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Recap

Defined orthogonal complements and proved the orthogonal
decomposition theorem.

Stated and solved the approximation problem.

Gave three examples of applications of the approximation
problem (including least squares (which is optional, don’t
worry too much about it)).
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Inverses

Recall that our aim was to solve linear equations. In other
words, we wanted to solve an inverse problem.

We shall study some generalities about inverse functions, and
then specialise to inverses of linear maps.

Given two sets V ,W and a onto function T : V →W A left
inverse L : W → V is one that satisfies L(T (x)) = x , i.e.,
LT = IV . A right inverse R : W → V satisfies T (R(x)) = x ,
i.e., TR = IW .

These are not mindless definitions. For instance, consider
V = {1, 2} and W = {0}. Define T : V →W as
T (1) = T (2) = 0. So define R1,R2 : W → V as R1(0) = 1
and R2(0) = 2. These are right inverses. However, if
L(T (1)) = 1, then L(0) = 1. That means L(T (2)) = 1.
Hence there is no left inverse in this example.
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Every onto function f : V →W has at least one right inverse.
Indeed, for every w ∈W there is some v ∈ V so that
f (v) = w . Define R(w) = v . Clearly f (R(w)) = f (v) = w .
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function T : V →W can have at most one left inverse. If L is
a left inverse of T then it is also a right inverse!

Proof: Suppose L1, L2 : W → V are left inverses. If
w = T (v), then L1(w) = v = L2(w). Hence L1 = L2 (the
onto assumption plays a role).
T (L(w)) = T (L(T (v))) = T (v) = w . Hence L is also a right
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Moreover, if a left inverse exists, the right inverse is THE left
inverse, i.e., the right inverse is unique. (Indeed,
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Inverses

An onto function T : V →W has a left inverse if and only if
it is 1− 1 (HW).

A one-onto onto function has a unique left inverse (which we
know is also a right inverse). Such a T is called invertible and
its (left or right) inverse is denoted as T−1.
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Inverses of linear maps

Let V ,W be vector spaces over the same field. Let
T : V →W be an onto linear map. Then TFAE.

T is 1− 1.
T is invertible and the inverse T−1 is linear.
∀x ∈ V , T (x) = 0 if and only if x = 0.

Proof: We prove that a⇒ b ⇒ c ⇒ a.

a⇒ b: We already know that T−1 exists. Let
T−1(av + bw) = c . So T (c) = av + bw which is
T (c) = aT (T−1v) + bT (T−1w) = T (aT−1v + bT−1w).
Since T is 1− 1, c = aT−1v + bT−1w .
b ⇒ c : If T (x) = 0, then x = T−1T (x) = 0.
c ⇒ a: If T (v) = T (w), T (v − w) = 0 and hence v = w .
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In finite dimensions

Let V be f.d with dim(V ) = n and T : V →W is an onto
linear map. Then TFAE (HW):

T is 1− 1.
If e1, . . . , ep are linearly independent in V , then
T (e1), . . . ,T (ep) are so in W .
dim(W ) = n.
If e1, . . . , en is a basis for V , then T (e1), . . . ,T (en) is so for
W .
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Linear equations

Recall that linear systems of equations like
2x + 3y + z = 20, x + y − z = π can be written using

matrices as AX = b where A =

[
2 3 1
1 1 −1

]
, X =

 x
y
z

,

and b =

[
20
π

]
.

More generally,
∑

j Aijxj = bi , i.e., AX = b represents a
system of linear equations. The matrix A is called the
coefficient matrix. As mentioned earlier, systems can fail to
have solutions or even have infinitely many solutions.

If b = 0, then the system AX = 0 is called a homogeneous
system.

Recall that if AX0 = b, then any other solution to AX = b is
of the form X = X0 + N where AN = 0. So it suffices to solve
AN = 0 and find a single solution to AX = b.
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coefficient matrix. As mentioned earlier, systems can fail to
have solutions or even have infinitely many solutions.

If b = 0, then the system AX = 0 is called a homogeneous
system.

Recall that if AX0 = b, then any other solution to AX = b is

of the form X = X0 + N where AN = 0. So it suffices to solve
AN = 0 and find a single solution to AX = b.
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Solving linear equations

So how does one solve linear equations?

One is allowed to

Interchange equations.
Multiply both sides of an equation by a nonzero scalar.
Add one equation to a multiple of another.

The high-school idea is to eliminate a few variables and solve
for the rest by “back-substitution”.

This idea was formalised and used to great effect by Gauss
and Jordan.
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Gauss-Jordan elimination

Firstly, in the example above the variables x , y , z are
distractions. After all, we only care about manipulating the
coefficients.

So we define the augmented matrix [A|b] by simply adding b
as a column to A.

Notice that the three “legal” operations alluded to above are:

Interchanging the rows of [A|b]. (Each row corresponds to an
equation.)
Multiply any row by a nonzero scalar.
Add a row to a multiple of another.

These operations are called elementary row operations.

Vamsi Pritham Pingali Lecture 6 10/11



Gauss-Jordan elimination

Firstly,

in the example above the variables x , y , z are
distractions. After all, we only care about manipulating the
coefficients.

So we define the augmented matrix [A|b] by simply adding b
as a column to A.

Notice that the three “legal” operations alluded to above are:

Interchanging the rows of [A|b]. (Each row corresponds to an
equation.)
Multiply any row by a nonzero scalar.
Add a row to a multiple of another.

These operations are called elementary row operations.

Vamsi Pritham Pingali Lecture 6 10/11



Gauss-Jordan elimination

Firstly, in the example above

the variables x , y , z are
distractions. After all, we only care about manipulating the
coefficients.

So we define the augmented matrix [A|b] by simply adding b
as a column to A.

Notice that the three “legal” operations alluded to above are:

Interchanging the rows of [A|b]. (Each row corresponds to an
equation.)
Multiply any row by a nonzero scalar.
Add a row to a multiple of another.

These operations are called elementary row operations.

Vamsi Pritham Pingali Lecture 6 10/11



Gauss-Jordan elimination

Firstly, in the example above the variables x , y , z are
distractions.

After all, we only care about manipulating the
coefficients.

So we define the augmented matrix [A|b] by simply adding b
as a column to A.

Notice that the three “legal” operations alluded to above are:

Interchanging the rows of [A|b]. (Each row corresponds to an
equation.)
Multiply any row by a nonzero scalar.
Add a row to a multiple of another.

These operations are called elementary row operations.

Vamsi Pritham Pingali Lecture 6 10/11



Gauss-Jordan elimination

Firstly, in the example above the variables x , y , z are
distractions. After all, we only care about manipulating the

coefficients.

So we define the augmented matrix [A|b] by simply adding b
as a column to A.

Notice that the three “legal” operations alluded to above are:

Interchanging the rows of [A|b]. (Each row corresponds to an
equation.)
Multiply any row by a nonzero scalar.
Add a row to a multiple of another.

These operations are called elementary row operations.

Vamsi Pritham Pingali Lecture 6 10/11



Gauss-Jordan elimination

Firstly, in the example above the variables x , y , z are
distractions. After all, we only care about manipulating the
coefficients.

So we define the augmented matrix [A|b] by simply adding b
as a column to A.

Notice that the three “legal” operations alluded to above are:

Interchanging the rows of [A|b]. (Each row corresponds to an
equation.)
Multiply any row by a nonzero scalar.
Add a row to a multiple of another.

These operations are called elementary row operations.

Vamsi Pritham Pingali Lecture 6 10/11



Gauss-Jordan elimination

Firstly, in the example above the variables x , y , z are
distractions. After all, we only care about manipulating the
coefficients.

So we define the augmented matrix [A|b] by simply

adding b
as a column to A.

Notice that the three “legal” operations alluded to above are:

Interchanging the rows of [A|b]. (Each row corresponds to an
equation.)
Multiply any row by a nonzero scalar.
Add a row to a multiple of another.

These operations are called elementary row operations.

Vamsi Pritham Pingali Lecture 6 10/11



Gauss-Jordan elimination

Firstly, in the example above the variables x , y , z are
distractions. After all, we only care about manipulating the
coefficients.

So we define the augmented matrix [A|b] by simply adding b
as a column to A.

Notice that the three “legal” operations alluded to above are:

Interchanging the rows of [A|b]. (Each row corresponds to an
equation.)
Multiply any row by a nonzero scalar.
Add a row to a multiple of another.

These operations are called elementary row operations.

Vamsi Pritham Pingali Lecture 6 10/11



Gauss-Jordan elimination

Firstly, in the example above the variables x , y , z are
distractions. After all, we only care about manipulating the
coefficients.

So we define the augmented matrix [A|b] by simply adding b
as a column to A.

Notice that the three “legal” operations

alluded to above are:

Interchanging the rows of [A|b]. (Each row corresponds to an
equation.)
Multiply any row by a nonzero scalar.
Add a row to a multiple of another.

These operations are called elementary row operations.

Vamsi Pritham Pingali Lecture 6 10/11



Gauss-Jordan elimination

Firstly, in the example above the variables x , y , z are
distractions. After all, we only care about manipulating the
coefficients.

So we define the augmented matrix [A|b] by simply adding b
as a column to A.

Notice that the three “legal” operations alluded to above are:

Interchanging the rows of [A|b]. (Each row corresponds to an
equation.)
Multiply any row by a nonzero scalar.
Add a row to a multiple of another.

These operations are called elementary row operations.

Vamsi Pritham Pingali Lecture 6 10/11



Gauss-Jordan elimination

Firstly, in the example above the variables x , y , z are
distractions. After all, we only care about manipulating the
coefficients.

So we define the augmented matrix [A|b] by simply adding b
as a column to A.

Notice that the three “legal” operations alluded to above are:

Interchanging the rows of [A|b]. (

Each row corresponds to an
equation.)
Multiply any row by a nonzero scalar.
Add a row to a multiple of another.

These operations are called elementary row operations.

Vamsi Pritham Pingali Lecture 6 10/11



Gauss-Jordan elimination

Firstly, in the example above the variables x , y , z are
distractions. After all, we only care about manipulating the
coefficients.

So we define the augmented matrix [A|b] by simply adding b
as a column to A.

Notice that the three “legal” operations alluded to above are:

Interchanging the rows of [A|b]. (Each row corresponds to an
equation.)

Multiply any row by a nonzero scalar.
Add a row to a multiple of another.

These operations are called elementary row operations.

Vamsi Pritham Pingali Lecture 6 10/11



Gauss-Jordan elimination

Firstly, in the example above the variables x , y , z are
distractions. After all, we only care about manipulating the
coefficients.

So we define the augmented matrix [A|b] by simply adding b
as a column to A.

Notice that the three “legal” operations alluded to above are:

Interchanging the rows of [A|b]. (Each row corresponds to an
equation.)
Multiply any row by a nonzero scalar.

Add a row to a multiple of another.

These operations are called elementary row operations.

Vamsi Pritham Pingali Lecture 6 10/11



Gauss-Jordan elimination

Firstly, in the example above the variables x , y , z are
distractions. After all, we only care about manipulating the
coefficients.

So we define the augmented matrix [A|b] by simply adding b
as a column to A.

Notice that the three “legal” operations alluded to above are:

Interchanging the rows of [A|b]. (Each row corresponds to an
equation.)
Multiply any row by a nonzero scalar.
Add a row to a multiple of another.

These operations are called elementary row operations.

Vamsi Pritham Pingali Lecture 6 10/11



Gauss-Jordan elimination

Firstly, in the example above the variables x , y , z are
distractions. After all, we only care about manipulating the
coefficients.

So we define the augmented matrix [A|b] by simply adding b
as a column to A.

Notice that the three “legal” operations alluded to above are:

Interchanging the rows of [A|b]. (Each row corresponds to an
equation.)
Multiply any row by a nonzero scalar.
Add a row to a multiple of another.

These operations are called

elementary row operations.

Vamsi Pritham Pingali Lecture 6 10/11



Gauss-Jordan elimination

Firstly, in the example above the variables x , y , z are
distractions. After all, we only care about manipulating the
coefficients.

So we define the augmented matrix [A|b] by simply adding b
as a column to A.

Notice that the three “legal” operations alluded to above are:

Interchanging the rows of [A|b]. (Each row corresponds to an
equation.)
Multiply any row by a nonzero scalar.
Add a row to a multiple of another.

These operations are called elementary row operations.

Vamsi Pritham Pingali Lecture 6 10/11



Row-echelon form

The aim is to do these operations and bring the matrix to a
special form (known as the row-echelon form).

A matrix C is said to be in the row-echelon form if below the
first non-zero entry of every row all the elements are zero.

The point is to solve the last non-trivial equation and
back-substitute to solve the rest.
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Examples and non-examples of row-echelon matrices

 2 3 0
0 0 1
0 1 0

 is not in the row-echelon form.

[
π 2
0 e

]
is in the row-echelon form. √−1 1

0 1
0 0

 is in the row-echelon form.
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