Lecture 6 - UM 102 (Spring 2021)

Vamsi Pritham Pingali

11Sc

Vamsi Pritham Pingali Lecture 6 1/11



Vamsi Pritham Pingali Lecture 6 2/11



@ Defined orthogonal complements and

Vamsi Pritham Pingali Lecture 6 2/11



@ Defined orthogonal complements and proved the orthogonal
decomposition theorem.

Vamsi Pritham Pingali Lecture 6 2/11



@ Defined orthogonal complements and proved the orthogonal
decomposition theorem.

@ Stated and

Vamsi Pritham Pingali Lecture 6 2/11



@ Defined orthogonal complements and proved the orthogonal
decomposition theorem.

@ Stated and solved the approximation problem.

Vamsi Pritham Pingali Lecture 6 2/11



@ Defined orthogonal complements and proved the orthogonal
decomposition theorem.

@ Stated and solved the approximation problem.

@ Gave three examples

Vamsi Pritham Pingali Lecture 6 2/11



@ Defined orthogonal complements and proved the orthogonal
decomposition theorem.

@ Stated and solved the approximation problem.

@ Gave three examples of applications of

Vamsi Pritham Pingali Lecture 6 2/11



@ Defined orthogonal complements and proved the orthogonal
decomposition theorem.

@ Stated and solved the approximation problem.

@ Gave three examples of applications of the approximation
problem

Vamsi Pritham Pingali Lecture 6 2/11



@ Defined orthogonal complements and proved the orthogonal
decomposition theorem.

@ Stated and solved the approximation problem.

@ Gave three examples of applications of the approximation
problem (including least squares

Vamsi Pritham Pingali Lecture 6 2/11



@ Defined orthogonal complements and proved the orthogonal
decomposition theorem.

@ Stated and solved the approximation problem.

@ Gave three examples of applications of the approximation
problem (including least squares (which is optional, don't
worry too much about it)).
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@ Recall that our aim was to solve linear equations. In other
words, we wanted to solve an inverse problem.

@ We shall study some generalities about inverse functions, and
then specialise to inverses of linear maps.
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@ These are not mindless definitions. For instance, consider
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@ Recall that our aim was to solve linear equations. In other
words, we wanted to solve an inverse problem.

@ We shall study some generalities about inverse functions, and
then specialise to inverses of linear maps.

@ Given two sets V, W and a onto function T : V — W A left
inverse L : W — V is one that satisfies L(T(x)) = x, i.e.,
LT = ly. A right inverse R : W — V satisfies T(R(x)) = x,
i.e., TR = /W-

@ These are not mindless definitions. For instance, consider
V ={1,2} and W = {0}. Define T : V — W as
T(1)=T(2) =0. So define Ri,Ro: W — V as Ri(0) =1
and R»(0) = 2. These are right inverses. However, if
L(T(1)) =1, then L(0) = 1. That means L(T(2)) = 1.
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Inverses

@ Recall that our aim was to solve linear equations. In other
words, we wanted to solve an inverse problem.

@ We shall study some generalities about inverse functions, and
then specialise to inverses of linear maps.

@ Given two sets V, W and a onto function T : V — W A left
inverse L : W — V is one that satisfies L(T(x)) = x, i.e.,
LT = ly. A right inverse R : W — V satisfies T(R(x)) = x,
i.e., TR = /W-

@ These are not mindless definitions. For instance, consider
V ={1,2} and W = {0}. Define T : V — W as
T(1)=T(2) =0. So define Ri,Ro: W — V as Ri(0) =1
and R»(0) = 2. These are right inverses. However, if
L(T(1)) =1, then L(0) = 1. That means L(T(2)) = 1.
Hence there is no left inverse in this example.
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f(v) = w. Define R(w) = v. Clearly f(R(w)) = f(v) = w.
In general, right inverses are not unique.

@ Here is an interesting result about left inverses: An onto
function T : V — W can have at most one left inverse. If L is
a left inverse of T then it is also a right inverse!

@ Proof: Suppose Ly, Ly : W — V are left inverses. If
w = T(v), then Li(w) = v = Ly(w). Hence L; = L (the
onto assumption plays a role).
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@ An onto function T : V — W has a left inverse if and only if
itis1—1 (HW).

@ A one-onto onto function has a unique left inverse (which we
know is also a right inverse).
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Inverses

@ An onto function T : V — W has a left inverse if and only if
itis1—1 (HW).

@ A one-onto onto function has a unique left inverse (which we
know is also a right inverse). Such a T is called invertible and
its (left or right) inverse is denoted as T1.
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@ Let V, W be vector spaces
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o Let V, W be vector spaces over the same field. Let
T .V — W be an onto linear map. Then TFAE.
e Tisl—1.
o T is invertible and the inverse T~! is linear.
o Vx €V, T(x)=0if and only if x = 0.

@ Proof: We prove that a= b= c = a.

Vamsi Pritham Pingali Lecture 6 6/11



Inverses of linear maps

o Let V, W be vector spaces over the same field. Let
T .V — W be an onto linear map. Then TFAE.
e Tisl—1.
o T is invertible and the inverse T~! is linear.
o Vx €V, T(x)=0if and only if x = 0.
@ Proof: We prove that a= b= c = a.
e a= b: We already know that T~ exists.

Vamsi Pritham Pingali Lecture 6 6/11



Inverses of linear maps

o Let V, W be vector spaces over the same field. Let
T .V — W be an onto linear map. Then TFAE.
e Tisl—1.
o T is invertible and the inverse T~! is linear.
o Vx €V, T(x)=0if and only if x = 0.
@ Proof: We prove that a= b= c = a.

e a= b: We already know that T~ exists. Let
T 1(av + bw) = c.
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T .V — W be an onto linear map. Then TFAE.
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o T is invertible and the inverse T~! is linear.
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o Let V, W be vector spaces over the same field. Let
T .V — W be an onto linear map. Then TFAE.
e Tisl—1.
o T is invertible and the inverse T~! is linear.
o Vx €V, T(x)=0if and only if x = 0.
@ Proof: We prove that a= b= c = a.

e a= b: We already know that T~ exists. Let
T~ Yav + bw) = c. So T(c) = av + bw which is
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o Let V, W be vector spaces over the same field. Let
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Inverses of linear maps

o Let V, W be vector spaces over the same field. Let
T .V — W be an onto linear map. Then TFAE.
e Tisl—1.
o T is invertible and the inverse T~! is linear.
o Vx €V, T(x)=0if and only if x = 0.
@ Proof: We prove that a= b= c = a.

e a= b: We already know that T~ exists. Let
T~ Yav + bw) = c. So T(c) = av + bw which is
T(c)=aT(T )+ bT(Tw)=T(aT v+ bT tw).
Since Tisl—1 c=aT v+ bT lw.

o b=c: If T(x)=0, then x = T~ 1T(x) = 0.

ec=a lf T(v)=T(w), T(v—w)=0and hence v = w.
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In finite dimensions

o Let V be f.d with dim(V)=nand T:V — W is an onto
linear map. Then TFAE (HW):

o Tisl—1.

o If e,..., e are linearly independent in V/, then
T(e1),..., T(ep) aresoin W.

o dim(W) = n.

o Ifer,...,e,is a basis for V, then T(e;),..., T(e,) is so for
w.
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Linear equations

@ Recall that linear systems of equations like
2x 4+ 3y +z=20,x+ y — z =7 can be written using

2 3 1]

matrices as AX = b where A = [ 11 -1
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Linear equations

@ Recall that linear systems of equations like
2x 4+ 3y +z=20,x+ y — z =7 can be written using

matrices as AX = b where A = [i i _11 ],X:

N < X
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@ Recall that linear systems of equations like
2x 4+ 3y +z=20,x+ y — z =7 can be written using

2 3 1 x
matricesasAX:bwhereA:[1 1 _1],X: v |,
V4
andb:[m].
T

® More generally, >, Ajjx; = bj, i.e., AX = b represents a
system of linear equations. The matrix A is called the
coefficient matrix. As mentioned earlier, systems can fail to
have solutions or even have infinitely many solutions.
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Linear equations

@ Recall that linear systems of equations like
2x 4+ 3y +z=20,x+ y — z =7 can be written using

2 3 1 x
matricesasAX:bwhereA:[1 1 _1],X: v |,
V4
andb:[m].
T

® More generally, >, Ajjx; = bj, i.e., AX = b represents a
system of linear equations. The matrix A is called the
coefficient matrix. As mentioned earlier, systems can fail to
have solutions or even have infinitely many solutions.

o If b=0, then
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@ Recall that linear systems of equations like
2x 4+ 3y +z=20,x+ y — z =7 can be written using

2 3 1 x
matricesasAX:bwhereA:[1 1 _1],X: v |,
V4
andb:[m].
T

® More generally, >, Ajjx; = bj, i.e., AX = b represents a
system of linear equations. The matrix A is called the
coefficient matrix. As mentioned earlier, systems can fail to
have solutions or even have infinitely many solutions.

o If b=0, then the system AX = 0 is called a homogeneous
system.

@ Recall that if AXg = b, then any other solution to AX = b is
of the form X = Xo + N where AN = 0.
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Linear equations

Recall that linear systems of equations like
2x 4+ 3y +z=20,x+ y — z =7 can be written using
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Recall that linear systems of equations like
2x 4+ 3y +z=20,x+ y — z =7 can be written using

2 3 1 x
matrices as AX = b where A = [ 11 -1 ] X=1y],
V4
and b= [ 20 ]
T
More generally, >, Ajjx; = bj, i.e., AX = b represents a

system of linear equations. The matrix A is called the
coefficient matrix. As mentioned earlier, systems can fail to
have solutions or even have infinitely many solutions.

If b= 0, then the system AX = 0 is called a homogeneous
system.

Recall that if AXy = b, then any other solution to AX = b is
of the form X = Xy + N where AN = 0. So it suffices to solve
AN = 0 and find a single solution to AX = b.

Vamsi Pritham Pingali Lecture 6 8/11



Solving linear equations

Vamsi Pritham Pingali Lecture 6 9/11



Solving linear equations

@ So how does one solve linear equations?

Vamsi Pritham Pingali Lecture 6 9/11



Solving linear equations

@ So how does one solve linear equations?
@ One is allowed to

Vamsi Pritham Pingali Lecture 6 9/11



Solving linear equations

@ So how does one solve linear equations?
@ One is allowed to
e Interchange equations.

Vamsi Pritham Pingali Lecture 6 9/11



Solving linear equations

@ So how does one solve linear equations?
@ One is allowed to

e Interchange equations.
e Multiply both sides of

Vamsi Pritham Pingali Lecture 6 9/11



Solving linear equations

@ So how does one solve linear equations?
@ One is allowed to

e Interchange equations.
e Multiply both sides of an equation by a

Vamsi Pritham Pingali Lecture 6 9/11



Solving linear equations

@ So how does one solve linear equations?
@ One is allowed to

e Interchange equations.
o Multiply both sides of an equation by a nonzero scalar.

Vamsi Pritham Pingali Lecture 6 9/11



Solving linear equations

@ So how does one solve linear equations?

@ One is allowed to

e Interchange equations.
o Multiply both sides of an equation by a nonzero scalar.

o Add one equation to a multiple of another.

Vamsi Pritham Pingali Lecture 6 9/11



Solving linear equations

@ So how does one solve linear equations?

@ One is allowed to

e Interchange equations.
e Multiply both sides of an equation by a nonzero scalar

o Add one equation to a multiple of another.

@ The high-school idea

Vamsi Pritham Pingali Lecture 6 9/11



Solving linear equations

@ So how does one solve linear equations?

@ One is allowed to

e Interchange equations.
o Multiply both sides of an equation by a nonzero scalar.

o Add one equation to a multiple of another.
@ The high-school idea is to eliminate a few variables and

Vamsi Pritham Pingali Lecture 6 9/11



Solving linear equations

@ So how does one solve linear equations?

@ One is allowed to

e Interchange equations.
o Multiply both sides of an equation by a nonzero scalar.

o Add one equation to a multiple of another.
@ The high-school idea is to eliminate a few variables and solve
for the rest by “back-substitution”.

Vamsi Pritham Pingali Lecture 6 9/11



Solving linear equations

@ So how does one solve linear equations?

@ One is allowed to

e Interchange equations.
o Multiply both sides of an equation by a nonzero scalar.

o Add one equation to a multiple of another.
@ The high-school idea is to eliminate a few variables and solve
for the rest by “back-substitution”.

@ This idea was formalised

Vamsi Pritham Pingali Lecture 6 9/11



Solving linear equations

@ So how does one solve linear equations?

@ One is allowed to

e Interchange equations.
o Multiply both sides of an equation by a nonzero scalar.

o Add one equation to a multiple of another.
@ The high-school idea is to eliminate a few variables and solve
for the rest by “back-substitution”.
@ This idea was formalised and used to great effect

Vamsi Pritham Pingali Lecture 6 9/11



Solving linear equations

@ So how does one solve linear equations?

@ One is allowed to

e Interchange equations.
o Multiply both sides of an equation by a nonzero scalar.

o Add one equation to a multiple of another.
@ The high-school idea is to eliminate a few variables and solve

for the rest by “back-substitution”.
@ This idea was formalised and used to great effect by Gauss

and Jordan.
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Gauss-Jordan elimination

Firstly, in the example above the variables x, y, z are
distractions. After all, we only care about manipulating the
coefficients.

So we define the augmented matrix [A|b] by simply adding b
as a column to A.
@ Notice that the three “legal” operations alluded to above are:

o Interchanging the rows of [A|b]. (Each row corresponds to an
equation.)

e Multiply any row by a nonzero scalar.

e Add a row to a multiple of another.

These operations are called elementary row operations.
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Row-echelon form

@ The aim is to do these operations and bring the matrix to a
special form (known as the row-echelon form).

@ A matrix C is said to be in the row-echelon form if below the
first non-zero entry of every row all the elements are zero.

@ The point is to solve the /ast non-trivial equation and
back-substitute to solve the rest.
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