Lecture 5 - UM 102 (Spring 2021)

Vamsi Pritham Pingali

IISc

Recap

- Defined orthogonality and proved that non-zero orthogonal elements are linearly independent.
- Defined orthogonality and proved that non-zero orthogonal elements are linearly independent.
- Proved Parseval's formula.
- Defined orthogonality and proved that non-zero orthogonal elements are linearly independent.
- Proved Parseval's formula.
- Gram-Schmidt orthogonalisation procedure.

Orthogonal complement

Orthogonal complement

- Let $S \subseteq V$ be a subset of an inner product space.

Orthogonal complement

- Let $S \subseteq V$ be a subset of an inner product space. An element $v \in V$ is said to be orthogonal to S if

Orthogonal complement

- Let $S \subseteq V$ be a subset of an inner product space. An element $v \in V$ is said to be orthogonal to S if it is so to every element of S.

Orthogonal complement

- Let $S \subseteq V$ be a subset of an inner product space. An element $v \in V$ is said to be orthogonal to S if it is so to every element of S. The set of all v orthogonal to S is denoted as S^{\perp}.

Orthogonal complement

- Let $S \subseteq V$ be a subset of an inner product space. An element $v \in V$ is said to be orthogonal to S if it is so to every element of S. The set of all v orthogonal to S is denoted as S^{\perp}.
- S^{\perp} is always a subspace regardless of whether S is or not (HW).

Orthogonal complement

- Let $S \subseteq V$ be a subset of an inner product space. An element $v \in V$ is said to be orthogonal to S if it is so to every element of S. The set of all v orthogonal to S is denoted as S^{\perp}.
- S^{\perp} is always a subspace regardless of whether S is or not (HW). When S is a subspace, S^{\perp} is called the orthogonal complement of S.

Orthogonal complement

- Let $S \subseteq V$ be a subset of an inner product space. An element $v \in V$ is said to be orthogonal to S if it is so to every element of S. The set of all v orthogonal to S is denoted as S^{\perp}.
- S^{\perp} is always a subspace regardless of whether S is or not (HW). When S is a subspace, S^{\perp} is called the orthogonal complement of S.
- Examples :

Orthogonal complement

- Let $S \subseteq V$ be a subset of an inner product space. An element $v \in V$ is said to be orthogonal to S if it is so to every element of S. The set of all v orthogonal to S is denoted as S^{\perp}.
- S^{\perp} is always a subspace regardless of whether S is or not (HW). When S is a subspace, S^{\perp} is called the orthogonal complement of S.
- Examples :
- The perpendicular subspace to the set $\{(1,1),(1,2)\}$ in \mathbb{R}^{2} with the usual inner product is

Orthogonal complement

- Let $S \subseteq V$ be a subset of an inner product space. An element $v \in V$ is said to be orthogonal to S if it is so to every element of S. The set of all v orthogonal to S is denoted as S^{\perp}.
- S^{\perp} is always a subspace regardless of whether S is or not (HW). When S is a subspace, S^{\perp} is called the orthogonal complement of S.
- Examples :
- The perpendicular subspace to the set $\{(1,1),(1,2)\}$ in \mathbb{R}^{2} with the usual inner product is $\{(0,0)\}$.

Orthogonal complement

- Let $S \subseteq V$ be a subset of an inner product space. An element $v \in V$ is said to be orthogonal to S if it is so to every element of S. The set of all v orthogonal to S is denoted as S^{\perp}.
- S^{\perp} is always a subspace regardless of whether S is or not (HW). When S is a subspace, S^{\perp} is called the orthogonal complement of S.
- Examples :
- The perpendicular subspace to the set $\{(1,1),(1,2)\}$ in \mathbb{R}^{2} with the usual inner product is $\{(0,0)\}$. Indeed, $(a, b) \cdot(1,1)=a+b=0$ and $(a, b) \cdot(1,2)=a+2 b=0$ imply that $a=b=0$.

Orthogonal complement

- Let $S \subseteq V$ be a subset of an inner product space. An element $v \in V$ is said to be orthogonal to S if it is so to every element of S. The set of all v orthogonal to S is denoted as S^{\perp}.
- S^{\perp} is always a subspace regardless of whether S is or not (HW). When S is a subspace, S^{\perp} is called the orthogonal complement of S.
- Examples :
- The perpendicular subspace to the set $\{(1,1),(1,2)\}$ in \mathbb{R}^{2} with the usual inner product is $\{(0,0)\}$. Indeed, $(a, b) \cdot(1,1)=a+b=0$ and $(a, b) \cdot(1,2)=a+2 b=0$ imply that $a=b=0$.
- Given a line $t(1,2,3)$ in \mathbb{R}^{3},

Orthogonal complement

- Let $S \subseteq V$ be a subset of an inner product space. An element $v \in V$ is said to be orthogonal to S if it is so to every element of S. The set of all v orthogonal to S is denoted as S^{\perp}.
- S^{\perp} is always a subspace regardless of whether S is or not (HW). When S is a subspace, S^{\perp} is called the orthogonal complement of S.
- Examples :
- The perpendicular subspace to the set $\{(1,1),(1,2)\}$ in \mathbb{R}^{2} with the usual inner product is $\{(0,0)\}$. Indeed, $(a, b) \cdot(1,1)=a+b=0$ and $(a, b) \cdot(1,2)=a+2 b=0$ imply that $a=b=0$.
- Given a line $t(1,2,3)$ in \mathbb{R}^{3}, its orthogonal complement is a plane:

Orthogonal complement

- Let $S \subseteq V$ be a subset of an inner product space. An element $v \in V$ is said to be orthogonal to S if it is so to every element of S. The set of all v orthogonal to S is denoted as S^{\perp}.
- S^{\perp} is always a subspace regardless of whether S is or not (HW). When S is a subspace, S^{\perp} is called the orthogonal complement of S.
- Examples :
- The perpendicular subspace to the set $\{(1,1),(1,2)\}$ in \mathbb{R}^{2} with the usual inner product is $\{(0,0)\}$. Indeed, $(a, b) \cdot(1,1)=a+b=0$ and $(a, b) \cdot(1,2)=a+2 b=0$ imply that $a=b=0$.
- Given a line $t(1,2,3)$ in \mathbb{R}^{3}, its orthogonal complement is a plane: $0=(x, y, z) \cdot(1,2,3)=x+2 y+3 z$.

Orthogonal complement

- Let $S \subseteq V$ be a subset of an inner product space. An element $v \in V$ is said to be orthogonal to S if it is so to every element of S. The set of all v orthogonal to S is denoted as S^{\perp}.
- S^{\perp} is always a subspace regardless of whether S is or not (HW). When S is a subspace, S^{\perp} is called the orthogonal complement of S.
- Examples :
- The perpendicular subspace to the set $\{(1,1),(1,2)\}$ in \mathbb{R}^{2} with the usual inner product is $\{(0,0)\}$. Indeed, $(a, b) \cdot(1,1)=a+b=0$ and $(a, b) \cdot(1,2)=a+2 b=0$ imply that $a=b=0$.
- Given a line $t(1,2,3)$ in \mathbb{R}^{3}, its orthogonal complement is a plane: $0=(x, y, z) \cdot(1,2,3)=x+2 y+3 z$.
- The continuous functions orthogonal to 1 with the integration inner product on $[0,1]$ are the ones with zero average.

Orthogonal decomposition

Orthogonal decomposition

- Recall how we used $(1,1)$ and $(1,2)$ to create orthogonal vectors.

Orthogonal decomposition

- Recall how we used $(1,1)$ and $(1,2)$ to create orthogonal vectors.
- Motivated by this construction,

Orthogonal decomposition

- Recall how we used $(1,1)$ and $(1,2)$ to create orthogonal vectors.
- Motivated by this construction, we have a theorem: Let $(V,\langle\rangle$,$) be an inner product space and S \subseteq V$ be a f.d. subspace.

Orthogonal decomposition

- Recall how we used $(1,1)$ and $(1,2)$ to create orthogonal vectors.
- Motivated by this construction, we have a theorem: Let $(V,\langle\rangle$,$) be an inner product space and S \subseteq V$ be a f.d. subspace. Then every element $x \in V$ can be represented uniquely as a sum $x=s+s^{\perp}$ where $s \in S$ and $s^{\perp} \in S^{\perp}$.

Orthogonal decomposition

- Recall how we used $(1,1)$ and $(1,2)$ to create orthogonal vectors.
- Motivated by this construction, we have a theorem: Let $(V,\langle\rangle$,$) be an inner product space and S \subseteq V$ be a f.d. subspace. Then every element $x \in V$ can be represented uniquely as a sum $x=s+s^{\perp}$ where $s \in S$ and $s^{\perp} \in S^{\perp}$. Moreover, $\|x\|^{2}=\|s\|^{2}+\left\|s^{\perp}\right\|^{2}$.

Orthogonal decomposition

- Recall how we used $(1,1)$ and $(1,2)$ to create orthogonal vectors.
- Motivated by this construction, we have a theorem: Let $(V,\langle\rangle$,$) be an inner product space and S \subseteq V$ be a f.d. subspace. Then every element $x \in V$ can be represented uniquely as a sum $x=s+s^{\perp}$ where $s \in S$ and $s^{\perp} \in S^{\perp}$. Moreover, $\|x\|^{2}=\|s\|^{2}+\left\|s^{\perp}\right\|^{2}$.
- Caveat: If S is not f.d., the above result is NOT true in genera!!

Orthogonal decomposition

Orthogonal decomposition

- Proof:

Orthogonal decomposition

- Proof: Let e_{1}, \ldots, e_{n} be an orthonormal basis of S.

Orthogonal decomposition

- Proof: Let e_{1}, \ldots, e_{n} be an orthonormal basis of S. Define $s=\sum_{i}\left\langle x, e_{i}\right\rangle e_{i}$.

Orthogonal decomposition

- Proof: Let e_{1}, \ldots, e_{n} be an orthonormal basis of S. Define $s=\sum_{i}\left\langle x, e_{i}\right\rangle e_{i}$. Clearly, $s \in S$.

Orthogonal decomposition

- Proof: Let e_{1}, \ldots, e_{n} be an orthonormal basis of S. Define $s=\sum_{i}\left\langle x, e_{i}\right\rangle e_{i}$. Clearly, $s \in S$. Let $s_{1} \in S$ be an arbitrary element. Then $s_{1}=\sum_{j} c_{j} e_{j}$.

Orthogonal decomposition

- Proof: Let e_{1}, \ldots, e_{n} be an orthonormal basis of S. Define $s=\sum_{i}\left\langle x, e_{i}\right\rangle e_{i}$. Clearly, $s \in S$. Let $s_{1} \in S$ be an arbitrary element. Then $s_{1}=\sum_{j} c_{j} e_{j}$. $\left\langle x-s, s_{1}\right\rangle=\sum_{j} \bar{c}_{j}\left\langle x, e_{j}\right\rangle-\sum_{j, k} \bar{c}_{j}\left\langle x, e_{i}\right\rangle\left\langle e_{i}, e_{j}\right\rangle$.

Orthogonal decomposition

- Proof: Let e_{1}, \ldots, e_{n} be an orthonormal basis of S. Define $s=\sum_{i}\left\langle x, e_{i}\right\rangle e_{i}$. Clearly, $s \in S$. Let $s_{1} \in S$ be an arbitrary element. Then $s_{1}=\sum_{j} c_{j} e_{j}$. $\left\langle x-s, s_{1}\right\rangle=\sum_{j} \bar{c}_{j}\left\langle x, e_{j}\right\rangle-\sum_{j, k} \bar{c}_{j}\left\langle x, e_{i}\right\rangle\left\langle e_{i}, e_{j}\right\rangle$. By orthonormality, the latter is $\sum_{j} \bar{c}_{j}\left\langle x, e_{j}\right\rangle-\sum_{j} \bar{c}_{j}\left\langle x, e_{j}\right\rangle=0$.

Orthogonal decomposition

- Proof: Let e_{1}, \ldots, e_{n} be an orthonormal basis of S. Define $s=\sum_{i}\left\langle x, e_{i}\right\rangle e_{i}$. Clearly, $s \in S$. Let $s_{1} \in S$ be an arbitrary element. Then $s_{1}=\sum_{j} c_{j} e_{j}$. $\left\langle x-s, s_{1}\right\rangle=\sum_{j} \bar{c}_{j}\left\langle x, e_{j}\right\rangle-\sum_{j, k} \bar{c}_{j}\left\langle x, e_{i}\right\rangle\left\langle e_{i}, e_{j}\right\rangle$. By orthonormality, the latter is $\sum_{j} \bar{c}_{j}\left\langle x, e_{j}\right\rangle-\sum_{j} \bar{c}_{j}\left\langle x, e_{j}\right\rangle=0$. Hence, $s^{\perp}=x-s \in S^{\perp}$.

Orthogonal decomposition

- Proof: Let e_{1}, \ldots, e_{n} be an orthonormal basis of S. Define $s=\sum_{i}\left\langle x, e_{i}\right\rangle e_{i}$. Clearly, $s \in S$. Let $s_{1} \in S$ be an arbitrary element. Then $s_{1}=\sum_{j} c_{j} e_{j}$.
$\left\langle x-s, s_{1}\right\rangle=\sum_{j} \bar{c}_{j}\left\langle x, e_{j}\right\rangle-\sum_{j, k} \bar{c}_{j}\left\langle x, e_{i}\right\rangle\left\langle e_{i}, e_{j}\right\rangle$. By orthonormality, the latter is $\sum_{j} \bar{c}_{j}\left\langle x, e_{j}\right\rangle-\sum_{j} \bar{c}_{j}\left\langle x, e_{j}\right\rangle=0$. Hence, $s^{\perp}=x-s \in S^{\perp}$. If $x=t+t^{\perp}=s+s^{\perp}$, then $t-s=s^{\perp}-t^{\perp} \in S \cap S^{\perp}=\{0\}$.

Orthogonal decomposition

- Proof: Let e_{1}, \ldots, e_{n} be an orthonormal basis of S. Define $s=\sum_{i}\left\langle x, e_{i}\right\rangle e_{i}$. Clearly, $s \in S$. Let $s_{1} \in S$ be an arbitrary element. Then $s_{1}=\sum_{j} c_{j} e_{j}$. $\left\langle x-s, s_{1}\right\rangle=\sum_{j} \bar{c}_{j}\left\langle x, e_{j}\right\rangle-\sum_{j, k} \bar{c}_{j}\left\langle x, e_{i}\right\rangle\left\langle e_{i}, e_{j}\right\rangle$. By orthonormality, the latter is $\sum_{j} \bar{c}_{j}\left\langle x, e_{j}\right\rangle-\sum_{j} \bar{c}_{j}\left\langle x, e_{j}\right\rangle=0$. Hence, $s^{\perp}=x-s \in S^{\perp}$. If $x=t+t^{\perp}=s+s^{\perp}$, then $t-s=s^{\perp}-t^{\perp} \in S \cap S^{\perp}=\{0\}$.
$\|x\|^{2}=\|s\|^{2}+\left\|s^{\perp}\right\|^{2}+\left\langle s, s^{\perp}\right\rangle+\left\langle s^{\perp}, s\right\rangle$ but $\left\langle s, s^{\perp}\right\rangle=0$.

Orthogonal decomposition

- Proof: Let e_{1}, \ldots, e_{n} be an orthonormal basis of S. Define $s=\sum_{i}\left\langle x, e_{i}\right\rangle e_{i}$. Clearly, $s \in S$. Let $s_{1} \in S$ be an arbitrary element. Then $s_{1}=\sum_{j} c_{j} e_{j}$.
$\left\langle x-s, s_{1}\right\rangle=\sum_{j} \bar{c}_{j}\left\langle x, e_{j}\right\rangle-\sum_{j, k} \bar{c}_{j}\left\langle x, e_{i}\right\rangle\left\langle e_{i}, e_{j}\right\rangle$. By orthonormality, the latter is $\sum_{j} \bar{c}_{j}\left\langle x, e_{j}\right\rangle-\sum_{j} \bar{c}_{j}\left\langle x, e_{j}\right\rangle=0$. Hence, $s^{\perp}=x-s \in S^{\perp}$. If $x=t+t^{\perp}=s+s^{\perp}$, then $t-s=s^{\perp}-t^{\perp} \in S \cap S^{\perp}=\{0\}$. $\|x\|^{2}=\|s\|^{2}+\left\|s^{\perp}\right\|^{2}+\left\langle s, s^{\perp}\right\rangle+\left\langle s^{\perp}, s\right\rangle$ but $\left\langle s, s^{\perp}\right\rangle=0$.
- The element $s=\sum_{i}\left\langle x, e_{i}\right\rangle e_{i}$ is called the orthogonal projection of x on the (f.d.) subspace S.

Orthogonal decomposition

- Proof: Let e_{1}, \ldots, e_{n} be an orthonormal basis of S. Define $s=\sum_{i}\left\langle x, e_{i}\right\rangle e_{i}$. Clearly, $s \in S$. Let $s_{1} \in S$ be an arbitrary element. Then $s_{1}=\sum_{j} c_{j} e_{j}$.
$\left\langle x-s, s_{1}\right\rangle=\sum_{j} \bar{c}_{j}\left\langle x, e_{j}\right\rangle-\sum_{j, k} \bar{c}_{j}\left\langle x, e_{i}\right\rangle\left\langle e_{i}, e_{j}\right\rangle$. By orthonormality, the latter is $\sum_{j} \bar{c}_{j}\left\langle x, e_{j}\right\rangle-\sum_{j} \bar{c}_{j}\left\langle x, e_{j}\right\rangle=0$. Hence, $s^{\perp}=x-s \in S^{\perp}$. If $x=t+t^{\perp}=s+s^{\perp}$, then $t-s=s^{\perp}-t^{\perp} \in S \cap S^{\perp}=\{0\}$.
$\|x\|^{2}=\|s\|^{2}+\left\|s^{\perp}\right\|^{2}+\left\langle s, s^{\perp}\right\rangle+\left\langle s^{\perp}, s\right\rangle$ but $\left\langle s, s^{\perp}\right\rangle=0$.
- The element $s=\sum_{i}\left\langle x, e_{i}\right\rangle e_{i}$ is called the orthogonal projection of x on the (f.d.) subspace S. It is basically the "shadow" of x on S.

The approximation problem

The approximation problem

- Consider the following questions:
- Consider the following questions:
- What is the best way to approximate continuous functions using sines and cosines ?
- Consider the following questions:
- What is the best way to approximate continuous functions using sines and cosines ?
- What is the best way to approximate continuous functions using polynomials?
- Consider the following questions:
- What is the best way to approximate continuous functions using sines and cosines ?
- What is the best way to approximate continuous functions using polynomials?
- If we plot the price of houses vs their area (in a particular locality)
- Consider the following questions:
- What is the best way to approximate continuous functions using sines and cosines ?
- What is the best way to approximate continuous functions using polynomials ?
- If we plot the price of houses vs their area (in a particular locality) what is the "best" estimate of price per square foot?
- Consider the following questions:
- What is the best way to approximate continuous functions using sines and cosines ?
- What is the best way to approximate continuous functions using polynomials ?
- If we plot the price of houses vs their area (in a particular locality) what is the "best" estimate of price per square foot?
- These questions fall under the purview of the approximation problem:
- Consider the following questions:
- What is the best way to approximate continuous functions using sines and cosines ?
- What is the best way to approximate continuous functions using polynomials ?
- If we plot the price of houses vs their area (in a particular locality) what is the "best" estimate of price per square foot?
- These questions fall under the purview of the approximation problem: Let V be an inner product space and $S \subseteq V$ be a f.d. subspace.

The approximation problem

- Consider the following questions:
- What is the best way to approximate continuous functions using sines and cosines ?
- What is the best way to approximate continuous functions using polynomials ?
- If we plot the price of houses vs their area (in a particular locality) what is the "best" estimate of price per square foot?
- These questions fall under the purview of the approximation problem: Let V be an inner product space and $S \subseteq V$ be a f.d. subspace. Given an element $x \in V$, determine an element $s \in S$ whose distance from x is as small as possible.

The approximation theorem

- Let $S \subseteq V$ be a f.d. subspace of an inner product space $(V,\langle\rangle$,$) and let x \in V$.
- Let $S \subseteq V$ be a f.d. subspace of an inner product space $(V,\langle\rangle$,$) and let x \in V$. Then if s is the projection of x on S,
- Let $S \subseteq V$ be a f.d. subspace of an inner product space $(V,\langle\rangle$,$) and let x \in V$. Then if s is the projection of x on S, $\|x-s\| \leq\|x-t\|$ for any $t \in S$.
- Let $S \subseteq V$ be a f.d. subspace of an inner product space $(V,\langle\rangle$,$) and let x \in V$. Then if s is the projection of x on S, $\|x-s\| \leq\|x-t\|$ for any $t \in S$. Equality holds if and only if $t=s$.
- Let $S \subseteq V$ be a f.d. subspace of an inner product space $(V,\langle\rangle$,$) and let x \in V$. Then if s is the projection of x on S, $\|x-s\| \leq\|x-t\|$ for any $t \in S$. Equality holds if and only if $t=s$.
- Proof: Note that $x=s+s^{\perp}$ and hence $x-t=(s-t)+s^{\perp}$.
- Let $S \subseteq V$ be a f.d. subspace of an inner product space $(V,\langle\rangle$,$) and let x \in V$. Then if s is the projection of x on S, $\|x-s\| \leq\|x-t\|$ for any $t \in S$. Equality holds if and only if $t=s$.
- Proof: Note that $x=s+s^{\perp}$ and hence $x-t=(s-t)+s^{\perp}$. So $\|x-t\|^{2}=\|s-t\|^{2}+\|x-s\|^{2} \geq\|x-s\|^{2}$ with equality holding if and only if $s=t$.

Examples

Examples

- Let $V=C[0,2 \pi]$ and S be the space spanned by $\phi_{0}=\frac{1}{\sqrt{2 \pi}}, \phi_{1}=\frac{\cos (x)}{\sqrt{\pi}}, \phi_{2}=\frac{\sin (x)}{\sqrt{\pi}}, \ldots, \phi_{2 n}$.

Examples

- Let $V=C[0,2 \pi]$ and S be the space spanned by $\phi_{0}=\frac{1}{\sqrt{2 \pi}}, \phi_{1}=\frac{\cos (x)}{\sqrt{\pi}}, \phi_{2}=\frac{\sin (x)}{\sqrt{\pi}}, \ldots, \phi_{2 n}$.
- The best approximation of $f \in V$ by S is given by the projection $f_{n}=\sum_{k}\left\langle f, \phi_{k}\right\rangle \phi_{k}$ where $\left\langle f, \phi_{k}\right\rangle=\int_{0}^{2 \pi} f \phi_{k} d x$.

Examples

- Let $V=C[0,2 \pi]$ and S be the space spanned by $\phi_{0}=\frac{1}{\sqrt{2 \pi}}, \phi_{1}=\frac{\cos (x)}{\sqrt{\pi}}, \phi_{2}=\frac{\sin (x)}{\sqrt{\pi}}, \ldots, \phi_{2 n}$.
- The best approximation of $f \in V$ by S is given by the projection $f_{n}=\sum_{k}\left\langle f, \phi_{k}\right\rangle \phi_{k}$ where $\left\langle f, \phi_{k}\right\rangle=\int_{0}^{2 \pi} f \phi_{k} d x$. These numbers are called the Fourier coefficients of f.

Examples

- Let $V=C[0,2 \pi]$ and S be the space spanned by $\phi_{0}=\frac{1}{\sqrt{2 \pi}}, \phi_{1}=\frac{\cos (x)}{\sqrt{\pi}}, \phi_{2}=\frac{\sin (x)}{\sqrt{\pi}}, \ldots, \phi_{2 n}$.
- The best approximation of $f \in V$ by S is given by the projection $f_{n}=\sum_{k}\left\langle f, \phi_{k}\right\rangle \phi_{k}$ where $\left\langle f, \phi_{k}\right\rangle=\int_{0}^{2 \pi} f \phi_{k} d x$.
These numbers are called the Fourier coefficients of f.
- Let $V=C[-1,1]$ and S be the space spanned by $1, x, \ldots, x^{n}$.

Examples

- Let $V=C[0,2 \pi]$ and S be the space spanned by $\phi_{0}=\frac{1}{\sqrt{2 \pi}}, \phi_{1}=\frac{\cos (x)}{\sqrt{\pi}}, \phi_{2}=\frac{\sin (x)}{\sqrt{\pi}}, \ldots, \phi_{2 n}$.
- The best approximation of $f \in V$ by S is given by the projection $f_{n}=\sum_{k}\left\langle f, \phi_{k}\right\rangle \phi_{k}$ where $\left\langle f, \phi_{k}\right\rangle=\int_{0}^{2 \pi} f \phi_{k} d x$.
These numbers are called the Fourier coefficients of f.
- Let $V=C[-1,1]$ and S be the space spanned by $1, x, \ldots, x^{n}$. The normalised Legendre polynomials $\psi_{0}=\frac{1}{\sqrt{2}}, \psi_{1}=\frac{\sqrt{3}}{\sqrt{2}} x, \psi_{2}=\frac{\sqrt{5}}{2 \sqrt{2}}\left(3 x^{2}-1\right), \ldots, \psi_{n}$ form an orthonormal basis for S.

Examples

- Let $V=C[0,2 \pi]$ and S be the space spanned by $\phi_{0}=\frac{1}{\sqrt{2 \pi}}, \phi_{1}=\frac{\cos (x)}{\sqrt{\pi}}, \phi_{2}=\frac{\sin (x)}{\sqrt{\pi}}, \ldots, \phi_{2 n}$.
- The best approximation of $f \in V$ by S is given by the projection $f_{n}=\sum_{k}\left\langle f, \phi_{k}\right\rangle \phi_{k}$ where $\left\langle f, \phi_{k}\right\rangle=\int_{0}^{2 \pi} f \phi_{k} d x$.
These numbers are called the Fourier coefficients of f.
- Let $V=C[-1,1]$ and S be the space spanned by $1, x, \ldots, x^{n}$. The normalised Legendre polynomials
$\psi_{0}=\frac{1}{\sqrt{2}}, \psi_{1}=\frac{\sqrt{3}}{\sqrt{2}} x, \psi_{2}=\frac{\sqrt{5}}{2 \sqrt{2}}\left(3 x^{2}-1\right), \ldots, \psi_{n}$ form an orthonormal basis for S.
- The best polynomial approximation of $f \in V$ by S is given by $\tilde{f}_{n}=\sum_{k}\left\langle f, \psi_{k}\right\rangle \psi_{k}$.
- Let $V=C[0,2 \pi]$ and S be the space spanned by $\phi_{0}=\frac{1}{\sqrt{2 \pi}}, \phi_{1}=\frac{\cos (x)}{\sqrt{\pi}}, \phi_{2}=\frac{\sin (x)}{\sqrt{\pi}}, \ldots, \phi_{2 n}$.
- The best approximation of $f \in V$ by S is given by the projection $f_{n}=\sum_{k}\left\langle f, \phi_{k}\right\rangle \phi_{k}$ where $\left\langle f, \phi_{k}\right\rangle=\int_{0}^{2 \pi} f \phi_{k} d x$.
These numbers are called the Fourier coefficients of f.
- Let $V=C[-1,1]$ and S be the space spanned by $1, x, \ldots, x^{n}$. The normalised Legendre polynomials
$\psi_{0}=\frac{1}{\sqrt{2}}, \psi_{1}=\frac{\sqrt{3}}{\sqrt{2}} x, \psi_{2}=\frac{\sqrt{5}}{2 \sqrt{2}}\left(3 x^{2}-1\right), \ldots, \psi_{n}$ form an orthonormal basis for S.
- The best polynomial approximation of $f \in V$ by S is given by $\tilde{f}_{n}=\sum_{k}\left\langle f, \psi_{k}\right\rangle \psi_{k}$. For instance, if $f(x)=\sin (\pi x)$, then $\left\langle f, \psi_{0}\right\rangle=0,\left\langle f, \psi_{1}\right\rangle=\frac{2 \sqrt{3}}{\pi \sqrt{2}},\left\langle f, \psi_{2}\right\rangle=0$.

Least squares fit

Least squares fit

- Suppose a dependent variable (like the price of a house) y depends linearly on an independent variable (like the area) x as $y=m x+c$.

Least squares fit

- Suppose a dependent variable (like the price of a house) y depends linearly on an independent variable (like the area) x as $y=m x+c$.
- Unfortunately, in real life, if one collects data points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$, they will not all lie on a line!

Least squares fit

- Suppose a dependent variable (like the price of a house) y depends linearly on an independent variable (like the area) x as $y=m x+c$.
- Unfortunately, in real life, if one collects data points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$, they will not all lie on a line!
- We want to find those m, c such that the corresponding line is the "best fit", i.e., $\sum_{i}\left(y_{i}-m x_{i}-c\right)^{2}$ is the smallest possible.

Least squares fit

- Suppose a dependent variable (like the price of a house) y depends linearly on an independent variable (like the area) x as $y=m x+c$.
- Unfortunately, in real life, if one collects data points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$, they will not all lie on a line!
- We want to find those m, c such that the corresponding line is the "best fit", i.e., $\sum_{i}\left(y_{i}-m x_{i}-c\right)^{2}$ is the smallest possible.
- Note that if we consider the subspace in \mathbb{R}^{n} spanned by the vectors $\left(x_{1}, \ldots, x_{n}\right)$ and $(1,1, \ldots, 1)$,

Least squares fit

- Suppose a dependent variable (like the price of a house) y depends linearly on an independent variable (like the area) x as $y=m x+c$.
- Unfortunately, in real life, if one collects data points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$, they will not all lie on a line!
- We want to find those m, c such that the corresponding line is the "best fit", i.e., $\sum_{i}\left(y_{i}-m x_{i}-c\right)^{2}$ is the smallest possible.
- Note that if we consider the subspace in \mathbb{R}^{n} spanned by the vectors $\left(x_{1}, \ldots, x_{n}\right)$ and $(1,1, \ldots, 1)$, we essentially want the vector s lying in this space that is the best approximation of the vector $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$.

Least squares fit

- Suppose a dependent variable (like the price of a house) y depends linearly on an independent variable (like the area) x as $y=m x+c$.
- Unfortunately, in real life, if one collects data points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$, they will not all lie on a line!
- We want to find those m, c such that the corresponding line is the "best fit", i.e., $\sum_{i}\left(y_{i}-m x_{i}-c\right)^{2}$ is the smallest possible.
- Note that if we consider the subspace in \mathbb{R}^{n} spanned by the vectors $\left(x_{1}, \ldots, x_{n}\right)$ and $(1,1, \ldots, 1)$, we essentially want the vector s lying in this space that is the best approximation of the vector $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$. We can calculate m, c using the formulae directly, or

Least squares fit

- Suppose a dependent variable (like the price of a house) y depends linearly on an independent variable (like the area) x as $y=m x+c$.
- Unfortunately, in real life, if one collects data points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$, they will not all lie on a line!
- We want to find those m, c such that the corresponding line is the "best fit", i.e., $\sum_{i}\left(y_{i}-m x_{i}-c\right)^{2}$ is the smallest possible.
- Note that if we consider the subspace in \mathbb{R}^{n} spanned by the vectors $\left(x_{1}, \ldots, x_{n}\right)$ and $(1,1, \ldots, 1)$, we essentially want the vector s lying in this space that is the best approximation of the vector $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$. We can calculate m, c using the formulae directly, or using the equations $(Y-X \beta)^{T} X=0$ where Y is the column vector of y_{i},

Least squares fit

- Suppose a dependent variable (like the price of a house) y depends linearly on an independent variable (like the area) x as $y=m x+c$.
- Unfortunately, in real life, if one collects data points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$, they will not all lie on a line!
- We want to find those m, c such that the corresponding line is the "best fit", i.e., $\sum_{i}\left(y_{i}-m x_{i}-c\right)^{2}$ is the smallest possible.
- Note that if we consider the subspace in \mathbb{R}^{n} spanned by the vectors $\left(x_{1}, \ldots, x_{n}\right)$ and $(1,1, \ldots, 1)$, we essentially want the vector s lying in this space that is the best approximation of the vector $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$. We can calculate m, c using the formulae directly, or using the equations $(Y-X \beta)^{T} X=0$ where Y is the column vector of y_{i}, X is the $n \times 2$ matrix whose first column is x and the second column is ($1,1, \ldots$), and $\beta=\left[\begin{array}{c}m \\ 1\end{array}\right]$.

Least squares fit

Least squares fit

- It is of course possible for the equations to have infinitely many solutions! (

Least squares fit

- It is of course possible for the equations to have infinitely many solutions! (This phenomenon is called overfitting.)

Least squares fit

- It is of course possible for the equations to have infinitely many solutions! (This phenomenon is called overfitting.)
- More generally, if $y=m_{1} x_{1}+m_{2} x_{2}+\ldots+m_{k} x_{k}+c$, then the "data matrix" X is

Least squares fit

- It is of course possible for the equations to have infinitely many solutions! (This phenomenon is called overfitting.)
- More generally, if $y=m_{1} x_{1}+m_{2} x_{2}+\ldots+m_{k} x_{k}+c$, then the "data matrix" X is an $n \times(k+1)$ matrix, and the "slopes vector" β is a $(k+1)$-vector.

Least squares fit

- It is of course possible for the equations to have infinitely many solutions! (This phenomenon is called overfitting.)
- More generally, if $y=m_{1} x_{1}+m_{2} x_{2}+\ldots+m_{k} x_{k}+c$, then the "data matrix" X is an $n \times(k+1)$ matrix, and the "slopes vector" β is a $(k+1)$-vector.
- Even then, the principle is to project y onto the "column space", i.e.,

Least squares fit

- It is of course possible for the equations to have infinitely many solutions! (This phenomenon is called overfitting.)
- More generally, if $y=m_{1} x_{1}+m_{2} x_{2}+\ldots+m_{k} x_{k}+c$, then the "data matrix" X is an $n \times(k+1)$ matrix, and the "slopes vector" β is a $(k+1)$-vector.
- Even then, the principle is to project y onto the "column space", i.e., the subspace of \mathbb{R}^{n} generated by the columns of X.

Least squares fit

- It is of course possible for the equations to have infinitely many solutions! (This phenomenon is called overfitting.)
- More generally, if $y=m_{1} x_{1}+m_{2} x_{2}+\ldots+m_{k} x_{k}+c$, then the "data matrix" X is an $n \times(k+1)$ matrix, and the "slopes vector" β is a $(k+1)$-vector.
- Even then, the principle is to project y onto the "column space", i.e., the subspace of \mathbb{R}^{n} generated by the columns of X. Alternatively, $(Y-X \beta)^{T} X=0$.

Least squares fit

- It is of course possible for the equations to have infinitely many solutions! (This phenomenon is called overfitting.)
- More generally, if $y=m_{1} x_{1}+m_{2} x_{2}+\ldots+m_{k} x_{k}+c$, then the "data matrix" X is an $n \times(k+1)$ matrix, and the "slopes vector" β is a $(k+1)$-vector.
- Even then, the principle is to project y onto the "column space", i.e., the subspace of \mathbb{R}^{n} generated by the columns of X. Alternatively, $(Y-X \beta)^{T} X=0$. These equations are called normal equations.

Least squares fit

- It is of course possible for the equations to have infinitely many solutions! (This phenomenon is called overfitting.)
- More generally, if $y=m_{1} x_{1}+m_{2} x_{2}+\ldots+m_{k} x_{k}+c$, then the "data matrix" X is an $n \times(k+1)$ matrix, and the "slopes vector" β is a $(k+1)$-vector.
- Even then, the principle is to project y onto the "column space", i.e., the subspace of \mathbb{R}^{n} generated by the columns of X. Alternatively, $(Y-X \beta)^{T} X=0$. These equations are called normal equations. This procedure is called linear regression.

Least squares fit

- It is of course possible for the equations to have infinitely many solutions! (This phenomenon is called overfitting.)
- More generally, if $y=m_{1} x_{1}+m_{2} x_{2}+\ldots+m_{k} x_{k}+c$, then the "data matrix" X is an $n \times(k+1)$ matrix, and the "slopes vector" β is a $(k+1)$-vector.
- Even then, the principle is to project y onto the "column space", i.e., the subspace of \mathbb{R}^{n} generated by the columns of X. Alternatively, $(Y-X \beta)^{T} X=0$. These equations are called normal equations. This procedure is called linear regression.
- By the way, if you want to fit polynomials, you can do exactly the same thing by the trick of introducing new variables ! $\left(x_{1}=x, x_{2}=x^{2}, \ldots\right)$.

