Lecture 7 - UM 102 (Spring 2021)

Vamsi Pritham Pingali

IISc

Recap

- Discussed inverses (

Recap

- Discussed inverses (left and right).

Recap

- Discussed inverses (left and right).
- Formulated linear equations using matrices.
- Discussed inverses (left and right).
- Formulated linear equations using matrices.
- Discussed elementary row operations and
- Discussed inverses (left and right).
- Formulated linear equations using matrices.
- Discussed elementary row operations and the row-echelon form (
- Discussed inverses (left and right).
- Formulated linear equations using matrices.
- Discussed elementary row operations and the row-echelon form (Basically, either the row is zero or
- Discussed inverses (left and right).
- Formulated linear equations using matrices.
- Discussed elementary row operations and the row-echelon form (Basically, either the row is zero or the first non-zero entry
- Discussed inverses (left and right).
- Formulated linear equations using matrices.
- Discussed elementary row operations and the row-echelon form (Basically, either the row is zero or the first non-zero entry of every row (
- Discussed inverses (left and right).
- Formulated linear equations using matrices.
- Discussed elementary row operations and the row-echelon form (Basically, either the row is zero or the first non-zero entry of every row (the so-called
- Discussed inverses (left and right).
- Formulated linear equations using matrices.
- Discussed elementary row operations and the row-echelon form (Basically, either the row is zero or the first non-zero entry of every row (the so-called pivot)
- Discussed inverses (left and right).
- Formulated linear equations using matrices.
- Discussed elementary row operations and the row-echelon form (Basically, either the row is zero or the first non-zero entry of every row (the so-called pivot) occurs strictly to the right

Recap

- Discussed inverses (left and right).
- Formulated linear equations using matrices.
- Discussed elementary row operations and the row-echelon form (Basically, either the row is zero or the first non-zero entry of every row (the so-called pivot) occurs strictly to the right of the pivot of the previous row.

Recap

- Discussed inverses (left and right).
- Formulated linear equations using matrices.
- Discussed elementary row operations and the row-echelon form (Basically, either the row is zero or the first non-zero entry of every row (the so-called pivot) occurs strictly to the right of the pivot of the previous row. As a consequence,

Recap

- Discussed inverses (left and right).
- Formulated linear equations using matrices.
- Discussed elementary row operations and the row-echelon form (Basically, either the row is zero or the first non-zero entry of every row (the so-called pivot) occurs strictly to the right of the pivot of the previous row. As a consequence, all the rows consisting

Recap

- Discussed inverses (left and right).
- Formulated linear equations using matrices.
- Discussed elementary row operations and the row-echelon form (Basically, either the row is zero or the first non-zero entry of every row (the so-called pivot) occurs strictly to the right of the pivot of the previous row. As a consequence, all the rows consisting entirely of zeroes

Recap

- Discussed inverses (left and right).
- Formulated linear equations using matrices.
- Discussed elementary row operations and the row-echelon form (Basically, either the row is zero or the first non-zero entry of every row (the so-called pivot) occurs strictly to the right of the pivot of the previous row. As a consequence, all the rows consisting entirely of zeroes must be at the bottom.

Reduced row-echelon form

Reduced row-echelon form

- An $m \times n$ matrix A

Reduced row-echelon form

- An $m \times n$ matrix A is said to be in the

Reduced row-echelon form

- An $m \times n$ matrix A is said to be in the reduced row-echelon form if
- An $m \times n$ matrix A is said to be in the reduced row-echelon form if it is in the row-echelon form,
- An $m \times n$ matrix A is said to be in the reduced row-echelon form if it is in the row-echelon form, each pivot is 1 , and
- An $m \times n$ matrix A is said to be in the reduced row-echelon form if it is in the row-echelon form, each pivot is 1 , and the column containing each pivot

Reduced row-echelon form

- An $m \times n$ matrix A is said to be in the reduced row-echelon form if it is in the row-echelon form, each pivot is 1 , and the column containing each pivot has only zeroes in the other entries.

Reduced row-echelon form

- An $m \times n$ matrix A is said to be in the reduced row-echelon form if it is in the row-echelon form, each pivot is 1 , and the column containing each pivot has only zeroes in the other entries.
- If A is in the row-echelon form

Reduced row-echelon form

- An $m \times n$ matrix A is said to be in the reduced row-echelon form if it is in the row-echelon form, each pivot is 1 , and the column containing each pivot has only zeroes in the other entries.
- If A is in the row-echelon form then it can be reduced to the reduced row-echelon form

Reduced row-echelon form

- An $m \times n$ matrix A is said to be in the reduced row-echelon form if it is in the row-echelon form, each pivot is 1 , and the column containing each pivot has only zeroes in the other entries.
- If A is in the row-echelon form then it can be reduced to the reduced row-echelon form easily using further row operations.

Gauss-Jordan elimination theorem

Gauss-Jordan elimination theorem

- A theorem of Gauss and Jordan is:

Gauss-Jordan elimination theorem

- A theorem of Gauss and Jordan is: Every $m \times n$ matrix A

Gauss-Jordan elimination theorem

- A theorem of Gauss and Jordan is: Every $m \times n$ matrix A with entries in a field \mathbb{F}

Gauss-Jordan elimination theorem

- A theorem of Gauss and Jordan is: Every $m \times n$ matrix A with entries in a field \mathbb{F} can be row-reduced to

Gauss-Jordan elimination theorem

- A theorem of Gauss and Jordan is: Every $m \times n$ matrix A with entries in a field \mathbb{F} can be row-reduced to a unique reduced row-echelon form.

Gauss-Jordan elimination theorem

- A theorem of Gauss and Jordan is: Every $m \times n$ matrix A with entries in a field \mathbb{F} can be row-reduced to a unique reduced row-echelon form.
- The theorem can be proven

Gauss-Jordan elimination theorem

- A theorem of Gauss and Jordan is: Every $m \times n$ matrix A with entries in a field \mathbb{F} can be row-reduced to a unique reduced row-echelon form.
- The theorem can be proven using induction on

Gauss-Jordan elimination theorem

- A theorem of Gauss and Jordan is: Every $m \times n$ matrix A with entries in a field \mathbb{F} can be row-reduced to a unique reduced row-echelon form.
- The theorem can be proven using induction on the number of rows.

Gauss-Jordan elimination theorem

- A theorem of Gauss and Jordan is: Every $m \times n$ matrix A with entries in a field \mathbb{F} can be row-reduced to a unique reduced row-echelon form.
- The theorem can be proven using induction on the number of rows. Two crucial observations are:

Gauss-Jordan elimination theorem

- A theorem of Gauss and Jordan is: Every $m \times n$ matrix A with entries in a field \mathbb{F} can be row-reduced to a unique reduced row-echelon form.
- The theorem can be proven using induction on the number of rows. Two crucial observations are:
- Elementary row operations

Gauss-Jordan elimination theorem

- A theorem of Gauss and Jordan is: Every $m \times n$ matrix A with entries in a field \mathbb{F} can be row-reduced to a unique reduced row-echelon form.
- The theorem can be proven using induction on the number of rows. Two crucial observations are:
- Elementary row operations can be reversed, i.e.,

Gauss-Jordan elimination theorem

- A theorem of Gauss and Jordan is: Every $m \times n$ matrix A with entries in a field \mathbb{F} can be row-reduced to a unique reduced row-echelon form.
- The theorem can be proven using induction on the number of rows. Two crucial observations are:
- Elementary row operations can be reversed, i.e., run backwards.

Gauss-Jordan elimination theorem

- A theorem of Gauss and Jordan is: Every $m \times n$ matrix A with entries in a field \mathbb{F} can be row-reduced to a unique reduced row-echelon form.
- The theorem can be proven using induction on the number of rows. Two crucial observations are:
- Elementary row operations can be reversed, i.e., run backwards.
- If one gets B from A

Gauss-Jordan elimination theorem

- A theorem of Gauss and Jordan is: Every $m \times n$ matrix A with entries in a field \mathbb{F} can be row-reduced to a unique reduced row-echelon form.
- The theorem can be proven using induction on the number of rows. Two crucial observations are:
- Elementary row operations can be reversed, i.e., run backwards.
- If one gets B from A using elementary row operations,

Gauss-Jordan elimination theorem

- A theorem of Gauss and Jordan is: Every $m \times n$ matrix A with entries in a field \mathbb{F} can be row-reduced to a unique reduced row-echelon form.
- The theorem can be proven using induction on the number of rows. Two crucial observations are:
- Elementary row operations can be reversed, i.e., run backwards.
- If one gets B from A using elementary row operations, then each row of B

Gauss-Jordan elimination theorem

- A theorem of Gauss and Jordan is: Every $m \times n$ matrix A with entries in a field \mathbb{F} can be row-reduced to a unique reduced row-echelon form.
- The theorem can be proven using induction on the number of rows. Two crucial observations are:
- Elementary row operations can be reversed, i.e., run backwards.
- If one gets B from A using elementary row operations, then each row of B is a linear combination of

Gauss-Jordan elimination theorem

- A theorem of Gauss and Jordan is: Every $m \times n$ matrix A with entries in a field \mathbb{F} can be row-reduced to a unique reduced row-echelon form.
- The theorem can be proven using induction on the number of rows. Two crucial observations are:
- Elementary row operations can be reversed, i.e., run backwards.
- If one gets B from A using elementary row operations, then each row of B is a linear combination of rows of A. (

Gauss-Jordan elimination theorem

- A theorem of Gauss and Jordan is: Every $m \times n$ matrix A with entries in a field \mathbb{F} can be row-reduced to a unique reduced row-echelon form.
- The theorem can be proven using induction on the number of rows. Two crucial observations are:
- Elementary row operations can be reversed, i.e., run backwards.
- If one gets B from A using elementary row operations, then each row of B is a linear combination of rows of A. (The linear span of

Gauss-Jordan elimination theorem

- A theorem of Gauss and Jordan is: Every $m \times n$ matrix A with entries in a field \mathbb{F} can be row-reduced to a unique reduced row-echelon form.
- The theorem can be proven using induction on the number of rows. Two crucial observations are:
- Elementary row operations can be reversed, i.e., run backwards.
- If one gets B from A using elementary row operations, then each row of B is a linear combination of rows of A. (The linear span of rows of a matrix A is called

Gauss-Jordan elimination theorem

- A theorem of Gauss and Jordan is: Every $m \times n$ matrix A with entries in a field \mathbb{F} can be row-reduced to a unique reduced row-echelon form.
- The theorem can be proven using induction on the number of rows. Two crucial observations are:
- Elementary row operations can be reversed, i.e., run backwards.
- If one gets B from A using elementary row operations, then each row of B is a linear combination of rows of A. (The linear span of rows of a matrix A is called the row space of A.

Gauss-Jordan elimination theorem

- A theorem of Gauss and Jordan is: Every $m \times n$ matrix A with entries in a field \mathbb{F} can be row-reduced to a unique reduced row-echelon form.
- The theorem can be proven using induction on the number of rows. Two crucial observations are:
- Elementary row operations can be reversed, i.e., run backwards.
- If one gets B from A using elementary row operations, then each row of B is a linear combination of rows of A. (The linear span of rows of a matrix A is called the row space of A. Likewise, that of the columns is called

Gauss-Jordan elimination theorem

- A theorem of Gauss and Jordan is: Every $m \times n$ matrix A with entries in a field \mathbb{F} can be row-reduced to a unique reduced row-echelon form.
- The theorem can be proven using induction on the number of rows. Two crucial observations are:
- Elementary row operations can be reversed, i.e., run backwards.
- If one gets B from A using elementary row operations, then each row of B is a linear combination of rows of A. (The linear span of rows of a matrix A is called the row space of A. Likewise, that of the columns is called the column space.)

Gauss-Jordan elimination theorem

- A theorem of Gauss and Jordan is: Every $m \times n$ matrix A with entries in a field \mathbb{F} can be row-reduced to a unique reduced row-echelon form.
- The theorem can be proven using induction on the number of rows. Two crucial observations are:
- Elementary row operations can be reversed, i.e., run backwards.
- If one gets B from A using elementary row operations, then each row of B is a linear combination of rows of A. (The linear span of rows of a matrix A is called the row space of A. Likewise, that of the columns is called the column space.)
- Row-reduction does not change the row space (HW).

Gauss-Jordan elimination theorem

- A theorem of Gauss and Jordan is: Every $m \times n$ matrix A with entries in a field \mathbb{F} can be row-reduced to a unique reduced row-echelon form.
- The theorem can be proven using induction on the number of rows. Two crucial observations are:
- Elementary row operations can be reversed, i.e., run backwards.
- If one gets B from A using elementary row operations, then each row of B is a linear combination of rows of A. (The linear span of rows of a matrix A is called the row space of A. Likewise, that of the columns is called the column space.)
- Row-reduction does not change the row space (HW).
- We shall not prove the theorem.

Gauss-Jordan elimination theorem

- A theorem of Gauss and Jordan is: Every $m \times n$ matrix A with entries in a field \mathbb{F} can be row-reduced to a unique reduced row-echelon form.
- The theorem can be proven using induction on the number of rows. Two crucial observations are:
- Elementary row operations can be reversed, i.e., run backwards.
- If one gets B from A using elementary row operations, then each row of B is a linear combination of rows of A. (The linear span of rows of a matrix A is called the row space of A. Likewise, that of the columns is called the column space.)
- Row-reduction does not change the row space (HW).
- We shall not prove the theorem. Instead we shall illustrate its application

Gauss-Jordan elimination theorem

- A theorem of Gauss and Jordan is: Every $m \times n$ matrix A with entries in a field \mathbb{F} can be row-reduced to a unique reduced row-echelon form.
- The theorem can be proven using induction on the number of rows. Two crucial observations are:
- Elementary row operations can be reversed, i.e., run backwards.
- If one gets B from A using elementary row operations, then each row of B is a linear combination of rows of A. (The linear span of rows of a matrix A is called the row space of A. Likewise, that of the columns is called the column space.)
- Row-reduction does not change the row space (HW).
- We shall not prove the theorem. Instead we shall illustrate its application to linear equations

Gauss-Jordan elimination theorem

- A theorem of Gauss and Jordan is: Every $m \times n$ matrix A with entries in a field \mathbb{F} can be row-reduced to a unique reduced row-echelon form.
- The theorem can be proven using induction on the number of rows. Two crucial observations are:
- Elementary row operations can be reversed, i.e., run backwards.
- If one gets B from A using elementary row operations, then each row of B is a linear combination of rows of A. (The linear span of rows of a matrix A is called the row space of A. Likewise, that of the columns is called the column space.)
- Row-reduction does not change the row space (HW).
- We shall not prove the theorem. Instead we shall illustrate its application to linear equations using examples.

The row-reduction algorithm

The row-reduction algorithm

- Identify the left-most pivot

The row-reduction algorithm

- Identify the left-most pivot among all rows.
- Identify the left-most pivot among all rows. Suppose it occurs in the
- Identify the left-most pivot among all rows. Suppose it occurs in the $i^{\text {th }}$ row.
- Identify the left-most pivot among all rows. Suppose it occurs in the $i^{\text {th }}$ row.
- Interchanging rows,
- Identify the left-most pivot among all rows. Suppose it occurs in the $i^{\text {th }}$ row.
- Interchanging rows, make sure that
- Identify the left-most pivot among all rows. Suppose it occurs in the $i^{\text {th }}$ row.
- Interchanging rows, make sure that R_{i} is the first row.
- Identify the left-most pivot among all rows. Suppose it occurs in the $i^{\text {th }}$ row.
- Interchanging rows, make sure that R_{i} is the first row.
- Divide out
- Identify the left-most pivot among all rows. Suppose it occurs in the $i^{\text {th }}$ row.
- Interchanging rows, make sure that R_{i} is the first row.
- Divide out the first-row pivot to make it
- Identify the left-most pivot among all rows. Suppose it occurs in the $i^{\text {th }}$ row.
- Interchanging rows, make sure that R_{i} is the first row.
- Divide out the first-row pivot to make it 1 .
- Identify the left-most pivot among all rows. Suppose it occurs in the $i^{\text {th }}$ row.
- Interchanging rows, make sure that R_{i} is the first row.
- Divide out the first-row pivot to make it 1 .
- "Clear" everything below the first-row pivot
- Identify the left-most pivot among all rows. Suppose it occurs in the $i^{\text {th }}$ row.
- Interchanging rows, make sure that R_{i} is the first row.
- Divide out the first-row pivot to make it 1 .
- "Clear" everything below the first-row pivot using row operations.
- Identify the left-most pivot among all rows. Suppose it occurs in the $i^{\text {th }}$ row.
- Interchanging rows, make sure that R_{i} is the first row.
- Divide out the first-row pivot to make it 1 .
- "Clear" everything below the first-row pivot using row operations.
- By induction/recursion/"Rinse and repeat"
- Identify the left-most pivot among all rows. Suppose it occurs in the $i^{\text {th }}$ row.
- Interchanging rows, make sure that R_{i} is the first row.
- Divide out the first-row pivot to make it 1 .
- "Clear" everything below the first-row pivot using row operations.
- By induction/recursion/"Rinse and repeat" the $(m-1) \times n$ matrix of
- Identify the left-most pivot among all rows. Suppose it occurs in the $i^{\text {th }}$ row.
- Interchanging rows, make sure that R_{i} is the first row.
- Divide out the first-row pivot to make it 1 .
- "Clear" everything below the first-row pivot using row operations.
- By induction/recursion/"Rinse and repeat" the $(m-1) \times n$ matrix of the next $m-1$ rows can be
- Identify the left-most pivot among all rows. Suppose it occurs in the $i^{\text {th }}$ row.
- Interchanging rows, make sure that R_{i} is the first row.
- Divide out the first-row pivot to make it 1 .
- "Clear" everything below the first-row pivot using row operations.
- By induction/recursion/"Rinse and repeat" the $(m-1) \times n$ matrix of the next $m-1$ rows can be assumed to be in the required form.
- Identify the left-most pivot among all rows. Suppose it occurs in the $i^{\text {th }}$ row.
- Interchanging rows, make sure that R_{i} is the first row.
- Divide out the first-row pivot to make it 1 .
- "Clear" everything below the first-row pivot using row operations.
- By induction/recursion/"Rinse and repeat" the $(m-1) \times n$ matrix of the next $m-1$ rows can be assumed to be in the required form.
- Clear the elements in
- Identify the left-most pivot among all rows. Suppose it occurs in the $i^{\text {th }}$ row.
- Interchanging rows, make sure that R_{i} is the first row.
- Divide out the first-row pivot to make it 1 .
- "Clear" everything below the first-row pivot using row operations.
- By induction/recursion/"Rinse and repeat" the $(m-1) \times n$ matrix of the next $m-1$ rows can be assumed to be in the required form.
- Clear the elements in the first row
- Identify the left-most pivot among all rows. Suppose it occurs in the $i^{\text {th }}$ row.
- Interchanging rows, make sure that R_{i} is the first row.
- Divide out the first-row pivot to make it 1 .
- "Clear" everything below the first-row pivot using row operations.
- By induction/recursion/"Rinse and repeat" the $(m-1) \times n$ matrix of the next $m-1$ rows can be assumed to be in the required form.
- Clear the elements in the first row using the pivots in the other rows. (
- Identify the left-most pivot among all rows. Suppose it occurs in the $i^{\text {th }}$ row.
- Interchanging rows, make sure that R_{i} is the first row.
- Divide out the first-row pivot to make it 1 .
- "Clear" everything below the first-row pivot using row operations.
- By induction/recursion/"Rinse and repeat" the $(m-1) \times n$ matrix of the next $m-1$ rows can be assumed to be in the required form.
- Clear the elements in the first row using the pivots in the other rows. (On a computer, you can implement it iteratively or recursively.)

The algorithm for solving linear equations

The algorithm for solving linear equations

- To solve $A x=b$,
- To solve $A x=b$, consider the augmented matrix
- To solve $A x=b$, consider the augmented matrix $[A \mid b]$, and
- To solve $A x=b$, consider the augmented matrix $[A \mid b]$, and row-reduce it to its RREF $[\tilde{A} \mid \tilde{b}]$.
- To solve $A x=b$, consider the augmented matrix $[A \mid b]$, and row-reduce it to its RREF $[\tilde{A} \mid \tilde{b}]$.
- If any row of \tilde{A} is 0 ,
- To solve $A x=b$, consider the augmented matrix $[A \mid b]$, and row-reduce it to its $\operatorname{RREF}[\tilde{A} \mid \tilde{b}]$.
- If any row of \tilde{A} is 0 , but the corresponding entry of b
- To solve $A x=b$, consider the augmented matrix $[A \mid b]$, and row-reduce it to its $\operatorname{RREF}[\tilde{A} \mid \tilde{b}]$.
- If any row of \tilde{A} is 0 , but the corresponding entry of b is not, then
- To solve $A x=b$, consider the augmented matrix $[A \mid b]$, and row-reduce it to its RREF $[\tilde{A} \mid \tilde{b}]$.
- If any row of \tilde{A} is 0 , but the corresponding entry of b is not, then the system is inconsistent.
- To solve $A x=b$, consider the augmented matrix $[A \mid b]$, and row-reduce it to its $\operatorname{RREF}[\tilde{A} \mid \tilde{b}]$.
- If any row of \tilde{A} is 0 , but the corresponding entry of b is not, then the system is inconsistent.
- If it is consistent,
- To solve $A x=b$, consider the augmented matrix $[A \mid b]$, and row-reduce it to its RREF $[\tilde{A} \mid \tilde{b}]$.
- If any row of \tilde{A} is 0 , but the corresponding entry of b is not, then the system is inconsistent.
- If it is consistent, starting from the bottom of \tilde{A}
- To solve $A x=b$, consider the augmented matrix $[A \mid b]$, and row-reduce it to its RREF $[\tilde{A} \mid \tilde{b}]$.
- If any row of \tilde{A} is 0 , but the corresponding entry of b is not, then the system is inconsistent.
- If it is consistent, starting from the bottom of \tilde{A} solve for the first non-zero pivoted variable.
- To solve $A x=b$, consider the augmented matrix $[A \mid b]$, and row-reduce it to its RREF $[\tilde{A} \mid \tilde{b}]$.
- If any row of \tilde{A} is 0 , but the corresponding entry of b is not, then the system is inconsistent.
- If it is consistent, starting from the bottom of \tilde{A} solve for the first non-zero pivoted variable.
- Inductively/recursively,

The algorithm for solving linear equations

- To solve $A x=b$, consider the augmented matrix $[A \mid b]$, and row-reduce it to its RREF $[\tilde{A} \mid \tilde{b}]$.
- If any row of \tilde{A} is 0 , but the corresponding entry of b is not, then the system is inconsistent.
- If it is consistent, starting from the bottom of \tilde{A} solve for the first non-zero pivoted variable.
- Inductively/recursively, solve for the other pivoted variables.

More on linear equations

More on linear equations

- In general, given an arbitrary row-reduced echelon matrix C, the number of non-zero rows

More on linear equations

- In general, given an arbitrary row-reduced echelon matrix C, the number of non-zero rows is called the

More on linear equations

- In general, given an arbitrary row-reduced echelon matrix C, the number of non-zero rows is called the row rank of C.

More on linear equations

- In general, given an arbitrary row-reduced echelon matrix C, the number of non-zero rows is called the row rank of C. It is the number of pivots in C.

More on linear equations

- In general, given an arbitrary row-reduced echelon matrix C, the number of non-zero rows is called the row rank of C. It is the number of pivots in C. It is also the dimension of the

More on linear equations

- In general, given an arbitrary row-reduced echelon matrix C, the number of non-zero rows is called the row rank of C. It is the number of pivots in C. It is also the dimension of the row space (HW). Bear in mind that the row space does not change under row operations.

More on linear equations

- In general, given an arbitrary row-reduced echelon matrix C, the number of non-zero rows is called the row rank of C. It is the number of pivots in C. It is also the dimension of the row space (HW). Bear in mind that the row space does not change under row operations.
- Using the nullity-rank theorem

More on linear equations

- In general, given an arbitrary row-reduced echelon matrix C, the number of non-zero rows is called the row rank of C. It is the number of pivots in C. It is also the dimension of the row space (HW). Bear in mind that the row space does not change under row operations.
- Using the nullity-rank theorem one can prove that

More on linear equations

- In general, given an arbitrary row-reduced echelon matrix C, the number of non-zero rows is called the row rank of C. It is the number of pivots in C. It is also the dimension of the row space (HW). Bear in mind that the row space does not change under row operations.
- Using the nullity-rank theorem one can prove that the row rank of C equals its

More on linear equations

- In general, given an arbitrary row-reduced echelon matrix C, the number of non-zero rows is called the row rank of C. It is the number of pivots in C. It is also the dimension of the row space (HW). Bear in mind that the row space does not change under row operations.
- Using the nullity-rank theorem one can prove that the row rank of C equals its column rank (

More on linear equations

- In general, given an arbitrary row-reduced echelon matrix C, the number of non-zero rows is called the row rank of C. It is the number of pivots in C. It is also the dimension of the row space (HW). Bear in mind that the row space does not change under row operations.
- Using the nullity-rank theorem one can prove that the row rank of C equals its column rank (the dimension of the column space/the number of non-zero columns in the Column reduced Column-echelon form/the number of non-zero rows in the RREF of A^{T}).

More on linear equations

- In general, given an arbitrary row-reduced echelon matrix C, the number of non-zero rows is called the row rank of C. It is the number of pivots in C. It is also the dimension of the row space (HW). Bear in mind that the row space does not change under row operations.
- Using the nullity-rank theorem one can prove that the row rank of C equals its column rank (the dimension of the column space/the number of non-zero columns in the Column reduced Column-echelon form/the number of non-zero rows in the RREF of A^{T}). Thus we can talk

More on linear equations

- In general, given an arbitrary row-reduced echelon matrix C, the number of non-zero rows is called the row rank of C. It is the number of pivots in C. It is also the dimension of the row space (HW). Bear in mind that the row space does not change under row operations.
- Using the nullity-rank theorem one can prove that the row rank of C equals its column rank (the dimension of the column space/the number of non-zero columns in the Column reduced Column-echelon form/the number of non-zero rows in the RREF of A^{T}). Thus we can talk unambiguously

More on linear equations

- In general, given an arbitrary row-reduced echelon matrix C, the number of non-zero rows is called the row rank of C. It is the number of pivots in C. It is also the dimension of the row space (HW). Bear in mind that the row space does not change under row operations.
- Using the nullity-rank theorem one can prove that the row rank of C equals its column rank (the dimension of the column space/the number of non-zero columns in the Column reduced Column-echelon form/the number of non-zero rows in the RREF of A^{T}). Thus we can talk unambiguously about the rank of a matrix.

More on linear equations

- In general, given an arbitrary row-reduced echelon matrix C, the number of non-zero rows is called the row rank of C. It is the number of pivots in C. It is also the dimension of the row space (HW). Bear in mind that the row space does not change under row operations.
- Using the nullity-rank theorem one can prove that the row rank of C equals its column rank (the dimension of the column space/the number of non-zero columns in the Column reduced Column-echelon form/the number of non-zero rows in the RREF of A^{T}). Thus we can talk unambiguously about the rank of a matrix.
- Returning back to $[\tilde{A} \mid \tilde{b}]$, the number of

More on linear equations

- In general, given an arbitrary row-reduced echelon matrix C, the number of non-zero rows is called the row rank of C. It is the number of pivots in C. It is also the dimension of the row space (HW). Bear in mind that the row space does not change under row operations.
- Using the nullity-rank theorem one can prove that the row rank of C equals its column rank (the dimension of the column space/the number of non-zero columns in the Column reduced Column-echelon form/the number of non-zero rows in the RREF of A^{T}). Thus we can talk unambiguously about the rank of a matrix.
- Returning back to $[\tilde{A} \mid \tilde{b}]$, the number of "free variables"

More on linear equations

- In general, given an arbitrary row-reduced echelon matrix C, the number of non-zero rows is called the row rank of C. It is the number of pivots in C. It is also the dimension of the row space (HW). Bear in mind that the row space does not change under row operations.
- Using the nullity-rank theorem one can prove that the row rank of C equals its column rank (the dimension of the column space/the number of non-zero columns in the Column reduced Column-echelon form/the number of non-zero rows in the RREF of A^{T}). Thus we can talk unambiguously about the rank of a matrix.
- Returning back to $[\tilde{A} \mid \tilde{b}]$, the number of "free variables" equals

More on linear equations

- In general, given an arbitrary row-reduced echelon matrix C, the number of non-zero rows is called the row rank of C. It is the number of pivots in C. It is also the dimension of the row space (HW). Bear in mind that the row space does not change under row operations.
- Using the nullity-rank theorem one can prove that the row rank of C equals its column rank (the dimension of the column space/the number of non-zero columns in the Column reduced Column-echelon form/the number of non-zero rows in the RREF of A^{T}). Thus we can talk unambiguously about the rank of a matrix.
- Returning back to $[\tilde{A} \mid \tilde{b}]$, the number of "free variables" equals the number of columns minus

More on linear equations

- In general, given an arbitrary row-reduced echelon matrix C, the number of non-zero rows is called the row rank of C. It is the number of pivots in C. It is also the dimension of the row space (HW). Bear in mind that the row space does not change under row operations.
- Using the nullity-rank theorem one can prove that the row rank of C equals its column rank (the dimension of the column space/the number of non-zero columns in the Column reduced Column-echelon form/the number of non-zero rows in the RREF of A^{T}). Thus we can talk unambiguously about the rank of a matrix.
- Returning back to $[\tilde{A} \mid \tilde{b}]$, the number of "free variables" equals the number of columns minus the row rank.

Examples of solving equations - Example 1

Examples of solving equations - Example 1

- Solve:

Examples of solving equations - Example 1

- Solve: $2 x-5 y+4 z=-3, x-2 y+z=5, x-4 y+6 z=10$.

Examples of solving equations - Example 1

- Solve: $2 x-5 y+4 z=-3, x-2 y+z=5, x-4 y+6 z=10$.
- The augmented matrix is

Examples of solving equations - Example 1

- Solve: $2 x-5 y+4 z=-3, x-2 y+z=5, x-4 y+6 z=10$.
- The augmented matrix is $\left[\begin{array}{ccc|c}2 & -5 & 4 & -3 \\ 1 & -2 & 1 & 5 \\ 1 & -4 & 6 & 10\end{array}\right]$

Examples of solving equations - Example 1

- Solve: $2 x-5 y+4 z=-3, x-2 y+z=5, x-4 y+6 z=10$.
- The augmented matrix is $\left[\begin{array}{ccc|c}2 & -5 & 4 & -3 \\ 1 & -2 & 1 & 5 \\ 1 & -4 & 6 & 10\end{array}\right]$
- $R_{1} \rightarrow R_{1} / 2$ gives

Examples of solving equations - Example 1

- Solve: $2 x-5 y+4 z=-3, x-2 y+z=5, x-4 y+6 z=10$.
- The augmented matrix is $\left[\begin{array}{ccc|c}2 & -5 & 4 & -3 \\ 1 & -2 & 1 & 5 \\ 1 & -4 & 6 & 10\end{array}\right]$
- $R_{1} \rightarrow R_{1} / 2$ gives $\left[\begin{array}{ccc|c}1 & -\frac{5}{2} & 2 & -\frac{3}{2} \\ 1 & -2 & 1 & 5 \\ 1 & -4 & 6 & 10\end{array}\right]$.

Examples of solving equations - Example 1

- Solve: $2 x-5 y+4 z=-3, x-2 y+z=5, x-4 y+6 z=10$.
- The augmented matrix is $\left[\begin{array}{ccc|c}2 & -5 & 4 & -3 \\ 1 & -2 & 1 & 5 \\ 1 & -4 & 6 & 10\end{array}\right]$
- $R_{1} \rightarrow R_{1} / 2$ gives $\left[\begin{array}{ccc|c}1 & -\frac{5}{2} & 2 & -\frac{3}{2} \\ 1 & -2 & 1 & 5 \\ 1 & -4 & 6 & 10\end{array}\right]$.
- Now we "clear"

Examples of solving equations - Example 1

- Solve: $2 x-5 y+4 z=-3, x-2 y+z=5, x-4 y+6 z=10$.
- The augmented matrix is $\left[\begin{array}{ccc|c}2 & -5 & 4 & -3 \\ 1 & -2 & 1 & 5 \\ 1 & -4 & 6 & 10\end{array}\right]$
- $R_{1} \rightarrow R_{1} / 2$ gives $\left[\begin{array}{ccc|c}1 & -\frac{5}{2} & 2 & -\frac{3}{2} \\ 1 & -2 & 1 & 5 \\ 1 & -4 & 6 & 10\end{array}\right]$.
- Now we "clear" the first column through

Examples of solving equations - Example 1

- Solve: $2 x-5 y+4 z=-3, x-2 y+z=5, x-4 y+6 z=10$.
- The augmented matrix is $\left[\begin{array}{ccc|c}2 & -5 & 4 & -3 \\ 1 & -2 & 1 & 5 \\ 1 & -4 & 6 & 10\end{array}\right]$
- $R_{1} \rightarrow R_{1} / 2$ gives $\left[\begin{array}{ccc|c}1 & -\frac{5}{2} & 2 & -\frac{3}{2} \\ 1 & -2 & 1 & 5 \\ 1 & -4 & 6 & 10\end{array}\right]$.
- Now we "clear" the first column through

$$
R_{2} \rightarrow R_{2}-R_{1}, R_{3} \rightarrow R_{3}-R_{1} \text { to get }
$$

Examples of solving equations - Example 1

- Solve: $2 x-5 y+4 z=-3, x-2 y+z=5, x-4 y+6 z=10$.
- The augmented matrix is $\left[\begin{array}{ccc|c}2 & -5 & 4 & -3 \\ 1 & -2 & 1 & 5 \\ 1 & -4 & 6 & 10\end{array}\right]$
- $R_{1} \rightarrow R_{1} / 2$ gives $\left[\begin{array}{ccc|c}1 & -\frac{5}{2} & 2 & -\frac{3}{2} \\ 1 & -2 & 1 & 5 \\ 1 & -4 & 6 & 10\end{array}\right]$.
- Now we "clear" the first column through

$$
R_{2} \rightarrow R_{2}-R_{1}, R_{3} \rightarrow R_{3}-R_{1} \text { to get }\left[\begin{array}{ccc|c}
1 & -\frac{5}{2} & 2 & -\frac{3}{2} \\
0 & \frac{1}{2} & -1 & \frac{13}{2} \\
0 & -\frac{3}{2} & 4 & \frac{23}{2}
\end{array}\right]
$$

Example-1

Example-1

- Rinse and repeat:

Example-1

- Rinse and repeat: $R_{2} \rightarrow 2 R_{2}$ and then

Example-1

- Rinse and repeat: $R_{2} \rightarrow 2 R_{2}$ and then

$$
R_{3} \rightarrow R_{3}+\frac{3}{2} R_{2}, R_{1} \rightarrow R_{1}+\frac{5}{2} R_{2} \text { give }
$$

Example-1

- Rinse and repeat: $R_{2} \rightarrow 2 R_{2}$ and then

$$
R_{3} \rightarrow R_{3}+\frac{3}{2} R_{2}, R_{1} \rightarrow R_{1}+\frac{5}{2} R_{2} \text { give }\left[\begin{array}{ccc|c}
1 & 0 & -3 & 31 \\
0 & 1 & -2 & 13 \\
0 & 0 & 1 & 31
\end{array}\right]
$$

Example-1

- Rinse and repeat: $R_{2} \rightarrow 2 R_{2}$ and then

$$
R_{3} \rightarrow R_{3}+\frac{3}{2} R_{2}, R_{1} \rightarrow R_{1}+\frac{5}{2} R_{2} \text { give }\left[\begin{array}{ccc|c}
1 & 0 & -3 & 31 \\
0 & 1 & -2 & 13 \\
0 & 0 & 1 & 31
\end{array}\right]
$$

- It is not in RREF but,

Example-1

- Rinse and repeat: $R_{2} \rightarrow 2 R_{2}$ and then

$$
R_{3} \rightarrow R_{3}+\frac{3}{2} R_{2}, R_{1} \rightarrow R_{1}+\frac{5}{2} R_{2} \text { give }\left[\begin{array}{ccc|c}
1 & 0 & -3 & 31 \\
0 & 1 & -2 & 13 \\
0 & 0 & 1 & 31
\end{array}\right]
$$

- It is not in RREF but, we can solve now itself:

Example-1

- Rinse and repeat: $R_{2} \rightarrow 2 R_{2}$ and then

$$
R_{3} \rightarrow R_{3}+\frac{3}{2} R_{2}, R_{1} \rightarrow R_{1}+\frac{5}{2} R_{2} \text { give }\left[\begin{array}{ccc|c}
1 & 0 & -3 & 31 \\
0 & 1 & -2 & 13 \\
0 & 0 & 1 & 31
\end{array}\right]
$$

- It is not in RREF but, we can solve now itself: $z=31$,

Example-1

- Rinse and repeat: $R_{2} \rightarrow 2 R_{2}$ and then

$$
R_{3} \rightarrow R_{3}+\frac{3}{2} R_{2}, R_{1} \rightarrow R_{1}+\frac{5}{2} R_{2} \text { give }\left[\begin{array}{ccc|c}
1 & 0 & -3 & 31 \\
0 & 1 & -2 & 13 \\
0 & 0 & 1 & 31
\end{array}\right]
$$

- It is not in RREF but, we can solve now itself: $z=31$,

$$
y=13+2 z=75, \text { and }
$$

Example-1

- Rinse and repeat: $R_{2} \rightarrow 2 R_{2}$ and then

$$
R_{3} \rightarrow R_{3}+\frac{3}{2} R_{2}, R_{1} \rightarrow R_{1}+\frac{5}{2} R_{2} \text { give }\left[\begin{array}{ccc|c}
1 & 0 & -3 & 31 \\
0 & 1 & -2 & 13 \\
0 & 0 & 1 & 31
\end{array}\right]
$$

- It is not in RREF but, we can solve now itself: $z=31$, $y=13+2 z=75$, and $x=3 z+31=124$.

Example-2

Example-2

- Solve:

Example-2

- Solve: $x-2 y+z-u+v=5,2 x-5 y+4 z+u-v=$ $-3, x-4 y+6 z-v+2 u=10$.

Example-2

- Solve: $x-2 y+z-u+v=5,2 x-5 y+4 z+u-v=$ $-3, x-4 y+6 z-v+2 u=10$.
- The augmented matrix is

Example-2

- Solve: $x-2 y+z-u+v=5,2 x-5 y+4 z+u-v=$ $-3, x-4 y+6 z-v+2 u=10$.
- The augmented matrix is $\left[\begin{array}{ccccc|c}1 & -2 & 1 & -1 & 1 & 5 \\ 2 & -5 & 4 & 1 & -1 & -3 \\ 1 & -4 & 6 & 2 & -1 & 10\end{array}\right]$.

Example-2

- Solve: $x-2 y+z-u+v=5,2 x-5 y+4 z+u-v=$ $-3, x-4 y+6 z-v+2 u=10$.
- The augmented matrix is $\left[\begin{array}{ccccc|c}1 & -2 & 1 & -1 & 1 & 5 \\ 2 & -5 & 4 & 1 & -1 & -3 \\ 1 & -4 & 6 & 2 & -1 & 10\end{array}\right]$.
- We clear the first column through

Example-2

- Solve: $x-2 y+z-u+v=5,2 x-5 y+4 z+u-v=$ $-3, x-4 y+6 z-v+2 u=10$.
- The augmented matrix is $\left[\begin{array}{ccccc|c}1 & -2 & 1 & -1 & 1 & 5 \\ 2 & -5 & 4 & 1 & -1 & -3 \\ 1 & -4 & 6 & 2 & -1 & 10\end{array}\right]$.
- We clear the first column through $R_{2} \rightarrow R_{2}-2 R_{1}$,
$R_{3} \rightarrow R_{3}-R_{1}$ to get

Example-2

- Solve: $x-2 y+z-u+v=5,2 x-5 y+4 z+u-v=$ $-3, x-4 y+6 z-v+2 u=10$.
- The augmented matrix is $\left[\begin{array}{ccccc|c}1 & -2 & 1 & -1 & 1 & 5 \\ 2 & -5 & 4 & 1 & -1 & -3 \\ 1 & -4 & 6 & 2 & -1 & 10\end{array}\right]$.
- We clear the first column through $R_{2} \rightarrow R_{2}-2 R_{1}$,

$$
R_{3} \rightarrow R_{3}-R_{1} \text { to get }\left[\begin{array}{ccccc|c}
1 & -2 & 1 & -1 & 1 & 5 \\
0 & -1 & 2 & 3 & -3 & -13 \\
0 & -2 & 5 & 3 & -2 & 5
\end{array}\right]
$$

Example-2

Example-2

- Now we normalise the second row:

Example-2

- Now we normalise the second row: $R_{2} \rightarrow-R_{2}$ and

Example-2

- Now we normalise the second row: $R_{2} \rightarrow-R_{2}$ and then clear the second column:

Example-2

- Now we normalise the second row: $R_{2} \rightarrow-R_{2}$ and then clear the second column: $R_{3} \rightarrow R_{3}+2 R_{2}, R_{1} \rightarrow R_{1}+2 R_{2}$ to get

Example-2

- Now we normalise the second row: $R_{2} \rightarrow-R_{2}$ and then clear the second column: $R_{3} \rightarrow R_{3}+2 R_{2}, R_{1} \rightarrow R_{1}+2 R_{2}$ to get
$\left[\begin{array}{ccccc|c}1 & 0 & -3 & -7 & 7 & 31 \\ 0 & 1 & -2 & -3 & 3 & 13 \\ 0 & 0 & 1 & -3 & 4 & 31\end{array}\right]$.

Example-2

- Now we normalise the second row: $R_{2} \rightarrow-R_{2}$ and then clear the second column: $R_{3} \rightarrow R_{3}+2 R_{2}, R_{1} \rightarrow R_{1}+2 R_{2}$ to get

$$
\left[\begin{array}{ccccc|c}
1 & 0 & -3 & -7 & 7 & 31 \\
0 & 1 & -2 & -3 & 3 & 13 \\
0 & 0 & 1 & -3 & 4 & 31
\end{array}\right]
$$

- We clear the third column:

Example-2

- Now we normalise the second row: $R_{2} \rightarrow-R_{2}$ and then clear the second column: $R_{3} \rightarrow R_{3}+2 R_{2}, R_{1} \rightarrow R_{1}+2 R_{2}$ to get
$\left[\begin{array}{ccccc|c}1 & 0 & -3 & -7 & 7 & 31 \\ 0 & 1 & -2 & -3 & 3 & 13 \\ 0 & 0 & 1 & -3 & 4 & 31\end{array}\right]$.
- We clear the third column: $R_{2} \rightarrow R_{2}+2 R_{3}, R_{1} \rightarrow R_{1}+3 R_{3}$ to get

Example-2

- Now we normalise the second row: $R_{2} \rightarrow-R_{2}$ and then clear the second column: $R_{3} \rightarrow R_{3}+2 R_{2}, R_{1} \rightarrow R_{1}+2 R_{2}$ to get
$\left[\begin{array}{ccccc|c}1 & 0 & -3 & -7 & 7 & 31 \\ 0 & 1 & -2 & -3 & 3 & 13 \\ 0 & 0 & 1 & -3 & 4 & 31\end{array}\right]$.
- We clear the third column: $R_{2} \rightarrow R_{2}+2 R_{3}, R_{1} \rightarrow R_{1}+3 R_{3}$ to
get $\left[\begin{array}{ccccc|c}1 & 0 & 0 & -16 & 19 & 124 \\ 0 & 1 & 0 & -9 & 11 & 75 \\ 0 & 0 & 1 & -3 & 4 & 31\end{array}\right]$.

Example-2

- Now we normalise the second row: $R_{2} \rightarrow-R_{2}$ and then clear the second column: $R_{3} \rightarrow R_{3}+2 R_{2}, R_{1} \rightarrow R_{1}+2 R_{2}$ to get
$\left[\begin{array}{ccccc|c}1 & 0 & -3 & -7 & 7 & 31 \\ 0 & 1 & -2 & -3 & 3 & 13 \\ 0 & 0 & 1 & -3 & 4 & 31\end{array}\right]$.
- We clear the third column: $R_{2} \rightarrow R_{2}+2 R_{3}, R_{1} \rightarrow R_{1}+3 R_{3}$ to
get $\left[\begin{array}{ccccc|c}1 & 0 & 0 & -16 & 19 & 124 \\ 0 & 1 & 0 & -9 & 11 & 75 \\ 0 & 0 & 1 & -3 & 4 & 31\end{array}\right]$.
- Thus $z=3 u-4 v+31$,

Example-2

- Now we normalise the second row: $R_{2} \rightarrow-R_{2}$ and then clear the second column: $R_{3} \rightarrow R_{3}+2 R_{2}, R_{1} \rightarrow R_{1}+2 R_{2}$ to get
$\left[\begin{array}{ccccc|c}1 & 0 & -3 & -7 & 7 & 31 \\ 0 & 1 & -2 & -3 & 3 & 13 \\ 0 & 0 & 1 & -3 & 4 & 31\end{array}\right]$.
- We clear the third column: $R_{2} \rightarrow R_{2}+2 R_{3}, R_{1} \rightarrow R_{1}+3 R_{3}$ to
get $\left[\begin{array}{ccccc|c}1 & 0 & 0 & -16 & 19 & 124 \\ 0 & 1 & 0 & -9 & 11 & 75 \\ 0 & 0 & 1 & -3 & 4 & 31\end{array}\right]$.
- Thus $z=3 u-4 v+31, y=9 u-11 v+75$,

Example-2

- Now we normalise the second row: $R_{2} \rightarrow-R_{2}$ and then clear the second column: $R_{3} \rightarrow R_{3}+2 R_{2}, R_{1} \rightarrow R_{1}+2 R_{2}$ to get
$\left[\begin{array}{ccccc|c}1 & 0 & -3 & -7 & 7 & 31 \\ 0 & 1 & -2 & -3 & 3 & 13 \\ 0 & 0 & 1 & -3 & 4 & 31\end{array}\right]$.
- We clear the third column: $R_{2} \rightarrow R_{2}+2 R_{3}, R_{1} \rightarrow R_{1}+3 R_{3}$ to
get $\left[\begin{array}{ccccc|c}1 & 0 & 0 & -16 & 19 & 124 \\ 0 & 1 & 0 & -9 & 11 & 75 \\ 0 & 0 & 1 & -3 & 4 & 31\end{array}\right]$.
- Thus $z=3 u-4 v+31, y=9 u-11 v+75$, $x=16 u-19 v+124$.

Example-2

- Now we normalise the second row: $R_{2} \rightarrow-R_{2}$ and then clear the second column: $R_{3} \rightarrow R_{3}+2 R_{2}, R_{1} \rightarrow R_{1}+2 R_{2}$ to get
$\left[\begin{array}{ccccc|c}1 & 0 & -3 & -7 & 7 & 31 \\ 0 & 1 & -2 & -3 & 3 & 13 \\ 0 & 0 & 1 & -3 & 4 & 31\end{array}\right]$.
- We clear the third column: $R_{2} \rightarrow R_{2}+2 R_{3}, R_{1} \rightarrow R_{1}+3 R_{3}$ to
get $\left[\begin{array}{ccccc|c}1 & 0 & 0 & -16 & 19 & 124 \\ 0 & 1 & 0 & -9 & 11 & 75 \\ 0 & 0 & 1 & -3 & 4 & 31\end{array}\right]$.
- Thus $z=3 u-4 v+31, y=9 u-11 v+75$, $x=16 u-19 v+124$.
- That is,
- Now we normalise the second row: $R_{2} \rightarrow-R_{2}$ and then clear the second column: $R_{3} \rightarrow R_{3}+2 R_{2}, R_{1} \rightarrow R_{1}+2 R_{2}$ to get
$\left[\begin{array}{ccccc|c}1 & 0 & -3 & -7 & 7 & 31 \\ 0 & 1 & -2 & -3 & 3 & 13 \\ 0 & 0 & 1 & -3 & 4 & 31\end{array}\right]$.
- We clear the third column: $R_{2} \rightarrow R_{2}+2 R_{3}, R_{1} \rightarrow R_{1}+3 R_{3}$ to
get $\left[\begin{array}{ccccc|c}1 & 0 & 0 & -16 & 19 & 124 \\ 0 & 1 & 0 & -9 & 11 & 75 \\ 0 & 0 & 1 & -3 & 4 & 31\end{array}\right]$.
- Thus $z=3 u-4 v+31, y=9 u-11 v+75$, $x=16 u-19 v+124$.
- That is, $(x, y, z, u, v)=$
$(124,75,31,0,0)+u(16,9,3,1,0)+v(-19,-11,-4,0,1)$.
- Now we normalise the second row: $R_{2} \rightarrow-R_{2}$ and then clear the second column: $R_{3} \rightarrow R_{3}+2 R_{2}, R_{1} \rightarrow R_{1}+2 R_{2}$ to get
$\left[\begin{array}{ccccc|c}1 & 0 & -3 & -7 & 7 & 31 \\ 0 & 1 & -2 & -3 & 3 & 13 \\ 0 & 0 & 1 & -3 & 4 & 31\end{array}\right]$.
- We clear the third column: $R_{2} \rightarrow R_{2}+2 R_{3}, R_{1} \rightarrow R_{1}+3 R_{3}$ to
get $\left[\begin{array}{ccccc|c}1 & 0 & 0 & -16 & 19 & 124 \\ 0 & 1 & 0 & -9 & 11 & 75 \\ 0 & 0 & 1 & -3 & 4 & 31\end{array}\right]$.
- Thus $z=3 u-4 v+31, y=9 u-11 v+75$, $x=16 u-19 v+124$.
- That is, $(x, y, z, u, v)=$
$(124,75,31,0,0)+u(16,9,3,1,0)+v(-19,-11,-4,0,1)$.
$(124,75,31,0,0)$ is a
- Now we normalise the second row: $R_{2} \rightarrow-R_{2}$ and then clear the second column: $R_{3} \rightarrow R_{3}+2 R_{2}, R_{1} \rightarrow R_{1}+2 R_{2}$ to get
$\left[\begin{array}{ccccc|c}1 & 0 & -3 & -7 & 7 & 31 \\ 0 & 1 & -2 & -3 & 3 & 13 \\ 0 & 0 & 1 & -3 & 4 & 31\end{array}\right]$.
- We clear the third column: $R_{2} \rightarrow R_{2}+2 R_{3}, R_{1} \rightarrow R_{1}+3 R_{3}$ to
get $\left[\begin{array}{ccccc|c}1 & 0 & 0 & -16 & 19 & 124 \\ 0 & 1 & 0 & -9 & 11 & 75 \\ 0 & 0 & 1 & -3 & 4 & 31\end{array}\right]$.
- Thus $z=3 u-4 v+31, y=9 u-11 v+75$, $x=16 u-19 v+124$.
- That is, $(x, y, z, u, v)=$
$(124,75,31,0,0)+u(16,9,3,1,0)+v(-19,-11,-4,0,1)$.
$(124,75,31,0,0)$ is a particular solution, and
- Now we normalise the second row: $R_{2} \rightarrow-R_{2}$ and then clear the second column: $R_{3} \rightarrow R_{3}+2 R_{2}, R_{1} \rightarrow R_{1}+2 R_{2}$ to get
$\left[\begin{array}{ccccc|c}1 & 0 & -3 & -7 & 7 & 31 \\ 0 & 1 & -2 & -3 & 3 & 13 \\ 0 & 0 & 1 & -3 & 4 & 31\end{array}\right]$.
- We clear the third column: $R_{2} \rightarrow R_{2}+2 R_{3}, R_{1} \rightarrow R_{1}+3 R_{3}$ to
get $\left[\begin{array}{ccccc|c}1 & 0 & 0 & -16 & 19 & 124 \\ 0 & 1 & 0 & -9 & 11 & 75 \\ 0 & 0 & 1 & -3 & 4 & 31\end{array}\right]$.
- Thus $z=3 u-4 v+31, y=9 u-11 v+75$, $x=16 u-19 v+124$.
- That is, $(x, y, z, u, v)=$
$(124,75,31,0,0)+u(16,9,3,1,0)+v(-19,-11,-4,0,1)$.
$(124,75,31,0,0)$ is a particular solution, and when the matrix A is
- Now we normalise the second row: $R_{2} \rightarrow-R_{2}$ and then clear the second column: $R_{3} \rightarrow R_{3}+2 R_{2}, R_{1} \rightarrow R_{1}+2 R_{2}$ to get
$\left[\begin{array}{ccccc|c}1 & 0 & -3 & -7 & 7 & 31 \\ 0 & 1 & -2 & -3 & 3 & 13 \\ 0 & 0 & 1 & -3 & 4 & 31\end{array}\right]$.
- We clear the third column: $R_{2} \rightarrow R_{2}+2 R_{3}, R_{1} \rightarrow R_{1}+3 R_{3}$ to get $\left[\begin{array}{ccccc|c}1 & 0 & 0 & -16 & 19 & 124 \\ 0 & 1 & 0 & -9 & 11 & 75 \\ 0 & 0 & 1 & -3 & 4 & 31\end{array}\right]$.
- Thus $z=3 u-4 v+31, y=9 u-11 v+75$, $x=16 u-19 v+124$.
- That is, $(x, y, z, u, v)=$
$(124,75,31,0,0)+u(16,9,3,1,0)+v(-19,-11,-4,0,1)$.
$(124,75,31,0,0)$ is a particular solution, and when the matrix A is considered as a linear map,
- Now we normalise the second row: $R_{2} \rightarrow-R_{2}$ and then clear the second column: $R_{3} \rightarrow R_{3}+2 R_{2}, R_{1} \rightarrow R_{1}+2 R_{2}$ to get
$\left[\begin{array}{ccccc|c}1 & 0 & -3 & -7 & 7 & 31 \\ 0 & 1 & -2 & -3 & 3 & 13 \\ 0 & 0 & 1 & -3 & 4 & 31\end{array}\right]$.
- We clear the third column: $R_{2} \rightarrow R_{2}+2 R_{3}, R_{1} \rightarrow R_{1}+3 R_{3}$ to get $\left[\begin{array}{ccccc|c}1 & 0 & 0 & -16 & 19 & 124 \\ 0 & 1 & 0 & -9 & 11 & 75 \\ 0 & 0 & 1 & -3 & 4 & 31\end{array}\right]$.
- Thus $z=3 u-4 v+31, y=9 u-11 v+75$, $x=16 u-19 v+124$.
- That is, $(x, y, z, u, v)=$
$(124,75,31,0,0)+u(16,9,3,1,0)+v(-19,-11,-4,0,1)$.
$(124,75,31,0,0)$ is a particular solution, and when the matrix A is considered as a linear map, $(16,9,3,1,0)$ and $(-19,-11,-4,0,1)$ span the kernel.

