Proof: Suppose $\sum_{k} c_{k} v_{k}=0$ where $v_{k} \in S$. Then $\left\langle\sum_{k} c_{k} v_{k}, v_{l}\right\rangle=0=\sum_{k} c_{k}\left\langle v_{k}, v_{l}\right\rangle$.

Orthogonality

- Proof: Suppose $\sum_{k} c_{k} v_{k}=0$ where $v_{k} \in S$. Then $\left\langle\sum_{k} c_{k} v_{k}, v_{l}\right\rangle=0=\sum_{k} c_{k}\left\langle v_{k}, v_{l}\right\rangle$. Thus, $c_{l}\left\|v_{l}\right\|^{2}=0$ and hence $c_{l}=0$ for all l.

Orthogonality

- Proof: Suppose $\sum_{k} c_{k} v_{k}=0$ where $v_{k} \in S$. Then $\left\langle\sum_{k} c_{k} v_{k}, v_{l}\right\rangle=0=\sum_{k} c_{k}\left\langle v_{k}, v_{l}\right\rangle$. Thus, $c_{l}\left\|v_{l}\right\|^{2}=0$ and hence $c_{l}=0$ for all l.
- Examples and non-examples:

Orthogonality

- Proof: Suppose $\sum_{k} c_{k} v_{k}=0$ where $v_{k} \in S$. Then $\left\langle\sum_{k} c_{k} v_{k}, v_{l}\right\rangle=0=\sum_{k} c_{k}\left\langle v_{k}, v_{l}\right\rangle$. Thus, $c_{l}\left\|v_{l}\right\|^{2}=0$ and hence $c_{l}=0$ for all l.
- Examples and non-examples:
- The 0 vector is orthogonal to every vector. (

Orthogonality

- Proof: Suppose $\sum_{k} c_{k} v_{k}=0$ where $v_{k} \in S$. Then $\left\langle\sum_{k} c_{k} v_{k}, v_{l}\right\rangle=0=\sum_{k} c_{k}\left\langle v_{k}, v_{l}\right\rangle$. Thus, $c_{l}\left\|v_{l}\right\|^{2}=0$ and hence $c_{l}=0$ for all l.
- Examples and non-examples:
- The 0 vector is orthogonal to every vector. (As we shall see, it is the only vector with such properties.

Orthogonality

- Proof: Suppose $\sum_{k} c_{k} v_{k}=0$ where $v_{k} \in S$. Then $\left\langle\sum_{k} c_{k} v_{k}, v_{l}\right\rangle=0=\sum_{k} c_{k}\left\langle v_{k}, v_{l}\right\rangle$. Thus, $c_{l}\left\|v_{l}\right\|^{2}=0$ and hence $c_{l}=0$ for all l.
- Examples and non-examples:
- The 0 vector is orthogonal to every vector. (As we shall see, it is the only vector with such properties. If we do not require positivity for all vectors in the inner product, then this property is false.

Orthogonality

- Proof: Suppose $\sum_{k} c_{k} v_{k}=0$ where $v_{k} \in S$. Then $\left\langle\sum_{k} c_{k} v_{k}, v_{l}\right\rangle=0=\sum_{k} c_{k}\left\langle v_{k}, v_{l}\right\rangle$. Thus, $c_{l}\left\|v_{l}\right\|^{2}=0$ and hence $c_{l}=0$ for all l.
- Examples and non-examples:
- The 0 vector is orthogonal to every vector. (As we shall see, it is the only vector with such properties. If we do not require positivity for all vectors in the inner product, then this property is false. Such "non-positive inner products" are useful in Relativity.)

Orthogonality

- Proof: Suppose $\sum_{k} c_{k} v_{k}=0$ where $v_{k} \in S$. Then $\left\langle\sum_{k} c_{k} v_{k}, v_{l}\right\rangle=0=\sum_{k} c_{k}\left\langle v_{k}, v_{l}\right\rangle$. Thus, $c_{l}\left\|v_{l}\right\|^{2}=0$ and hence $c_{l}=0$ for all l.
- Examples and non-examples:
- The 0 vector is orthogonal to every vector. (As we shall see, it is the only vector with such properties. If we do not require positivity for all vectors in the inner product, then this property is false. Such "non-positive inner products" are useful in Relativity.)
- The standard basis vectors in $\mathbb{R}^{n}, \mathbb{C}^{n}$ with the usual inner products are orthonormal bases.

Orthogonality

- Proof: Suppose $\sum_{k} c_{k} v_{k}=0$ where $v_{k} \in S$. Then $\left\langle\sum_{k} c_{k} v_{k}, v_{l}\right\rangle=0=\sum_{k} c_{k}\left\langle v_{k}, v_{l}\right\rangle$. Thus, $c_{l}\left\|v_{l}\right\|^{2}=0$ and hence $c_{l}=0$ for all l.
- Examples and non-examples:
- The 0 vector is orthogonal to every vector. (As we shall see, it is the only vector with such properties. If we do not require positivity for all vectors in the inner product, then this property is false. Such "non-positive inner products" are useful in Relativity.)
- The standard basis vectors in $\mathbb{R}^{n}, \mathbb{C}^{n}$ with the usual inner products are orthonormal bases.
- The elements $e^{i k x}$ in the space of continuous complex-valued functions on $[0,2 \pi]$ are orthogonal under the integration inner product.

Orthogonality

- Proof: Suppose $\sum_{k} c_{k} v_{k}=0$ where $v_{k} \in S$. Then $\left\langle\sum_{k} c_{k} v_{k}, v_{l}\right\rangle=0=\sum_{k} c_{k}\left\langle v_{k}, v_{l}\right\rangle$. Thus, $c_{l}\left\|v_{l}\right\|^{2}=0$ and hence $c_{l}=0$ for all l.
- Examples and non-examples:
- The 0 vector is orthogonal to every vector. (As we shall see, it is the only vector with such properties. If we do not require positivity for all vectors in the inner product, then this property is false. Such "non-positive inner products" are useful in Relativity.)
- The standard basis vectors in $\mathbb{R}^{n}, \mathbb{C}^{n}$ with the usual inner products are orthonormal bases.
- The elements $e^{i k x}$ in the space of continuous complex-valued functions on $[0,2 \pi]$ are orthogonal under the integration inner product. Alternatively, $u_{0}=1, u_{2 n-1}=\cos (n x), u_{2 n}=\sin (n x)$ are orthogonal but not orthonormal.

Orthogonality

- Proof: Suppose $\sum_{k} c_{k} v_{k}=0$ where $v_{k} \in S$. Then $\left\langle\sum_{k} c_{k} v_{k}, v_{l}\right\rangle=0=\sum_{k} c_{k}\left\langle v_{k}, v_{l}\right\rangle$. Thus, $c_{l}\left\|v_{l}\right\|^{2}=0$ and hence $c_{l}=0$ for all l.
- Examples and non-examples:
- The 0 vector is orthogonal to every vector. (As we shall see, it is the only vector with such properties. If we do not require positivity for all vectors in the inner product, then this property is false. Such "non-positive inner products" are useful in Relativity.)
- The standard basis vectors in $\mathbb{R}^{n}, \mathbb{C}^{n}$ with the usual inner products are orthonormal bases.
- The elements $e^{i k x}$ in the space of continuous complex-valued functions on $[0,2 \pi]$ are orthogonal under the integration inner product. Alternatively, $u_{0}=1, u_{2 n-1}=\cos (n x), u_{2 n}=\sin (n x)$ are orthogonal but not orthonormal. Instead, $\frac{u_{0}}{\sqrt{2 \pi}}, \frac{u_{n}}{\sqrt{\pi}}$ are orthonormal.

Orthogonality

- Proof: Suppose $\sum_{k} c_{k} v_{k}=0$ where $v_{k} \in S$. Then $\left\langle\sum_{k} c_{k} v_{k}, v_{l}\right\rangle=0=\sum_{k} c_{k}\left\langle v_{k}, v_{l}\right\rangle$. Thus, $c_{l}\left\|v_{l}\right\|^{2}=0$ and hence $c_{l}=0$ for all l.
- Examples and non-examples:
- The 0 vector is orthogonal to every vector. (As we shall see, it is the only vector with such properties. If we do not require positivity for all vectors in the inner product, then this property is false. Such "non-positive inner products" are useful in Relativity.)
- The standard basis vectors in $\mathbb{R}^{n}, \mathbb{C}^{n}$ with the usual inner products are orthonormal bases.
- The elements $e^{i k x}$ in the space of continuous complex-valued functions on $[0,2 \pi]$ are orthogonal under the integration inner product. Alternatively, $u_{0}=1, u_{2 n-1}=\cos (n x), u_{2 n}=\sin (n x)$ are orthogonal but not orthonormal. Instead, $\frac{u_{0}}{\sqrt{2 \pi}}, \frac{u_{n}}{\sqrt{\pi}}$ are orthonormal.
- The set $\left\{1, x, x^{2}\right\}$ is not orthogonal under the integration inner product.

Parseval's formula in finite dimensions

Parseval's formula in finite dimensions

- Let V be a f.d. inner product space of $\operatorname{dim} n$ (over \mathbb{R} or \mathbb{C} as usual).

Parseval's formula in finite dimensions

- Let V be a f.d. inner product space of $\operatorname{dim} n$ (over \mathbb{R} or \mathbb{C} as usual). Suppose e_{1}, \ldots, e_{n} is an orthogonal basis.
- Let V be a f.d. inner product space of $\operatorname{dim} n$ (over \mathbb{R} or \mathbb{C} as usual). Suppose e_{1}, \ldots, e_{n} is an orthogonal basis. Then the components of a vector $x=\sum_{k} c_{k} e_{k}$ are:
- Let V be a f.d. inner product space of $\operatorname{dim} n$ (over \mathbb{R} or \mathbb{C} as usual). Suppose e_{1}, \ldots, e_{n} is an orthogonal basis. Then the components of a vector $x=\sum_{k} c_{k} e_{k}$ are: $c_{j}=\frac{\left\langle x, e_{j}\right\rangle}{\left\langle e_{j}, e_{j}\right\rangle}$.
- Let V be a f.d. inner product space of $\operatorname{dim} n$ (over \mathbb{R} or \mathbb{C} as usual). Suppose e_{1}, \ldots, e_{n} is an orthogonal basis. Then the components of a vector $x=\sum_{k} c_{k} e_{k}$ are: $c_{j}=\frac{\left\langle x, e_{j}\right\rangle}{\left\langle e_{j}, e_{j}\right\rangle}$. In particular, if e_{j} are orthonormal, then $c_{j}=\left\langle x, e_{j}\right\rangle$.
- Let V be a f.d. inner product space of $\operatorname{dim} n$ (over \mathbb{R} or \mathbb{C} as usual). Suppose e_{1}, \ldots, e_{n} is an orthogonal basis. Then the components of a vector $x=\sum_{k} c_{k} e_{k}$ are: $c_{j}=\frac{\left\langle x, e_{j}\right\rangle}{\left\langle e_{j}, e_{j}\right\rangle}$. In particular, if e_{j} are orthonormal, then $c_{j}=\left\langle x, e_{j}\right\rangle$.
- Proof: $\left\langle x, e_{j}\right\rangle=\sum_{j} c_{k}\left\langle e_{k}, e_{j}\right\rangle=c_{j}\left\langle e_{j}, e_{j}\right\rangle$.
- Let V be a f.d. inner product space of $\operatorname{dim} n$ (over \mathbb{R} or \mathbb{C} as usual). Suppose e_{1}, \ldots, e_{n} is an orthogonal basis. Then the components of a vector $x=\sum_{k} c_{k} e_{k}$ are: $c_{j}=\frac{\left\langle x, e_{j}\right\rangle}{\left\langle e_{j}, e_{j}\right\rangle}$. In particular, if e_{j} are orthonormal, then $c_{j}=\left\langle x, e_{j}\right\rangle$.
- Proof: $\left\langle x, e_{j}\right\rangle=\sum_{j} c_{k}\left\langle e_{k}, e_{j}\right\rangle=c_{j}\left\langle e_{j}, e_{j}\right\rangle$.
- In other words, on f.d. space with an orthonormal basis,
- Let V be a f.d. inner product space of $\operatorname{dim} n$ (over \mathbb{R} or \mathbb{C} as usual). Suppose e_{1}, \ldots, e_{n} is an orthogonal basis. Then the components of a vector $x=\sum_{k} c_{k} e_{k}$ are: $c_{j}=\frac{\left\langle x, e_{j}\right\rangle}{\left\langle e_{j}, e_{j}\right\rangle}$. In particular, if e_{j} are orthonormal, then $c_{j}=\left\langle x, e_{j}\right\rangle$.
- Proof: $\left\langle x, e_{j}\right\rangle=\sum_{j} c_{k}\left\langle e_{k}, e_{j}\right\rangle=c_{j}\left\langle e_{j}, e_{j}\right\rangle$.
- In other words, on f.d. space with an orthonormal basis, $x=\sum_{k}\left\langle x, e_{k}\right\rangle e_{k}$.
- Let V be a f.d. inner product space of $\operatorname{dim} n$ (over \mathbb{R} or \mathbb{C} as usual). Suppose e_{1}, \ldots, e_{n} is an orthogonal basis. Then the components of a vector $x=\sum_{k} c_{k} e_{k}$ are: $c_{j}=\frac{\left\langle x, e_{j}\right\rangle}{\left\langle e_{j}, e_{j}\right\rangle}$. In particular, if e_{j} are orthonormal, then $c_{j}=\left\langle x, e_{j}\right\rangle$.
- Proof: $\left\langle x, e_{j}\right\rangle=\sum_{j} c_{k}\left\langle e_{k}, e_{j}\right\rangle=c_{j}\left\langle e_{j}, e_{j}\right\rangle$.
- In other words, on f.d. space with an orthonormal basis, $x=\sum_{k}\left\langle x, e_{k}\right\rangle e_{k}$.
- Let V be a f.d. inner product space and e_{1}, \ldots, e_{n} is an orthonormal basis.
- Let V be a f.d. inner product space of $\operatorname{dim} n$ (over \mathbb{R} or \mathbb{C} as usual). Suppose e_{1}, \ldots, e_{n} is an orthogonal basis. Then the components of a vector $x=\sum_{k} c_{k} e_{k}$ are: $c_{j}=\frac{\left\langle x, e_{j}\right\rangle}{\left\langle e_{j}, e_{j}\right\rangle}$. In particular, if e_{j} are orthonormal, then $c_{j}=\left\langle x, e_{j}\right\rangle$.
- Proof: $\left\langle x, e_{j}\right\rangle=\sum_{j} c_{k}\left\langle e_{k}, e_{j}\right\rangle=c_{j}\left\langle e_{j}, e_{j}\right\rangle$.
- In other words, on f.d. space with an orthonormal basis, $x=\sum_{k}\left\langle x, e_{k}\right\rangle e_{k}$.
- Let V be a f.d. inner product space and e_{1}, \ldots, e_{n} is an orthonormal basis. Then $\langle x, y\rangle=\sum_{k}\left\langle x, e_{k}\right\rangle \overline{\left\langle y, e_{k}\right\rangle}$.
- Let V be a f.d. inner product space of $\operatorname{dim} n$ (over \mathbb{R} or \mathbb{C} as usual). Suppose e_{1}, \ldots, e_{n} is an orthogonal basis. Then the components of a vector $x=\sum_{k} c_{k} e_{k}$ are: $c_{j}=\frac{\left\langle x, e_{j}\right\rangle}{\left\langle e_{j}, e_{j}\right\rangle}$. In particular, if e_{j} are orthonormal, then $c_{j}=\left\langle x, e_{j}\right\rangle$.
- Proof: $\left\langle x, e_{j}\right\rangle=\sum_{j} c_{k}\left\langle e_{k}, e_{j}\right\rangle=c_{j}\left\langle e_{j}, e_{j}\right\rangle$.
- In other words, on f.d. space with an orthonormal basis, $x=\sum_{k}\left\langle x, e_{k}\right\rangle e_{k}$.
- Let V be a f.d. inner product space and e_{1}, \ldots, e_{n} is an orthonormal basis. Then $\langle x, y\rangle=\sum_{k}\left\langle x, e_{k}\right\rangle \overline{\left\langle y, e_{k}\right\rangle}$. In particular, $\|x\|^{2}=\sum_{i=1}^{n}\left|\left\langle x, e_{i}\right\rangle\right|^{2}$.
- Let V be a f.d. inner product space of $\operatorname{dim} n$ (over \mathbb{R} or \mathbb{C} as usual). Suppose e_{1}, \ldots, e_{n} is an orthogonal basis. Then the components of a vector $x=\sum_{k} c_{k} e_{k}$ are: $c_{j}=\frac{\left\langle x, e_{j}\right\rangle}{\left\langle e_{j}, e_{j}\right\rangle}$. In particular, if e_{j} are orthonormal, then $c_{j}=\left\langle x, e_{j}\right\rangle$.
- Proof: $\left\langle x, e_{j}\right\rangle=\sum_{j} c_{k}\left\langle e_{k}, e_{j}\right\rangle=c_{j}\left\langle e_{j}, e_{j}\right\rangle$.
- In other words, on f.d. space with an orthonormal basis, $x=\sum_{k}\left\langle x, e_{k}\right\rangle e_{k}$.
- Let V be a f.d. inner product space and e_{1}, \ldots, e_{n} is an orthonormal basis. Then $\langle x, y\rangle=\sum_{k}\left\langle x, e_{k}\right\rangle \overline{\left\langle y, e_{k}\right\rangle}$. In particular, $\|x\|^{2}=\sum_{i=1}^{n}\left|\left\langle x, e_{i}\right\rangle\right|^{2}$. The proof is straightforward.
- Let V be a f.d. inner product space of $\operatorname{dim} n$ (over \mathbb{R} or \mathbb{C} as usual). Suppose e_{1}, \ldots, e_{n} is an orthogonal basis. Then the components of a vector $x=\sum_{k} c_{k} e_{k}$ are: $c_{j}=\frac{\left\langle x, e_{j}\right\rangle}{\left\langle e_{j}, e_{j}\right\rangle}$. In particular, if e_{j} are orthonormal, then $c_{j}=\left\langle x, e_{j}\right\rangle$.
- Proof: $\left\langle x, e_{j}\right\rangle=\sum_{j} c_{k}\left\langle e_{k}, e_{j}\right\rangle=c_{j}\left\langle e_{j}, e_{j}\right\rangle$.
- In other words, on f.d. space with an orthonormal basis, $x=\sum_{k}\left\langle x, e_{k}\right\rangle e_{k}$.
- Let V be a f.d. inner product space and e_{1}, \ldots, e_{n} is an orthonormal basis. Then $\langle x, y\rangle=\sum_{k}\left\langle x, e_{k}\right\rangle \overline{\left\langle y, e_{k}\right\rangle}$. In particular, $\|x\|^{2}=\sum_{i=1}^{n}\left|\left\langle x, e_{i}\right\rangle\right|^{2}$. The proof is straightforward.
- It turns out that in a certain function space (larger than continuous functions),
- Let V be a f.d. inner product space of $\operatorname{dim} n$ (over \mathbb{R} or \mathbb{C} as usual). Suppose e_{1}, \ldots, e_{n} is an orthogonal basis. Then the components of a vector $x=\sum_{k} c_{k} e_{k}$ are: $c_{j}=\frac{\left\langle x, e_{j}\right\rangle}{\left\langle e_{j}, e_{j}\right\rangle}$. In particular, if e_{j} are orthonormal, then $c_{j}=\left\langle x, e_{j}\right\rangle$.
- Proof: $\left\langle x, e_{j}\right\rangle=\sum_{j} c_{k}\left\langle e_{k}, e_{j}\right\rangle=c_{j}\left\langle e_{j}, e_{j}\right\rangle$.
- In other words, on f.d. space with an orthonormal basis, $x=\sum_{k}\left\langle x, e_{k}\right\rangle e_{k}$.
- Let V be a f.d. inner product space and e_{1}, \ldots, e_{n} is an orthonormal basis. Then $\langle x, y\rangle=\sum_{k}\left\langle x, e_{k}\right\rangle \overline{\left\langle y, e_{k}\right\rangle}$. In particular, $\|x\|^{2}=\sum_{i=1}^{n}\left|\left\langle x, e_{i}\right\rangle\right|^{2}$. The proof is straightforward.
- It turns out that in a certain function space (larger than continuous functions), $e^{i k x}$ form an orthonormal "basis" of sorts.
- Let V be a f.d. inner product space of $\operatorname{dim} n$ (over \mathbb{R} or \mathbb{C} as usual). Suppose e_{1}, \ldots, e_{n} is an orthogonal basis. Then the components of a vector $x=\sum_{k} c_{k} e_{k}$ are: $c_{j}=\frac{\left\langle x, e_{j}\right\rangle}{\left\langle e_{j}, e_{j}\right\rangle}$. In particular, if e_{j} are orthonormal, then $c_{j}=\left\langle x, e_{j}\right\rangle$.
- Proof: $\left\langle x, e_{j}\right\rangle=\sum_{j} c_{k}\left\langle e_{k}, e_{j}\right\rangle=c_{j}\left\langle e_{j}, e_{j}\right\rangle$.
- In other words, on f.d. space with an orthonormal basis, $x=\sum_{k}\left\langle x, e_{k}\right\rangle e_{k}$.
- Let V be a f.d. inner product space and e_{1}, \ldots, e_{n} is an orthonormal basis. Then $\langle x, y\rangle=\sum_{k}\left\langle x, e_{k}\right\rangle \overline{\left\langle y, e_{k}\right\rangle}$. In particular, $\|x\|^{2}=\sum_{i=1}^{n}\left|\left\langle x, e_{i}\right\rangle\right|^{2}$. The proof is straightforward.
- It turns out that in a certain function space (larger than continuous functions), $e^{i k x}$ form an orthonormal "basis" of sorts. The analogue of the theorem above was discovered by Fourier and Parseval.
- Let V be a f.d. inner product space of $\operatorname{dim} n$ (over \mathbb{R} or \mathbb{C} as usual). Suppose e_{1}, \ldots, e_{n} is an orthogonal basis. Then the components of a vector $x=\sum_{k} c_{k} e_{k}$ are: $c_{j}=\frac{\left\langle x, e_{j}\right\rangle}{\left\langle e_{j}, e_{j}\right\rangle}$. In particular, if e_{j} are orthonormal, then $c_{j}=\left\langle x, e_{j}\right\rangle$.
- Proof: $\left\langle x, e_{j}\right\rangle=\sum_{j} c_{k}\left\langle e_{k}, e_{j}\right\rangle=c_{j}\left\langle e_{j}, e_{j}\right\rangle$.
- In other words, on f.d. space with an orthonormal basis, $x=\sum_{k}\left\langle x, e_{k}\right\rangle e_{k}$.
- Let V be a f.d. inner product space and e_{1}, \ldots, e_{n} is an orthonormal basis. Then $\langle x, y\rangle=\sum_{k}\left\langle x, e_{k}\right\rangle \overline{\left\langle y, e_{k}\right\rangle}$. In particular, $\|x\|^{2}=\sum_{i=1}^{n}\left|\left\langle x, e_{i}\right\rangle\right|^{2}$. The proof is straightforward.
- It turns out that in a certain function space (larger than continuous functions), $e^{i k x}$ form an orthonormal "basis" of sorts. The analogue of the theorem above was discovered by Fourier and Parseval. It forms the basis for Fourier's technique of solving certain differential equations.

Gram-Schmidt algorithm/procedure/process

Gram-Schmidt algorithm/procedure/process

- Suppose in \mathbb{R}^{2}, we were given $(1,1)$ and $(1,2)$ as a basis.

Gram-Schmidt algorithm/procedure/process

- Suppose in \mathbb{R}^{2}, we were given $(1,1)$ and $(1,2)$ as a basis. If we were asked to construct an orthonormal basis, what would we have done ?

Gram-Schmidt algorithm/procedure/process

- Suppose in \mathbb{R}^{2}, we were given $(1,1)$ and $(1,2)$ as a basis. If we were asked to construct an orthonormal basis, what would we have done? Of course, we would have replaced $(1,2)$ with the piece that is orthogonal to $(1,1)$.

Gram-Schmidt algorithm/procedure/process

- Suppose in \mathbb{R}^{2}, we were given $(1,1)$ and $(1,2)$ as a basis. If we were asked to construct an orthonormal basis, what would we have done? Of course, we would have replaced $(1,2)$ with the piece that is orthogonal to $(1,1)$. This idea leads to the Gram-Schmidt procedure.

Gram-Schmidt algorithm/procedure/process

- Suppose in \mathbb{R}^{2}, we were given $(1,1)$ and $(1,2)$ as a basis. If we were asked to construct an orthonormal basis, what would we have done? Of course, we would have replaced $(1,2)$ with the piece that is orthogonal to $(1,1)$. This idea leads to the Gram-Schmidt procedure.
- Let x_{1}, \ldots be a finite or infinite sequence of vectors in $(V,\langle\rangle$,$) .$

Gram-Schmidt algorithm/procedure/process

- Suppose in \mathbb{R}^{2}, we were given $(1,1)$ and $(1,2)$ as a basis. If we were asked to construct an orthonormal basis, what would we have done? Of course, we would have replaced $(1,2)$ with the piece that is orthogonal to $(1,1)$. This idea leads to the Gram-Schmidt procedure.
- Let x_{1}, \ldots be a finite or infinite sequence of vectors in $(V,\langle\rangle$,$) . Let L\left(x_{1}, \ldots, x_{k}\right)$ be the span of the first k elements. Then

Gram-Schmidt algorithm/procedure/process

- Suppose in \mathbb{R}^{2}, we were given $(1,1)$ and $(1,2)$ as a basis. If we were asked to construct an orthonormal basis, what would we have done? Of course, we would have replaced $(1,2)$ with the piece that is orthogonal to $(1,1)$. This idea leads to the Gram-Schmidt procedure.
- Let x_{1}, \ldots be a finite or infinite sequence of vectors in $(V,\langle\rangle$,$) . Let L\left(x_{1}, \ldots, x_{k}\right)$ be the span of the first k elements. Then there is another collection y_{1}, \ldots, in V such that

Gram-Schmidt algorithm/procedure/process

- Suppose in \mathbb{R}^{2}, we were given $(1,1)$ and $(1,2)$ as a basis. If we were asked to construct an orthonormal basis, what would we have done? Of course, we would have replaced $(1,2)$ with the piece that is orthogonal to $(1,1)$. This idea leads to the Gram-Schmidt procedure.
- Let x_{1}, \ldots be a finite or infinite sequence of vectors in $(V,\langle\rangle$,$) . Let L\left(x_{1}, \ldots, x_{k}\right)$ be the span of the first k elements. Then there is another collection y_{1}, \ldots, in V such that
- y_{k} is orthogonal to every element in $L\left(y_{1}, \ldots, y_{k-1}\right)$.

Gram-Schmidt algorithm/procedure/process

- Suppose in \mathbb{R}^{2}, we were given $(1,1)$ and $(1,2)$ as a basis. If we were asked to construct an orthonormal basis, what would we have done? Of course, we would have replaced $(1,2)$ with the piece that is orthogonal to $(1,1)$. This idea leads to the Gram-Schmidt procedure.
- Let x_{1}, \ldots be a finite or infinite sequence of vectors in $(V,\langle\rangle$,$) . Let L\left(x_{1}, \ldots, x_{k}\right)$ be the span of the first k elements. Then there is another collection y_{1}, \ldots, in V such that
- y_{k} is orthogonal to every element in $L\left(y_{1}, \ldots, y_{k-1}\right)$.
- $L\left(y_{1}, \ldots, y_{k}\right)=L\left(x_{1}, \ldots, x_{k}\right)$.

Gram-Schmidt algorithm/procedure/process

- Suppose in \mathbb{R}^{2}, we were given $(1,1)$ and $(1,2)$ as a basis. If we were asked to construct an orthonormal basis, what would we have done? Of course, we would have replaced $(1,2)$ with the piece that is orthogonal to $(1,1)$. This idea leads to the Gram-Schmidt procedure.
- Let x_{1}, \ldots be a finite or infinite sequence of vectors in $(V,\langle\rangle$,$) . Let L\left(x_{1}, \ldots, x_{k}\right)$ be the span of the first k elements. Then there is another collection y_{1}, \ldots, in V such that
- y_{k} is orthogonal to every element in $L\left(y_{1}, \ldots, y_{k-1}\right)$.
- $L\left(y_{1}, \ldots, y_{k}\right)=L\left(x_{1}, \ldots, x_{k}\right)$.
- The sequence y_{1}, \ldots satisfying the above properties is unique upto scaling factors.

Proof

- The proof of properties $(a),(b)$ is by constructing the y_{i} inductively/recursively.
- The proof of properties $(a),(b)$ is by constructing the y_{i} inductively/recursively.
- Taking cue from the \mathbb{R}^{2} example, let $y_{1}=x_{1}$. (
- The proof of properties $(a),(b)$ is by constructing the y_{i} inductively/recursively.
- Taking cue from the \mathbb{R}^{2} example, let $y_{1}=x_{1}$. (Caveat: x_{1} and hence y_{1} is allowed to be 0 .)
- The proof of properties $(a),(b)$ is by constructing the y_{i} inductively/recursively.
- Taking cue from the \mathbb{R}^{2} example, let $y_{1}=x_{1}$. (Caveat: x_{1} and hence y_{1} is allowed to be 0 .)
- Deefine y_{2} as $x_{2}-a x_{1}$ for some, as of now, undetermined $a \in \mathbb{F}$.
- The proof of properties $(a),(b)$ is by constructing the y_{i} inductively/recursively.
- Taking cue from the \mathbb{R}^{2} example, let $y_{1}=x_{1}$. (Caveat: x_{1} and hence y_{1} is allowed to be 0 .)
- Deefine y_{2} as $x_{2}-a x_{1}$ for some, as of now, undetermined $a \in \mathbb{F}$. Note that $y_{2}+a y_{1}=x_{2}$ and hence $L\left(x_{1}, x_{2}\right)=L\left(y_{1}, y_{2}\right)$ (Why ?)
- The proof of properties $(a),(b)$ is by constructing the y_{i} inductively/recursively.
- Taking cue from the \mathbb{R}^{2} example, let $y_{1}=x_{1}$. (Caveat: x_{1} and hence y_{1} is allowed to be 0 .)
- Deefine y_{2} as $x_{2}-a x_{1}$ for some, as of now, undetermined $a \in \mathbb{F}$. Note that $y_{2}+a y_{1}=x_{2}$ and hence $L\left(x_{1}, x_{2}\right)=L\left(y_{1}, y_{2}\right)$ (Why ?)
- We want y_{2} to be orthogonal to

$$
L\left(y_{1}\right)=L\left(x_{1}\right)=\left\{c x_{1} \mid c \in \mathbb{F}\right\} .
$$

- The proof of properties $(a),(b)$ is by constructing the y_{i} inductively/recursively.
- Taking cue from the \mathbb{R}^{2} example, let $y_{1}=x_{1}$. (Caveat: x_{1} and hence y_{1} is allowed to be 0 .)
- Deefine y_{2} as $x_{2}-a x_{1}$ for some, as of now, undetermined $a \in \mathbb{F}$. Note that $y_{2}+a y_{1}=x_{2}$ and hence $L\left(x_{1}, x_{2}\right)=L\left(y_{1}, y_{2}\right)$ (Why ?)
- We want y_{2} to be orthogonal to

$$
\begin{aligned}
& L\left(y_{1}\right)=L\left(x_{1}\right)=\left\{c x_{1} \mid c \in \mathbb{F}\right\} . \text { Thus } \\
& 0=\left\langle y_{2}, c y_{1}\right\rangle=c\left\langle y_{2}, y_{1}\right\rangle .
\end{aligned}
$$

- The proof of properties $(a),(b)$ is by constructing the y_{i} inductively/recursively.
- Taking cue from the \mathbb{R}^{2} example, let $y_{1}=x_{1}$. (Caveat: x_{1} and hence y_{1} is allowed to be 0 .)
- Deefine y_{2} as $x_{2}-a x_{1}$ for some, as of now, undetermined $a \in \mathbb{F}$. Note that $y_{2}+a y_{1}=x_{2}$ and hence $L\left(x_{1}, x_{2}\right)=L\left(y_{1}, y_{2}\right)$ (Why ?)
- We want y_{2} to be orthogonal to

$$
\begin{aligned}
& L\left(y_{1}\right)=L\left(x_{1}\right)=\left\{c x_{1} \mid c \in \mathbb{F}\right\} . \text { Thus } \\
& 0=\left\langle y_{2}, c y_{1}\right\rangle=c\left\langle y_{2}, y_{1}\right\rangle . \text { This happens if and only if } \\
& 0=\left\langle y_{2}, x_{1}\right\rangle=\left\langle x_{2}, x_{1}\right\rangle-a\left\langle x_{1}, x_{1}\right\rangle .
\end{aligned}
$$

- The proof of properties $(a),(b)$ is by constructing the y_{i} inductively/recursively.
- Taking cue from the \mathbb{R}^{2} example, let $y_{1}=x_{1}$. (Caveat: x_{1} and hence y_{1} is allowed to be 0 .)
- Deefine y_{2} as $x_{2}-a x_{1}$ for some, as of now, undetermined $a \in \mathbb{F}$. Note that $y_{2}+a y_{1}=x_{2}$ and hence $L\left(x_{1}, x_{2}\right)=L\left(y_{1}, y_{2}\right)$ (Why ?)
- We want y_{2} to be orthogonal to

$$
\begin{aligned}
& L\left(y_{1}\right)=L\left(x_{1}\right)=\left\{c x_{1} \mid c \in \mathbb{F}\right\} . \text { Thus } \\
& 0=\left\langle y_{2}, c y_{1}\right\rangle=c\left\langle y_{2}, y_{1}\right\rangle . \text { This happens if and only if } \\
& 0=\left\langle y_{2}, x_{1}\right\rangle=\left\langle x_{2}, x_{1}\right\rangle-a\left\langle x_{1}, x_{1}\right\rangle \text {. If } x_{1}=0 \text {, define } y_{2}=x_{2} .
\end{aligned}
$$

- The proof of properties $(a),(b)$ is by constructing the y_{i} inductively/recursively.
- Taking cue from the \mathbb{R}^{2} example, let $y_{1}=x_{1}$. (Caveat: x_{1} and hence y_{1} is allowed to be 0 .)
- Deefine y_{2} as $x_{2}-a x_{1}$ for some, as of now, undetermined $a \in \mathbb{F}$. Note that $y_{2}+a y_{1}=x_{2}$ and hence $L\left(x_{1}, x_{2}\right)=L\left(y_{1}, y_{2}\right)$ (Why ?)
- We want y_{2} to be orthogonal to $L\left(y_{1}\right)=L\left(x_{1}\right)=\left\{c x_{1} \mid c \in \mathbb{F}\right\}$. Thus $0=\left\langle y_{2}, c y_{1}\right\rangle=c\left\langle y_{2}, y_{1}\right\rangle$. This happens if and only if $0=\left\langle y_{2}, x_{1}\right\rangle=\left\langle x_{2}, x_{1}\right\rangle-a\left\langle x_{1}, x_{1}\right\rangle$. If $x_{1}=0$, define $y_{2}=x_{2}$. Otherwise, $a=\frac{\left\langle x_{2}, x_{1}\right\rangle}{\left\langle x_{1}, x_{1}\right\rangle}$.
- The proof of properties $(a),(b)$ is by constructing the y_{i} inductively/recursively.
- Taking cue from the \mathbb{R}^{2} example, let $y_{1}=x_{1}$. (Caveat: x_{1} and hence y_{1} is allowed to be 0 .)
- Deefine y_{2} as $x_{2}-a x_{1}$ for some, as of now, undetermined $a \in \mathbb{F}$. Note that $y_{2}+a y_{1}=x_{2}$ and hence $L\left(x_{1}, x_{2}\right)=L\left(y_{1}, y_{2}\right)$ (Why ?)
- We want y_{2} to be orthogonal to $L\left(y_{1}\right)=L\left(x_{1}\right)=\left\{c x_{1} \mid c \in \mathbb{F}\right\}$. Thus $0=\left\langle y_{2}, c y_{1}\right\rangle=c\left\langle y_{2}, y_{1}\right\rangle$. This happens if and only if $0=\left\langle y_{2}, x_{1}\right\rangle=\left\langle x_{2}, x_{1}\right\rangle-a\left\langle x_{1}, x_{1}\right\rangle$. If $x_{1}=0$, define $y_{2}=x_{2}$. Otherwise, $a=\frac{\left\langle x_{2}, x_{1}\right\rangle}{\left\langle x_{1}, x_{1}\right\rangle}$.
- For y_{3},
- The proof of properties $(a),(b)$ is by constructing the y_{i} inductively/recursively.
- Taking cue from the \mathbb{R}^{2} example, let $y_{1}=x_{1}$. (Caveat: x_{1} and hence y_{1} is allowed to be 0 .)
- Deefine y_{2} as $x_{2}-a x_{1}$ for some, as of now, undetermined $a \in \mathbb{F}$. Note that $y_{2}+a y_{1}=x_{2}$ and hence $L\left(x_{1}, x_{2}\right)=L\left(y_{1}, y_{2}\right)$ (Why ?)
- We want y_{2} to be orthogonal to $L\left(y_{1}\right)=L\left(x_{1}\right)=\left\{c x_{1} \mid c \in \mathbb{F}\right\}$. Thus $0=\left\langle y_{2}, c y_{1}\right\rangle=c\left\langle y_{2}, y_{1}\right\rangle$. This happens if and only if $0=\left\langle y_{2}, x_{1}\right\rangle=\left\langle x_{2}, x_{1}\right\rangle-a\left\langle x_{1}, x_{1}\right\rangle$. If $x_{1}=0$, define $y_{2}=x_{2}$. Otherwise, $a=\frac{\left\langle x_{2}, x_{1}\right\rangle}{\left\langle x_{1}, x_{1}\right\rangle}$.
- For y_{3}, as before, we define $y_{3}=x_{3}-a_{1} y_{1}-a_{2} y_{2}$.
- The proof of properties $(a),(b)$ is by constructing the y_{i} inductively/recursively.
- Taking cue from the \mathbb{R}^{2} example, let $y_{1}=x_{1}$. (Caveat: x_{1} and hence y_{1} is allowed to be 0 .)
- Deefine y_{2} as $x_{2}-a x_{1}$ for some, as of now, undetermined $a \in \mathbb{F}$. Note that $y_{2}+a y_{1}=x_{2}$ and hence $L\left(x_{1}, x_{2}\right)=L\left(y_{1}, y_{2}\right)$ (Why ?)
- We want y_{2} to be orthogonal to $L\left(y_{1}\right)=L\left(x_{1}\right)=\left\{c x_{1} \mid c \in \mathbb{F}\right\}$. Thus $0=\left\langle y_{2}, c y_{1}\right\rangle=c\left\langle y_{2}, y_{1}\right\rangle$. This happens if and only if $0=\left\langle y_{2}, x_{1}\right\rangle=\left\langle x_{2}, x_{1}\right\rangle-a\left\langle x_{1}, x_{1}\right\rangle$. If $x_{1}=0$, define $y_{2}=x_{2}$. Otherwise, $a=\frac{\left\langle x_{2}, x_{1}\right\rangle}{\left\langle x_{1}, x_{1}\right\rangle}$.
- For y_{3}, as before, we define $y_{3}=x_{3}-a_{1} y_{1}-a_{2} y_{2}$. Then $0=\left\langle y_{3}, y_{1}\right\rangle=\left\langle x_{3}, y_{1}\right\rangle-a_{1}\left\langle y_{1}, y_{1}\right\rangle$. Likewise,
- The proof of properties $(a),(b)$ is by constructing the y_{i} inductively/recursively.
- Taking cue from the \mathbb{R}^{2} example, let $y_{1}=x_{1}$. (Caveat: x_{1} and hence y_{1} is allowed to be 0 .)
- Deefine y_{2} as $x_{2}-a x_{1}$ for some, as of now, undetermined $a \in \mathbb{F}$. Note that $y_{2}+a y_{1}=x_{2}$ and hence $L\left(x_{1}, x_{2}\right)=L\left(y_{1}, y_{2}\right)$ (Why ?)
- We want y_{2} to be orthogonal to $L\left(y_{1}\right)=L\left(x_{1}\right)=\left\{c x_{1} \mid c \in \mathbb{F}\right\}$. Thus $0=\left\langle y_{2}, c y_{1}\right\rangle=c\left\langle y_{2}, y_{1}\right\rangle$. This happens if and only if $0=\left\langle y_{2}, x_{1}\right\rangle=\left\langle x_{2}, x_{1}\right\rangle-a\left\langle x_{1}, x_{1}\right\rangle$. If $x_{1}=0$, define $y_{2}=x_{2}$. Otherwise, $a=\frac{\left\langle x_{2}, x_{1}\right\rangle}{\left\langle x_{1}, x_{1}\right\rangle}$.
- For y_{3}, as before, we define $y_{3}=x_{3}-a_{1} y_{1}-a_{2} y_{2}$. Then $0=\left\langle y_{3}, y_{1}\right\rangle=\left\langle x_{3}, y_{1}\right\rangle-a_{1}\left\langle y_{1}, y_{1}\right\rangle$. Likewise, $0=\left\langle y_{3}, y_{2}\right\rangle=\left\langle x_{3}, y_{2}\right\rangle-a_{2}\left\langle y_{2}, y_{2}\right\rangle$.
- The proof of properties $(a),(b)$ is by constructing the y_{i} inductively/recursively.
- Taking cue from the \mathbb{R}^{2} example, let $y_{1}=x_{1}$. (Caveat: x_{1} and hence y_{1} is allowed to be 0 .)
- Deefine y_{2} as $x_{2}-a x_{1}$ for some, as of now, undetermined $a \in \mathbb{F}$. Note that $y_{2}+a y_{1}=x_{2}$ and hence $L\left(x_{1}, x_{2}\right)=L\left(y_{1}, y_{2}\right)$ (Why ?)
- We want y_{2} to be orthogonal to $L\left(y_{1}\right)=L\left(x_{1}\right)=\left\{c x_{1} \mid c \in \mathbb{F}\right\}$. Thus $0=\left\langle y_{2}, c y_{1}\right\rangle=c\left\langle y_{2}, y_{1}\right\rangle$. This happens if and only if $0=\left\langle y_{2}, x_{1}\right\rangle=\left\langle x_{2}, x_{1}\right\rangle-a\left\langle x_{1}, x_{1}\right\rangle$. If $x_{1}=0$, define $y_{2}=x_{2}$. Otherwise, $a=\frac{\left\langle x_{2}, x_{1}\right\rangle}{\left\langle x_{1}, x_{1}\right\rangle}$.
- For y_{3}, as before, we define $y_{3}=x_{3}-a_{1} y_{1}-a_{2} y_{2}$. Then $0=\left\langle y_{3}, y_{1}\right\rangle=\left\langle x_{3}, y_{1}\right\rangle-a_{1}\left\langle y_{1}, y_{1}\right\rangle$. Likewise, $0=\left\langle y_{3}, y_{2}\right\rangle=\left\langle x_{3}, y_{2}\right\rangle-a_{2}\left\langle y_{2}, y_{2}\right\rangle$. If $y_{i}=0$, define $a_{i}=0$.
- The proof of properties $(a),(b)$ is by constructing the y_{i} inductively/recursively.
- Taking cue from the \mathbb{R}^{2} example, let $y_{1}=x_{1}$. (Caveat: x_{1} and hence y_{1} is allowed to be 0 .)
- Deefine y_{2} as $x_{2}-a x_{1}$ for some, as of now, undetermined $a \in \mathbb{F}$. Note that $y_{2}+a y_{1}=x_{2}$ and hence $L\left(x_{1}, x_{2}\right)=L\left(y_{1}, y_{2}\right)$ (Why ?)
- We want y_{2} to be orthogonal to $L\left(y_{1}\right)=L\left(x_{1}\right)=\left\{c x_{1} \mid c \in \mathbb{F}\right\}$. Thus $0=\left\langle y_{2}, c y_{1}\right\rangle=c\left\langle y_{2}, y_{1}\right\rangle$. This happens if and only if $0=\left\langle y_{2}, x_{1}\right\rangle=\left\langle x_{2}, x_{1}\right\rangle-a\left\langle x_{1}, x_{1}\right\rangle$. If $x_{1}=0$, define $y_{2}=x_{2}$. Otherwise, $a=\frac{\left\langle x_{2}, x_{1}\right\rangle}{\left\langle x_{1}, x_{1}\right\rangle}$.
- For y_{3}, as before, we define $y_{3}=x_{3}-a_{1} y_{1}-a_{2} y_{2}$. Then $0=\left\langle y_{3}, y_{1}\right\rangle=\left\langle x_{3}, y_{1}\right\rangle-a_{1}\left\langle y_{1}, y_{1}\right\rangle$. Likewise, $0=\left\langle y_{3}, y_{2}\right\rangle=\left\langle x_{3}, y_{2}\right\rangle-a_{2}\left\langle y_{2}, y_{2}\right\rangle$. If $y_{i}=0$, define $a_{i}=0$. If not, $a_{i}=\frac{\left\langle x_{3}, y_{i}\right\rangle}{\left\langle y_{i}, y_{i}\right\rangle}$.

Proof of $(a),(b)$

Proof of $(a),(b)$

- We see a pattern.

Proof of $(a),(b)$

- We see a pattern. Assume that y_{1}, \ldots, y_{k} have been defined satisfying the first two properties.

Proof of $(a),(b)$

- We see a pattern. Assume that y_{1}, \ldots, y_{k} have been defined satisfying the first two properties. Define

$$
y_{k+1}=x_{k+1}-\sum_{i} a_{i} y_{i}
$$

Proof of $(a),(b)$

- We see a pattern. Assume that y_{1}, \ldots, y_{k} have been defined satisfying the first two properties. Define $y_{k+1}=x_{k+1}-\sum_{i} a_{i} y_{i}$ where $a_{i}=0$ if $y_{i}=0$

Proof of $(a),(b)$

- We see a pattern. Assume that y_{1}, \ldots, y_{k} have been defined satisfying the first two properties. Define $y_{k+1}=x_{k+1}-\sum_{i} a_{i} y_{i}$ where $a_{i}=0$ if $y_{i}=0$ and $a_{i}=\frac{\left\langle x_{k+1}, y_{i}\right\rangle}{\left\langle y_{i}, y_{i}\right\rangle}$.
- We see a pattern. Assume that y_{1}, \ldots, y_{k} have been defined satisfying the first two properties. Define $y_{k+1}=x_{k+1}-\sum_{i} a_{i} y_{i}$ where $a_{i}=0$ if $y_{i}=0$ and $a_{i}=\frac{\left\langle x_{k+1}, y_{i}\right\rangle}{\left\langle y_{i}, y_{i}\right\rangle}$.
- Therefore, y_{k+1} is orthogonal to each of the y_{i} and hence to $L\left(y_{1}, y_{2}, \ldots, y_{k}\right)$.
- We see a pattern. Assume that y_{1}, \ldots, y_{k} have been defined satisfying the first two properties. Define $y_{k+1}=x_{k+1}-\sum_{i} a_{i} y_{i}$ where $a_{i}=0$ if $y_{i}=0$ and $a_{i}=\frac{\left\langle x_{k+1}, y_{i}\right\rangle}{\left\langle y_{i}, y_{i}\right\rangle}$.
- Therefore, y_{k+1} is orthogonal to each of the y_{i} and hence to $L\left(y_{1}, y_{2}, \ldots, y_{k}\right)$. Therefore, the first property is met by y_{k+1}.
- We see a pattern. Assume that y_{1}, \ldots, y_{k} have been defined satisfying the first two properties. Define $y_{k+1}=x_{k+1}-\sum_{i} a_{i} y_{i}$ where $a_{i}=0$ if $y_{i}=0$ and $a_{i}=\frac{\left\langle x_{k+1}, y_{i}\right\rangle}{\left\langle y_{i}, y_{i}\right\rangle}$.
- Therefore, y_{k+1} is orthogonal to each of the y_{i} and hence to $L\left(y_{1}, y_{2}, \ldots, y_{k}\right)$. Therefore, the first property is met by y_{k+1}.
- Since y_{k+1} is a linear combination of $x_{1}, x_{2}, \ldots, x_{k+1}$ (by the induction hypothesis),
- We see a pattern. Assume that y_{1}, \ldots, y_{k} have been defined satisfying the first two properties. Define $y_{k+1}=x_{k+1}-\sum_{i} a_{i} y_{i}$ where $a_{i}=0$ if $y_{i}=0$ and $a_{i}=\frac{\left\langle x_{k+1}, y_{i}\right\rangle}{\left\langle y_{i}, y_{i}\right\rangle}$.
- Therefore, y_{k+1} is orthogonal to each of the y_{i} and hence to $L\left(y_{1}, y_{2}, \ldots, y_{k}\right)$. Therefore, the first property is met by y_{k+1}.
- Since y_{k+1} is a linear combination of $x_{1}, x_{2}, \ldots, x_{k+1}$ (by the induction hypothesis), $L\left(y_{1}, \ldots, y_{k+1}\right) \subseteq L\left(x_{1}, \ldots, x_{k+1}\right)$ (by your first HW exercise).
- We see a pattern. Assume that y_{1}, \ldots, y_{k} have been defined satisfying the first two properties. Define $y_{k+1}=x_{k+1}-\sum_{i} a_{i} y_{i}$ where $a_{i}=0$ if $y_{i}=0$ and $a_{i}=\frac{\left\langle x_{k+1}, y_{i}\right\rangle}{\left\langle y_{i}, y_{i}\right\rangle}$.
- Therefore, y_{k+1} is orthogonal to each of the y_{i} and hence to $L\left(y_{1}, y_{2}, \ldots, y_{k}\right)$. Therefore, the first property is met by y_{k+1}.
- Since y_{k+1} is a linear combination of $x_{1}, x_{2}, \ldots, x_{k+1}$ (by the induction hypothesis), $L\left(y_{1}, \ldots, y_{k+1}\right) \subseteq L\left(x_{1}, \ldots, x_{k+1}\right)$ (by your first HW exercise). Now $x_{k+1}=y_{k+1}+\sum_{i} a_{i} y_{i}$ and hence $x_{k+1} \in L\left(y_{1}, \ldots, y_{k+1}\right)$.
- We see a pattern. Assume that y_{1}, \ldots, y_{k} have been defined satisfying the first two properties. Define
$y_{k+1}=x_{k+1}-\sum_{i} a_{i} y_{i}$ where $a_{i}=0$ if $y_{i}=0$ and $a_{i}=\frac{\left\langle x_{k+1}, y_{i}\right\rangle}{\left\langle y_{i}, y_{i}\right\rangle}$.
- Therefore, y_{k+1} is orthogonal to each of the y_{i} and hence to $L\left(y_{1}, y_{2}, \ldots, y_{k}\right)$. Therefore, the first property is met by y_{k+1}.
- Since y_{k+1} is a linear combination of $x_{1}, x_{2}, \ldots, x_{k+1}$ (by the induction hypothesis), $L\left(y_{1}, \ldots, y_{k+1}\right) \subseteq L\left(x_{1}, \ldots, x_{k+1}\right)$ (by your first HW exercise). Now $x_{k+1}=y_{k+1}+\sum_{i} a_{i} y_{i}$ and hence $x_{k+1} \in L\left(y_{1}, \ldots, y_{k+1}\right)$. Thus $L\left(x_{1}, \ldots, x_{k+1}\right) \subseteq L\left(y_{1}, \ldots, y_{k+1}\right)$ (we are using the induction hypothesis again).
- We see a pattern. Assume that y_{1}, \ldots, y_{k} have been defined satisfying the first two properties. Define
$y_{k+1}=x_{k+1}-\sum_{i} a_{i} y_{i}$ where $a_{i}=0$ if $y_{i}=0$ and $a_{i}=\frac{\left\langle x_{k+1}, y_{i}\right\rangle}{\left\langle y_{i}, y_{i}\right\rangle}$.
- Therefore, y_{k+1} is orthogonal to each of the y_{i} and hence to $L\left(y_{1}, y_{2}, \ldots, y_{k}\right)$. Therefore, the first property is met by y_{k+1}.
- Since y_{k+1} is a linear combination of $x_{1}, x_{2}, \ldots, x_{k+1}$ (by the induction hypothesis), $L\left(y_{1}, \ldots, y_{k+1}\right) \subseteq L\left(x_{1}, \ldots, x_{k+1}\right)$ (by your first HW exercise). Now $x_{k+1}=y_{k+1}+\sum_{i} a_{i} y_{i}$ and hence $x_{k+1} \in L\left(y_{1}, \ldots, y_{k+1}\right)$. Thus $L\left(x_{1}, \ldots, x_{k+1}\right) \subseteq L\left(y_{1}, \ldots, y_{k+1}\right)$ (we are using the induction hypothesis again). Thus y_{k+1} satisfies the second property and hence we are done by induction.

Proof of (c)

Proof of (c)

- Now we prove property (c) by induction again.

Proof of (c)

- Now we prove property (c) by induction again. The case $k=1$ is easy because $L\left(y_{1}^{\prime}\right)=L\left(x_{1}\right)$ implies that $y_{1}^{\prime}=c x_{1}=c y_{1}$.

Proof of (c)

- Now we prove property (c) by induction again. The case $k=1$ is easy because $L\left(y_{1}^{\prime}\right)=L\left(x_{1}\right)$ implies that $y_{1}^{\prime}=c x_{1}=c y_{1}$. Assume truth for k, i.e., $y_{i}^{\prime}=c_{i} y_{i}$. We shall prove for $k+1$.
- Now we prove property (c) by induction again. The case $k=1$ is easy because $L\left(y_{1}^{\prime}\right)=L\left(x_{1}\right)$ implies that $y_{1}^{\prime}=c x_{1}=c y_{1}$. Assume truth for k, i.e., $y_{i}^{\prime}=c_{i} y_{i}$. We shall prove for $k+1$. Suppose we have an element y_{k+1}^{\prime} satisfying both properties, i.e.,
- Now we prove property (c) by induction again. The case $k=1$ is easy because $L\left(y_{1}^{\prime}\right)=L\left(x_{1}\right)$ implies that $y_{1}^{\prime}=c x_{1}=c y_{1}$. Assume truth for k, i.e., $y_{i}^{\prime}=c_{i} y_{i}$. We shall prove for $k+1$. Suppose we have an element y_{k+1}^{\prime} satisfying both properties, i.e., y_{k+1}^{\prime} is orthogonal to $L\left(y_{1}, \ldots, y_{k}\right)=L\left(y_{1}^{\prime}, y_{2}^{\prime}, \ldots\right)$ and
- Now we prove property (c) by induction again. The case $k=1$ is easy because $L\left(y_{1}^{\prime}\right)=L\left(x_{1}\right)$ implies that $y_{1}^{\prime}=c x_{1}=c y_{1}$. Assume truth for k, i.e., $y_{i}^{\prime}=c_{i} y_{i}$. We shall prove for $k+1$. Suppose we have an element y_{k+1}^{\prime} satisfying both properties, i.e., y_{k+1}^{\prime} is orthogonal to $L\left(y_{1}, \ldots, y_{k}\right)=L\left(y_{1}^{\prime}, y_{2}^{\prime}, \ldots\right)$ and $L\left(y_{1}^{\prime}, y_{2}^{\prime}, \ldots, y_{k+1}^{\prime}\right)=L\left(y_{1}, y_{2}, \ldots, y_{k+1}\right)=$ $L\left(x_{1}, x_{2}, \ldots, x_{k+1}\right)$.
- Now we prove property (c) by induction again. The case $k=1$ is easy because $L\left(y_{1}^{\prime}\right)=L\left(x_{1}\right)$ implies that $y_{1}^{\prime}=c x_{1}=c y_{1}$. Assume truth for k, i.e., $y_{i}^{\prime}=c_{i} y_{i}$. We shall prove for $k+1$. Suppose we have an element y_{k+1}^{\prime} satisfying both properties, i.e., y_{k+1}^{\prime} is orthogonal to $L\left(y_{1}, \ldots, y_{k}\right)=L\left(y_{1}^{\prime}, y_{2}^{\prime}, \ldots\right)$ and $L\left(y_{1}^{\prime}, y_{2}^{\prime}, \ldots, y_{k+1}^{\prime}\right)=L\left(y_{1}, y_{2}, \ldots, y_{k+1}\right)=$ $L\left(x_{1}, x_{2}, \ldots, x_{k+1}\right)$.
- By the second property, $y_{k+1}^{\prime}=\sum_{i=1}^{k+1} a_{i} y_{i}=z+a_{k+1} y_{k+1}$ where $z \in L\left(y_{1}^{\prime}, y_{2}^{\prime}, \ldots, y_{k}^{\prime}\right)=L\left(y_{1}, \ldots, y_{k}\right)=L\left(x_{1}, \ldots, x_{k}\right)$.
- Now we prove property (c) by induction again. The case $k=1$ is easy because $L\left(y_{1}^{\prime}\right)=L\left(x_{1}\right)$ implies that $y_{1}^{\prime}=c x_{1}=c y_{1}$. Assume truth for k, i.e., $y_{i}^{\prime}=c_{i} y_{i}$. We shall prove for $k+1$. Suppose we have an element y_{k+1}^{\prime} satisfying both properties, i.e., y_{k+1}^{\prime} is orthogonal to $L\left(y_{1}, \ldots, y_{k}\right)=L\left(y_{1}^{\prime}, y_{2}^{\prime}, \ldots\right)$ and $L\left(y_{1}^{\prime}, y_{2}^{\prime}, \ldots, y_{k+1}^{\prime}\right)=L\left(y_{1}, y_{2}, \ldots, y_{k+1}\right)=$ $L\left(x_{1}, x_{2}, \ldots, x_{k+1}\right)$.
- By the second property, $y_{k+1}^{\prime}=\sum_{i=1}^{k+1} a_{i} y_{i}=z+a_{k+1} y_{k+1}$ where $z \in L\left(y_{1}^{\prime}, y_{2}^{\prime}, \ldots, y_{k}^{\prime}\right)=L\left(y_{1}, \ldots, y_{k}\right)=L\left(x_{1}, \ldots, x_{k}\right)$.
- By the first property, $0=\left\langle y_{k+1}^{\prime}, z\right\rangle=\langle z, z\rangle+0$.
- Now we prove property (c) by induction again. The case $k=1$ is easy because $L\left(y_{1}^{\prime}\right)=L\left(x_{1}\right)$ implies that $y_{1}^{\prime}=c x_{1}=c y_{1}$. Assume truth for k, i.e., $y_{i}^{\prime}=c_{i} y_{i}$. We shall prove for $k+1$. Suppose we have an element y_{k+1}^{\prime} satisfying both properties, i.e., y_{k+1}^{\prime} is orthogonal to $L\left(y_{1}, \ldots, y_{k}\right)=L\left(y_{1}^{\prime}, y_{2}^{\prime}, \ldots\right)$ and $L\left(y_{1}^{\prime}, y_{2}^{\prime}, \ldots, y_{k+1}^{\prime}\right)=L\left(y_{1}, y_{2}, \ldots, y_{k+1}\right)=$ $L\left(x_{1}, x_{2}, \ldots, x_{k+1}\right)$.
- By the second property, $y_{k+1}^{\prime}=\sum_{i=1}^{k+1} a_{i} y_{i}=z+a_{k+1} y_{k+1}$ where $z \in L\left(y_{1}^{\prime}, y_{2}^{\prime}, \ldots, y_{k}^{\prime}\right)=L\left(y_{1}, \ldots, y_{k}\right)=L\left(x_{1}, \ldots, x_{k}\right)$.
- By the first property, $0=\left\langle y_{k+1}^{\prime}, z\right\rangle=\langle z, z\rangle+0$. Hence $z=0$. We are done.

More on Gram-Schmidt

More on Gram-Schmidt

- Suppose in the above procedure, $y_{i+1}=0$ for some i.

More on Gram-Schmidt

- Suppose in the above procedure, $y_{i+1}=0$ for some i. Then $x_{i+1} \in L\left(x_{1}, \ldots, x_{i}\right)$ and therefore x_{1}, \ldots, x_{i+1} are linearly dependent.

More on Gram-Schmidt

- Suppose in the above procedure, $y_{i+1}=0$ for some i. Then $x_{i+1} \in L\left(x_{1}, \ldots, x_{i}\right)$ and therefore x_{1}, \ldots, x_{i+1} are linearly dependent.
- As a consequence, if x_{1}, \ldots, x_{n} are linearly independent, then none of the y_{i} are 0 and

More on Gram-Schmidt

- Suppose in the above procedure, $y_{i+1}=0$ for some i. Then $x_{i+1} \in L\left(x_{1}, \ldots, x_{i}\right)$ and therefore x_{1}, \ldots, x_{i+1} are linearly dependent.
- As a consequence, if x_{1}, \ldots, x_{n} are linearly independent, then none of the y_{i} are 0 and since they are mutually orthogonal, they are linearly independent too.

More on Gram-Schmidt

- Suppose in the above procedure, $y_{i+1}=0$ for some i. Then $x_{i+1} \in L\left(x_{1}, \ldots, x_{i}\right)$ and therefore x_{1}, \ldots, x_{i+1} are linearly dependent.
- As a consequence, if x_{1}, \ldots, x_{n} are linearly independent, then none of the y_{i} are 0 and since they are mutually orthogonal, they are linearly independent too.
- Thus, every finite-dimensional inner product space has an orthogonal basis.

More on Gram-Schmidt

- Suppose in the above procedure, $y_{i+1}=0$ for some i. Then $x_{i+1} \in L\left(x_{1}, \ldots, x_{i}\right)$ and therefore x_{1}, \ldots, x_{i+1} are linearly dependent.
- As a consequence, if x_{1}, \ldots, x_{n} are linearly independent, then none of the y_{i} are 0 and since they are mutually orthogonal, they are linearly independent too.
- Thus, every finite-dimensional inner product space has an orthogonal basis.
- By dividing each element by its norm, we can convert an orthogonal basis to an orthonormal basis.

An example

An example

- On the real vector space of say, continuous real-valued functions on $[-1,1]$, define the inner product $\langle f, g\rangle=\int_{-1}^{1} f(t) g(t) d t$.

An example

- On the real vector space of say, continuous real-valued functions on $[-1,1]$, define the inner product $\langle f, g\rangle=\int_{-1}^{1} f(t) g(t) d t$.
- Consider the linearly independent set $\left\{x_{t}=t^{n}\right\}$.

An example

- On the real vector space of say, continuous real-valued functions on $[-1,1]$, define the inner product $\langle f, g\rangle=\int_{-1}^{1} f(t) g(t) d t$.
- Consider the linearly independent set $\left\{x_{t}=t^{n}\right\}$. As we saw earlier, this set is not orthogonal.

An example

- On the real vector space of say, continuous real-valued functions on $[-1,1]$, define the inner product $\langle f, g\rangle=\int_{-1}^{1} f(t) g(t) d t$.
- Consider the linearly independent set $\left\{x_{t}=t^{n}\right\}$. As we saw earlier, this set is not orthogonal.
- Let's apply the GS procedure to this set to get an orthogonal set $y_{0}, y_{1} \ldots$.

An example

- On the real vector space of say, continuous real-valued functions on $[-1,1]$, define the inner product

$$
\langle f, g\rangle=\int_{-1}^{1} f(t) g(t) d t
$$

- Consider the linearly independent set $\left\{x_{t}=t^{n}\right\}$. As we saw earlier, this set is not orthogonal.
- Let's apply the GS procedure to this set to get an orthogonal set $y_{0}, y_{1} \ldots$. The resulting polynomials (upto scaling factors) were obtained by earlier by Legendre in the context of differential equations.

An example

- On the real vector space of say, continuous real-valued functions on $[-1,1]$, define the inner product $\langle f, g\rangle=\int_{-1}^{1} f(t) g(t) d t$.
- Consider the linearly independent set $\left\{x_{t}=t^{n}\right\}$. As we saw earlier, this set is not orthogonal.
- Let's apply the GS procedure to this set to get an orthogonal set $y_{0}, y_{1} \ldots$. The resulting polynomials (upto scaling factors) were obtained by earlier by Legendre in the context of differential equations. The (scaled versions) of these polynomials are called Legendre polynomials.

An example

An example

- The polynomials $\phi_{n}=\frac{y_{n}}{\left\|y_{n}\right\|}$ are orthonormal and called the normalised Legendre polynomials.

An example

- The polynomials $\phi_{n}=\frac{y_{n}}{\left\|y_{n}\right\|}$ are orthonormal and called the normalised Legendre polynomials.
- Here are a few : $y_{0}=x_{0}=1$.

An example

- The polynomials $\phi_{n}=\frac{y_{n}}{\left\|y_{n}\right\|}$ are orthonormal and called the normalised Legendre polynomials.
- Here are a few : $y_{0}=x_{0}=1 . y_{1}=x_{1}-\frac{\int_{-1}^{1} x_{1} x_{0}}{\int_{-1}^{1} x_{0}^{2}}=t$.

An example

- The polynomials $\phi_{n}=\frac{y_{n}}{\left\|y_{n}\right\|}$ are orthonormal and called the normalised Legendre polynomials.
- Here are a few : $y_{0}=x_{0}=1 . y_{1}=x_{1}-\frac{\int_{-1}^{1} x_{1} x_{0}}{\int_{-1}^{1} x_{0}^{2}}=t$.

$$
y_{2}=x_{2}-\frac{\int_{-1}^{1} x_{2} y_{1}}{\int_{-1}^{1} y_{1}^{2}}-\frac{\int_{-1}^{1} x_{2} y_{0}}{\int_{-1}^{1} y_{0}^{2}} \text { which equals } t^{2}-0-\frac{1}{3} .
$$

An example

- The polynomials $\phi_{n}=\frac{y_{n}}{\left\|y_{n}\right\|}$ are orthonormal and called the normalised Legendre polynomials.
- Here are a few : $y_{0}=x_{0}=1$. $y_{1}=x_{1}-\frac{\int_{-1}^{1} x_{1} x_{0}}{\int_{-1}^{1} x_{0}^{2}}=t$.

$$
y_{2}=x_{2}-\frac{\int_{-1}^{1} x_{2} y_{1}}{\int_{-1}^{1} y_{1}^{2}}-\frac{\int_{-1}^{1} x_{2} y_{0}}{\int_{-1}^{1} y_{0}^{2}} \text { which equals } t^{2}-0-\frac{1}{3} .
$$

- More generally, it turns out that $y_{n}=\frac{n!}{(2 n)!} \frac{d^{n}\left(t^{2}-1\right)^{n}}{d t^{n}}$.

An example

- The polynomials $\phi_{n}=\frac{y_{n}}{\left\|y_{n}\right\|}$ are orthonormal and called the normalised Legendre polynomials.
- Here are a few : $y_{0}=x_{0}=1 . y_{1}=x_{1}-\frac{\int_{-1}^{1} x_{1} x_{0}}{\int_{-1}^{1} x_{0}^{2}}=t$.

$$
y_{2}=x_{2}-\frac{\int_{-1}^{1} x_{2} y_{1}}{\int_{-1}^{1} y_{1}^{2}}-\frac{\int_{-1}^{1} x_{2} y_{0}}{\int_{-1}^{1} y_{0}^{2}} \text { which equals } t^{2}-0-\frac{1}{3} .
$$

- More generally, it turns out that $y_{n}=\frac{n!}{(2 n)!} \frac{d^{n}\left(t^{2}-1\right)^{n}}{d t^{n}}$. The Legendre polynomials are $P_{n}(t)=\frac{(2 n)!}{2^{n}(n!)^{2}} y_{n}(t)$.

