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Recap

Discussed inverses (left and right).

Formulated linear equations using matrices.

Discussed elementary row operations and the row-echelon
form (Basically, either the row is zero or the first non-zero
entry of every row (the so-called pivot) occurs strictly to the
right of the pivot of the previous row. As a consequence, all
the rows consisting entirely of zeroes must be at the bottom.
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Reduced row-echelon form

An m × n matrix A is said to be in the reduced row-echelon
form if it is in the row-echelon form, each pivot is 1, and the
column containing each pivot has only zeroes in the other
entries.

If A is in the row-echelon form then it can be reduced to the
reduced row-echelon form easily using further row operations.
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Gauss-Jordan elimination theorem

A theorem of Gauss and Jordan is: Every m× n matrix A with
entries in a field F can be row-reduced to a unique reduced
row-echelon form.

The theorem can be proven using induction on the number of
rows. Two crucial observations are:

Elementary row operations can be reversed, i.e., run
backwards.
If one gets B from A using elementary row operations, then
each row of B is a linear combination of rows of A. (The linear
span of rows of a matrix A is called the row space of A.
Likewise, that of the columns is called the column space.)

Row-reduction does not change the row space (HW).

We shall not prove the theorem. Instead we shall illustrate its
application to linear equations using examples.
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The row-reduction algorithm

Identify the left-most pivot among all rows. Suppose it occurs
in the i th row.

Interchanging rows, make sure that Ri is the first row.

Divide out the first-row pivot to make it 1.

“Clear” everything below the first-row pivot using row
operations.

By induction/recursion/“Rinse and repeat” the (m − 1)× n
matrix of the next m − 1 rows can be assumed to be in the
required form.

Clear the elements in the first row using the pivots in the
other rows. (On a computer, you can implement it iteratively
or recursively.)
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The algorithm for solving linear equations

To solve Ax = b, consider the augmented matrix [A|b], and
row-reduce it to its RREF [Ã|b̃].

If any row of Ã is 0, but the corresponding entry of b is not,
then the system is inconsistent.

If it is consistent, starting from the bottom of Ã solve for the
first non-zero pivoted variable.

Inductively/recursively, solve for the other pivoted variables.
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More on linear equations

In general, given an arbitrary row-reduced echelon matrix C ,
the number of non-zero rows is called the row rank of C . It is
the number of pivots in C . It is also the dimension of the row
space (HW). Bear in mind that the row space does not
change under row operations.

Using the nullity-rank theorem one can prove that the row
rank of C equals its column rank (the dimension of the
column space/the number of non-zero columns in the Column
reduced Column-echelon form/the number of non-zero rows in
the RREF of AT ). Thus we can talk unambiguously about the
rank of a matrix.

Returning back to [Ã|b̃], the number of “free variables” equals
the number of columns minus the row rank.
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Returning back to [Ã|b̃], the number of “free variables” equals

the number of columns minus the row rank.

Vamsi Pritham Pingali Lecture 7 7/11



More on linear equations

In general, given an arbitrary row-reduced echelon matrix C ,
the number of non-zero rows is called the row rank of C . It is
the number of pivots in C . It is also the dimension of the row
space (HW). Bear in mind that the row space does not
change under row operations.

Using the nullity-rank theorem one can prove that the row
rank of C equals its column rank (the dimension of the
column space/the number of non-zero columns in the Column
reduced Column-echelon form/the number of non-zero rows in
the RREF of AT ). Thus we can talk unambiguously about the
rank of a matrix.
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Examples of solving equations - Example 1

Solve: 2x − 5y + 4z = −3, x − 2y + z = 5, x − 4y + 6z = 10.

The augmented matrix is

 2 −5 4 −3
1 −2 1 5
1 −4 6 10


R1 → R1/2 gives

 1 −5
2 2 −3

2
1 −2 1 5
1 −4 6 10

.

Now we “clear” the first column through

R2 → R2 − R1, R3 → R3 − R1 to get

 1 −5
2 2 −3

2
0 1

2 −1 13
2

0 −3
2 4 23

2

.
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Example-1

Rinse and repeat: R2 → 2R2 and then

R3 → R3 + 3
2R2, R1 → R1 + 5

2R2 give

 1 0 −3 31
0 1 −2 13
0 0 1 31

.

It is not in RREF but,we can solve now itself: z = 31,
y = 13 + 2z = 75, and x = 3z + 31 = 124.
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Example-2

Solve: x − 2y + z − u + v = 5, 2x − 5y + 4z + u − v =
−3, x − 4y + 6z − v + 2u = 10.

The augmented matrix is

 1 −2 1 −1 1 5
2 −5 4 1 −1 −3
1 −4 6 2 −1 10

.

We clear the first column through R2 → R2 − 2R1,

R3 → R3 − R1 to get

 1 −2 1 −1 1 5
0 −1 2 3 −3 −13
0 −2 5 3 −2 5

.
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 1 −2 1 −1 1 5
0 −1 2 3 −3 −13
0 −2 5 3 −2 5

.
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Example-2

Now we normalise the second row: R2 → −R2 and then clear
the second column: R3 → R3 + 2R2, R1 → R1 + 2R2 to get 1 0 −3 −7 7 31

0 1 −2 −3 3 13
0 0 1 −3 4 31

.

We clear the third column:R2 → R2 + 2R3, R1 → R1 + 3R3 to

get

 1 0 0 −16 19 124
0 1 0 −9 11 75
0 0 1 −3 4 31

.

Thus z = 3u − 4v + 31, y = 9u − 11v + 75,
x = 16u − 19v + 124.

That is, (x , y , z , u, v) =
(124, 75, 31, 0, 0) + u(16, 9, 3, 1, 0) + v(−19,−11,−4, 0, 1).
(124, 75, 31, 0, 0) is a particular solution, and when the matrix
A is considered as a linear map, (16, 9, 3, 1, 0) and
(−19,−11,−4, 0, 1) span the kernel .
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