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Recap

Defined orthogonality and proved that non-zero orthogonal
elements are linearly independent.

Proved Parseval’s formula.

Gram-Schmidt orthogonalisation procedure.
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Orthogonal complement

Let S ⊆ V be a subset of an inner product space. An element
v ∈ V is said to be orthogonal to S if it is so to every element
of S . The set of all v orthogonal to S is denoted as S⊥.

S⊥ is always a subspace regardless of whether S is or not
(HW). When S is a subspace, S⊥ is called the orthogonal
complement of S .

Examples :

The perpendicular subspace to the set {(1, 1), (1, 2)} in R2

with the usual inner product is {(0, 0)}. Indeed,
(a, b).(1, 1) = a + b = 0 and (a, b).(1, 2) = a + 2b = 0 imply
that a = b = 0.
Given a line t(1, 2, 3) in R3, its orthogonal complement is a
plane: 0 = (x , y , z).(1, 2, 3) = x + 2y + 3z .
The continuous functions orthogonal to 1 with the integration
inner product on [0, 1] are the ones with zero average.

Vamsi Pritham Pingali Lecture 5 3/10



Orthogonal complement

Let S ⊆ V be a subset of an inner product space.

An element
v ∈ V is said to be orthogonal to S if it is so to every element
of S . The set of all v orthogonal to S is denoted as S⊥.

S⊥ is always a subspace regardless of whether S is or not
(HW). When S is a subspace, S⊥ is called the orthogonal
complement of S .

Examples :

The perpendicular subspace to the set {(1, 1), (1, 2)} in R2

with the usual inner product is {(0, 0)}. Indeed,
(a, b).(1, 1) = a + b = 0 and (a, b).(1, 2) = a + 2b = 0 imply
that a = b = 0.
Given a line t(1, 2, 3) in R3, its orthogonal complement is a
plane: 0 = (x , y , z).(1, 2, 3) = x + 2y + 3z .
The continuous functions orthogonal to 1 with the integration
inner product on [0, 1] are the ones with zero average.

Vamsi Pritham Pingali Lecture 5 3/10



Orthogonal complement

Let S ⊆ V be a subset of an inner product space. An element
v ∈ V is said to be orthogonal to S if

it is so to every element
of S . The set of all v orthogonal to S is denoted as S⊥.

S⊥ is always a subspace regardless of whether S is or not
(HW). When S is a subspace, S⊥ is called the orthogonal
complement of S .

Examples :

The perpendicular subspace to the set {(1, 1), (1, 2)} in R2

with the usual inner product is {(0, 0)}. Indeed,
(a, b).(1, 1) = a + b = 0 and (a, b).(1, 2) = a + 2b = 0 imply
that a = b = 0.
Given a line t(1, 2, 3) in R3, its orthogonal complement is a
plane: 0 = (x , y , z).(1, 2, 3) = x + 2y + 3z .
The continuous functions orthogonal to 1 with the integration
inner product on [0, 1] are the ones with zero average.

Vamsi Pritham Pingali Lecture 5 3/10



Orthogonal complement

Let S ⊆ V be a subset of an inner product space. An element
v ∈ V is said to be orthogonal to S if it is so to every element
of S .

The set of all v orthogonal to S is denoted as S⊥.

S⊥ is always a subspace regardless of whether S is or not
(HW). When S is a subspace, S⊥ is called the orthogonal
complement of S .

Examples :

The perpendicular subspace to the set {(1, 1), (1, 2)} in R2

with the usual inner product is {(0, 0)}. Indeed,
(a, b).(1, 1) = a + b = 0 and (a, b).(1, 2) = a + 2b = 0 imply
that a = b = 0.
Given a line t(1, 2, 3) in R3, its orthogonal complement is a
plane: 0 = (x , y , z).(1, 2, 3) = x + 2y + 3z .
The continuous functions orthogonal to 1 with the integration
inner product on [0, 1] are the ones with zero average.

Vamsi Pritham Pingali Lecture 5 3/10



Orthogonal complement

Let S ⊆ V be a subset of an inner product space. An element
v ∈ V is said to be orthogonal to S if it is so to every element
of S . The set of all v orthogonal to S is denoted as S⊥.

S⊥ is always a subspace regardless of whether S is or not
(HW). When S is a subspace, S⊥ is called the orthogonal
complement of S .

Examples :

The perpendicular subspace to the set {(1, 1), (1, 2)} in R2

with the usual inner product is {(0, 0)}. Indeed,
(a, b).(1, 1) = a + b = 0 and (a, b).(1, 2) = a + 2b = 0 imply
that a = b = 0.
Given a line t(1, 2, 3) in R3, its orthogonal complement is a
plane: 0 = (x , y , z).(1, 2, 3) = x + 2y + 3z .
The continuous functions orthogonal to 1 with the integration
inner product on [0, 1] are the ones with zero average.

Vamsi Pritham Pingali Lecture 5 3/10



Orthogonal complement

Let S ⊆ V be a subset of an inner product space. An element
v ∈ V is said to be orthogonal to S if it is so to every element
of S . The set of all v orthogonal to S is denoted as S⊥.

S⊥ is always a subspace regardless of whether S is or not
(HW).

When S is a subspace, S⊥ is called the orthogonal
complement of S .

Examples :

The perpendicular subspace to the set {(1, 1), (1, 2)} in R2

with the usual inner product is {(0, 0)}. Indeed,
(a, b).(1, 1) = a + b = 0 and (a, b).(1, 2) = a + 2b = 0 imply
that a = b = 0.
Given a line t(1, 2, 3) in R3, its orthogonal complement is a
plane: 0 = (x , y , z).(1, 2, 3) = x + 2y + 3z .
The continuous functions orthogonal to 1 with the integration
inner product on [0, 1] are the ones with zero average.

Vamsi Pritham Pingali Lecture 5 3/10



Orthogonal complement

Let S ⊆ V be a subset of an inner product space. An element
v ∈ V is said to be orthogonal to S if it is so to every element
of S . The set of all v orthogonal to S is denoted as S⊥.

S⊥ is always a subspace regardless of whether S is or not
(HW). When S is a subspace, S⊥ is called the orthogonal
complement of S .

Examples :

The perpendicular subspace to the set {(1, 1), (1, 2)} in R2

with the usual inner product is {(0, 0)}. Indeed,
(a, b).(1, 1) = a + b = 0 and (a, b).(1, 2) = a + 2b = 0 imply
that a = b = 0.
Given a line t(1, 2, 3) in R3, its orthogonal complement is a
plane: 0 = (x , y , z).(1, 2, 3) = x + 2y + 3z .
The continuous functions orthogonal to 1 with the integration
inner product on [0, 1] are the ones with zero average.

Vamsi Pritham Pingali Lecture 5 3/10



Orthogonal complement

Let S ⊆ V be a subset of an inner product space. An element
v ∈ V is said to be orthogonal to S if it is so to every element
of S . The set of all v orthogonal to S is denoted as S⊥.

S⊥ is always a subspace regardless of whether S is or not
(HW). When S is a subspace, S⊥ is called the orthogonal
complement of S .

Examples :

The perpendicular subspace to the set {(1, 1), (1, 2)} in R2

with the usual inner product is {(0, 0)}. Indeed,
(a, b).(1, 1) = a + b = 0 and (a, b).(1, 2) = a + 2b = 0 imply
that a = b = 0.
Given a line t(1, 2, 3) in R3, its orthogonal complement is a
plane: 0 = (x , y , z).(1, 2, 3) = x + 2y + 3z .
The continuous functions orthogonal to 1 with the integration
inner product on [0, 1] are the ones with zero average.

Vamsi Pritham Pingali Lecture 5 3/10



Orthogonal complement

Let S ⊆ V be a subset of an inner product space. An element
v ∈ V is said to be orthogonal to S if it is so to every element
of S . The set of all v orthogonal to S is denoted as S⊥.

S⊥ is always a subspace regardless of whether S is or not
(HW). When S is a subspace, S⊥ is called the orthogonal
complement of S .

Examples :

The perpendicular subspace to the set {(1, 1), (1, 2)} in R2

with the usual inner product is

{(0, 0)}. Indeed,
(a, b).(1, 1) = a + b = 0 and (a, b).(1, 2) = a + 2b = 0 imply
that a = b = 0.
Given a line t(1, 2, 3) in R3, its orthogonal complement is a
plane: 0 = (x , y , z).(1, 2, 3) = x + 2y + 3z .
The continuous functions orthogonal to 1 with the integration
inner product on [0, 1] are the ones with zero average.

Vamsi Pritham Pingali Lecture 5 3/10



Orthogonal complement

Let S ⊆ V be a subset of an inner product space. An element
v ∈ V is said to be orthogonal to S if it is so to every element
of S . The set of all v orthogonal to S is denoted as S⊥.

S⊥ is always a subspace regardless of whether S is or not
(HW). When S is a subspace, S⊥ is called the orthogonal
complement of S .

Examples :

The perpendicular subspace to the set {(1, 1), (1, 2)} in R2

with the usual inner product is {(0, 0)}.

Indeed,
(a, b).(1, 1) = a + b = 0 and (a, b).(1, 2) = a + 2b = 0 imply
that a = b = 0.
Given a line t(1, 2, 3) in R3, its orthogonal complement is a
plane: 0 = (x , y , z).(1, 2, 3) = x + 2y + 3z .
The continuous functions orthogonal to 1 with the integration
inner product on [0, 1] are the ones with zero average.

Vamsi Pritham Pingali Lecture 5 3/10



Orthogonal complement

Let S ⊆ V be a subset of an inner product space. An element
v ∈ V is said to be orthogonal to S if it is so to every element
of S . The set of all v orthogonal to S is denoted as S⊥.

S⊥ is always a subspace regardless of whether S is or not
(HW). When S is a subspace, S⊥ is called the orthogonal
complement of S .

Examples :

The perpendicular subspace to the set {(1, 1), (1, 2)} in R2

with the usual inner product is {(0, 0)}. Indeed,
(a, b).(1, 1) = a + b = 0 and (a, b).(1, 2) = a + 2b = 0 imply
that a = b = 0.

Given a line t(1, 2, 3) in R3, its orthogonal complement is a
plane: 0 = (x , y , z).(1, 2, 3) = x + 2y + 3z .
The continuous functions orthogonal to 1 with the integration
inner product on [0, 1] are the ones with zero average.

Vamsi Pritham Pingali Lecture 5 3/10



Orthogonal complement

Let S ⊆ V be a subset of an inner product space. An element
v ∈ V is said to be orthogonal to S if it is so to every element
of S . The set of all v orthogonal to S is denoted as S⊥.

S⊥ is always a subspace regardless of whether S is or not
(HW). When S is a subspace, S⊥ is called the orthogonal
complement of S .

Examples :

The perpendicular subspace to the set {(1, 1), (1, 2)} in R2

with the usual inner product is {(0, 0)}. Indeed,
(a, b).(1, 1) = a + b = 0 and (a, b).(1, 2) = a + 2b = 0 imply
that a = b = 0.
Given a line t(1, 2, 3) in R3,

its orthogonal complement is a
plane: 0 = (x , y , z).(1, 2, 3) = x + 2y + 3z .
The continuous functions orthogonal to 1 with the integration
inner product on [0, 1] are the ones with zero average.

Vamsi Pritham Pingali Lecture 5 3/10



Orthogonal complement

Let S ⊆ V be a subset of an inner product space. An element
v ∈ V is said to be orthogonal to S if it is so to every element
of S . The set of all v orthogonal to S is denoted as S⊥.

S⊥ is always a subspace regardless of whether S is or not
(HW). When S is a subspace, S⊥ is called the orthogonal
complement of S .

Examples :

The perpendicular subspace to the set {(1, 1), (1, 2)} in R2

with the usual inner product is {(0, 0)}. Indeed,
(a, b).(1, 1) = a + b = 0 and (a, b).(1, 2) = a + 2b = 0 imply
that a = b = 0.
Given a line t(1, 2, 3) in R3, its orthogonal complement is a
plane:

0 = (x , y , z).(1, 2, 3) = x + 2y + 3z .
The continuous functions orthogonal to 1 with the integration
inner product on [0, 1] are the ones with zero average.

Vamsi Pritham Pingali Lecture 5 3/10



Orthogonal complement

Let S ⊆ V be a subset of an inner product space. An element
v ∈ V is said to be orthogonal to S if it is so to every element
of S . The set of all v orthogonal to S is denoted as S⊥.

S⊥ is always a subspace regardless of whether S is or not
(HW). When S is a subspace, S⊥ is called the orthogonal
complement of S .

Examples :

The perpendicular subspace to the set {(1, 1), (1, 2)} in R2

with the usual inner product is {(0, 0)}. Indeed,
(a, b).(1, 1) = a + b = 0 and (a, b).(1, 2) = a + 2b = 0 imply
that a = b = 0.
Given a line t(1, 2, 3) in R3, its orthogonal complement is a
plane: 0 = (x , y , z).(1, 2, 3) = x + 2y + 3z .

The continuous functions orthogonal to 1 with the integration
inner product on [0, 1] are the ones with zero average.

Vamsi Pritham Pingali Lecture 5 3/10



Orthogonal complement

Let S ⊆ V be a subset of an inner product space. An element
v ∈ V is said to be orthogonal to S if it is so to every element
of S . The set of all v orthogonal to S is denoted as S⊥.

S⊥ is always a subspace regardless of whether S is or not
(HW). When S is a subspace, S⊥ is called the orthogonal
complement of S .

Examples :

The perpendicular subspace to the set {(1, 1), (1, 2)} in R2

with the usual inner product is {(0, 0)}. Indeed,
(a, b).(1, 1) = a + b = 0 and (a, b).(1, 2) = a + 2b = 0 imply
that a = b = 0.
Given a line t(1, 2, 3) in R3, its orthogonal complement is a
plane: 0 = (x , y , z).(1, 2, 3) = x + 2y + 3z .
The continuous functions orthogonal to 1 with the integration
inner product on [0, 1] are the ones with zero average.

Vamsi Pritham Pingali Lecture 5 3/10



Orthogonal decomposition

Recall how we used (1, 1) and (1, 2) to create orthogonal
vectors.

Motivated by this construction, we have a theorem: Let
(V , 〈, 〉) be an inner product space and S ⊆ V be a f.d.
subspace. Then every element x ∈ V can be represented
uniquely as a sum x = s + s⊥ where s ∈ S and s⊥ ∈ S⊥.
Moreover, ‖x‖2 = ‖s‖2 + ‖s⊥‖2.

Caveat: If S is not f.d., the above result is NOT true in
general!
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Orthogonal decomposition

Proof: Let e1, . . . , en be an orthonormal basis of S . Define
s =

∑
i 〈x , ei 〉ei . Clearly, s ∈ S . Let s1 ∈ S be an arbitrary

element. Then s1 =
∑

j cjej .
〈x − s, s1〉 =

∑
j c̄j〈x , ej〉 −

∑
j ,k c̄j〈x , ei 〉〈ei , ej〉. By

orthonormality, the latter is
∑

j c̄j〈x , ej〉 −
∑

j c̄j〈x , ej〉 = 0.

Hence, s⊥ = x − s ∈ S⊥. If x = t + t⊥ = s + s⊥, then
t − s = s⊥ − t⊥ ∈ S ∩ S⊥ = {0}.
‖x‖2 = ‖s‖2 + ‖s⊥‖2 + 〈s, s⊥〉+ 〈s⊥, s〉 but 〈s, s⊥〉 = 0.

The element s =
∑

i 〈x , ei 〉ei is called the orthogonal
projection of x on the (f.d.) subspace S . It is basically the
“shadow” of x on S .
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The approximation problem

Consider the following questions:

What is the best way to approximate continuous functions
using sines and cosines ?
What is the best way to approximate continuous functions
using polynomials ?
If we plot the price of houses vs their area (in a particular
locality) what is the “best” estimate of price per square foot ?

These questions fall under the purview of the approximation
problem: Let V be an inner product space and S ⊆ V be a
f.d. subspace. Given an element x ∈ V , determine an element
s ∈ S whose distance from x is as small as possible.
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The approximation theorem

Let S ⊆ V be a f.d. subspace of an inner product space
(V , 〈, 〉) and let x ∈ V . Then if s is the projection of x on S ,
‖x − s‖ ≤ ‖x − t‖ for any t ∈ S . Equality holds if and only if
t = s.

Proof: Note that x = s + s⊥ and hence x − t = (s − t) + s⊥.
So ‖x − t‖2 = ‖s − t‖2 + ‖x − s‖2 ≥ ‖x − s‖2 with equality
holding if and only if s = t.
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Examples

Let V = C [0, 2π] and S be the space spanned by

φ0 = 1√
2π
, φ1 = cos(x)√

π
, φ2 = sin(x)√

π
, . . . , φ2n.

The best approximation of f ∈ V by S is given by the
projection fn =

∑
k〈f , φk〉φk where 〈f , φk〉 =

∫ 2π
0 f φkdx .

These numbers are called the Fourier coefficients of f .

Let V = C [−1, 1] and S be the space spanned by 1, x , . . . , xn.
The normalised Legendre polynomials

ψ0 = 1√
2
, ψ1 =

√
3√
2
x , ψ2 =

√
5

2
√
2

(3x2 − 1), . . . , ψn form an

orthonormal basis for S .

The best polynomial approximation of f ∈ V by S is given by
f̃n =

∑
k〈f , ψk〉ψk . For instance, if f (x) = sin(πx), then

〈f , ψ0〉 = 0, 〈f , ψ1〉 = 2
√
3

π
√
2

, 〈f , ψ2〉 = 0.
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Let V = C [−1, 1] and S be the space spanned by 1, x , . . . , xn.
The normalised Legendre polynomials

ψ0 = 1√
2
, ψ1 =

√
3√
2
x , ψ2 =

√
5

2
√
2

(3x2 − 1), . . . , ψn form an

orthonormal basis for S .

The best polynomial approximation of f ∈ V by S is given by
f̃n =

∑
k〈f , ψk〉ψk .

For instance, if f (x) = sin(πx), then

〈f , ψ0〉 = 0, 〈f , ψ1〉 = 2
√
3

π
√
2

, 〈f , ψ2〉 = 0.
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Least squares fit

Suppose a dependent variable (like the price of a house) y
depends linearly on an independent variable (like the area) x
as y = mx + c.

Unfortunately, in real life, if one collects data points
(x1, y1), (x2, y2), . . . , (xn, yn), they will not all lie on a line!

We want to find those m, c such that the corresponding line is
the “best fit”, i.e.,

∑
i (yi −mxi − c)2 is the smallest possible.

Note that if we consider the subspace in Rn spanned by the
vectors (x1, . . . , xn) and (1, 1, . . . , 1), we essentially want the
vector s lying in this space that is the best approximation of
the vector (y1, y2, . . . , yn). We can calculate m, c using the
formulae directly, or using the equations (Y − Xβ)TX = 0
where Y is the column vector of yi , X is the n × 2 matrix
whose first column is x and the second column is (1, 1, . . .),

and β =

[
m
1

]
.
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Least squares fit

It is of course possible for the equations to have infinitely
many solutions! (This phenomenon is called overfitting.)

More generally, if y = m1x1 + m2x2 + . . .+ mkxk + c , then
the “data matrix” X is an n× (k + 1) matrix, and the “slopes
vector” β is a (k + 1)-vector.

Even then, the principle is to project y onto the “column
space”, i.e., the subspace of Rn generated by the columns of
X . Alternatively, (Y − Xβ)TX = 0. These equations are
called normal equations. This procedure is called linear
regression.

By the way, if you want to fit polynomials, you can do exactly
the same thing by the trick of introducing new variables !
(x1 = x , x2 = x2, . . .).
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