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Recap

Defined inner products over real and complex vector spaces.

Wrote the expression for an inner product (for a real vector
space) in terms of a basis using positive-definite matrices.

Stated and proved the Cauchy-Schwarz inequality.

Defined norms and proved their properties (including the
triangle inequality).
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Orthogonality

In R2, the basis î , ĵ is special because î .î = ĵ .ĵ = 1 and
î .ĵ = 0. Thus v .w = v1w1 + v2w2.

Motivated by this observation, we defined the notion of
Orthogonality: In an inner product space V , v ,w ∈ V are
said to be orthogonal to each other if 〈v ,w〉 = 0. A subset
S ⊆ V is said to be orthogonal if any pair of distinct elements
are orthogonal to each other. A subset S ⊆ V is said to be
orthonormal if it is orthogonal and each element has unit
norm.

An important result is: In an inner product space (V , 〈, 〉), an
orthogonal set of nonzero elements is linearly independent. In
particular, if V is f.d with dim(V ) = n, any orthogonal set of
nonzero elements of size n forms a basis.
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î .ĵ = 0. Thus v .w = v1w1 + v2w2.

Motivated by this observation, we defined the notion of
Orthogonality: In an inner product space V , v ,w ∈ V are
said to be orthogonal to each other if 〈v ,w〉 = 0. A subset
S ⊆ V is said to be orthogonal if any pair of distinct elements
are orthogonal to each other.

A subset S ⊆ V is said to be
orthonormal if it is orthogonal and each element has unit
norm.

An important result is: In an inner product space (V , 〈, 〉), an
orthogonal set of nonzero elements is linearly independent. In
particular, if V is f.d with dim(V ) = n, any orthogonal set of
nonzero elements of size n forms a basis.

Vamsi Pritham Pingali Lecture 4 3/12



Orthogonality
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Orthogonality

Proof: Suppose
∑

k ckvk = 0 where vk ∈ S . Then
〈
∑

k ckvk , vl〉 = 0 =
∑

k ck〈vk , vl〉. Thus, cl‖vl‖2 = 0 and
hence cl = 0 for all l .
Examples and non-examples:

The 0 vector is orthogonal to every vector. (As we shall see, it
is the only vector with such properties. If we do not require
positivity for all vectors in the inner product, then this property
is false. Such “non-positive inner products” are useful in
Relativity.)
The standard basis vectors in Rn,Cn with the usual inner
products are orthonormal bases.
The elements e ikx in the space of continuous complex-valued
functions on [0, 2π] are orthogonal under the integration inner
product. Alternatively, u0 = 1, u2n−1 = cos(nx), u2n = sin(nx)
are orthogonal but not orthonormal. Instead, u0√

2π
, un√

π
are

orthonormal.
The set {1, x , x2} is not orthogonal under the integration inner
product.
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Parseval’s formula in finite dimensions

Let V be a f.d. inner product space of dim n (over R or C as
usual). Suppose e1, . . . , en is an orthogonal basis. Then the

components of a vector x =
∑

k ckek are: cj =
〈x ,ej 〉
〈ej ,ej 〉 . In

particular, if ej are orthonormal, then cj = 〈x , ej〉.
Proof: 〈x , ej〉 =

∑
j ck〈ek , ej〉 = cj〈ej , ej〉.

In other words, on f.d. space with an orthonormal basis,
x =

∑
k〈x , ek〉ek .

Let V be a f.d. inner product space and e1, . . . , en is an
orthonormal basis. Then 〈x , y〉 =

∑
k〈x , ek〉〈y , ek〉. In

particular, ‖x‖2 =
∑n

i=1 |〈x , ei 〉|2. The proof is
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Gram-Schmidt algorithm/procedure/process

Suppose in R2, we were given (1, 1) and (1, 2) as a basis. If
we were asked to construct an orthonormal basis, what would
we have done ? Of course, we would have replaced (1, 2) with
the piece that is orthogonal to (1, 1). This idea leads to the
Gram-Schmidt procedure.

Let x1, . . . be a finite or infinite sequence of vectors in
(V , 〈, 〉). Let L(x1, . . . , xk) be the span of the first k elements.
Then there is another collection y1, . . . , in V such that

yk is orthogonal to every element in L(y1, . . . , yk−1).
L(y1, . . . , yk) = L(x1, . . . , xk).
The sequence y1, . . . satisfying the above properties is unique
upto scaling factors.
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Proof

The proof of properties (a), (b) is by constructing the yi
inductively/recursively.

Taking cue from the R2 example, let y1 = x1. (Caveat: x1
and hence y1 is allowed to be 0.)

Deefine y2 as x2 − ax1 for some, as of now, undetermined
a ∈ F. Note that y2 + ay1 = x2 and hence
L(x1, x2) = L(y1, y2) (Why ?)

We want y2 to be orthogonal to
L(y1) = L(x1) = {cx1 | c ∈ F}. Thus
0 = 〈y2, cy1〉 = c〈y2, y1〉. This happens if and only if
0 = 〈y2, x1〉 = 〈x2, x1〉 − a〈x1, x1〉. If x1 = 0, define y2 = x2.

Otherwise, a = 〈x2,x1〉
〈x1,x1〉 .

For y3, as before, we define y3 = x3 − a1y1 − a2y2. Then
0 = 〈y3, y1〉 = 〈x3, y1〉 − a1〈y1, y1〉. Likewise,
0 = 〈y3, y2〉 = 〈x3, y2〉 − a2〈y2, y2〉. If yi = 0, define ai = 0. If

not, ai = 〈x3,yi 〉
〈yi ,yi 〉 .
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We see a pattern. Assume that y1, . . . , yk have been defined
satisfying the first two properties. Define
yk+1 = xk+1 −

∑
i aiyi where ai = 0 if yi = 0 and

ai = 〈xk+1,yi 〉
〈yi ,yi 〉 .

Therefore, yk+1 is orthogonal to each of the yi and hence to
L(y1, y2, . . . , yk). Therefore, the first property is met by yk+1.

Since yk+1 is a linear combination of x1, x2, . . . , xk+1 (by the
induction hypothesis), L(y1, . . . , yk+1) ⊆ L(x1, . . . , xk+1) (by
your first HW exercise). Now xk+1 = yk+1 +

∑
i aiyi and

hence xk+1 ∈ L(y1, . . . , yk+1). Thus
L(x1, . . . , xk+1) ⊆ L(y1, . . . , yk+1) (we are using the induction
hypothesis again). Thus yk+1 satisfies the second property
and hence we are done by induction.
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Proof of (c)

Now we prove property (c) by induction again.The case k = 1
is easy because L(y ′1) = L(x1) implies that y ′1 = cx1 = cy1.
Assume truth for k, i.e., y ′i = ciyi . We shall prove for k + 1.
Suppose we have an element y ′k+1 satisfying both properties,
i.e., y ′k+1 is orthogonal to L(y1, . . . , yk) = L(y ′1, y

′
2, . . .) and

L(y ′1, y
′
2, . . . , y

′
k+1) = L(y1, y2, . . . , yk+1) =

L(x1, x2, . . . , xk+1).

By the second property, y ′k+1 =
k+1∑
i=1

aiyi = z + ak+1yk+1

where z ∈ L(y ′1, y
′
2, . . . , y

′
k) = L(y1, . . . , yk) = L(x1, . . . , xk).

By the first property, 0 = 〈y ′k+1, z〉 = 〈z , z〉+ 0. Hence z = 0.
We are done.
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More on Gram-Schmidt

Suppose in the above procedure, yi+1 = 0 for some i . Then
xi+1 ∈ L(x1, . . . , xi ) and therefore x1, . . . , xi+1 are linearly
dependent.

As a consequence, if x1, . . . , xn are linearly independent, then
none of the yi are 0 and since they are mutually orthogonal,
they are linearly independent too.

Thus, every finite-dimensional inner product space has an
orthogonal basis.

By dividing each element by its norm, we can convert an
orthogonal basis to an orthonormal basis.
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An example

On the real vector space of say, continuous real-valued
functions on [−1, 1], define the inner product

〈f , g〉 =
∫ 1
−1 f (t)g(t)dt.

Consider the linearly independent set {xt = tn}. As we saw
earlier, this set is not orthogonal.

Let’s apply the GS procedure to this set to get an orthogonal
set y0, y1 . . .. The resulting polynomials (upto scaling factors)
were obtained by earlier by Legendre in the context of
differential equations. The (scaled versions) of these
polynomials are called Legendre polynomials.
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An example

The polynomials φn = yn
‖yn‖ are orthonormal and called the

normalised Legendre polynomials.

Here are a few : y0 = x0 = 1. y1 = x1 −
∫ 1
−1 x1x0∫ 1
−1 x

2
0

= t.

y2 = x2 −
∫ 1
−1 x2y1∫ 1
−1 y

2
1

−
∫ 1
−1 x2y0∫ 1
−1 y

2
0

which equals t2 − 0− 1
3 .

More generally, it turns out that yn = n!
(2n)!

dn(t2−1)n
dtn . The

Legendre polynomials are Pn(t) = (2n)!
2n(n!)2

yn(t).
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