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Recap

Discussed Gauss-Jordan elimination to bring any matrix into
its (unique) Row-Reduced Echelon Form (RREF).

Applied it to solve linear equations or to prove they are
inconsistent.

Defined row space, column space, and stated that row
rank=column rank=rank as a linear map.
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Inverses of linear maps vs matrices

An n × n (square) matrix A is said to be invertible if there
exists an n × n matrix B such that BA = AB = I . B is called
the inverse of A and is denoted as A−1.

Recall that A defines a linear map T : Fn → Fn as T (v) = Av
and the matrix of T in the standard basis of Fn is A. Note
that the column space of A is the range of T .

Here is an important result: The linear map T is invertible if
and only if A is an invertible matrix. Moreover, the matrix
associated to T−1 in the standard basis of Fn is A−1.
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Proof

If T is (left-)invertible: There is a map T−1 : V → V such
that T−1T = TT−1 = I . Suppose the matrix associated to
T−1 is B. By properties of composition, BA = AB = I .
Hence A is invertible and B is its inverse.

If A is (left-)invertible: There is a matrix B such that BA = I .
Hence, the corresponding linear map T̃ satisfies T̃T = I .
Since a left inverse is the inverse, TT̃ = I . (As a consequence,
the left inverse of the matrix A is its right inverse.)
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Since a left inverse is the inverse, TT̃ = I . (As a consequence,
the left inverse of the matrix A is its right inverse.)
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An important criterion for invertibility

An n× n matrix A is invertible if and only if its (column) rank
is n. (Sometimes, one says “the column rank is full” or “the
matrix has full rank”.) Alternatively, A is invertible if and only
if Ax = 0 has a trivial solution.

Proof:

If A is invertible: The linear map T : Fn → Fn defined as
T (v) = Av is also invertible. Hence, if e1, . . . , en is a basis,
then so is T (e1),T (e2), . . .. Thus, the column space is all of
Fn. Hence the rank is n.
If the rank is n: The column space is all of Fn. Hence
T (e1),T (e2), . . .T (en) form a basis. Therefore T is invertible.
Thus, so is A.

By nullity-rank theorem, the alternative statement is true as
well.

Later on, we shall see that the rank is full if and only if a
certain expression called the ‘determinant’ is non-zero.
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How does one compute inverses ?

The key observation is that computing an inverse is the same
as solving a certain system of linear equations. This system
can of course be solved (or proved to be inconsistent) using
the Gauss-Jordan algorithm.

Indeed, suppose A is invertible and [A−1]ij = bij . Then
AB = I is equivalent to

∑
k aikbkj = δij where δij = [I ]ij (the

so called Kronecker delta.)

In other words, for every fixed j , we have to solve a linear
system for b1j , b2j , . . ..

The other way of looking at the problem is that each column
of B is an unknown vector xi satisfying Axi = ei .
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Gauss-Jordan elimination to compute inverses

We need to form n augmented matrices
[A|e1], [A|e2], . . . , [A|en].

Unless the resulting equations are inconsistent, that is, A is
not invertible, one can bring all n augmented matrices to their
RREFs simultaneously, by the same row operations. (Indeed,
the A part is the same for all n matrices.)

So in practice, one applies row operations to [A|I ] to get
[I |A−1]. (After all, if the column rank is full, then the RREF is
I .) Note that this procedue also lets us know whether A is
invertible or not.

On paper, if A is invertible, and we know the inverse A−1, any
linear system Ax = b can be solved using x = A−1b.
However, in practice, computing the inverse is inefficient and
subject to rounding-off errors.
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Example

Determine if A =

 2 3 4
2 1 1
−1 1 2

 is invertible. If so, find the

inverse.

We must row-reduce [A|I ]. R1 ↔ R3 and R1 → −R1: 1 −1 −2 0 0 −1
2 1 1 0 1 0
2 3 4 1 0 0

.

To clear the first column, R2 → R2 − 2R1,R3 → R3 − 2R1: 1 −1 −2 0 0 −1
0 3 5 0 1 2
0 5 8 1 0 2

.
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R2 → R2/3, R3 → R3 − 5R2,

R1 → R1 + R2:

 1 0 −1
3 0 1

3 −1
3

0 1 5
3 0 1

3
2
3

0 0 −1
3 1 −5

3 −4
3

.

R3 → −3R3, R2 → R2 − 5
3R3, R1 → R1 + 1

3R3: 1 0 0 −1 2 1
0 1 0 5 −8 −6
0 0 1 −3 5 4

.

Hence A is invertible and A−1 is

 −1 2 1
5 −8 −6
−3 5 4

.
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Elementary row matrices

Each of the row operations is linear, i.e., a linear map from
the row space to itself.

An interesting observation is: If C = AB, the rows of C are
linear combinations of the rows of B and the columns of C
are linear combinations of the columns of A.

So we expect an elementary row operation on an m× n matrix
A to be equivalent to left-multiplying with an m ×m matrix.

Indeed, these matrices exist and are called elementary row
matrices.
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Elementary row matrices

Ri ↔ Rj : B = E1A where E1 is the matrix obtained by
interchanging the rows of Im×m. It is invertible with the
inverse being itself.

Ri → cRi (c 6= 0): B = E2A where E2 is again obtained the
same way. Its i th row has c instead of 1. Its inverse has 1

c
instead of 1.

Ri → Ri + cRj : B = E3A where E3 is obtained similarly. Its
inverse is obtained by replacing c with −c .

So row-reduction is equivalent to left-multiplying with a
product of elementary row matrices. So if row-reduction leads
to I , , then EA = I and hence A−1 = E .
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