## Lecture 6 - UM 102 (Spring 2021)

Vamsi Pritham Pingali

IISc

# Recap

★ 문 ► ★ 문 ►

æ

#### • Defined orthogonal complements and

æ

• Defined orthogonal complements and proved the orthogonal decomposition theorem.

э

- Defined orthogonal complements and proved the orthogonal decomposition theorem.
- Stated and

э

- Defined orthogonal complements and proved the orthogonal decomposition theorem.
- Stated and solved the approximation problem.

- Defined orthogonal complements and proved the orthogonal decomposition theorem.
- Stated and solved the approximation problem.
- Gave three examples

- Defined orthogonal complements and proved the orthogonal decomposition theorem.
- Stated and solved the approximation problem.
- Gave three examples of applications of

- Defined orthogonal complements and proved the orthogonal decomposition theorem.
- Stated and solved the approximation problem.
- Gave three examples of applications of the approximation problem

- Defined orthogonal complements and proved the orthogonal decomposition theorem.
- Stated and solved the approximation problem.
- Gave three examples of applications of the approximation problem (including least squares

2/11

- Defined orthogonal complements and proved the orthogonal decomposition theorem.
- Stated and solved the approximation problem.
- Gave three examples of applications of the approximation problem (including least squares (which is optional, don't worry too much about it)).

▲圖▶ ▲ 国▶ ▲ 国▶

æ

• Recall that our aim

★ 문 ► ★ 문 ►

æ

• Recall that our aim was to solve linear equations.

문 🛌 문

• Recall that our aim was to solve linear equations. In other words, we wanted to

글▶ 글

• Recall that our aim was to solve linear equations. In other words, we wanted to solve an *inverse* problem.

э

- Recall that our aim was to solve linear equations. In other words, we wanted to solve an *inverse* problem.
- We shall study some generalities

- Recall that our aim was to solve linear equations. In other words, we wanted to solve an *inverse* problem.
- We shall study some generalities about inverse functions, and then specialise

- Recall that our aim was to solve linear equations. In other words, we wanted to solve an *inverse* problem.
- We shall study some generalities about inverse functions, and then specialise to inverses of linear maps.

- Recall that our aim was to solve linear equations. In other words, we wanted to solve an *inverse* problem.
- We shall study some generalities about inverse functions, and then specialise to inverses of linear maps.
- Given two sets V, W and a onto function  $T: V \rightarrow W$

- Recall that our aim was to solve linear equations. In other words, we wanted to solve an *inverse* problem.
- We shall study some generalities about inverse functions, and then specialise to inverses of linear maps.
- Given two sets V, W and a onto function  $T : V \to W$  A left inverse

- Recall that our aim was to solve linear equations. In other words, we wanted to solve an *inverse* problem.
- We shall study some generalities about inverse functions, and then specialise to inverses of linear maps.
- Given two sets V, W and a onto function T : V → W A left inverse L : W → V is one that satisfies

- Recall that our aim was to solve linear equations. In other words, we wanted to solve an *inverse* problem.
- We shall study some generalities about inverse functions, and then specialise to inverses of linear maps.
- Given two sets V, W and a onto function T : V → W A left inverse L : W → V is one that satisfies L(T(x)) = x, i.e.,

- Recall that our aim was to solve linear equations. In other words, we wanted to solve an *inverse* problem.
- We shall study some generalities about inverse functions, and then specialise to inverses of linear maps.
- Given two sets V, W and a onto function T : V → W A left inverse L : W → V is one that satisfies L(T(x)) = x, i.e., LT = I<sub>V</sub>.

- Recall that our aim was to solve linear equations. In other words, we wanted to solve an *inverse* problem.
- We shall study some generalities about inverse functions, and then specialise to inverses of linear maps.
- Given two sets V, W and a onto function T : V → W A left inverse L : W → V is one that satisfies L(T(x)) = x, i.e., LT = I<sub>V</sub>. A right inverse

- Recall that our aim was to solve linear equations. In other words, we wanted to solve an *inverse* problem.
- We shall study some generalities about inverse functions, and then specialise to inverses of linear maps.
- Given two sets V, W and a onto function T : V → W A left inverse L : W → V is one that satisfies L(T(x)) = x, i.e., LT = I<sub>V</sub>. A right inverse R : W → V satisfies T(R(x)) = x, i.e., i.e.,

- Recall that our aim was to solve linear equations. In other words, we wanted to solve an *inverse* problem.
- We shall study some generalities about inverse functions, and then specialise to inverses of linear maps.
- Given two sets V, W and a onto function T : V → W A left inverse L : W → V is one that satisfies L(T(x)) = x, i.e., LT = I<sub>V</sub>. A right inverse R : W → V satisfies T(R(x)) = x, i.e., i.e., TR = I<sub>W</sub>.

- Recall that our aim was to solve linear equations. In other words, we wanted to solve an *inverse* problem.
- We shall study some generalities about inverse functions, and then specialise to inverses of linear maps.
- Given two sets V, W and a onto function T : V → W A left inverse L : W → V is one that satisfies L(T(x)) = x, i.e., LT = I<sub>V</sub>. A right inverse R : W → V satisfies T(R(x)) = x, i.e., i.e., TR = I<sub>W</sub>.
- These are not mindless definitions.

- Recall that our aim was to solve linear equations. In other words, we wanted to solve an *inverse* problem.
- We shall study some generalities about inverse functions, and then specialise to inverses of linear maps.
- Given two sets V, W and a onto function T : V → W A left inverse L : W → V is one that satisfies L(T(x)) = x, i.e., LT = I<sub>V</sub>. A right inverse R : W → V satisfies T(R(x)) = x, i.e., i.e., TR = I<sub>W</sub>.
- These are not mindless definitions. For instance, consider

- Recall that our aim was to solve linear equations. In other words, we wanted to solve an *inverse* problem.
- We shall study some generalities about inverse functions, and then specialise to inverses of linear maps.
- Given two sets V, W and a onto function T : V → W A left inverse L : W → V is one that satisfies L(T(x)) = x, i.e., LT = I<sub>V</sub>. A right inverse R : W → V satisfies T(R(x)) = x, i.e., i.e., TR = I<sub>W</sub>.
- These are not mindless definitions. For instance, consider  $V=\{1,2\}$  and

- Recall that our aim was to solve linear equations. In other words, we wanted to solve an *inverse* problem.
- We shall study some generalities about inverse functions, and then specialise to inverses of linear maps.
- Given two sets V, W and a onto function T : V → W A left inverse L : W → V is one that satisfies L(T(x)) = x, i.e., LT = I<sub>V</sub>. A right inverse R : W → V satisfies T(R(x)) = x, i.e., i.e., TR = I<sub>W</sub>.
- These are not mindless definitions. For instance, consider  $V = \{1, 2\}$  and  $W = \{0\}$ .

- Recall that our aim was to solve linear equations. In other words, we wanted to solve an *inverse* problem.
- We shall study some generalities about inverse functions, and then specialise to inverses of linear maps.
- Given two sets V, W and a onto function T : V → W A left inverse L : W → V is one that satisfies L(T(x)) = x, i.e., LT = I<sub>V</sub>. A right inverse R : W → V satisfies T(R(x)) = x, i.e., i.e., TR = I<sub>W</sub>.
- These are not mindless definitions. For instance, consider  $V = \{1, 2\}$  and  $W = \{0\}$ . Define  $T : V \to W$  as T(1) = T(2) = 0.

- Recall that our aim was to solve linear equations. In other words, we wanted to solve an *inverse* problem.
- We shall study some generalities about inverse functions, and then specialise to inverses of linear maps.
- Given two sets V, W and a onto function T : V → W A left inverse L : W → V is one that satisfies L(T(x)) = x, i.e., LT = I<sub>V</sub>. A right inverse R : W → V satisfies T(R(x)) = x, i.e., i.e., TR = I<sub>W</sub>.
- These are not mindless definitions. For instance, consider  $V = \{1, 2\}$  and  $W = \{0\}$ . Define  $T : V \to W$  as T(1) = T(2) = 0. So define  $R_1, R_2 : W \to V$  as  $R_1(0) = 1$  and

- Recall that our aim was to solve linear equations. In other words, we wanted to solve an *inverse* problem.
- We shall study some generalities about inverse functions, and then specialise to inverses of linear maps.
- Given two sets V, W and a onto function T : V → W A left inverse L : W → V is one that satisfies L(T(x)) = x, i.e., LT = I<sub>V</sub>. A right inverse R : W → V satisfies T(R(x)) = x, i.e., i.e., TR = I<sub>W</sub>.
- These are not mindless definitions. For instance, consider  $V = \{1, 2\}$  and  $W = \{0\}$ . Define  $T : V \to W$  as T(1) = T(2) = 0. So define  $R_1, R_2 : W \to V$  as  $R_1(0) = 1$  and  $R_2(0) = 2$ .

A I > A I > A

- Recall that our aim was to solve linear equations. In other words, we wanted to solve an *inverse* problem.
- We shall study some generalities about inverse functions, and then specialise to inverses of linear maps.
- Given two sets V, W and a onto function T : V → W A left inverse L : W → V is one that satisfies L(T(x)) = x, i.e., LT = I<sub>V</sub>. A right inverse R : W → V satisfies T(R(x)) = x, i.e., i.e., TR = I<sub>W</sub>.
- These are not mindless definitions. For instance, consider  $V = \{1, 2\}$  and  $W = \{0\}$ . Define  $T : V \to W$  as T(1) = T(2) = 0. So define  $R_1, R_2 : W \to V$  as  $R_1(0) = 1$  and  $R_2(0) = 2$ . These are right inverses.

- Recall that our aim was to solve linear equations. In other words, we wanted to solve an *inverse* problem.
- We shall study some generalities about inverse functions, and then specialise to inverses of linear maps.
- Given two sets V, W and a onto function T : V → W A left inverse L : W → V is one that satisfies L(T(x)) = x, i.e., LT = I<sub>V</sub>. A right inverse R : W → V satisfies T(R(x)) = x, i.e., i.e., TR = I<sub>W</sub>.
- These are not mindless definitions. For instance, consider  $V = \{1, 2\}$  and  $W = \{0\}$ . Define  $T : V \to W$  as T(1) = T(2) = 0. So define  $R_1, R_2 : W \to V$  as  $R_1(0) = 1$  and  $R_2(0) = 2$ . These are right inverses. However, if L(T(1)) = 1, then L(0) = 1.

伺 と く ヨ と く ヨ と … ヨ

- Recall that our aim was to solve linear equations. In other words, we wanted to solve an *inverse* problem.
- We shall study some generalities about inverse functions, and then specialise to inverses of linear maps.
- Given two sets V, W and a onto function T : V → W A left inverse L : W → V is one that satisfies L(T(x)) = x, i.e., LT = I<sub>V</sub>. A right inverse R : W → V satisfies T(R(x)) = x, i.e., i.e., TR = I<sub>W</sub>.
- These are not mindless definitions. For instance, consider  $V = \{1, 2\}$  and  $W = \{0\}$ . Define  $T : V \to W$  as T(1) = T(2) = 0. So define  $R_1, R_2 : W \to V$  as  $R_1(0) = 1$  and  $R_2(0) = 2$ . These are right inverses. However, if L(T(1)) = 1, then L(0) = 1. That means L(T(2)) = 1.

- Recall that our aim was to solve linear equations. In other words, we wanted to solve an *inverse* problem.
- We shall study some generalities about inverse functions, and then specialise to inverses of linear maps.
- Given two sets V, W and a onto function T : V → W A left inverse L : W → V is one that satisfies L(T(x)) = x, i.e., LT = I<sub>V</sub>. A right inverse R : W → V satisfies T(R(x)) = x, i.e., i.e., TR = I<sub>W</sub>.
- These are not mindless definitions. For instance, consider  $V = \{1, 2\}$  and  $W = \{0\}$ . Define  $T : V \to W$  as T(1) = T(2) = 0. So define  $R_1, R_2 : W \to V$  as  $R_1(0) = 1$  and  $R_2(0) = 2$ . These are right inverses. However, if L(T(1)) = 1, then L(0) = 1. That means L(T(2)) = 1. Hence there is *no* left inverse in this example.

▲□ ▶ ▲ □ ▶ ▲ □ ▶

æ

• Every onto function  $f: V \rightarrow W$ 

(▲ 문 ) (▲ 문 )

æ

• Every onto function  $f: V \rightarrow W$  has at least one right inverse.

글▶ 글

 Every onto function f : V → W has at least one right inverse. Indeed, for every w ∈ W

э

Every onto function f : V → W has at least one right inverse.
 Indeed, for every w ∈ W there is some v ∈ V so that

 Every onto function f : V → W has at least one right inverse. Indeed, for every w ∈ W there is some v ∈ V so that f(v) = w.

э

 Every onto function f : V → W has at least one right inverse. Indeed, for every w ∈ W there is some v ∈ V so that f(v) = w. Define R(w) = v.

э

 Every onto function f : V → W has at least one right inverse. Indeed, for every w ∈ W there is some v ∈ V so that f(v) = w. Define R(w) = v. Clearly f(R(w)) = f(v) = w.

• Every onto function  $f: V \to W$  has at least one right inverse. Indeed, for every  $w \in W$  there is some  $v \in V$  so that f(v) = w. Define R(w) = v. Clearly f(R(w)) = f(v) = w. In general, right inverses

 Every onto function f : V → W has at least one right inverse. Indeed, for every w ∈ W there is some v ∈ V so that f(v) = w. Define R(w) = v. Clearly f(R(w)) = f(v) = w. In general, right inverses are not unique.

- Every onto function f : V → W has at least one right inverse. Indeed, for every w ∈ W there is some v ∈ V so that f(v) = w. Define R(w) = v. Clearly f(R(w)) = f(v) = w. In general, right inverses are not unique.
- Here is an interesting result

- Every onto function f : V → W has at least one right inverse. Indeed, for every w ∈ W there is some v ∈ V so that f(v) = w. Define R(w) = v. Clearly f(R(w)) = f(v) = w. In general, right inverses are not unique.
- Here is an interesting result about left inverses: An onto function  $T: V \rightarrow W$

- Every onto function f : V → W has at least one right inverse. Indeed, for every w ∈ W there is some v ∈ V so that f(v) = w. Define R(w) = v. Clearly f(R(w)) = f(v) = w. In general, right inverses are not unique.
- Here is an interesting result about left inverses: An onto function *T* : *V* → *W* can have *at most*

- Every onto function f : V → W has at least one right inverse. Indeed, for every w ∈ W there is some v ∈ V so that f(v) = w. Define R(w) = v. Clearly f(R(w)) = f(v) = w. In general, right inverses are not unique.
- Here is an interesting result about left inverses: An onto function *T* : *V* → *W* can have *at most* one left inverse.

- Every onto function f : V → W has at least one right inverse. Indeed, for every w ∈ W there is some v ∈ V so that f(v) = w. Define R(w) = v. Clearly f(R(w)) = f(v) = w. In general, right inverses are not unique.
- Here is an interesting result about left inverses: An onto function *T* : *V* → *W* can have *at most* one left inverse. If *L* is a left inverse of *T*

- Every onto function f : V → W has at least one right inverse. Indeed, for every w ∈ W there is some v ∈ V so that f(v) = w. Define R(w) = v. Clearly f(R(w)) = f(v) = w. In general, right inverses are not unique.
- Here is an interesting result about left inverses: An onto function *T* : *V* → *W* can have *at most* one left inverse. If *L* is a left inverse of *T* then it is *also*

- Every onto function f : V → W has at least one right inverse. Indeed, for every w ∈ W there is some v ∈ V so that f(v) = w. Define R(w) = v. Clearly f(R(w)) = f(v) = w. In general, right inverses are not unique.
- Here is an interesting result about left inverses: An onto function *T* : *V* → *W* can have *at most* one left inverse. If *L* is a left inverse of *T* then it is *also* a right inverse!

- Every onto function f : V → W has at least one right inverse. Indeed, for every w ∈ W there is some v ∈ V so that f(v) = w. Define R(w) = v. Clearly f(R(w)) = f(v) = w. In general, right inverses are not unique.
- Here is an interesting result about left inverses: An onto function *T* : *V* → *W* can have *at most* one left inverse. If *L* is a left inverse of *T* then it is *also* a right inverse!
- Proof: Suppose  $L_1, L_2 : W \to V$  are left inverses.

- Every onto function f : V → W has at least one right inverse. Indeed, for every w ∈ W there is some v ∈ V so that f(v) = w. Define R(w) = v. Clearly f(R(w)) = f(v) = w. In general, right inverses are not unique.
- Here is an interesting result about left inverses: An onto function *T* : *V* → *W* can have *at most* one left inverse. If *L* is a left inverse of *T* then it is *also* a right inverse!
- Proof: Suppose L<sub>1</sub>, L<sub>2</sub> : W → V are left inverses. If w = T(v),

- Every onto function f : V → W has at least one right inverse. Indeed, for every w ∈ W there is some v ∈ V so that f(v) = w. Define R(w) = v. Clearly f(R(w)) = f(v) = w. In general, right inverses are not unique.
- Here is an interesting result about left inverses: An onto function *T* : *V* → *W* can have *at most* one left inverse. If *L* is a left inverse of *T* then it is *also* a right inverse!
- Proof: Suppose  $L_1, L_2 : W \to V$  are left inverses. If w = T(v), then  $L_1(w) = v = L_2(w)$ .

- Every onto function f : V → W has at least one right inverse. Indeed, for every w ∈ W there is some v ∈ V so that f(v) = w. Define R(w) = v. Clearly f(R(w)) = f(v) = w. In general, right inverses are not unique.
- Here is an interesting result about left inverses: An onto function *T* : *V* → *W* can have *at most* one left inverse. If *L* is a left inverse of *T* then it is *also* a right inverse!
- Proof: Suppose  $L_1, L_2 : W \to V$  are left inverses. If w = T(v), then  $L_1(w) = v = L_2(w)$ . Hence  $L_1 = L_2$  (

- Every onto function f : V → W has at least one right inverse. Indeed, for every w ∈ W there is some v ∈ V so that f(v) = w. Define R(w) = v. Clearly f(R(w)) = f(v) = w. In general, right inverses are not unique.
- Here is an interesting result about left inverses: An onto function *T* : *V* → *W* can have *at most* one left inverse. If *L* is a left inverse of *T* then it is *also* a right inverse!
- Proof: Suppose  $L_1, L_2 : W \to V$  are left inverses. If w = T(v), then  $L_1(w) = v = L_2(w)$ . Hence  $L_1 = L_2$  (the onto assumption plays a role).

- Every onto function f : V → W has at least one right inverse. Indeed, for every w ∈ W there is some v ∈ V so that f(v) = w. Define R(w) = v. Clearly f(R(w)) = f(v) = w. In general, right inverses are not unique.
- Here is an interesting result about left inverses: An onto function *T* : *V* → *W* can have *at most* one left inverse. If *L* is a left inverse of *T* then it is *also* a right inverse!
- Proof: Suppose L<sub>1</sub>, L<sub>2</sub> : W → V are left inverses. If w = T(v), then L<sub>1</sub>(w) = v = L<sub>2</sub>(w). Hence L<sub>1</sub> = L<sub>2</sub> (the onto assumption plays a role). T(L(w)) = T(L(T(v))) = T(v) = w.

A B M A B M

- Every onto function f : V → W has at least one right inverse. Indeed, for every w ∈ W there is some v ∈ V so that f(v) = w. Define R(w) = v. Clearly f(R(w)) = f(v) = w. In general, right inverses are not unique.
- Here is an interesting result about left inverses: An onto function *T* : *V* → *W* can have *at most* one left inverse. If *L* is a left inverse of *T* then it is *also* a right inverse!
- Proof: Suppose L<sub>1</sub>, L<sub>2</sub> : W → V are left inverses. If w = T(v), then L<sub>1</sub>(w) = v = L<sub>2</sub>(w). Hence L<sub>1</sub> = L<sub>2</sub> (the onto assumption plays a role).
   T(L(w)) = T(L(T(v))) = T(v) = w. Hence L is also a right inverse.

- Every onto function f : V → W has at least one right inverse. Indeed, for every w ∈ W there is some v ∈ V so that f(v) = w. Define R(w) = v. Clearly f(R(w)) = f(v) = w. In general, right inverses are not unique.
- Here is an interesting result about left inverses: An onto function *T* : *V* → *W* can have *at most* one left inverse. If *L* is a left inverse of *T* then it is *also* a right inverse!
- Proof: Suppose L<sub>1</sub>, L<sub>2</sub> : W → V are left inverses. If w = T(v), then L<sub>1</sub>(w) = v = L<sub>2</sub>(w). Hence L<sub>1</sub> = L<sub>2</sub> (the onto assumption plays a role).
  T(L(w)) = T(L(T(v))) = T(v) = w. Hence L is also a right inverse.
- Moreover,

A B M A B M

- Every onto function f : V → W has at least one right inverse. Indeed, for every w ∈ W there is some v ∈ V so that f(v) = w. Define R(w) = v. Clearly f(R(w)) = f(v) = w. In general, right inverses are not unique.
- Here is an interesting result about left inverses: An onto function *T* : *V* → *W* can have *at most* one left inverse. If *L* is a left inverse of *T* then it is *also* a right inverse!
- Proof: Suppose L<sub>1</sub>, L<sub>2</sub> : W → V are left inverses. If w = T(v), then L<sub>1</sub>(w) = v = L<sub>2</sub>(w). Hence L<sub>1</sub> = L<sub>2</sub> (the onto assumption plays a role).
   T(L(w)) = T(L(T(v))) = T(v) = w. Hence L is also a right inverse.
- Moreover, if a left inverse exists,

- Every onto function f : V → W has at least one right inverse. Indeed, for every w ∈ W there is some v ∈ V so that f(v) = w. Define R(w) = v. Clearly f(R(w)) = f(v) = w. In general, right inverses are not unique.
- Here is an interesting result about left inverses: An onto function *T* : *V* → *W* can have *at most* one left inverse. If *L* is a left inverse of *T* then it is *also* a right inverse!
- Proof: Suppose L<sub>1</sub>, L<sub>2</sub> : W → V are left inverses. If w = T(v), then L<sub>1</sub>(w) = v = L<sub>2</sub>(w). Hence L<sub>1</sub> = L<sub>2</sub> (the onto assumption plays a role).
   T(L(w)) = T(L(T(v))) = T(v) = w. Hence L is also a right inverse.
- Moreover, if a left inverse exists, the right inverse is THE left inverse, i.e.,

- Every onto function f : V → W has at least one right inverse. Indeed, for every w ∈ W there is some v ∈ V so that f(v) = w. Define R(w) = v. Clearly f(R(w)) = f(v) = w. In general, right inverses are not unique.
- Here is an interesting result about left inverses: An onto function *T* : *V* → *W* can have *at most* one left inverse. If *L* is a left inverse of *T* then it is *also* a right inverse!
- Proof: Suppose L<sub>1</sub>, L<sub>2</sub> : W → V are left inverses. If w = T(v), then L<sub>1</sub>(w) = v = L<sub>2</sub>(w). Hence L<sub>1</sub> = L<sub>2</sub> (the onto assumption plays a role).
  T(L(w)) = T(L(T(v))) = T(v) = w. Hence L is also a right inverse.
- Moreover, if a left inverse exists, the right inverse is THE left inverse, i.e., the right inverse is unique. (

□ ▶ ★ 臣 ▶ ★ 臣 ▶ ─ 臣

- Every onto function f : V → W has at least one right inverse. Indeed, for every w ∈ W there is some v ∈ V so that f(v) = w. Define R(w) = v. Clearly f(R(w)) = f(v) = w. In general, right inverses are not unique.
- Here is an interesting result about left inverses: An onto function *T* : *V* → *W* can have *at most* one left inverse. If *L* is a left inverse of *T* then it is *also* a right inverse!
- Proof: Suppose L<sub>1</sub>, L<sub>2</sub> : W → V are left inverses. If w = T(v), then L<sub>1</sub>(w) = v = L<sub>2</sub>(w). Hence L<sub>1</sub> = L<sub>2</sub> (the onto assumption plays a role).
  T(L(w)) = T(L(T(v))) = T(v) = w. Hence L is also a right inverse.
- Moreover, if a left inverse exists, the right inverse is THE left inverse, i.e., the right inverse is unique. (Indeed,

(종종) 종종) 등

- Every onto function f : V → W has at least one right inverse. Indeed, for every w ∈ W there is some v ∈ V so that f(v) = w. Define R(w) = v. Clearly f(R(w)) = f(v) = w. In general, right inverses are not unique.
- Here is an interesting result about left inverses: An onto function *T* : *V* → *W* can have *at most* one left inverse. If *L* is a left inverse of *T* then it is *also* a right inverse!
- Proof: Suppose L<sub>1</sub>, L<sub>2</sub> : W → V are left inverses. If w = T(v), then L<sub>1</sub>(w) = v = L<sub>2</sub>(w). Hence L<sub>1</sub> = L<sub>2</sub> (the onto assumption plays a role).
  T(L(w)) = T(L(T(v))) = T(v) = w. Hence L is also a right inverse.
- Moreover, if a left inverse exists, the right inverse is THE left inverse, i.e., the right inverse is unique. (Indeed,  $TR_1 = TR_2 = I$  and hence

Lecture 6

医下颌 医下颌

- Every onto function f : V → W has at least one right inverse. Indeed, for every w ∈ W there is some v ∈ V so that f(v) = w. Define R(w) = v. Clearly f(R(w)) = f(v) = w. In general, right inverses are not unique.
- Here is an interesting result about left inverses: An onto function *T* : *V* → *W* can have *at most* one left inverse. If *L* is a left inverse of *T* then it is *also* a right inverse!
- Proof: Suppose L<sub>1</sub>, L<sub>2</sub> : W → V are left inverses. If w = T(v), then L<sub>1</sub>(w) = v = L<sub>2</sub>(w). Hence L<sub>1</sub> = L<sub>2</sub> (the onto assumption plays a role).
  T(L(w)) = T(L(T(v))) = T(v) = w. Hence L is also a right inverse.
- Moreover, if a left inverse exists, the right inverse is THE left inverse, i.e., the right inverse is unique. (Indeed,  $TR_1 = TR_2 = I$  and hence  $LTR_1 = LTR_2 \Rightarrow R_1 = R_2$ .

Lecture 6

▶ ▲ 臣 ▶ ▲ 臣 ▶ 臣 ● � � � �

▲圖▶ ▲ 国▶ ▲ 国▶

æ

• An onto function  $T: V \to W$  has a

æ

·≣ ► < ≣ ►

• An onto function  $T: V \rightarrow W$  has a left inverse

'문▶' ★ 문▶

æ

• An onto function  $T: V \rightarrow W$  has a left inverse if and only if

'문▶' ★ 문▶

æ

 An onto function T : V → W has a left inverse if and only if it is 1 - 1 (HW).

< E > < E >

э

- An onto function T : V → W has a left inverse if and only if it is 1 - 1 (HW).
- A one-onto onto function

∃ ▶

- An onto function T : V → W has a left inverse if and only if it is 1 - 1 (HW).
- A one-onto onto function has a unique left inverse (

э

- An onto function  $T: V \rightarrow W$  has a left inverse if and only if it is 1-1 (HW).
- A one-onto onto function has a unique left inverse (which we know is also a right inverse).

- An onto function T : V → W has a left inverse if and only if it is 1 - 1 (HW).
- A one-onto onto function has a unique left inverse (which we know is also a right inverse). Such a *T* is called invertible and its

- An onto function T : V → W has a left inverse if and only if it is 1 - 1 (HW).
- A one-onto onto function has a unique left inverse (which we know is also a right inverse). Such a T is called invertible and its (left or right) inverse is denoted as T<sup>-1</sup>.

æ

• Let V, W be vector spaces

• Let V, W be vector spaces over the same field.

• Let V, W be vector spaces over the same field. Let  $T: V \to W$  be an *onto* linear map.

• Let V, W be vector spaces over the same field. Let  $T: V \to W$  be an *onto* linear map. Then TFAE.

- Let V, W be vector spaces over the same field. Let  $T: V \rightarrow W$  be an *onto* linear map. Then TFAE.
  - *T* is 1 − 1.

- Let V, W be vector spaces over the same field. Let  $T: V \to W$  be an *onto* linear map. Then TFAE.
  - *T* is 1 − 1.
  - T is invertible and

- Let V, W be vector spaces over the same field. Let  $T: V \rightarrow W$  be an *onto* linear map. Then TFAE.
  - T is 1 1.
  - T is invertible and the inverse  $T^{-1}$  is *linear*.

- Let V, W be vector spaces over the same field. Let  $T: V \rightarrow W$  be an *onto* linear map. Then TFAE.
  - *T* is 1 − 1.
  - T is invertible and the inverse  $T^{-1}$  is *linear*.
  - $\forall x \in V$ ,

- Let V, W be vector spaces over the same field. Let  $T: V \rightarrow W$  be an *onto* linear map. Then TFAE.
  - *T* is 1 − 1.
  - T is invertible and the inverse  $T^{-1}$  is *linear*.
  - $\forall x \in V$ , T(x) = 0 if and only if

- Let V, W be vector spaces over the same field. Let  $T: V \rightarrow W$  be an *onto* linear map. Then TFAE.
  - *T* is 1 − 1.
  - T is invertible and the inverse  $T^{-1}$  is *linear*.
  - $\forall x \in V$ , T(x) = 0 if and only if x = 0.

- Let V, W be vector spaces over the same field. Let  $T: V \rightarrow W$  be an *onto* linear map. Then TFAE.
  - *T* is 1 − 1.
  - T is invertible and the inverse  $T^{-1}$  is *linear*.
  - $\forall x \in V$ , T(x) = 0 if and only if x = 0.
- Proof: We prove that

- Let V, W be vector spaces over the same field. Let  $T: V \rightarrow W$  be an *onto* linear map. Then TFAE.
  - *T* is 1 − 1.
  - T is invertible and the inverse  $T^{-1}$  is *linear*.
  - $\forall x \in V$ , T(x) = 0 if and only if x = 0.
- Proof: We prove that  $a \Rightarrow b \Rightarrow c \Rightarrow a$ .

- Let V, W be vector spaces over the same field. Let  $T: V \rightarrow W$  be an *onto* linear map. Then TFAE.
  - *T* is 1 − 1.
  - T is invertible and the inverse  $T^{-1}$  is *linear*.
  - $\forall x \in V$ , T(x) = 0 if and only if x = 0.
- Proof: We prove that  $a \Rightarrow b \Rightarrow c \Rightarrow a$ .
  - $a \Rightarrow b$ : We already know that  $T^{-1}$  exists.

6/11

- Let V, W be vector spaces over the same field. Let  $T: V \rightarrow W$  be an *onto* linear map. Then TFAE.
  - *T* is 1 − 1.
  - T is invertible and the inverse  $T^{-1}$  is *linear*.
  - $\forall x \in V$ , T(x) = 0 if and only if x = 0.
- Proof: We prove that  $a \Rightarrow b \Rightarrow c \Rightarrow a$ .
  - $a \Rightarrow b$ : We already know that  $T^{-1}$  exists. Let  $T^{-1}(av + bw) = c$ .

- Let V, W be vector spaces over the same field. Let  $T: V \rightarrow W$  be an *onto* linear map. Then TFAE.
  - *T* is 1 − 1.
  - T is invertible and the inverse  $T^{-1}$  is *linear*.
  - $\forall x \in V$ , T(x) = 0 if and only if x = 0.
- Proof: We prove that  $a \Rightarrow b \Rightarrow c \Rightarrow a$ .
  - $a \Rightarrow b$ : We already know that  $T^{-1}$  exists. Let  $T^{-1}(av + bw) = c$ . So T(c) = av + bw which is

- Let V, W be vector spaces over the same field. Let  $T: V \rightarrow W$  be an *onto* linear map. Then TFAE.
  - *T* is 1 − 1.
  - T is invertible and the inverse  $T^{-1}$  is *linear*.
  - $\forall x \in V$ , T(x) = 0 if and only if x = 0.
- Proof: We prove that  $a \Rightarrow b \Rightarrow c \Rightarrow a$ .
  - $a \Rightarrow b$ : We already know that  $T^{-1}$  exists. Let  $T^{-1}(av + bw) = c$ . So T(c) = av + bw which is  $T(c) = aT(T^{-1}v) + bT(T^{-1}w) = T(aT^{-1}v + bT^{-1}w)$ .

- Let V, W be vector spaces over the same field. Let  $T: V \rightarrow W$  be an *onto* linear map. Then TFAE.
  - *T* is 1 − 1.
  - T is invertible and the inverse  $T^{-1}$  is *linear*.
  - $\forall x \in V$ , T(x) = 0 if and only if x = 0.
- Proof: We prove that  $a \Rightarrow b \Rightarrow c \Rightarrow a$ .
  - $a \Rightarrow b$ : We already know that  $T^{-1}$  exists. Let  $T^{-1}(av + bw) = c$ . So T(c) = av + bw which is  $T(c) = aT(T^{-1}v) + bT(T^{-1}w) = T(aT^{-1}v + bT^{-1}w)$ . Since T is 1 - 1,

- Let V, W be vector spaces over the same field. Let  $T: V \rightarrow W$  be an *onto* linear map. Then TFAE.
  - *T* is 1 − 1.
  - T is invertible and the inverse  $T^{-1}$  is *linear*.
  - $\forall x \in V$ , T(x) = 0 if and only if x = 0.

• Proof: We prove that  $a \Rightarrow b \Rightarrow c \Rightarrow a$ .

•  $a \Rightarrow b$ : We already know that  $T^{-1}$  exists. Let  $T^{-1}(av + bw) = c$ . So T(c) = av + bw which is  $T(c) = aT(T^{-1}v) + bT(T^{-1}w) = T(aT^{-1}v + bT^{-1}w)$ . Since T is 1 - 1,  $c = aT^{-1}v + bT^{-1}w$ .

- Let V, W be vector spaces over the same field. Let  $T: V \rightarrow W$  be an *onto* linear map. Then TFAE.
  - *T* is 1 − 1.
  - T is invertible and the inverse  $T^{-1}$  is *linear*.
  - $\forall x \in V$ , T(x) = 0 if and only if x = 0.

• Proof: We prove that  $a \Rightarrow b \Rightarrow c \Rightarrow a$ .

•  $a \Rightarrow b$ : We already know that  $T^{-1}$  exists. Let  $T^{-1}(av + bw) = c$ . So T(c) = av + bw which is  $T(c) = aT(T^{-1}v) + bT(T^{-1}w) = T(aT^{-1}v + bT^{-1}w)$ . Since T is 1 - 1,  $c = aT^{-1}v + bT^{-1}w$ .

• 
$$b \Rightarrow c$$
: If  $T(x) = 0$ , then

- Let V, W be vector spaces over the same field. Let  $T: V \rightarrow W$  be an *onto* linear map. Then TFAE.
  - *T* is 1 − 1.
  - T is invertible and the inverse  $T^{-1}$  is *linear*.
  - $\forall x \in V$ , T(x) = 0 if and only if x = 0.

• Proof: We prove that  $a \Rightarrow b \Rightarrow c \Rightarrow a$ .

- $a \Rightarrow b$ : We already know that  $T^{-1}$  exists. Let  $T^{-1}(av + bw) = c$ . So T(c) = av + bw which is  $T(c) = aT(T^{-1}v) + bT(T^{-1}w) = T(aT^{-1}v + bT^{-1}w)$ . Since T is 1 - 1,  $c = aT^{-1}v + bT^{-1}w$ .
- $b \Rightarrow c$ : If T(x) = 0, then  $x = T^{-1}T(x) = 0$ .

- Let V, W be vector spaces over the same field. Let  $T: V \rightarrow W$  be an *onto* linear map. Then TFAE.
  - *T* is 1 − 1.
  - T is invertible and the inverse  $T^{-1}$  is *linear*.
  - $\forall x \in V$ , T(x) = 0 if and only if x = 0.

• Proof: We prove that  $a \Rightarrow b \Rightarrow c \Rightarrow a$ .

•  $a \Rightarrow b$ : We already know that  $T^{-1}$  exists. Let  $T^{-1}(av + bw) = c$ . So T(c) = av + bw which is  $T(c) = aT(T^{-1}v) + bT(T^{-1}w) = T(aT^{-1}v + bT^{-1}w)$ . Since T is 1 - 1,  $c = aT^{-1}v + bT^{-1}w$ .

• 
$$b \Rightarrow c$$
: If  $T(x) = 0$ , then  $x = T^{-1}T(x) = 0$ .

• 
$$c \Rightarrow a$$
: If  $T(v) = T(w)$ ,

Lecture 6

- Let V, W be vector spaces over the same field. Let  $T: V \rightarrow W$  be an *onto* linear map. Then TFAE.
  - *T* is 1 − 1.
  - T is invertible and the inverse  $T^{-1}$  is *linear*.
  - $\forall x \in V$ , T(x) = 0 if and only if x = 0.

• Proof: We prove that  $a \Rightarrow b \Rightarrow c \Rightarrow a$ .

- $a \Rightarrow b$ : We already know that  $T^{-1}$  exists. Let  $T^{-1}(av + bw) = c$ . So T(c) = av + bw which is  $T(c) = aT(T^{-1}v) + bT(T^{-1}w) = T(aT^{-1}v + bT^{-1}w)$ . Since T is 1 - 1,  $c = aT^{-1}v + bT^{-1}w$ .
- $b \Rightarrow c$ : If T(x) = 0, then  $x = T^{-1}T(x) = 0$ .

• 
$$c \Rightarrow a$$
: If  $T(v) = T(w)$ ,  $T(v - w) = 0$  and

- Let V, W be vector spaces over the same field. Let  $T: V \rightarrow W$  be an *onto* linear map. Then TFAE.
  - *T* is 1 − 1.
  - T is invertible and the inverse  $T^{-1}$  is *linear*.
  - $\forall x \in V$ , T(x) = 0 if and only if x = 0.

• Proof: We prove that  $a \Rightarrow b \Rightarrow c \Rightarrow a$ .

- $a \Rightarrow b$ : We already know that  $T^{-1}$  exists. Let  $T^{-1}(av + bw) = c$ . So T(c) = av + bw which is  $T(c) = aT(T^{-1}v) + bT(T^{-1}w) = T(aT^{-1}v + bT^{-1}w)$ . Since T is 1 - 1,  $c = aT^{-1}v + bT^{-1}w$ .
- $b \Rightarrow c$ : If T(x) = 0, then  $x = T^{-1}T(x) = 0$ .
- $c \Rightarrow a$ : If T(v) = T(w), T(v w) = 0 and hence v = w.

# In finite dimensions

æ

• Let V be f.d with

æ

=

#### • Let V be f.d with $\dim(V) = n$ and

æ

• Let V be f.d with dim(V) = n and  $T : V \rightarrow W$  is an onto linear map. Then TFAE (HW):

- Let V be f.d with dim(V) = n and  $T : V \rightarrow W$  is an onto linear map. Then TFAE (HW):
  - *T* is 1 − 1.

∃ >

- Let V be f.d with dim(V) = n and  $T : V \rightarrow W$  is an onto linear map. Then TFAE (HW):
  - *T* is 1 − 1.
  - If  $e_1, \ldots, e_p$  are linearly independent in V,

- Let V be f.d with dim(V) = n and T : V → W is an onto linear map. Then TFAE (HW):
  - *T* is 1 − 1.
  - If  $e_1, \ldots, e_p$  are linearly independent in V, then  $T(e_1), \ldots, T(e_p)$  are so in W.

- Let V be f.d with dim(V) = n and T : V → W is an onto linear map. Then TFAE (HW):
  - *T* is 1 − 1.
  - If  $e_1, \ldots, e_p$  are linearly independent in V, then  $T(e_1), \ldots, T(e_p)$  are so in W.
  - dim(W) = n.

- Let V be f.d with dim(V) = n and T : V → W is an onto linear map. Then TFAE (HW):
  - *T* is 1 − 1.
  - If  $e_1, \ldots, e_p$  are linearly independent in V, then  $T(e_1), \ldots, T(e_p)$  are so in W.
  - dim(W) = n.
  - If  $e_1, \ldots, e_n$  is a basis for V,

- Let V be f.d with dim(V) = n and T : V → W is an onto linear map. Then TFAE (HW):
  - *T* is 1 − 1.
  - If  $e_1, \ldots, e_p$  are linearly independent in V, then  $T(e_1), \ldots, T(e_p)$  are so in W.
  - dim(W) = n.
  - If  $e_1, \ldots, e_n$  is a basis for V, then  $T(e_1), \ldots, T(e_n)$  is so for W.

æ

• Recall that linear systems of equations

• Recall that linear systems of equations like  $2x + 3y + z = 20, x + y - z = \pi$  can be written

• Recall that linear systems of equations like  $2x + 3y + z = 20, x + y - z = \pi$  can be written using

matrices

• Recall that linear systems of equations like  $2x + 3y + z = 20, x + y - z = \pi$  can be written using

matrices as AX = b where

• Recall that linear systems of equations like  $2x + 3y + z = 20, x + y - z = \pi$  can be written using

matrices as 
$$AX = b$$
 where  $A = \begin{bmatrix} 2 & 3 & 1 \\ 1 & 1 & -1 \end{bmatrix}$ ,

• Recall that linear systems of equations like  $2x + 3y + z = 20, x + y - z = \pi$  can be written using matrices as AX = b where  $A = \begin{bmatrix} 2 & 3 & 1 \\ 1 & 1 & -1 \end{bmatrix}$ ,  $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ , and  $b = \begin{bmatrix} 20 \\ \pi \end{bmatrix}$ . • More generally,  $\sum_j A_{ij}x_j = b_i$ , i.e.,

- Recall that linear systems of equations like  $2x + 3y + z = 20, x + y - z = \pi$  can be written using matrices as AX = b where  $A = \begin{bmatrix} 2 & 3 & 1 \\ 1 & 1 & -1 \end{bmatrix}$ ,  $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ , and  $b = \begin{bmatrix} 20 \\ \pi \end{bmatrix}$ .
- More generally,  $\sum_{j} A_{ij}x_j = b_i$ , i.e., AX = b represents a system of linear equations.

- Recall that linear systems of equations like  $2x + 3y + z = 20, x + y - z = \pi$  can be written using matrices as AX = b where  $A = \begin{bmatrix} 2 & 3 & 1 \\ 1 & 1 & -1 \end{bmatrix}$ ,  $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ , and  $b = \begin{bmatrix} 20 \\ \pi \end{bmatrix}$ .
- More generally,  $\sum_{j} A_{ij}x_j = b_i$ , i.e., AX = b represents a system of linear equations. The matrix A is called the

• Recall that linear systems of equations like  $2x + 3y + z = 20, x + y - z = \pi$  can be written using matrices as AX = b where  $A = \begin{bmatrix} 2 & 3 & 1 \\ 1 & 1 & -1 \end{bmatrix}$ ,  $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ ,

and 
$$b = \begin{bmatrix} 20 \\ \pi \end{bmatrix}$$
.

• More generally,  $\sum_{j} A_{ij}x_j = b_i$ , i.e., AX = b represents a system of linear equations. The matrix A is called the *coefficient matrix*.

• Recall that linear systems of equations like  $2x + 3y + z = 20, x + y - z = \pi$  can be written using matrices as AX = b where  $A = \begin{bmatrix} 2 & 3 & 1 \\ 1 & 1 & -1 \end{bmatrix}$ ,  $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ ,

and 
$$b = \begin{bmatrix} 20 \\ \pi \end{bmatrix}$$
.

• More generally,  $\sum_{j} A_{ij}x_j = b_i$ , i.e., AX = b represents a system of linear equations. The matrix A is called the *coefficient matrix*. As mentioned earlier,

• Recall that linear systems of equations like  $2x + 3y + z = 20, x + y - z = \pi$  can be written using matrices as AX = b where  $A = \begin{bmatrix} 2 & 3 & 1 \\ 1 & 1 & -1 \end{bmatrix}$ ,  $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ ,

and 
$$b = \begin{bmatrix} 20 \\ \pi \end{bmatrix}$$

• More generally,  $\sum_{j} A_{ij}x_j = b_i$ , i.e., AX = b represents a system of linear equations. The matrix A is called the *coefficient matrix*. As mentioned earlier, systems can fail to have solutions or even

• Recall that linear systems of equations like  $2x + 3y + z = 20, x + y - z = \pi$  can be written using matrices as AX = b where  $A = \begin{bmatrix} 2 & 3 & 1 \\ 1 & 1 & -1 \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ ,

and 
$$b = \begin{bmatrix} 20 \\ \pi \end{bmatrix}$$

• More generally,  $\sum_{j} A_{ij}x_j = b_i$ , i.e., AX = b represents a system of linear equations. The matrix A is called the *coefficient matrix*. As mentioned earlier, systems can fail to have solutions or even have infinitely many solutions.

• Recall that linear systems of equations like  $2x + 3y + z = 20, x + y - z = \pi$  can be written using matrices as AX = b where  $A = \begin{bmatrix} 2 & 3 & 1 \\ 1 & 1 & -1 \end{bmatrix}$ ,  $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ ,

and 
$$b = \begin{bmatrix} 20 \\ \pi \end{bmatrix}$$

• More generally,  $\sum_{j} A_{ij}x_j = b_i$ , i.e., AX = b represents a system of linear equations. The matrix A is called the *coefficient matrix*. As mentioned earlier, systems can fail to have solutions or even have infinitely many solutions.

• If 
$$b = 0$$
, then

and 
$$b = \begin{bmatrix} 20 \\ \pi \end{bmatrix}$$

- More generally,  $\sum_{j} A_{ij}x_j = b_i$ , i.e., AX = b represents a system of linear equations. The matrix A is called the *coefficient matrix*. As mentioned earlier, systems can fail to have solutions or even have infinitely many solutions.
- If b = 0, then the system AX = 0 is called a *homogeneous* system.

and 
$$b = \begin{bmatrix} 20 \\ \pi \end{bmatrix}$$

- More generally,  $\sum_{j} A_{ij}x_j = b_i$ , i.e., AX = b represents a system of linear equations. The matrix A is called the *coefficient matrix*. As mentioned earlier, systems can fail to have solutions or even have infinitely many solutions.
- If b = 0, then the system AX = 0 is called a *homogeneous* system.
- Recall that

and 
$$b = \begin{bmatrix} 20 \\ \pi \end{bmatrix}$$

- More generally,  $\sum_{j} A_{ij}x_j = b_i$ , i.e., AX = b represents a system of linear equations. The matrix A is called the *coefficient matrix*. As mentioned earlier, systems can fail to have solutions or even have infinitely many solutions.
- If b = 0, then the system AX = 0 is called a *homogeneous* system.
- Recall that if  $AX_0 = b$ ,

and 
$$b = \begin{bmatrix} 20 \\ \pi \end{bmatrix}$$

- More generally, ∑<sub>j</sub> A<sub>ij</sub>x<sub>j</sub> = b<sub>i</sub>, i.e., AX = b represents a system of linear equations. The matrix A is called the *coefficient matrix*. As mentioned earlier, systems can fail to have solutions or even have infinitely many solutions.
- If b = 0, then the system AX = 0 is called a *homogeneous* system.
- Recall that if  $AX_0 = b$ , then any other solution to AX = b is

and 
$$b = \begin{bmatrix} 20 \\ \pi \end{bmatrix}$$

- More generally, ∑<sub>j</sub> A<sub>ij</sub>x<sub>j</sub> = b<sub>i</sub>, i.e., AX = b represents a system of linear equations. The matrix A is called the *coefficient matrix*. As mentioned earlier, systems can fail to have solutions or even have infinitely many solutions.
- If b = 0, then the system AX = 0 is called a *homogeneous* system.
- Recall that if  $AX_0 = b$ , then *any* other solution to AX = b is of the form  $X = X_0 + N$

and 
$$b = \begin{bmatrix} 20 \\ \pi \end{bmatrix}$$

- More generally, ∑<sub>j</sub> A<sub>ij</sub>x<sub>j</sub> = b<sub>i</sub>, i.e., AX = b represents a system of linear equations. The matrix A is called the *coefficient matrix*. As mentioned earlier, systems can fail to have solutions or even have infinitely many solutions.
- If b = 0, then the system AX = 0 is called a *homogeneous* system.
- Recall that if  $AX_0 = b$ , then *any* other solution to AX = b is of the form  $X = X_0 + N$  where AN = 0.

and 
$$b = \begin{bmatrix} 20 \\ \pi \end{bmatrix}$$

- More generally, ∑<sub>j</sub> A<sub>ij</sub>x<sub>j</sub> = b<sub>i</sub>, i.e., AX = b represents a system of linear equations. The matrix A is called the *coefficient matrix*. As mentioned earlier, systems can fail to have solutions or even have infinitely many solutions.
- If b = 0, then the system AX = 0 is called a *homogeneous* system.
- Recall that if  $AX_0 = b$ , then *any* other solution to AX = b is of the form  $X = X_0 + N$  where AN = 0. So it suffices to solve AN = 0 and

and 
$$b = \begin{bmatrix} 20 \\ \pi \end{bmatrix}$$

- More generally, ∑<sub>j</sub> A<sub>ij</sub>x<sub>j</sub> = b<sub>i</sub>, i.e., AX = b represents a system of linear equations. The matrix A is called the *coefficient matrix*. As mentioned earlier, systems can fail to have solutions or even have infinitely many solutions.
- If b = 0, then the system AX = 0 is called a *homogeneous* system.
- Recall that if  $AX_0 = b$ , then *any* other solution to AX = b is of the form  $X = X_0 + N$  where AN = 0. So it suffices to solve AN = 0 and find a *single* solution to AX = b.

# Solving linear equations

æ

=

• So how does one solve linear equations?

- So how does one solve linear equations?
- One is allowed to

- So how does one solve linear equations?
- One is allowed to
  - Interchange equations.

- So how does one solve linear equations?
- One is allowed to
  - Interchange equations.
  - Multiply both sides of

- So how does one solve linear equations?
- One is allowed to
  - Interchange equations.
  - Multiply both sides of an equation by a

- So how does one solve linear equations?
- One is allowed to
  - Interchange equations.
  - Multiply both sides of *an* equation by a *nonzero* scalar.

- So how does one solve linear equations?
- One is allowed to
  - Interchange equations.
  - Multiply both sides of *an* equation by a *nonzero* scalar.
  - Add one equation to a multiple of another.

- So how does one solve linear equations?
- One is allowed to
  - Interchange equations.
  - Multiply both sides of *an* equation by a *nonzero* scalar.
  - Add one equation to a multiple of another.
- The high-school idea

- So how does one solve linear equations?
- One is allowed to
  - Interchange equations.
  - Multiply both sides of *an* equation by a *nonzero* scalar.
  - Add one equation to a multiple of another.
- The high-school idea is to eliminate a few variables and

- So how does one solve linear equations?
- One is allowed to
  - Interchange equations.
  - Multiply both sides of *an* equation by a *nonzero* scalar.
  - Add one equation to a multiple of another.
- The high-school idea is to eliminate a few variables and solve for the rest by "back-substitution".

- So how does one solve linear equations?
- One is allowed to
  - Interchange equations.
  - Multiply both sides of *an* equation by a *nonzero* scalar.
  - Add one equation to a multiple of another.
- The high-school idea is to eliminate a few variables and solve for the rest by "back-substitution".
- This idea was formalised

- So how does one solve linear equations?
- One is allowed to
  - Interchange equations.
  - Multiply both sides of *an* equation by a *nonzero* scalar.
  - Add one equation to a multiple of another.
- The high-school idea is to eliminate a few variables and solve for the rest by "back-substitution".
- This idea was formalised and used to great effect

- So how does one solve linear equations?
- One is allowed to
  - Interchange equations.
  - Multiply both sides of *an* equation by a *nonzero* scalar.
  - Add one equation to a multiple of another.
- The high-school idea is to eliminate a few variables and solve for the rest by "back-substitution".
- This idea was formalised and used to great effect by Gauss and Jordan.

æ

=

#### • Firstly,

æ

• Firstly, in the example above

• Firstly, in the example above the variables *x*, *y*, *z* are distractions.

• Firstly, in the example above the variables *x*, *y*, *z* are distractions. After all, we only care about manipulating the

• Firstly, in the example above the variables *x*, *y*, *z* are distractions. After all, we only care about manipulating the *coefficients*.

- Firstly, in the example above the variables *x*, *y*, *z* are distractions. After all, we only care about manipulating the *coefficients*.
- So we define the *augmented matrix* [A|b] by simply

- Firstly, in the example above the variables *x*, *y*, *z* are distractions. After all, we only care about manipulating the *coefficients*.
- So we define the *augmented matrix* [A|b] by simply adding b as a column to A.

- Firstly, in the example above the variables *x*, *y*, *z* are distractions. After all, we only care about manipulating the *coefficients*.
- So we define the *augmented matrix* [A|b] by simply adding b as a column to A.
- Notice that the three "legal" operations

- Firstly, in the example above the variables *x*, *y*, *z* are distractions. After all, we only care about manipulating the *coefficients*.
- So we define the *augmented matrix* [A|b] by simply adding b as a column to A.
- Notice that the three "legal" operations alluded to above are:

- Firstly, in the example above the variables *x*, *y*, *z* are distractions. After all, we only care about manipulating the *coefficients*.
- So we define the *augmented matrix* [A|b] by simply adding b as a column to A.
- Notice that the three "legal" operations alluded to above are:
  - Interchanging the rows of [A|b]. (

- Firstly, in the example above the variables *x*, *y*, *z* are distractions. After all, we only care about manipulating the *coefficients*.
- So we define the *augmented matrix* [A|b] by simply adding b as a column to A.
- Notice that the three "legal" operations alluded to above are:
  - Interchanging the rows of [A|b]. (Each row corresponds to an equation.)

- Firstly, in the example above the variables *x*, *y*, *z* are distractions. After all, we only care about manipulating the *coefficients*.
- So we define the *augmented matrix* [A|b] by simply adding b as a column to A.
- Notice that the three "legal" operations alluded to above are:
  - Interchanging the rows of [A|b]. (Each row corresponds to an equation.)
  - Multiply any row by a nonzero scalar.

- Firstly, in the example above the variables *x*, *y*, *z* are distractions. After all, we only care about manipulating the *coefficients*.
- So we define the *augmented matrix* [A|b] by simply adding b as a column to A.
- Notice that the three "legal" operations alluded to above are:
  - Interchanging the rows of [A|b]. (Each row corresponds to an equation.)
  - Multiply any row by a nonzero scalar.
  - Add a row to a multiple of another.

- Firstly, in the example above the variables *x*, *y*, *z* are distractions. After all, we only care about manipulating the *coefficients*.
- So we define the *augmented matrix* [A|b] by simply adding b as a column to A.
- Notice that the three "legal" operations alluded to above are:
  - Interchanging the rows of [A|b]. (Each row corresponds to an equation.)
  - Multiply any row by a nonzero scalar.
  - Add a row to a multiple of another.
- These operations are called

- Firstly, in the example above the variables *x*, *y*, *z* are distractions. After all, we only care about manipulating the *coefficients*.
- So we define the *augmented matrix* [A|b] by simply adding b as a column to A.
- Notice that the three "legal" operations alluded to above are:
  - Interchanging the rows of [A|b]. (Each row corresponds to an equation.)
  - Multiply any row by a nonzero scalar.
  - Add a row to a multiple of another.
- These operations are called *elementary row operations*.

# Row-echelon form

æ

Ξ.

• The aim is to do these operations and

• The aim is to do these operations and bring the matrix to a

• The aim is to do these operations and bring the matrix to a special form (

• The aim is to do these operations and bring the matrix to a special form (known as the *row-echelon* form).

- The aim is to do these operations and bring the matrix to a special form (known as the *row-echelon* form).
- A matrix C is said to be

- The aim is to do these operations and bring the matrix to a special form (known as the *row-echelon* form).
- A matrix C is said to be in the row-echelon form if

- The aim is to do these operations and bring the matrix to a special form (known as the *row-echelon* form).
- A matrix *C* is said to be in the row-echelon form if *below* the *first* non-zero entry of every row

- The aim is to do these operations and bring the matrix to a special form (known as the *row-echelon* form).
- A matrix *C* is said to be in the row-echelon form if *below* the *first* non-zero entry of every row all the elements are *zero*.

- The aim is to do these operations and bring the matrix to a special form (known as the *row-echelon* form).
- A matrix *C* is said to be in the row-echelon form if *below* the *first* non-zero entry of every row all the elements are *zero*.
- The point is to

- The aim is to do these operations and bring the matrix to a special form (known as the *row-echelon* form).
- A matrix *C* is said to be in the row-echelon form if *below* the *first* non-zero entry of every row all the elements are *zero*.
- The point is to solve the *last* non-trivial equation and

- The aim is to do these operations and bring the matrix to a special form (known as the *row-echelon* form).
- A matrix *C* is said to be in the row-echelon form if *below* the *first* non-zero entry of every row all the elements are *zero*.
- The point is to solve the *last* non-trivial equation and back-substitute to solve the rest.







• 
$$\begin{bmatrix} 2 & 3 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
 is *not* in the row-echelon form.  
•  $\begin{bmatrix} \pi & 2 \\ 0 & e \end{bmatrix}$  is in the row-echelon form.

≣ ▶



