Lecture 5 - UM 102 (Spring 2021)

Vamsi Pritham Pingali

IISc

Recap

< E > < E >

æ

• Defined orthogonality and proved that non-zero orthogonal elements are linearly independent.

- Defined orthogonality and proved that non-zero orthogonal elements are linearly independent.
- Proved Parseval's formula.

- Defined orthogonality and proved that non-zero orthogonal elements are linearly independent.
- Proved Parseval's formula.
- Gram-Schmidt orthogonalisation procedure.

2/10

æ

• Let $S \subseteq V$ be a subset of an inner product space.

Let S ⊆ V be a subset of an inner product space. An element v ∈ V is said to be orthogonal to S if

Let S ⊆ V be a subset of an inner product space. An element v ∈ V is said to be orthogonal to S if it is so to every element of S.

Let S ⊆ V be a subset of an inner product space. An element v ∈ V is said to be orthogonal to S if it is so to every element of S. The set of all v orthogonal to S is denoted as S[⊥].

- Let S ⊆ V be a subset of an inner product space. An element v ∈ V is said to be orthogonal to S if it is so to every element of S. The set of all v orthogonal to S is denoted as S[⊥].
- S[⊥] is always a subspace regardless of whether S is or not (HW).

- Let S ⊆ V be a subset of an inner product space. An element v ∈ V is said to be orthogonal to S if it is so to every element of S. The set of all v orthogonal to S is denoted as S[⊥].
- S[⊥] is always a subspace regardless of whether S is or not (HW). When S is a subspace, S[⊥] is called the *orthogonal* complement of S.

- Let S ⊆ V be a subset of an inner product space. An element v ∈ V is said to be orthogonal to S if it is so to every element of S. The set of all v orthogonal to S is denoted as S[⊥].
- S[⊥] is always a subspace regardless of whether S is or not (HW). When S is a subspace, S[⊥] is called the *orthogonal* complement of S.
- Examples :

- Let S ⊆ V be a subset of an inner product space. An element v ∈ V is said to be orthogonal to S if it is so to every element of S. The set of all v orthogonal to S is denoted as S[⊥].
- S[⊥] is always a subspace regardless of whether S is or not (HW). When S is a subspace, S[⊥] is called the *orthogonal* complement of S.
- Examples :
 - The perpendicular subspace to the set $\{(1,1),(1,2)\}$ in \mathbb{R}^2 with the usual inner product is

- Let S ⊆ V be a subset of an inner product space. An element v ∈ V is said to be orthogonal to S if it is so to every element of S. The set of all v orthogonal to S is denoted as S[⊥].
- S[⊥] is always a subspace regardless of whether S is or not (HW). When S is a subspace, S[⊥] is called the *orthogonal* complement of S.
- Examples :
 - The perpendicular subspace to the set $\{(1,1), (1,2)\}$ in \mathbb{R}^2 with the usual inner product is $\{(0,0)\}$.

- Let S ⊆ V be a subset of an inner product space. An element v ∈ V is said to be orthogonal to S if it is so to every element of S. The set of all v orthogonal to S is denoted as S[⊥].
- S[⊥] is always a subspace regardless of whether S is or not (HW). When S is a subspace, S[⊥] is called the *orthogonal* complement of S.
- Examples :
 - The perpendicular subspace to the set $\{(1,1), (1,2)\}$ in \mathbb{R}^2 with the usual inner product is $\{(0,0)\}$. Indeed, (a,b).(1,1) = a + b = 0 and (a,b).(1,2) = a + 2b = 0 imply that a = b = 0.

- Let S ⊆ V be a subset of an inner product space. An element v ∈ V is said to be orthogonal to S if it is so to every element of S. The set of all v orthogonal to S is denoted as S[⊥].
- S[⊥] is always a subspace regardless of whether S is or not (HW). When S is a subspace, S[⊥] is called the *orthogonal* complement of S.
- Examples :
 - The perpendicular subspace to the set {(1,1), (1,2)} in ℝ² with the usual inner product is {(0,0)}. Indeed, (a, b).(1,1) = a + b = 0 and (a, b).(1,2) = a + 2b = 0 imply that a = b = 0.
 - Given a line t(1,2,3) in \mathbb{R}^3 ,

- Let S ⊆ V be a subset of an inner product space. An element v ∈ V is said to be orthogonal to S if it is so to every element of S. The set of all v orthogonal to S is denoted as S[⊥].
- S[⊥] is always a subspace regardless of whether S is or not (HW). When S is a subspace, S[⊥] is called the *orthogonal* complement of S.
- Examples :
 - The perpendicular subspace to the set {(1,1), (1,2)} in ℝ² with the usual inner product is {(0,0)}. Indeed, (a, b).(1,1) = a + b = 0 and (a, b).(1,2) = a + 2b = 0 imply that a = b = 0.
 - Given a line t(1, 2, 3) in \mathbb{R}^3 , its orthogonal complement is a plane:

- Let S ⊆ V be a subset of an inner product space. An element v ∈ V is said to be orthogonal to S if it is so to every element of S. The set of all v orthogonal to S is denoted as S[⊥].
- S[⊥] is always a subspace regardless of whether S is or not (HW). When S is a subspace, S[⊥] is called the *orthogonal* complement of S.
- Examples :
 - The perpendicular subspace to the set $\{(1,1), (1,2)\}$ in \mathbb{R}^2 with the usual inner product is $\{(0,0)\}$. Indeed, (a,b).(1,1) = a + b = 0 and (a,b).(1,2) = a + 2b = 0 imply that a = b = 0.
 - Given a line t(1,2,3) in \mathbb{R}^3 , its orthogonal complement is a plane: 0 = (x, y, z).(1,2,3) = x + 2y + 3z.

- Let S ⊆ V be a subset of an inner product space. An element v ∈ V is said to be orthogonal to S if it is so to every element of S. The set of all v orthogonal to S is denoted as S[⊥].
- S[⊥] is always a subspace regardless of whether S is or not (HW). When S is a subspace, S[⊥] is called the *orthogonal* complement of S.
- Examples :
 - The perpendicular subspace to the set $\{(1,1), (1,2)\}$ in \mathbb{R}^2 with the usual inner product is $\{(0,0)\}$. Indeed, (a,b).(1,1) = a + b = 0 and (a,b).(1,2) = a + 2b = 0 imply that a = b = 0.
 - Given a line t(1,2,3) in \mathbb{R}^3 , its orthogonal complement is a plane: 0 = (x, y, z).(1,2,3) = x + 2y + 3z.
 - The continuous functions orthogonal to 1 with the integration inner product on [0, 1] are the ones with zero average.

æ

• Recall how we used (1, 1) and (1, 2) to create orthogonal vectors.

- Recall how we used (1, 1) and (1, 2) to create orthogonal vectors.
- Motivated by this construction,

- Recall how we used (1, 1) and (1, 2) to create orthogonal vectors.
- Motivated by this construction, we have a theorem: Let (V, ⟨, ⟩) be an inner product space and S ⊆ V be a f.d. subspace.

- Recall how we used (1, 1) and (1, 2) to create orthogonal vectors.
- Motivated by this construction, we have a theorem: Let (V, ⟨, ⟩) be an inner product space and S ⊆ V be a f.d. subspace. Then every element x ∈ V can be represented uniquely as a sum x = s + s[⊥] where s ∈ S and s[⊥] ∈ S[⊥].

4/10

- Recall how we used (1,1) and (1,2) to create orthogonal vectors.
- Motivated by this construction, we have a theorem: Let (V, ⟨, ⟩) be an inner product space and S ⊆ V be a f.d. subspace. Then every element x ∈ V can be represented uniquely as a sum x = s + s[⊥] where s ∈ S and s[⊥] ∈ S[⊥]. Moreover, ||x||² = ||s||² + ||s[⊥]||².

- Recall how we used (1, 1) and (1, 2) to create orthogonal vectors.
- Motivated by this construction, we have a theorem: Let (V, ⟨, ⟩) be an inner product space and S ⊆ V be a f.d. subspace. Then every element x ∈ V can be represented uniquely as a sum x = s + s[⊥] where s ∈ S and s[⊥] ∈ S[⊥]. Moreover, ||x||² = ||s||² + ||s[⊥]||².
- Caveat: If S is not f.d., the above result is NOT true in general!

æ

• Proof:

æ

Э

• Proof: Let e_1, \ldots, e_n be an orthonormal basis of S.

∃ >

• Proof: Let e_1, \ldots, e_n be an orthonormal basis of S. Define $s = \sum_i \langle x, e_i \rangle e_i$.

- ∢ ≣ ▶

∃ >

э

• Proof: Let e_1, \ldots, e_n be an orthonormal basis of S. Define $s = \sum_i \langle x, e_i \rangle e_i$. Clearly, $s \in S$.

• Proof: Let e_1, \ldots, e_n be an orthonormal basis of S. Define $s = \sum_i \langle x, e_i \rangle e_i$. Clearly, $s \in S$. Let $s_1 \in S$ be an arbitrary element. Then $s_1 = \sum_j c_j e_j$.

• Proof: Let e_1, \ldots, e_n be an orthonormal basis of S. Define $s = \sum_i \langle x, e_i \rangle e_i$. Clearly, $s \in S$. Let $s_1 \in S$ be an arbitrary element. Then $s_1 = \sum_j c_j e_j$. $\langle x - s, s_1 \rangle = \sum_j \bar{c}_j \langle x, e_j \rangle - \sum_{j,k} \bar{c}_j \langle x, e_i \rangle \langle e_i, e_j \rangle$.

• Proof: Let e_1, \ldots, e_n be an orthonormal basis of S. Define $s = \sum_i \langle x, e_i \rangle e_i$. Clearly, $s \in S$. Let $s_1 \in S$ be an arbitrary element. Then $s_1 = \sum_j c_j e_j$. $\langle x - s, s_1 \rangle = \sum_j \overline{c_j} \langle x, e_j \rangle - \sum_{j,k} \overline{c_j} \langle x, e_i \rangle \langle e_i, e_j \rangle$. By orthonormality, the latter is $\sum_i \overline{c_j} \langle x, e_j \rangle - \sum_j \overline{c_j} \langle x, e_j \rangle = 0$.

• Proof: Let e_1, \ldots, e_n be an orthonormal basis of S. Define $s = \sum_i \langle x, e_i \rangle e_i$. Clearly, $s \in S$. Let $s_1 \in S$ be an arbitrary element. Then $s_1 = \sum_j c_j e_j$. $\langle x - s, s_1 \rangle = \sum_j \overline{c_j} \langle x, e_j \rangle - \sum_{j,k} \overline{c_j} \langle x, e_i \rangle \langle e_i, e_j \rangle$. By orthonormality, the latter is $\sum_j \overline{c_j} \langle x, e_j \rangle - \sum_j \overline{c_j} \langle x, e_j \rangle = 0$. Hence, $s^{\perp} = x - s \in S^{\perp}$.
• Proof: Let e_1, \ldots, e_n be an orthonormal basis of S. Define $s = \sum_i \langle x, e_i \rangle e_i$. Clearly, $s \in S$. Let $s_1 \in S$ be an arbitrary element. Then $s_1 = \sum_j c_j e_j$. $\langle x - s, s_1 \rangle = \sum_j \overline{c_j} \langle x, e_j \rangle - \sum_{j,k} \overline{c_j} \langle x, e_i \rangle \langle e_i, e_j \rangle$. By orthonormality, the latter is $\sum_j \overline{c_j} \langle x, e_j \rangle - \sum_j \overline{c_j} \langle x, e_j \rangle = 0$. Hence, $s^{\perp} = x - s \in S^{\perp}$. If $x = t + t^{\perp} = s + s^{\perp}$, then $t - s = s^{\perp} - t^{\perp} \in S \cap S^{\perp} = \{0\}$.

• Proof: Let e_1, \ldots, e_n be an orthonormal basis of S. Define $s = \sum_i \langle x, e_i \rangle e_i$. Clearly, $s \in S$. Let $s_1 \in S$ be an arbitrary element. Then $s_1 = \sum_j c_j e_j$. $\langle x - s, s_1 \rangle = \sum_j \bar{c}_j \langle x, e_j \rangle - \sum_{j,k} \bar{c}_j \langle x, e_i \rangle \langle e_i, e_j \rangle$. By orthonormality, the latter is $\sum_j \bar{c}_j \langle x, e_j \rangle - \sum_j \bar{c}_j \langle x, e_j \rangle = 0$. Hence, $s^{\perp} = x - s \in S^{\perp}$. If $x = t + t^{\perp} = s + s^{\perp}$, then $t - s = s^{\perp} - t^{\perp} \in S \cap S^{\perp} = \{0\}$. $\|x\|^2 = \|s\|^2 + \|s^{\perp}\|^2 + \langle s, s^{\perp} \rangle + \langle s^{\perp}, s \rangle$ but $\langle s, s^{\perp} \rangle = 0$.

- Proof: Let e_1, \ldots, e_n be an orthonormal basis of S. Define $s = \sum_i \langle x, e_i \rangle e_i$. Clearly, $s \in S$. Let $s_1 \in S$ be an arbitrary element. Then $s_1 = \sum_j c_j e_j$. $\langle x - s, s_1 \rangle = \sum_j \overline{c_j} \langle x, e_j \rangle - \sum_{j,k} \overline{c_j} \langle x, e_i \rangle \langle e_i, e_j \rangle$. By orthonormality, the latter is $\sum_j \overline{c_j} \langle x, e_j \rangle - \sum_j \overline{c_j} \langle x, e_j \rangle = 0$. Hence, $s^{\perp} = x - s \in S^{\perp}$. If $x = t + t^{\perp} = s + s^{\perp}$, then $t - s = s^{\perp} - t^{\perp} \in S \cap S^{\perp} = \{0\}$. $\|x\|^2 = \|s\|^2 + \|s^{\perp}\|^2 + \langle s, s^{\perp} \rangle + \langle s^{\perp}, s \rangle$ but $\langle s, s^{\perp} \rangle = 0$.
- The element s = ∑_i⟨x, e_i⟩e_i is called the orthogonal projection of x on the (f.d.) subspace S.

- Proof: Let e_1, \ldots, e_n be an orthonormal basis of S. Define $s = \sum_i \langle x, e_i \rangle e_i$. Clearly, $s \in S$. Let $s_1 \in S$ be an arbitrary element. Then $s_1 = \sum_j c_j e_j$. $\langle x - s, s_1 \rangle = \sum_j \overline{c_j} \langle x, e_j \rangle - \sum_{j,k} \overline{c_j} \langle x, e_i \rangle \langle e_i, e_j \rangle$. By orthonormality, the latter is $\sum_j \overline{c_j} \langle x, e_j \rangle - \sum_j \overline{c_j} \langle x, e_j \rangle = 0$. Hence, $s^{\perp} = x - s \in S^{\perp}$. If $x = t + t^{\perp} = s + s^{\perp}$, then $t - s = s^{\perp} - t^{\perp} \in S \cap S^{\perp} = \{0\}$. $\|x\|^2 = \|s\|^2 + \|s^{\perp}\|^2 + \langle s, s^{\perp} \rangle + \langle s^{\perp}, s \rangle$ but $\langle s, s^{\perp} \rangle = 0$.
- The element $s = \sum_i \langle x, e_i \rangle e_i$ is called the *orthogonal* projection of x on the (f.d.) subspace S. It is basically the "shadow" of x on S.

• Consider the following questions:

- Consider the following questions:
 - What is the best way to approximate continuous functions using sines and cosines ?

- Consider the following questions:
 - What is the best way to approximate continuous functions using sines and cosines ?
 - What is the best way to approximate continuous functions using polynomials ?

- Consider the following questions:
 - What is the best way to approximate continuous functions using sines and cosines ?
 - What is the best way to approximate continuous functions using polynomials ?
 - If we plot the price of houses vs their area (in a particular locality)

6/10

- Consider the following questions:
 - What is the best way to approximate continuous functions using sines and cosines ?
 - What is the best way to approximate continuous functions using polynomials ?
 - If we plot the price of houses vs their area (in a particular locality) what is the "best" estimate of price per square foot ?

- Consider the following questions:
 - What is the best way to approximate continuous functions using sines and cosines ?
 - What is the best way to approximate continuous functions using polynomials ?
 - If we plot the price of houses vs their area (in a particular locality) what is the "best" estimate of price per square foot ?
- These questions fall under the purview of the approximation problem:

6/10

- Consider the following questions:
 - What is the best way to approximate continuous functions using sines and cosines ?
 - What is the best way to approximate continuous functions using polynomials ?
 - If we plot the price of houses vs their area (in a particular locality) what is the "best" estimate of price per square foot ?
- These questions fall under the purview of the approximation problem: Let V be an inner product space and S ⊆ V be a f.d. subspace.

- Consider the following questions:
 - What is the best way to approximate continuous functions using sines and cosines ?
 - What is the best way to approximate continuous functions using polynomials ?
 - If we plot the price of houses vs their area (in a particular locality) what is the "best" estimate of price per square foot ?
- These questions fall under the purview of the approximation problem: Let V be an inner product space and $S \subseteq V$ be a f.d. subspace. Given an element $x \in V$, determine an element $s \in S$ whose distance from x is as small as possible.

The approximation theorem

Let S ⊆ V be a f.d. subspace of an inner product space (V, ⟨, ⟩) and let x ∈ V.

Let S ⊆ V be a f.d. subspace of an inner product space
(V, ⟨, ⟩) and let x ∈ V. Then if s is the projection of x on S,

Let S ⊆ V be a f.d. subspace of an inner product space (V, ⟨, ⟩) and let x ∈ V. Then if s is the projection of x on S, ||x - s|| ≤ ||x - t|| for any t ∈ S.

• Let $S \subseteq V$ be a f.d. subspace of an inner product space (V, \langle, \rangle) and let $x \in V$. Then if s is the projection of x on S, $||x - s|| \le ||x - t||$ for any $t \in S$. Equality holds if and only if t = s.

- Let $S \subseteq V$ be a f.d. subspace of an inner product space (V, \langle, \rangle) and let $x \in V$. Then if s is the projection of x on S, $||x s|| \le ||x t||$ for any $t \in S$. Equality holds if and only if t = s.
- Proof: Note that $x = s + s^{\perp}$ and hence $x t = (s t) + s^{\perp}$.

- Let $S \subseteq V$ be a f.d. subspace of an inner product space (V, \langle, \rangle) and let $x \in V$. Then if s is the projection of x on S, $||x s|| \le ||x t||$ for any $t \in S$. Equality holds if and only if t = s.
- Proof: Note that $x = s + s^{\perp}$ and hence $x t = (s t) + s^{\perp}$. So $||x - t||^2 = ||s - t||^2 + ||x - s||^2 \ge ||x - s||^2$ with equality holding if and only if s = t.

< ≣ >

æ

• Let $V = C[0, 2\pi]$ and S be the space spanned by $\phi_0 = \frac{1}{\sqrt{2\pi}}, \phi_1 = \frac{\cos(x)}{\sqrt{\pi}}, \phi_2 = \frac{\sin(x)}{\sqrt{\pi}}, \dots, \phi_{2n}.$

御 と く ヨ と く ヨ とし

3

- Let $V = C[0, 2\pi]$ and S be the space spanned by $\phi_0 = \frac{1}{\sqrt{2\pi}}, \phi_1 = \frac{\cos(x)}{\sqrt{\pi}}, \phi_2 = \frac{\sin(x)}{\sqrt{\pi}}, \dots, \phi_{2n}.$
- The best approximation of $f \in V$ by S is given by the projection $f_n = \sum_k \langle f, \phi_k \rangle \phi_k$ where $\langle f, \phi_k \rangle = \int_0^{2\pi} f \phi_k dx$.

- Let $V = C[0, 2\pi]$ and S be the space spanned by $\phi_0 = \frac{1}{\sqrt{2\pi}}, \phi_1 = \frac{\cos(x)}{\sqrt{\pi}}, \phi_2 = \frac{\sin(x)}{\sqrt{\pi}}, \dots, \phi_{2n}.$
- The best approximation of $f \in V$ by S is given by the projection $f_n = \sum_k \langle f, \phi_k \rangle \phi_k$ where $\langle f, \phi_k \rangle = \int_0^{2\pi} f \phi_k dx$. These numbers are called the Fourier coefficients of f.

- Let $V = C[0, 2\pi]$ and S be the space spanned by $\phi_0 = \frac{1}{\sqrt{2\pi}}, \phi_1 = \frac{\cos(x)}{\sqrt{\pi}}, \phi_2 = \frac{\sin(x)}{\sqrt{\pi}}, \dots, \phi_{2n}.$
- The best approximation of $f \in V$ by S is given by the projection $f_n = \sum_k \langle f, \phi_k \rangle \phi_k$ where $\langle f, \phi_k \rangle = \int_0^{2\pi} f \phi_k dx$. These numbers are called the Fourier coefficients of f.
- Let V = C[-1, 1] and S be the space spanned by $1, x, \dots, x^n$.

8/10

- Let $V = C[0, 2\pi]$ and S be the space spanned by $\phi_0 = \frac{1}{\sqrt{2\pi}}, \phi_1 = \frac{\cos(x)}{\sqrt{\pi}}, \phi_2 = \frac{\sin(x)}{\sqrt{\pi}}, \dots, \phi_{2n}.$
- The best approximation of $f \in V$ by S is given by the projection $f_n = \sum_k \langle f, \phi_k \rangle \phi_k$ where $\langle f, \phi_k \rangle = \int_0^{2\pi} f \phi_k dx$. These numbers are called the Fourier coefficients of f.
- Let V = C[-1, 1] and S be the space spanned by $1, x, \ldots, x^n$. The normalised Legendre polynomials $\psi_0 = \frac{1}{\sqrt{2}}, \psi_1 = \frac{\sqrt{3}}{\sqrt{2}}x, \psi_2 = \frac{\sqrt{5}}{2\sqrt{2}}(3x^2 - 1), \ldots, \psi_n$ form an orthonormal basis for S.

- Let $V = C[0, 2\pi]$ and S be the space spanned by $\phi_0 = \frac{1}{\sqrt{2\pi}}, \phi_1 = \frac{\cos(x)}{\sqrt{\pi}}, \phi_2 = \frac{\sin(x)}{\sqrt{\pi}}, \dots, \phi_{2n}.$
- The best approximation of $f \in V$ by S is given by the projection $f_n = \sum_k \langle f, \phi_k \rangle \phi_k$ where $\langle f, \phi_k \rangle = \int_0^{2\pi} f \phi_k dx$. These numbers are called the Fourier coefficients of f.
- Let V = C[-1, 1] and S be the space spanned by $1, x, \ldots, x^n$. The normalised Legendre polynomials $\psi_0 = \frac{1}{\sqrt{2}}, \psi_1 = \frac{\sqrt{3}}{\sqrt{2}}x, \psi_2 = \frac{\sqrt{5}}{2\sqrt{2}}(3x^2 - 1), \ldots, \psi_n$ form an orthonormal basis for S.
- The best polynomial approximation of $f \in V$ by S is given by $\tilde{f}_n = \sum_k \langle f, \psi_k \rangle \psi_k$.

- Let $V = C[0, 2\pi]$ and S be the space spanned by $\phi_0 = \frac{1}{\sqrt{2\pi}}, \phi_1 = \frac{\cos(x)}{\sqrt{\pi}}, \phi_2 = \frac{\sin(x)}{\sqrt{\pi}}, \dots, \phi_{2n}.$
- The best approximation of $f \in V$ by S is given by the projection $f_n = \sum_k \langle f, \phi_k \rangle \phi_k$ where $\langle f, \phi_k \rangle = \int_0^{2\pi} f \phi_k dx$. These numbers are called the Fourier coefficients of f.
- Let V = C[-1, 1] and S be the space spanned by $1, x, \ldots, x^n$. The normalised Legendre polynomials $\psi_0 = \frac{1}{\sqrt{2}}, \psi_1 = \frac{\sqrt{3}}{\sqrt{2}}x, \psi_2 = \frac{\sqrt{5}}{2\sqrt{2}}(3x^2 - 1), \ldots, \psi_n$ form an orthonormal basis for S.
- The best polynomial approximation of $f \in V$ by S is given by $\tilde{f}_n = \sum_k \langle f, \psi_k \rangle \psi_k$. For instance, if $f(x) = \sin(\pi x)$, then $\langle f, \psi_0 \rangle = 0$, $\langle f, \psi_1 \rangle = \frac{2\sqrt{3}}{\pi\sqrt{2}}$, $\langle f, \psi_2 \rangle = 0$.

æ

Э

Suppose a dependent variable (like the price of a house) y depends linearly on an independent variable (like the area) x as y = mx + c.

- Suppose a dependent variable (like the price of a house) y depends linearly on an independent variable (like the area) x as y = mx + c.
- Unfortunately, in real life, if one collects data points $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$, they will not all lie on a line!

- Suppose a dependent variable (like the price of a house) y depends linearly on an independent variable (like the area) x as y = mx + c.
- Unfortunately, in real life, if one collects data points $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$, they will not all lie on a line!
- We want to find those m, c such that the corresponding line is the "best fit", i.e., $\sum_{i}(y_i mx_i c)^2$ is the smallest possible.

- Suppose a dependent variable (like the price of a house) y depends linearly on an independent variable (like the area) x as y = mx + c.
- Unfortunately, in real life, if one collects data points $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$, they will not all lie on a line!
- We want to find those m, c such that the corresponding line is the "best fit", i.e., $\sum_{i}(y_i mx_i c)^2$ is the smallest possible.
- Note that if we consider the subspace in ℝⁿ spanned by the vectors (x₁,...,x_n) and (1,1,...,1),

9/10

- Suppose a dependent variable (like the price of a house) y depends linearly on an independent variable (like the area) x as y = mx + c.
- Unfortunately, in real life, if one collects data points $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$, they will not all lie on a line!
- We want to find those m, c such that the corresponding line is the "best fit", i.e., $\sum_{i} (y_i mx_i c)^2$ is the smallest possible.
- Note that if we consider the subspace in ℝⁿ spanned by the vectors (x₁,...,x_n) and (1,1,...,1), we essentially want the vector s lying in this space that is the best approximation of the vector (y₁, y₂,..., y_n).

- Suppose a dependent variable (like the price of a house) y depends linearly on an independent variable (like the area) x as y = mx + c.
- Unfortunately, in real life, if one collects data points $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$, they will not all lie on a line!
- We want to find those m, c such that the corresponding line is the "best fit", i.e., $\sum_{i}(y_i mx_i c)^2$ is the smallest possible.
- Note that if we consider the subspace in \mathbb{R}^n spanned by the vectors (x_1, \ldots, x_n) and $(1, 1, \ldots, 1)$, we essentially want the vector *s* lying in this space that is the best approximation of the vector (y_1, y_2, \ldots, y_n) . We can calculate *m*, *c* using the formulae directly, or

- Suppose a dependent variable (like the price of a house) y depends linearly on an independent variable (like the area) x as y = mx + c.
- Unfortunately, in real life, if one collects data points $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$, they will not all lie on a line!
- We want to find those m, c such that the corresponding line is the "best fit", i.e., $\sum_{i} (y_i mx_i c)^2$ is the smallest possible.
- Note that if we consider the subspace in ℝⁿ spanned by the vectors (x₁,...,x_n) and (1,1,...,1), we essentially want the vector s lying in this space that is the best approximation of the vector (y₁, y₂,..., y_n). We can calculate m, c using the formulae directly, or using the equations (Y Xβ)^TX = 0 where Y is the column vector of y_i,
- Suppose a dependent variable (like the price of a house) y depends linearly on an independent variable (like the area) x as y = mx + c.
- Unfortunately, in real life, if one collects data points $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$, they will not all lie on a line!
- We want to find those m, c such that the corresponding line is the "best fit", i.e., $\sum_{i}(y_i mx_i c)^2$ is the smallest possible.
- Note that if we consider the subspace in \mathbb{R}^n spanned by the vectors (x_1, \ldots, x_n) and $(1, 1, \ldots, 1)$, we essentially want the vector *s* lying in this space that is the best approximation of the vector (y_1, y_2, \ldots, y_n) . We can calculate *m*, *c* using the formulae directly, or using the equations $(Y X\beta)^T X = 0$ where *Y* is the column vector of y_i , *X* is the $n \times 2$ matrix whose first column is *x* and the second column is $(1, 1, \ldots)$, and $\beta = \begin{bmatrix} m \\ 1 \end{bmatrix}$.

æ

Э

• It is of course possible for the equations to have infinitely many solutions! (

• It is of course possible for the equations to have infinitely many solutions! (This phenomenon is called overfitting.)

- It is of course possible for the equations to have infinitely many solutions! (This phenomenon is called overfitting.)
- More generally, if $y = m_1 x_1 + m_2 x_2 + \ldots + m_k x_k + c$, then the "data matrix" X is

- It is of course possible for the equations to have infinitely many solutions! (This phenomenon is called overfitting.)
- More generally, if y = m₁x₁ + m₂x₂ + ... + m_kx_k + c, then the "data matrix" X is an n × (k + 1) matrix, and the "slopes vector" β is a (k + 1)-vector.

- It is of course possible for the equations to have infinitely many solutions! (This phenomenon is called overfitting.)
- More generally, if y = m₁x₁ + m₂x₂ + ... + m_kx_k + c, then the "data matrix" X is an n × (k + 1) matrix, and the "slopes vector" β is a (k + 1)-vector.
- Even then, the principle is to project y onto the "column space", i.e.,

- It is of course possible for the equations to have infinitely many solutions! (This phenomenon is called overfitting.)
- More generally, if y = m₁x₁ + m₂x₂ + ... + m_kx_k + c, then the "data matrix" X is an n × (k + 1) matrix, and the "slopes vector" β is a (k + 1)-vector.
- Even then, the principle is to project y onto the "column space", i.e., the subspace of ℝⁿ generated by the columns of X.

10/10

- It is of course possible for the equations to have infinitely many solutions! (This phenomenon is called overfitting.)
- More generally, if y = m₁x₁ + m₂x₂ + ... + m_kx_k + c, then the "data matrix" X is an n × (k + 1) matrix, and the "slopes vector" β is a (k + 1)-vector.
- Even then, the principle is to project y onto the "column space", i.e., the subspace of \mathbb{R}^n generated by the columns of X. Alternatively, $(Y X\beta)^T X = 0$.

10/10

- It is of course possible for the equations to have infinitely many solutions! (This phenomenon is called overfitting.)
- More generally, if y = m₁x₁ + m₂x₂ + ... + m_kx_k + c, then the "data matrix" X is an n × (k + 1) matrix, and the "slopes vector" β is a (k + 1)-vector.
- Even then, the principle is to project y onto the "column space", i.e., the subspace of \mathbb{R}^n generated by the columns of X. Alternatively, $(Y X\beta)^T X = 0$. These equations are called *normal equations*.

10/10

- It is of course possible for the equations to have infinitely many solutions! (This phenomenon is called overfitting.)
- More generally, if y = m₁x₁ + m₂x₂ + ... + m_kx_k + c, then the "data matrix" X is an n × (k + 1) matrix, and the "slopes vector" β is a (k + 1)-vector.
- Even then, the principle is to project y onto the "column space", i.e., the subspace of \mathbb{R}^n generated by the columns of X. Alternatively, $(Y X\beta)^T X = 0$. These equations are called *normal equations*. This procedure is called *linear regression*.

- It is of course possible for the equations to have infinitely many solutions! (This phenomenon is called overfitting.)
- More generally, if y = m₁x₁ + m₂x₂ + ... + m_kx_k + c, then the "data matrix" X is an n × (k + 1) matrix, and the "slopes vector" β is a (k + 1)-vector.
- Even then, the principle is to project y onto the "column space", i.e., the subspace of \mathbb{R}^n generated by the columns of X. Alternatively, $(Y X\beta)^T X = 0$. These equations are called *normal equations*. This procedure is called *linear regression*.
- By the way, if you want to fit polynomials, you can do exactly the same thing by the trick of introducing new variables ! $(x_1 = x, x_2 = x^2, ...).$