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@ Formulated linear equations using matrices.

@ Discussed elementary row operations and the row-echelon
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entry of every row (the so-called pivot) occurs strictly to the
right of the pivot of the previous row. As a consequence, all
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@ Discussed inverses (left and right).

@ Formulated linear equations using matrices.

@ Discussed elementary row operations and the row-echelon
form (Basically, either the row is zero or the first non-zero
entry of every row (the so-called pivot) occurs strictly to the
right of the pivot of the previous row. As a consequence, all
the rows consisting entirely of zeroes must be at the bottom.
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Reduced row-echelon form

@ An m x n matrix A
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@ An m x n matrix A is said to be in the reduced row-echelon
form if it is in the row-echelon form, each pivot is 1, and the
column containing each pivot
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Reduced row-echelon form

@ An m x n matrix A is said to be in the reduced row-echelon
form if it is in the row-echelon form, each pivot is 1, and the
column containing each pivot has only zeroes in the other
entries.
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Reduced row-echelon form

@ An m x n matrix A is said to be in the reduced row-echelon
form if it is in the row-echelon form, each pivot is 1, and the
column containing each pivot has only zeroes in the other
entries.

@ If Ais in the row-echelon form then it can be reduced to the
reduced row-echelon form
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Reduced row-echelon form

@ An m x n matrix A is said to be in the reduced row-echelon
form if it is in the row-echelon form, each pivot is 1, and the
column containing each pivot has only zeroes in the other
entries.

@ If Ais in the row-echelon form then it can be reduced to the
reduced row-echelon form easily using further row operations.
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Gauss-Jordan elimination theorem

@ A theorem of Gauss and Jordan is: Every m x n matrix A with
entries in a field IF can be row-reduced to a unigue reduced
row-echelon form.

@ The theorem can be proven using induction on the number of
rows. Two crucial observations are:

o Elementary row operations can be reversed, i.e., run
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o If one gets B from A using elementary row operations, then
each row of B is a linear combination of rows of A. (The linear
span of rows of a matrix A is called the row space of A.
Likewise, that of the columns is called the column space.)

@ Row-reduction does not change the row space (HW).
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Gauss-Jordan elimination theorem

@ A theorem of Gauss and Jordan is: Every m x n matrix A with
entries in a field IF can be row-reduced to a unigue reduced
row-echelon form.

@ The theorem can be proven using induction on the number of
rows. Two crucial observations are:

o Elementary row operations can be reversed, i.e., run
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o If one gets B from A using elementary row operations, then
each row of B is a linear combination of rows of A. (The linear
span of rows of a matrix A is called the row space of A.
Likewise, that of the columns is called the column space.)

@ Row-reduction does not change the row space (HW).

@ We shall not prove the theorem.
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Gauss-Jordan elimination theorem

@ A theorem of Gauss and Jordan is: Every m x n matrix A with
entries in a field IF can be row-reduced to a unigue reduced
row-echelon form.

@ The theorem can be proven using induction on the number of
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@ We shall not prove the theorem. Instead we shall illustrate its
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Gauss-Jordan elimination theorem

@ A theorem of Gauss and Jordan is: Every m x n matrix A with
entries in a field IF can be row-reduced to a unigue reduced
row-echelon form.

@ The theorem can be proven using induction on the number of
rows. Two crucial observations are:

o Elementary row operations can be reversed, i.e., run
backwards.

o If one gets B from A using elementary row operations, then
each row of B is a linear combination of rows of A. (The linear
span of rows of a matrix A is called the row space of A.
Likewise, that of the columns is called the column space.)

@ Row-reduction does not change the row space (HW).

@ We shall not prove the theorem. Instead we shall illustrate its
application to linear equations
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Gauss-Jordan elimination theorem

@ A theorem of Gauss and Jordan is: Every m x n matrix A with
entries in a field IF can be row-reduced to a unigue reduced
row-echelon form.

@ The theorem can be proven using induction on the number of
rows. Two crucial observations are:

o Elementary row operations can be reversed, i.e., run
backwards.

o If one gets B from A using elementary row operations, then
each row of B is a linear combination of rows of A. (The linear
span of rows of a matrix A is called the row space of A.
Likewise, that of the columns is called the column space.)

@ Row-reduction does not change the row space (HW).

@ We shall not prove the theorem. Instead we shall illustrate its
application to linear equations using examples.
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The row-reduction algorithm

@ Identify the left-most pivot among all rows. Suppose it occurs
in the i*" row.

@ Interchanging rows, make sure that R; is the first row.

@ Divide out the first-row pivot to make it 1.
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The row-reduction algorithm

Identify the left-most pivot among all rows. Suppose it occurs
in the i*" row.

Interchanging rows, make sure that R; is the first row.

Divide out the first-row pivot to make it 1.

“Clear” everything below the first-row pivot
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The row-reduction algorithm

@ Identify the left-most pivot among all rows. Suppose it occurs
in the i*" row.

@ Interchanging rows, make sure that R; is the first row.
@ Divide out the first-row pivot to make it 1.

@ “Clear” everything below the first-row pivot using row
operations.
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The row-reduction algorithm

@ Identify the left-most pivot among all rows. Suppose it occurs
in the i*" row.

@ Interchanging rows, make sure that R; is the first row.
@ Divide out the first-row pivot to make it 1.

@ “Clear” everything below the first-row pivot using row
operations.

@ By induction/recursion/“Rinse and repeat”
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in the i*" row.

@ Interchanging rows, make sure that R; is the first row.
@ Divide out the first-row pivot to make it 1.

@ “Clear” everything below the first-row pivot using row
operations.
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matrix of the next m — 1 rows can be
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The row-reduction algorithm

@ Identify the left-most pivot among all rows. Suppose it occurs
in the i*" row.

@ Interchanging rows, make sure that R; is the first row.
@ Divide out the first-row pivot to make it 1.

@ “Clear” everything below the first-row pivot using row
operations.

@ By induction/recursion/ “Rinse and repeat” the (m —1) x n
matrix of the next m — 1 rows can be assumed to be in the
required form.
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The row-reduction algorithm

@ Identify the left-most pivot among all rows. Suppose it occurs
in the i*" row.

@ Interchanging rows, make sure that R; is the first row.
@ Divide out the first-row pivot to make it 1.

@ “Clear” everything below the first-row pivot using row
operations.

@ By induction/recursion/ “Rinse and repeat” the (m —1) x n
matrix of the next m — 1 rows can be assumed to be in the
required form.

@ Clear the elements in
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The row-reduction algorithm

@ Identify the left-most pivot among all rows. Suppose it occurs
in the i*" row.

@ Interchanging rows, make sure that R; is the first row.
@ Divide out the first-row pivot to make it 1.

@ “Clear” everything below the first-row pivot using row
operations.

@ By induction/recursion/ “Rinse and repeat” the (m —1) x n
matrix of the next m — 1 rows can be assumed to be in the
required form.

@ Clear the elements in the first row
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The row-reduction algorithm

@ Identify the left-most pivot among all rows. Suppose it occurs
in the i*" row.

@ Interchanging rows, make sure that R; is the first row.
@ Divide out the first-row pivot to make it 1.

@ “Clear” everything below the first-row pivot using row
operations.

@ By induction/recursion/ “Rinse and repeat” the (m —1) x n
matrix of the next m — 1 rows can be assumed to be in the
required form.

@ Clear the elements in the first row using the pivots in the
other rows. (
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The row-reduction algorithm

@ Identify the left-most pivot among all rows. Suppose it occurs
in the i*" row.

@ Interchanging rows, make sure that R; is the first row.
@ Divide out the first-row pivot to make it 1.

@ “Clear” everything below the first-row pivot using row
operations.

@ By induction/recursion/ “Rinse and repeat” the (m —1) x n
matrix of the next m — 1 rows can be assumed to be in the
required form.

@ Clear the elements in the first row using the pivots in the
other rows. (On a computer, you can implement it iteratively
or recursively.)
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The algorithm for solving linear equations
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The algorithm for solving linear equations

@ To solve Ax = b,
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e To solve Ax = b, consider the augmented matrix [A|b], and
row-reduce it to its RREF [A|b].

Vamsi Pritham Pingali Lecture 7 6/11



The algorithm for solving linear equations

e To solve Ax = b, consider the augmented matrix [A|b], and
row-reduce it to its RREF [A|b].

o If any row of A is 0,

Vamsi Pritham Pingali Lecture 7 6/11



The algorithm for solving linear equations

e To solve Ax = b, consider the augmented matrix [A|b], and
row-reduce it to its RREF [A|b].

e If any row of A is 0, but the corresponding entry of b

Vamsi Pritham Pingali Lecture 7 6/11



The algorithm for solving linear equations

e To solve Ax = b, consider the augmented matrix [A|b], and
row-reduce it to its RREF [A|b].

o If any row of Ais 0, but the corresponding entry of b is not,
then
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The algorithm for solving linear equations

e To solve Ax = b, consider the augmented matrix [A|b], and
row-reduce it to its RREF [A|b].

o If any row of Ais 0, but the corresponding entry of b is not,
then the system is inconsistent.
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o If any row of Ais 0, but the corresponding entry of b is not,
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o If it is consistent,
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The algorithm for solving linear equations

e To solve Ax = b, consider the augmented matrix [A|b], and
row-reduce it to its RREF [A|b].

o If any row of Ais 0, but the corresponding entry of b is not,
then the system is inconsistent.

e If it is consistent, starting from the bottom of A
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The algorithm for solving linear equations

e To solve Ax = b, consider the augmented matrix [A|b], and
row-reduce it to its RREF [A|b].

o If any row of Ais 0, but the corresponding entry of b is not,
then the system is inconsistent.

e If it is consistent, starting from the bottom of A solve for the
first non-zero pivoted variable.
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The algorithm for solving linear equations

e To solve Ax = b, consider the augmented matrix [A|b], and
row-reduce it to its RREF [A|b].

o If any row of Ais 0, but the corresponding entry of b is not,
then the system is inconsistent.

e If it is consistent, starting from the bottom of A solve for the
first non-zero pivoted variable.

@ Inductively/recursively,
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The algorithm for solving linear equations

e To solve Ax = b, consider the augmented matrix [A|b], and
row-reduce it to its RREF [A|b].

o If any row of Ais 0, but the corresponding entry of b is not,
then the system is inconsistent.

e If it is consistent, starting from the bottom of A solve for the
first non-zero pivoted variable.

@ Inductively/recursively, solve for the other pivoted variables.
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More on linear equations
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More on linear equations

@ In general, given an arbitrary row-reduced echelon matrix C,
the number of non-zero rows
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@ In general, given an arbitrary row-reduced echelon matrix C,
the number of non-zero rows is called the
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More on linear equations

@ In general, given an arbitrary row-reduced echelon matrix C,
the number of non-zero rows is called the row rank of C.
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More on linear equations

@ In general, given an arbitrary row-reduced echelon matrix C,
the number of non-zero rows is called the row rank of C. It is
the number of pivots in C.
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More on linear equations

@ In general, given an arbitrary row-reduced echelon matrix C,
the number of non-zero rows is called the row rank of C. It is
the number of pivots in C. It is also the dimension of the
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More on linear equations

@ In general, given an arbitrary row-reduced echelon matrix C,
the number of non-zero rows is called the row rank of C. It is
the number of pivots in C. It is also the dimension of the row
space (HW). Bear in mind that the row space does not
change under row operations.
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More on linear equations

@ In general, given an arbitrary row-reduced echelon matrix C,
the number of non-zero rows is called the row rank of C. It is
the number of pivots in C. It is also the dimension of the row
space (HW). Bear in mind that the row space does not
change under row operations.

@ Using the nullity-rank theorem
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More on linear equations

@ In general, given an arbitrary row-reduced echelon matrix C,
the number of non-zero rows is called the row rank of C. It is
the number of pivots in C. It is also the dimension of the row
space (HW). Bear in mind that the row space does not
change under row operations.

@ Using the nullity-rank theorem one can prove that
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More on linear equations

@ In general, given an arbitrary row-reduced echelon matrix C,
the number of non-zero rows is called the row rank of C. It is
the number of pivots in C. It is also the dimension of the row
space (HW). Bear in mind that the row space does not
change under row operations.

@ Using the nullity-rank theorem one can prove that the row
rank of C equals its
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More on linear equations

@ In general, given an arbitrary row-reduced echelon matrix C,
the number of non-zero rows is called the row rank of C. It is
the number of pivots in C. It is also the dimension of the row
space (HW). Bear in mind that the row space does not
change under row operations.

@ Using the nullity-rank theorem one can prove that the row
rank of C equals its column rank (
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More on linear equations

@ In general, given an arbitrary row-reduced echelon matrix C,
the number of non-zero rows is called the row rank of C. It is
the number of pivots in C. It is also the dimension of the row
space (HW). Bear in mind that the row space does not
change under row operations.

@ Using the nullity-rank theorem one can prove that the row
rank of C equals its column rank (the dimension of the
column space/the number of non-zero columns in the Column
reduced Column-echelon form/the number of non-zero rows in
the RREF of AT).
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More on linear equations

@ In general, given an arbitrary row-reduced echelon matrix C,
the number of non-zero rows is called the row rank of C. It is
the number of pivots in C. It is also the dimension of the row
space (HW). Bear in mind that the row space does not
change under row operations.

@ Using the nullity-rank theorem one can prove that the row
rank of C equals its column rank (the dimension of the
column space/the number of non-zero columns in the Column
reduced Column-echelon form/the number of non-zero rows in
the RREF of AT). Thus we can talk
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More on linear equations

@ In general, given an arbitrary row-reduced echelon matrix C,
the number of non-zero rows is called the row rank of C. It is
the number of pivots in C. It is also the dimension of the row
space (HW). Bear in mind that the row space does not
change under row operations.

@ Using the nullity-rank theorem one can prove that the row
rank of C equals its column rank (the dimension of the
column space/the number of non-zero columns in the Column
reduced Column-echelon form/the number of non-zero rows in
the RREF of AT). Thus we can talk unambiguously
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More on linear equations

@ In general, given an arbitrary row-reduced echelon matrix C,
the number of non-zero rows is called the row rank of C. It is
the number of pivots in C. It is also the dimension of the row
space (HW). Bear in mind that the row space does not
change under row operations.

@ Using the nullity-rank theorem one can prove that the row
rank of C equals its column rank (the dimension of the
column space/the number of non-zero columns in the Column
reduced Column-echelon form/the number of non-zero rows in
the RREF of AT). Thus we can talk unambiguously about the
rank of a matrix.
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More on linear equations

@ In general, given an arbitrary row-reduced echelon matrix C,
the number of non-zero rows is called the row rank of C. It is
the number of pivots in C. It is also the dimension of the row
space (HW). Bear in mind that the row space does not
change under row operations.

@ Using the nullity-rank theorem one can prove that the row
rank of C equals its column rank (the dimension of the
column space/the number of non-zero columns in the Column
reduced Column-echelon form/the number of non-zero rows in
the RREF of AT). Thus we can talk unambiguously about the
rank of a matrix.

e Returning back to [A|B], the number of
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More on linear equations

@ In general, given an arbitrary row-reduced echelon matrix C,
the number of non-zero rows is called the row rank of C. It is
the number of pivots in C. It is also the dimension of the row
space (HW). Bear in mind that the row space does not
change under row operations.

@ Using the nullity-rank theorem one can prove that the row
rank of C equals its column rank (the dimension of the
column space/the number of non-zero columns in the Column
reduced Column-echelon form/the number of non-zero rows in
the RREF of AT). Thus we can talk unambiguously about the
rank of a matrix.

@ Returning back to [A|B], the number of “free variables”
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More on linear equations

@ In general, given an arbitrary row-reduced echelon matrix C,
the number of non-zero rows is called the row rank of C. It is
the number of pivots in C. It is also the dimension of the row
space (HW). Bear in mind that the row space does not
change under row operations.

@ Using the nullity-rank theorem one can prove that the row
rank of C equals its column rank (the dimension of the
column space/the number of non-zero columns in the Column
reduced Column-echelon form/the number of non-zero rows in
the RREF of AT). Thus we can talk unambiguously about the
rank of a matrix.

@ Returning back to [A|B], the number of “free variables” equals
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More on linear equations

@ In general, given an arbitrary row-reduced echelon matrix C,
the number of non-zero rows is called the row rank of C. It is
the number of pivots in C. It is also the dimension of the row
space (HW). Bear in mind that the row space does not
change under row operations.

@ Using the nullity-rank theorem one can prove that the row
rank of C equals its column rank (the dimension of the
column space/the number of non-zero columns in the Column
reduced Column-echelon form/the number of non-zero rows in
the RREF of AT). Thus we can talk unambiguously about the
rank of a matrix.

@ Returning back to [A|B], the number of “free variables” equals
the number of columns minus

Vamsi Pritham Pingali Lecture 7 7/11



More on linear equations

@ In general, given an arbitrary row-reduced echelon matrix C,
the number of non-zero rows is called the row rank of C. It is
the number of pivots in C. It is also the dimension of the row
space (HW). Bear in mind that the row space does not
change under row operations.

@ Using the nullity-rank theorem one can prove that the row
rank of C equals its column rank (the dimension of the
column space/the number of non-zero columns in the Column
reduced Column-echelon form/the number of non-zero rows in
the RREF of AT). Thus we can talk unambiguously about the
rank of a matrix.

@ Returning back to [A|B], the number of “free variables” equals
the number of columns minus the row rank.
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Examples of solving equations - Example 1
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Examples of solving equations - Example 1

@ Solve:

Vamsi Pritham Pingali Lecture 7 8/11



Examples of solving equations - Example 1

@ Solve: 2x — 5y +4z= -3 x—2y+z=5x—4y + 6z = 10.
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Examples of solving equations - Example 1

@ Solve: 2x — 5y +4z= -3 x—2y+z=5x—4y + 6z = 10.

@ The augmented matrix is
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Examples of solving equations - Example 1

@ Solve: 2x — 5y +4z= -3 x—2y+z=5x—4y + 6z = 10.
2 -5 4|-3

@ The augmented matrixis [ 1 —2 1| 5
1 -4 6|10
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Examples of solving equations - Example 1

@ Solve: 2x — 5y +4z= -3 x—2y+z=5x—4y + 6z = 10.

2 -5 4|-3
@ The augmented matrixis [ 1 —2 1| 5
1 —4 6|10

@ Ry — R1/2 gives
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Examples of solving equations - Example 1

@ Solve: 2x — 5y +4z= -3 x—2y+z=5x—4y + 6z = 10.

2 -5 4|-3
@ The augmented matrixis [ 1 —2 1| 5
1 —4 6|10
1 -2 2|-3
@ Ry > Ry/2gives | 1 -2 1| 5
1 -4 6|10
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Examples of solving equations - Example 1

@ Solve: 2x — 5y +4z= -3 x—2y+z=5x—4y + 6z = 10.
2 -5 4|-3
@ The augmented matrixis [ 1 —2 1| 5
1 -4 6|10
1 -2 2|-3
@ Ry > Ry/2gives | 1 -2 1| 5
1 -4 6|10
o Now we “clear”
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Examples of solving equations - Example 1

@ Solve: 2x — 5y +4z= -3 x—2y+z=5x—4y + 6z = 10.
2 -5 4]-3
@ The augmented matrixis [ 1 —2 1| 5
1 -4 6|10
1 -2 2|-3
@ Ry > Ry/2gives | 1 -2 1| 5
1 -4 6|10

Now we “clear” the first column through
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Examples of solving equations - Example 1

@ Solve: 2x — 5y +4z= -3 x—2y+z=5x—4y + 6z = 10.

2 -5 4|-3
@ The augmented matrixis [ 1 —2 1| 5
1 —4 6|10
1 -2 2|-3
@ Ry > Ry/2gives | 1 -2 1| 5
1 -4 6|10

@ Now we “clear” the first column through

R» — Ry — Ry, R3 — R3 — Ry to get
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Examples of solving equations - Example 1

@ Solve: 2x — 5y +4z= -3 x—2y+z=5x—4y + 6z = 10.

2 -5 4]-3
@ The augmented matrixis [ 1 —2 1| 5
1 —4 6|10
5 3
1 -3 2|—3
@ Ry > Ry/2gives | 1 -2 1| 5
1 -4 6|10
@ Now we “clear” the first column through
1 -2 o2 |3
2 7
Ro—R,—Ri, R+ Rs—Rytoget [0 5 —-1|1%
0 =3 4 | 28
2 2

Vamsi Pritham Pingali Lecture 7 8/11



Example-1
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Example-1

@ Rinse and repeat:
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Example-1

@ Rinse and repeat: R, — 2R5 and then
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Example-1

@ Rinse and repeat: R, — 2R5 and then

R3 — R3 + %RQ, R — R+ %R2 give
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Example-1

@ Rinse and repeat: R, — 2R5 and then

1 0 -3[31
Rs— R3+ 3Ry, Ry —» Ri+ 3Ry give | 0 1 —2|13
00 1|31
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Example-1

@ Rinse and repeat: R, — 2R5 and then

1 0 -3[31
Rs— R3+ 3Ry, Ry —» Ri+ 3Ry give | 0 1 —2|13
00 1|31

@ It is not in RREF but,
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Example-1

@ Rinse and repeat: R, — 2R5 and then

1 0 -3[31
Rs— R3+ 3Ry, Ry —» Ri+ 3Ry give | 0 1 —2|13
00 1|31

@ It is not in RREF but,we can solve now itself:
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Example-1

@ Rinse and repeat: R, — 2R5 and then

1 0 -3[31
Rs— R3+ 3Ry, Ry —» Ri+ 3Ry give | 0 1 —2|13
00 1|31

@ It is not in RREF but,we can solve now itself: z = 31,
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Example-1

@ Rinse and repeat: R, — 2R5 and then

1 0 -3[31
Rs— R3+ 3Ry, Ry —» Ri+ 3Ry give | 0 1 —2|13
00 1|31

@ It is not in RREF but,we can solve now itself: z = 31,
y=13+2z=75, and
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Example-1

@ Rinse and repeat: R, — 2R5 and then

1 0 -3[31
Rs— R3+ 3Ry, Ry —» Ri+ 3Ry give | 0 1 —2|13
00 1|31

@ It is not in RREF but,we can solve now itself: z = 31,
y=13+2z=75,and x =3z + 31 = 124,
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Example-2
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Example-2

@ Solve:
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Example-2

@ Solve: x—2y+z—u+v=52x—-5y+4z+u—v=
—3,x—4y +6z—v+2u=10.
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Example-2

@ Solve: x—2y+z—u+v=52x—-5y+4z+u—v=
—3,x—4y +6z—v+2u=10.

@ The augmented matrix is
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Example-2

@ Solve: x—2y+z—u+v=52x—-5y+4z+u—v=
—3,x—4y +6z—v+2u=10.
1 -2 1 -1 115
@ The augmented matrixis | 2 -5 4 1 —-1|-3
1 -4 6 2 -1]10
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Example-2

@ Solve: x—2y+z—u+v=52x—-5y+4z+u—v=
—3,x—4y +6z—v+2u=10.
1 -2 1 -1 115
@ The augmented matrixis | 2 -5 4 1 —-1|-3
1 -4 6 2 -1]10

@ We clear the first column through
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Example-2

@ Solve: x—2y+z—u+v=52x—-5y+4z+u—v=
—3,x—4y +6z—v+2u=10.
1 -2 1 -1 1|5
@ The augmented matrixis | 2 -5 4 1 —-1|-3
1 46 2 -1]10
@ We clear the first column through R» — R, — 2Ry,

R3 — R3 — Ry to get
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Example-2

@ Solve: x—2y+z—u+v=52x—-5y+4z+u—v=
—3,x—4y +6z— v+ 2u=10.
1 -2 1 -1 1 5
@ The augmented matrixis | 2 -5 4 1 —-1|-3
1 -4 6 2 -1]|10
@ We clear the first column through R; — R» — 2Ry,
1 -2 1 -1 1 5
R3 — R3 — Ry to get 0 -1 2 3 -3|-13
0 -25 3 2|5
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Example-2
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Example-2

@ Now we normalise the second row:
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Example-2

@ Now we normalise the second row: R — —R5 and
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Example-2

@ Now we normalise the second row: R» — —FR5 and then clear
the second column:
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Example-2

@ Now we normalise the second row: R» — —FR5 and then clear
the second column: R3 — R34+ 2R», R1 — R1 + 2R to get
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Example-2

@ Now we normalise the second row: R» — —FR5 and then clear
the second column: R3 — R34+ 2R», R1 — R1 + 2R to get
1 0 -3 -7 7|31
01 -2 -3 3|13
0 0 1 -3 4|31
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Example-2

@ Now we normalise the second row: R» — —FR5 and then clear
the second column: R3 — R34+ 2R», R1 — R1 + 2R to get
1 0 -3 -7 7|31
01 -2 -3 3|13
0 0 1 -3 4|31

@ We clear the third column:

Vamsi Pritham Pingali Lecture 7 11/11



Example-2

@ Now we normalise the second row: R» — —FR5 and then clear
the second column: R3 — R34+ 2R», R1 — R1 + 2R to get
1 0 -3 -7 7|31
01 -2 -3 3|13
00 1 -3 4|31
@ We clear the third column:R, — Ro + 2R3, Ri — R;1 +3R3 to

get
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Example-2

@ Now we normalise the second row: R» — —FR5 and then clear
the second column: R3 — R34+ 2R», R1 — R1 + 2R to get
1 0 -3 -7 7|31
01 -2 -3 3|13
00 1 -3 4|31
@ We clear the third column:R, — Ro + 2R3, Ri — R;1 +3R3 to
1 0 0 —16 19| 124
get [0 1 0 -9 11| 75
001 -3 4]31
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Example-2

@ Now we normalise the second row: R» — —FR5 and then clear
the second column: R3 — R34+ 2R», R1 — R1 + 2R to get
1 0 -3 -7 7|31
01 -2 -3 3|13
00 1 -3 4|31
@ We clear the third column:R, — Ro + 2R3, Ri — R;1 +3R3 to
1 0 0 —16 19| 124
get [0 1 0 -9 11| 75
001 -3 4]31

@ Thus z =3u —4v + 31,
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Example-2

@ Now we normalise the second row: R» — —FR5 and then clear
the second column: R3 — R34+ 2R», R1 — R1 + 2R to get
1 0 -3 -7 7|31
01 -2 -3 3|13
00 1 -3 4|31
@ We clear the third column:R, — Ro + 2R3, Ri — R;1 +3R3 to
1 0 0 —16 19| 124
get [0 1 0 -9 11| 75
001 -3 4]31

@ Thusz=3u—4v+31l, y=9u—11v + 75,
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Example-2

@ Now we normalise the second row: R» — —FR5 and then clear
the second column: R3 — R34+ 2R», R1 — R1 + 2R to get
1 0 -3 -7 7|31
01 -2 -3 3|13
00 1 -3 4|31
@ We clear the third column:R, — Ro + 2R3, Ri — R;1 +3R3 to
1 0 0 —16 19| 124
get [0 1 0 -9 11| 75
001 -3 4]31
@ Thusz=3u—4v+31l, y=9u—11v + 75,
x = 16u — 19v + 124,
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Example-2

@ Now we normalise the second row: R» — —FR5 and then clear
the second column: R3 — R34+ 2R», R1 — R1 + 2R to get
1 0 -3 -7 7|31
01 -2 -3 3|13
00 1 -3 4|31
@ We clear the third column:R, — Ro + 2R3, Ri — R;1 +3R3 to
1 0 0 —16 19| 124
get [0 1 0 -9 11| 75
001 -3 4]31
@ Thusz=3u—4v+31l, y=9u—11v + 75,
x = 16u — 19v + 124,
@ That is,
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Example-2

@ Now we normalise the second row: R» — —FR5 and then clear
the second column: R3 — R34+ 2R», R1 — R1 + 2R to get
1 0 -3 -7 7|31
01 -2 -3 3|13
00 1 -3 4|31
@ We clear the third column:R, — Ro + 2R3, Ri — R;1 +3R3 to
1 0 0 —16 19| 124
get [0 1 0 -9 11| 75
001 -3 4]31
@ Thusz=3u—4v+31l, y=9u—11v + 75,
x = 16u — 19v + 124,
e Thatis, (x,y,z,u,v) =
(124,75,31,0,0) + v(16,9,3,1,0) + v(—19, —11, —4,0,1).
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Example-2

@ Now we normalise the second row: R» — —FR5 and then clear
the second column: R3 — R34+ 2R», R1 — R1 + 2R to get
10 -3 -7 7|31
01 -2 -3 3|13
00 1 -3 4|31
@ We clear the third column:R, — Ro + 2R3, Ri — R;1 +3R3 to
1 0 0 —-16 19124
get [0 1 0 -9 11| 75
001 -3 4]31
@ Thusz=3u—4v+31l, y=9u—11v + 75,
x = 16u — 19v + 124,
e Thatis, (x,y,z,u,v) =
(124,75,31,0,0) + v(16,9,3,1,0) + v(—19, —11, —4,0,1).
(124,75,31,0,0) is a
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Example-2

@ Now we normalise the second row: R» — —FR5 and then clear
the second column: R3 — R34+ 2R», R1 — R1 + 2R to get
10 -3 -7 7|31
01 -2 -3 3|13
00 1 -3 4|31
@ We clear the third column:R, — Ro + 2R3, Ri — R;1 +3R3 to
1 0 0 —-16 19124
get [0 1 0 -9 11| 75
001 -3 4]31
@ Thusz=3u—4v+31l, y=9u—11v + 75,
x = 16u — 19v + 124,
e Thatis, (x,y,z,u,v) =
(124,75,31,0,0) + v(16,9,3,1,0) + v(—19, —11, —4,0,1).
(124,75,31,0,0) is a particular solution, and
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Example-2

@ Now we normalise the second row: R» — —FR5 and then clear
the second column: R3 — R34+ 2R», R1 — R1 + 2R to get
10 -3 -7 7|31
01 -2 -3 3|13
00 1 -3 4|31
@ We clear the third column:R, — Ro + 2R3, Ri — R;1 +3R3 to
1 0 0 —-16 19124
get [0 1 0 -9 11| 75
001 -3 4]31
@ Thusz=3u—4v+31l, y=9u—11v + 75,
x = 16u — 19v + 124,
e Thatis, (x,y,z,u,v) =
(124,75,31,0,0) + v(16,9,3,1,0) + v(—19, —11, —4,0,1).
(124,75,31,0,0) is a particular solution, and when the matrix
Alis
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Example-2

@ Now we normalise the second row: R» — —FR5 and then clear
the second column: R3 — R34+ 2R», R1 — R1 + 2R to get
10 -3 -7 7|31
01 -2 -3 3|13
00 1 -3 4|31
@ We clear the third column:R, — Ro + 2R3, Ri — R;1 +3R3 to
1 0 0 —-16 19124
get [0 1 0 -9 11| 75
001 -3 4]31
@ Thusz=3u—4v+31l, y=9u—11v + 75,
x = 16u — 19v + 124,
e Thatis, (x,y,z,u,v) =
(124,75,31,0,0) + v(16,9,3,1,0) + v(—19, —11, —4,0,1).
(124,75,31,0,0) is a particular solution, and when the matrix
A is considered as a linear map,
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Example-2

@ Now we normalise the second row: R» — —FR5 and then clear
the second column: R3 — R34+ 2R», R1 — R1 + 2R to get
10 -3 -7 7|31
01 -2 -3 3|13
00 1 -3 4|31
@ We clear the third column:R, — Ro + 2R3, Ri — R;1 +3R3 to
1 0 0 —-16 19124
get [0 1 0 -9 11| 75
001 -3 4|31
@ Thusz=3u—4v+31l, y=9u—11v + 75,
x = 16u — 19v + 124,
e Thatis, (x,y,z,u,v) =
(124,75,31,0,0) + v(16,9,3,1,0) + v(—19, —11, —4,0,1).
(124,75,31,0,0) is a particular solution, and when the matrix
A is considered as a linear map, (16,9, 3,1,0) and
(—19,—11,—4,0,1) span the kernel .
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