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@ Defined orthogonality and proved that non-zero orthogonal
elements are linearly independent.
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@ Defined orthogonality and proved that non-zero orthogonal
elements are linearly independent.

@ Proved Parseval's formula.

@ Gram-Schmidt orthogonalisation procedure.
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Orthogonal complement

@ Let S C V be a subset of an inner product space. An element
v € V is said to be orthogonal to S if it is so to every element
of S. The set of all v orthogonal to S is denoted as S+.

e St is always a subspace regardless of whether S is or not
(HW).
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@ Let S C V be a subset of an inner product space. An element
v € V is said to be orthogonal to S if it is so to every element
of S. The set of all v orthogonal to S is denoted as S+.

e St is always a subspace regardless of whether S is or not
(HW). When S is a subspace, S+ is called the orthogonal
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@ Examples :

o The perpendicular subspace to the set {(1,1),(1,2)} in R?
with the usual inner product is {(0, 0)}.
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Orthogonal complement

@ Let S C V be a subset of an inner product space. An element
v € V is said to be orthogonal to S if it is so to every element
of S. The set of all v orthogonal to S is denoted as S+.

e St is always a subspace regardless of whether S is or not
(HW). When S is a subspace, S+ is called the orthogonal
complement of S.

@ Examples :

o The perpendicular subspace to the set {(1,1),(1,2)} in R?
with the usual inner product is {(0,0)}. Indeed,
(a,b).(1,1) =a+ b=0and (a,b).(1,2) = a+2b=0 imply
that a=b=0.

Vamsi Pritham Pingali Lecture 5 3/10



Orthogonal complement

@ Let S C V be a subset of an inner product space. An element
v € V is said to be orthogonal to S if it is so to every element
of S. The set of all v orthogonal to S is denoted as S+.

e St is always a subspace regardless of whether S is or not
(HW). When S is a subspace, S+ is called the orthogonal
complement of S.

@ Examples :

o The perpendicular subspace to the set {(1,1),(1,2)} in R?
with the usual inner product is {(0,0)}. Indeed,
(a,b).(1,1) =a+ b=0and (a,b).(1,2) = a+2b=0 imply
that a=b=0.

o Given a line t(1,2,3) in R3,

Vamsi Pritham Pingali Lecture 5 3/10
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@ Let S C V be a subset of an inner product space. An element
v € V is said to be orthogonal to S if it is so to every element
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plane:

Vamsi Pritham Pingali Lecture 5 3/10



Orthogonal complement

@ Let S C V be a subset of an inner product space. An element
v € V is said to be orthogonal to S if it is so to every element
of S. The set of all v orthogonal to S is denoted as S+.

e St is always a subspace regardless of whether S is or not
(HW). When S is a subspace, S+ is called the orthogonal
complement of S.

@ Examples :

o The perpendicular subspace to the set {(1,1),(1,2)} in R?
with the usual inner product is {(0,0)}. Indeed,
(a,b).(1,1) =a+ b=0and (a,b).(1,2) = a+2b=0 imply
that a=b=0.

e Given a line t(1,2,3) in R3, its orthogonal complement is a
plane: 0 = (x,y,2).(1,2,3) = x4+ 2y + 3z.
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Orthogonal complement

@ Let S C V be a subset of an inner product space. An element
v € V is said to be orthogonal to S if it is so to every element
of S. The set of all v orthogonal to S is denoted as S+.

e St is always a subspace regardless of whether S is or not
(HW). When S is a subspace, S+ is called the orthogonal
complement of S.

@ Examples :

o The perpendicular subspace to the set {(1,1),(1,2)} in R?
with the usual inner product is {(0,0)}. Indeed,
(a,b).(1,1) =a+ b=0and (a,b).(1,2) = a+2b=0 imply
that a=b=0.

e Given a line t(1,2,3) in R3, its orthogonal complement is a
plane: 0 = (x,y,2).(1,2,3) = x4+ 2y + 3z.

e The continuous functions orthogonal to 1 with the integration
inner product on [0, 1] are the ones with zero average.
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Orthogonal decomposition

@ Recall how we used (1,1) and (1,2) to create orthogonal
vectors.
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vectors.

@ Motivated by this construction, we have a theorem: Let
(V,{(,)) be an inner product space and S C V be a f.d.
subspace. Then every element x € V can be represented
uniquely as a sum x = s + s~ where s € S and s+ € St
Moreover, ||x||? = ||s||> + ||s*||>.
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Orthogonal decomposition

@ Recall how we used (1,1) and (1,2) to create orthogonal
vectors.

@ Motivated by this construction, we have a theorem: Let
(V,{(,)) be an inner product space and S C V be a f.d.
subspace. Then every element x € V can be represented
uniquely as a sum x = s + s~ where s € S and s+ € St
Moreover, ||x||2 = ||s]|? + ||s*||>.

@ Caveat: If S is not f.d., the above result is NOT true in
general!
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Orthogonal decomposition

@ Proof: Let ey,..., e, be an orthonormal basis of S.
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Orthogonal decomposition

@ Proof: Let e1,...,e, be an orthonormal basis of S. Define

s=> :(x, ee;.
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Orthogonal decomposition

@ Proof: Let e1,...,e, be an orthonormal basis of S. Define
s=> ;(x,e)ej. Clearly, s € S.
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Orthogonal decomposition

@ Proof: Let ey,..., e, be an orthonormal basis of S. Define
s = :(x,e)e. Clearly, s € S. Let s; € S be an arbitrary
element. Then s; =3 ¢je;.
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Orthogonal decomposition

@ Proof: Let e1,...,e, be an orthonormal basis of S. Define
s = :(x,e)e. Clearly, s € S. Let s; € S be an arbitrary
element. Then s1 =3 ¢je;.

(x —s,51) =2, Gi(x, ) — >, G{x, ei)(ei, &)
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Orthogonal decomposition

@ Proof: Let e1,...,e, be an orthonormal basis of S. Define
s = :(x,e)e. Clearly, s € S. Let s; € S be an arbitrary
element. Then s1 =3 ¢je;.

(x —s,51) =22 Gi(x, ) — X « G{x, ei){ei, ). By
orthonormality, the latter is 3, Gj(x, &) — >, Gi(x, &) = 0.
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Orthogonal decomposition

@ Proof: Let e1,...,e, be an orthonormal basis of S. Define
s = :(x,e)e. Clearly, s € S. Let s; € S be an arbitrary
element. Then s1 =3 ¢je;.

(x—s,51) = Zj EJ'<X7 ej> - Zj,k EJ'<X7 ei){ei, ej>- By
orthonormality, the latter is 3, Gj(x, &) — >, Gi(x, &) = 0.
Hence, s* = x —s € S*.
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Orthogonal decomposition

@ Proof: Let e1,...,e, be an orthonormal basis of S. Define
s = :(x,e)e. Clearly, s € S. Let s; € S be an arbitrary
element. Then s1 =3 ¢je;.

(x —s,51) =22 Gi(x, ) — X « G{x, ei){ei, ). By
orthonormality, the latter is 3, Gj(x, &) — >, Gi(x, &) = 0.
Hence, st =x—se€ St If x=t+t+ =s+st, then
t—s=st—tteSnSt={0}.
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Orthogonal decomposition

@ Proof: Let e1,...,e, be an orthonormal basis of S. Define
s = :(x,e)e. Clearly, s € S. Let s; € S be an arbitrary
element. Then s1 =3 ¢je;.

(x —s,51) =22 Gi(x, ) — X « G{x, ei){ei, ). By
orthonormality, the latter is 3, Gj(x, &) — >, Gi(x, &) = 0.
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Orthogonal decomposition

@ Proof: Let e1,...,e, be an orthonormal basis of S. Define
s = :(x,e)e. Clearly, s € S. Let s; € S be an arbitrary
element. Then s1 =3 ¢je;.

(x —s,51) =22 Gi(x, ) — X « G{x, ei){ei, ). By
orthonormality, the latter is 3, Gj(x, &) — >, Gi(x, &) = 0.
Hence, st =x—se€ St If x=t+t+ =s+st, then
t—s=st—tteSnSt={0}.

X[ = [Is[|* + [|s*[1? + (s, s%) + (s*, ) but (s,s*) = 0.

@ The element s = ) (x, j)¢; is called the orthogonal
projection of x on the (f.d.) subspace S.
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Orthogonal decomposition

@ Proof: Let e1,...,e, be an orthonormal basis of S. Define
s = :(x,e)e. Clearly, s € S. Let s; € S be an arbitrary
element. Then s1 =3 ¢je;.

(x —s,51) =22 Gi(x, ) — X « G{x, ei){ei, ). By
orthonormality, the latter is 3, Gj(x, &) — >, Gi(x, &) = 0.
Hence, st =x —se S+. If x =t + t+ = s+ s+, then
t—s=st—tteSnSt={0}.

X[ = [Is[|* + [|s*[1? + (s, s%) + (s*, ) but (s,s*) = 0.

@ The element s = ) (x, j)¢; is called the orthogonal
projection of x on the (f.d.) subspace S. It is basically the
“shadow” of x on §S.
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The approximation problem

o Consider the following questions:

o What is the best way to approximate continuous functions
using sines and cosines 7

o What is the best way to approximate continuous functions
using polynomials ?

o If we plot the price of houses vs their area (in a particular
locality) what is the “best” estimate of price per square foot ?

@ These questions fall under the purview of the approximation
problem: Let V be an inner product space and S C V be a
f.d. subspace. Given an element x € V, determine an element
s € S whose distance from x is as small as possible.
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The approximation theorem

@ Let S C V be a f.d. subspace of an inner product space
(V,(,)) and let x € V.

Vamsi Pritham Pingali Lecture 5 7/10



The approximation theorem

@ Let S C V be a f.d. subspace of an inner product space
(V,(,)) and let x € V. Then if s is the projection of x on S,

Vamsi Pritham Pingali Lecture 5 7/10



The approximation theorem

@ Let S C V be a f.d. subspace of an inner product space
(V,(,)) and let x € V. Then if s is the projection of x on S,
Ix —s|| < ||x —t|| forany t € S.
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The approximation theorem

@ Let S C V be a f.d. subspace of an inner product space
(V,(,)) and let x € V. Then if s is the projection of x on S,
|Ix —s|| < ||x — t|| for any t € S. Equality holds if and only if
t=-s.
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The approximation theorem

@ Let S C V be a f.d. subspace of an inner product space
(V,(,)) and let x € V. Then if s is the projection of x on S,
|Ix —s|| < ||x — t|| for any t € S. Equality holds if and only if
t=-s.

@ Proof: Note that x = s+ s+ and hence x — t = (s — t) + s™.
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The approximation theorem

@ Let S C V be a f.d. subspace of an inner product space
(V,(,)) and let x € V. Then if s is the projection of x on S,
|Ix —s|| < ||x — t|| for any t € S. Equality holds if and only if
t=-s.

@ Proof: Note that x = s+ s+ and hence x — t = (s — t) + s™.
So [|x — t]|? = ||s — t]|> + ||[x — s]|* > ||x — s||* with equality
holding if and only if s = t.
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o Let V= C[O 27| and S be the space spanned by
¢O— a¢ :COS(Xa¢ :¥>"-7¢2n
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e Let V = C[0,27] and S be the space spanned by
bo = b1 = cos(x br = sin x) bo
2 7 b} AR n-

@ The best apprOX|mat|on of f € V by S is given by the
projection f, = >, (f, i)k where (f, dy) = 027T fordx.
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projection f, = >, (f, i)k where (f, dy) = 027T fordx.
These numbers are called the Fourier coefficients of f.
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projection f, = >, (f, i)k where (f, dy) = 027T fordx.
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The normalised Legendre polynomials
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orthonormal baS|s for S.

Vamsi Pritham Pingali Lecture 5 8/10



e Let V = C[0,27] and S be the space spanned by
¢ 2 a¢ :COS(Xa¢ ZSInX)>"-7¢2n-
@ The best approximation of f € V by S is given by the

projection f, = >, (f, i)k where (f, dy) = OQW fordx.
These numbers are called the Fourier coefficients of f.

@ Let V = C[-1,1] and S be the space spanned by 1,x,...,x".
The normalised Legendre polynomials

¢0:%7¢1 ,¢2 (3x —1),...,%, form an
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° '[he best polynomial approximation of f € V by S is given by
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e Let V = C[0,27] and S be the space spanned by
¢ 2 a¢ :COS(Xa¢ ZSInX)>"-7¢2n-
@ The best approximation of f € V by S is given by the

projection f, = >, (f, i)k where (f, dy) = OQW fordx.
These numbers are called the Fourier coefficients of f.

@ Let V = C[-1,1] and S be the space spanned by 1,x,...,x".
The normalised Legendre ponnomiaIs

¢0:%7¢1 ,¢2 (3x —1),...,%, form an

orthonormal baS|s for S.

° '[he best polynomial approximation of f € V by S is given by
fn =2 (f, i)Yk For instance if f(x) = sin(7x), then
(fio) =0, (f,91) = < ,¥2) = 0.
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Least squares fit
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Least squares fit

@ Suppose a dependent variable (like the price of a house) y
depends linearly on an independent variable (like the area) x
as y = mx 4+ c.
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as y = mx 4+ c.

@ Unfortunately, in real life, if one collects data points
(x1,¥1), (x2,¥2), - .., (Xn, ¥n), they will not all lie on a line!
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@ Suppose a dependent variable (like the price of a house) y
depends linearly on an independent variable (like the area) x
as y = mx 4+ c.

@ Unfortunately, in real life, if one collects data points
(x1,¥1), (x2,¥2), - .., (Xn, ¥n), they will not all lie on a line!

@ We want to find those m, ¢ such that the corresponding line is
the “best fit", i.e., >_.(y; — mx; — c)? is the smallest possible.

Vamsi Pritham Pingali Lecture 5 9/10



Least squares fit

@ Suppose a dependent variable (like the price of a house) y
depends linearly on an independent variable (like the area) x
as y = mx 4+ c.

@ Unfortunately, in real life, if one collects data points
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@ Suppose a dependent variable (like the price of a house) y
depends linearly on an independent variable (like the area) x
as y = mx 4+ c.

@ Unfortunately, in real life, if one collects data points
(x1,¥1), (x2,¥2), - .., (Xn, ¥n), they will not all lie on a line!

@ We want to find those m, ¢ such that the corresponding line is
the “best fit", i.e., >_.(y; — mx; — c)? is the smallest possible.

@ Note that if we consider the subspace in R" spanned by the
vectors (x1,...,%,) and (1,1,...,1), we essentially want the
vector s lying in this space that is the best approximation of
the vector (y1,¥2,.--,Yn).
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depends linearly on an independent variable (like the area) x
as y = mx 4+ c.

@ Unfortunately, in real life, if one collects data points
(x1,¥1), (x2,¥2), - .., (Xn, ¥n), they will not all lie on a line!

@ We want to find those m, ¢ such that the corresponding line is
the “best fit", i.e., >_.(y; — mx; — c)? is the smallest possible.

@ Note that if we consider the subspace in R" spanned by the
vectors (x1,...,%,) and (1,1,...,1), we essentially want the
vector s lying in this space that is the best approximation of
the vector (y1,y2,...,¥n). We can calculate m, ¢ using the
formulae directly, or
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Least squares fit

@ Suppose a dependent variable (like the price of a house) y
depends linearly on an independent variable (like the area) x
as y = mx 4+ c.

@ Unfortunately, in real life, if one collects data points
(x1,¥1), (x2,¥2), - .., (Xn, ¥n), they will not all lie on a line!

@ We want to find those m, ¢ such that the corresponding line is
the “best fit", i.e., >_.(y; — mx; — c)? is the smallest possible.

@ Note that if we consider the subspace in R" spanned by the
vectors (x1,...,%,) and (1,1,...,1), we essentially want the
vector s lying in this space that is the best approximation of
the vector (y1,y2,...,¥n). We can calculate m, ¢ using the
formulae directly, or using the equations (Y — X3)TX =0
where Y is the column vector of y;,
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@ Suppose a dependent variable (like the price of a house) y
depends linearly on an independent variable (like the area) x
as y = mx 4+ c.

@ Unfortunately, in real life, if one collects data points
(x1,¥1), (x2,¥2), - .., (Xn, ¥n), they will not all lie on a line!

@ We want to find those m, ¢ such that the corresponding line is
the “best fit", i.e., >_.(y; — mx; — c)? is the smallest possible.

@ Note that if we consider the subspace in R" spanned by the
vectors (x1,...,%,) and (1,1,...,1), we essentially want the
vector s lying in this space that is the best approximation of
the vector (y1,y2,...,¥n). We can calculate m, ¢ using the
formulae directly, or using the equations (Y — X3)TX =0
where Y is the column vector of y;, X is the n x 2 matrix
whose first column is x and the second column is (1,1,...),

andﬁ:[T].

Vamsi Pritham Pingali Lecture 5 9/10



Least squares fit

Vamsi Pritham Pingali Lecture 5 10/10



Least squares fit

@ It is of course possible for the equations to have infinitely
many solutions! (

Vamsi Pritham Pingali Lecture 5 10/10



Least squares fit

@ It is of course possible for the equations to have infinitely
many solutions! (This phenomenon is called overfitting.)

Vamsi Pritham Pingali Lecture 5 10/10



Least squares fit

@ It is of course possible for the equations to have infinitely
many solutions! (This phenomenon is called overfitting.)

@ More generally, if y = mixy + maxo + ...+ mgxi + ¢, then
the “data matrix” X is

Vamsi Pritham Pingali Lecture 5 10/10



Least squares fit

@ It is of course possible for the equations to have infinitely
many solutions! (This phenomenon is called overfitting.)

@ More generally, if y = mixy + maxo + ...+ mgxi + ¢, then
the “data matrix” X is an n x (k + 1) matrix, and the “slopes
vector” [ is a (k + 1)-vector.

Vamsi Pritham Pingali Lecture 5 10/10



Least squares fit

@ It is of course possible for the equations to have infinitely
many solutions! (This phenomenon is called overfitting.)

@ More generally, if y = mixy + maxo + ...+ mgxi + ¢, then
the “data matrix” X is an n x (k + 1) matrix, and the “slopes
vector” [ is a (k + 1)-vector.

@ Even then, the principle is to project y onto the “column
space’, i.e.,

Vamsi Pritham Pingali Lecture 5 10/10



Least squares fit

@ It is of course possible for the equations to have infinitely
many solutions! (This phenomenon is called overfitting.)

@ More generally, if y = mixy + maxo + ...+ mgxi + ¢, then
the “data matrix” X is an n x (k + 1) matrix, and the “slopes
vector” [ is a (k + 1)-vector.

@ Even then, the principle is to project y onto the “column
space”, i.e., the subspace of R" generated by the columns of
X.

Vamsi Pritham Pingali Lecture 5 10/10



Least squares fit

@ It is of course possible for the equations to have infinitely
many solutions! (This phenomenon is called overfitting.)

@ More generally, if y = mixy + maxo + ...+ mgxi + ¢, then
the “data matrix” X is an n x (k + 1) matrix, and the “slopes
vector” [ is a (k + 1)-vector.

@ Even then, the principle is to project y onto the “column
space”, i.e., the subspace of R" generated by the columns of
X. Alternatively, (Y — XB8)"X =0.

Vamsi Pritham Pingali Lecture 5 10/10



Least squares fit

@ It is of course possible for the equations to have infinitely
many solutions! (This phenomenon is called overfitting.)

@ More generally, if y = mixy + maxo + ...+ mgxi + ¢, then
the “data matrix” X is an n x (k + 1) matrix, and the “slopes
vector” [ is a (k + 1)-vector.

@ Even then, the principle is to project y onto the “column
space”, i.e., the subspace of R" generated by the columns of
X. Alternatively, (Y — X3)T X = 0. These equations are
called normal equations.

Vamsi Pritham Pingali Lecture 5 10/10



Least squares fit

@ It is of course possible for the equations to have infinitely
many solutions! (This phenomenon is called overfitting.)

@ More generally, if y = mixy + maxo + ...+ mgxi + ¢, then
the “data matrix” X is an n x (k + 1) matrix, and the “slopes
vector” [ is a (k + 1)-vector.

@ Even then, the principle is to project y onto the “column
space”, i.e., the subspace of R" generated by the columns of
X. Alternatively, (Y — X3)T X = 0. These equations are
called normal equations. This procedure is called linear
regression.

Vamsi Pritham Pingali Lecture 5 10/10



Least squares fit

@ It is of course possible for the equations to have infinitely
many solutions! (This phenomenon is called overfitting.)

@ More generally, if y = mixy + maxo + ...+ mgxi + ¢, then
the “data matrix” X is an n x (k + 1) matrix, and the “slopes
vector” [ is a (k + 1)-vector.

@ Even then, the principle is to project y onto the “column
space”, i.e., the subspace of R" generated by the columns of
X. Alternatively, (Y — X3)T X = 0. These equations are
called normal equations. This procedure is called linear
regression.

@ By the way, if you want to fit polynomials, you can do exactly
the same thing by the trick of introducing new variables !

(x1 = x, %2 = x2,...).
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