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RREFs simultaneously, by the same row operations. (Indeed,
the A part is the same for all n matrices.)

@ So in practice, one applies row operations to [A|/] to get
[I|{A~1]. (After all, if the column rank is full, then the RREF is
1.) Note that this procedue also lets us know whether A is
invertible or not.

@ On paper, if A is invertible, and we know the inverse AL any
linear system Ax = b

Vamsi Pritham Pingali Lecture 8 7/11



Gauss-Jordan elimination to compute inverses

@ We need to form n augmented matrices
[Aler], [Alesl, -, [Alen].

@ Unless the resulting equations are inconsistent, that is, A is
not invertible, one can bring all n augmented matrices to their
RREFs simultaneously, by the same row operations. (Indeed,
the A part is the same for all n matrices.)

@ So in practice, one applies row operations to [A|/] to get
[I|{A~1]. (After all, if the column rank is full, then the RREF is
1.) Note that this procedue also lets us know whether A is
invertible or not.

@ On paper, if A is invertible, and we know the inverse AL any
linear system Ax = b can be solved using x = A~1b.

Vamsi Pritham Pingali Lecture 8 7/11



Gauss-Jordan elimination to compute inverses

@ We need to form n augmented matrices
[Aler], [Alesl, -, [Alen].

@ Unless the resulting equations are inconsistent, that is, A is
not invertible, one can bring all n augmented matrices to their
RREFs simultaneously, by the same row operations. (Indeed,
the A part is the same for all n matrices.)

@ So in practice, one applies row operations to [A|/] to get
[I|{A~1]. (After all, if the column rank is full, then the RREF is
1.) Note that this procedue also lets us know whether A is
invertible or not.

@ On paper, if A is invertible, and we know the inverse AL any
linear system Ax = b can be solved using x = A~1b.
However, in practice,

Vamsi Pritham Pingali Lecture 8 7/11



Gauss-Jordan elimination to compute inverses

@ We need to form n augmented matrices
[Aler], [Alesl, -, [Alen].

@ Unless the resulting equations are inconsistent, that is, A is
not invertible, one can bring all n augmented matrices to their
RREFs simultaneously, by the same row operations. (Indeed,
the A part is the same for all n matrices.)

@ So in practice, one applies row operations to [A|/] to get
[I|{A~1]. (After all, if the column rank is full, then the RREF is
1.) Note that this procedue also lets us know whether A is
invertible or not.

@ On paper, if A is invertible, and we know the inverse AL any
linear system Ax = b can be solved using x = A~1b.
However, in practice, computing the inverse is inefficient and

Vamsi Pritham Pingali Lecture 8 7/11



Gauss-Jordan elimination to compute inverses

@ We need to form n augmented matrices
[Aler], [Alesl, -, [Alen].

@ Unless the resulting equations are inconsistent, that is, A is
not invertible, one can bring all n augmented matrices to their
RREFs simultaneously, by the same row operations. (Indeed,
the A part is the same for all n matrices.)

@ So in practice, one applies row operations to [A|/] to get
[I|{A~1]. (After all, if the column rank is full, then the RREF is
1.) Note that this procedue also lets us know whether A is
invertible or not.

@ On paper, if A is invertible, and we know the inverse AL any
linear system Ax = b can be solved using x = A~1b.

However, in practice, computing the inverse is inefficient and
subject to rounding-off errors.

Vamsi Pritham Pingali Lecture 8 7/11



Vamsi Pritham Pingali Lecture 8 8/11



@ Determine if

Vamsi Pritham Pingali Lecture 8 8/11



@ Determine if A = is invertible.
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@ Determine if A = is invertible. If so, find the

— =W
N =D

inverse.
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inverse.
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@ Determine if A = is invertible. If so, find the
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inverse.

e We must row-reduce [A|/].
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inverse.

e We must row-reduce [A|l]. Ry > R3 and Ry — —R:
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@ Determine if A = 1 1 | isinvertible. If so, find the
1 2

inverse.
e We must row-reduce [A|l]. Ry > R3 and Ry — —R:
1 -1 -2|/0 0 -1
2 1 1/0 1 O
2 3 4110 O
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@ Determine if A = 1 1 | isinvertible. If so, find the
1 2

inverse.

e We must row-reduce [A|l]. Ry <> R3 and Ry — —Ry:
1 -1 -2/0 0 -1
2 1 1 /01 O
2 3 4|10 O

@ To clear the first column,
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@ Determine if A = 1 1 | isinvertible. If so, find the
1 2

inverse.

e We must row-reduce [A|l]. Ry <> R3 and Ry — —Ry:
1 -1 -2/0 0 -1
2 1 1 /01 O
2 3 4|10 O

@ To clear the first column, Ry — R, — 2R;, R3 — R3 — 2Ry:
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@ Determine if A = 1 1 | isinvertible. If so, find the
1 2

inverse.
e We must row-reduce [A|l]. Ry > R3 and Ry — —R:
[1 -1 —2|/0 0 =11
2 1 1/0 1 O
2 3 4110 O

@ To clear the first column, R> = Ro — 2Ry, Rs — R3 — 2Ry

1 -1 —2[0 0 -1
0 3 5(01 2
(0 5 8|10 2
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@ R, - Ry/3, R3 — R3 — 5Ry,

Ri — R1 + Ro:
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@ R, - Ry/3, R3 — R3 — 5Ry,

10 -%|o0 % -1
Ri—+Ri+R:| 01 3|0 & 2
00 —3|1 -3 -3
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@ R, - Ry/3, R3 — R3 — 5Ry,

10 -%|o0 % -1
Ri—+Ri+R:| 01 3|0 & 2
00 —3|1 -3 -3

@ R3 — —3R;, R > Ry — %R:),, Ri — R + %R:),:
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@ R, - Ry/3, R3 — R3 — 5Ry,

10 -%|o0 % -1
Ri—+Ri+R:| 01 3|0 & 2
00 —3|1 -3 -3

@ R3 — —3R;, R > Ry — %R:),, Ri — R + %R:),:
1 0 0/-1 2 1
01 0|5 -8 —6
0 01|-3 5 4
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@ R, - Ry/3, R3 — R3 — 5Ry,
10 -%|o0
Ri—Ri+R:| 01 3|0

1 5 4

@ R3 — —3R;, R > Ry — %R:),, Ri — R + %R:),:
1 0 0/-1 2 1
01 0|5 -8 —6
0 01|-3 5 4

1
3

W] ==
WIN

@ Hence A is invertible and A~1 is
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@ R, - Ry/3, R3 — R3 — 5Ry,
10 -%|o0
Ri—Ri+R:| 01 3|0

1 5 4

@ R3 — —3R;, R > Ry — %R:),, Ri — R + %R:),:
1 0 0/-1 2 1
01 0|5 -8 —6
0 01|-3 5 4

1
3

W] ==
WIN

-1 2 1
@ Hence A is invertible and A~1 is 5 -8 -6
-3 5 4
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Elementary row matrices

@ Each of the row operations is linear, i.e., a linear map from
the row space to itself.

@ An interesting observation is: If C = AB, the rows of C are
linear combinations of the rows of B and the columns of C
are linear combinations of the columns of A.

@ So we expect an elementary row operation on an m X n matrix
A to be equivalent to left-multiplying with an m x m matrix.

@ Indeed, these matrices exist and are called elementary row
matrices.
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Elementary row matrices

° R < R;:
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Elementary row matrices

@ R; <+ R;: B = E1A where E; is the matrix obtained by
interchanging the rows of I« m.
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@ R; <+ R;: B = E1A where E; is the matrix obtained by
interchanging the rows of /;,xm. It is invertible with the
inverse being itself.

Vamsi Pritham Pingali Lecture 8 11/11



Elementary row matrices

@ R; <+ R;: B = E1A where E; is the matrix obtained by
interchanging the rows of /;,xm. It is invertible with the
inverse being itself.

] R,'-)CR,‘(

Vamsi Pritham Pingali Lecture 8 11/11



Elementary row matrices
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Elementary row matrices

@ R; <+ R;: B = E1A where E; is the matrix obtained by
interchanging the rows of I« m. It is invertible with the
inverse being itself.

@ Ri — cR; (¢ #0): B = E>A where E; is again obtained the
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instead of 1.
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Elementary row matrices

@ R; <+ R;: B = E1A where E; is the matrix obtained by
interchanging the rows of /;,xm. It is invertible with the
inverse being itself.

e R — cR; (c #0): B = E;A where E; is again obtained the
same way. Its it" row has c instead of 1. Its inverse has %
instead of 1.

o R,'-)R,'-FCRJ'Z
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Elementary row matrices

@ R; <+ R;: B = E1A where E; is the matrix obtained by
interchanging the rows of I« m. It is invertible with the
inverse being itself.

@ Ri — cR; (¢ #0): B = E>A where E; is again obtained the
same way. Its it" row has c instead of 1. Its inverse has %
instead of 1.

® Ri = R; + cR;: B = E3A where
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instead of 1.

® Ri — R; + cR;: B = E3A where E3 is obtained similarly. Its
inverse is obtained by replacing ¢ with —c.

@ So row-reduction is equivalent to left-multiplying with a
product of elementary row matrices.
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Elementary row matrices

@ R; <+ R;: B = E1A where E; is the matrix obtained by
interchanging the rows of /;,xm. It is invertible with the
inverse being itself.

@ Ri — cR; (¢ #0): B = E>A where E; is again obtained the
same way. Its it" row has c instead of 1. Its inverse has %
instead of 1.

® Ri — R; + cR;: B = E3A where E3 is obtained similarly. Its
inverse is obtained by replacing ¢ with —c.

@ So row-reduction is equivalent to left-multiplying with a

product of elementary row matrices. So if row-reduction leads
to I, , then EA= 1 and hence A~ = E.
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