Lecture 8 - UM 102 (Spring 2021)

Vamsi Pritham Pingali

IISc

Recap

- Discussed Gauss-Jordan elimination to

Recap

- Discussed Gauss-Jordan elimination to bring any matrix

Recap

- Discussed Gauss-Jordan elimination to bring any matrix into its (unique) Row-Reduced Echelon Form (RREF).
- Discussed Gauss-Jordan elimination to bring any matrix into its (unique) Row-Reduced Echelon Form (RREF).
- Applied it to
- Discussed Gauss-Jordan elimination to bring any matrix into its (unique) Row-Reduced Echelon Form (RREF).
- Applied it to solve linear equations or
- Discussed Gauss-Jordan elimination to bring any matrix into its (unique) Row-Reduced Echelon Form (RREF).
- Applied it to solve linear equations or to prove they are inconsistent.
- Discussed Gauss-Jordan elimination to bring any matrix into its (unique) Row-Reduced Echelon Form (RREF).
- Applied it to solve linear equations or to prove they are inconsistent.
- Defined row space,
- Discussed Gauss-Jordan elimination to bring any matrix into its (unique) Row-Reduced Echelon Form (RREF).
- Applied it to solve linear equations or to prove they are inconsistent.
- Defined row space, column space,
- Discussed Gauss-Jordan elimination to bring any matrix into its (unique) Row-Reduced Echelon Form (RREF).
- Applied it to solve linear equations or to prove they are inconsistent.
- Defined row space, column space, and stated that row rank=
- Discussed Gauss-Jordan elimination to bring any matrix into its (unique) Row-Reduced Echelon Form (RREF).
- Applied it to solve linear equations or to prove they are inconsistent.
- Defined row space, column space, and stated that row rank=column rank=

Recap

- Discussed Gauss-Jordan elimination to bring any matrix into its (unique) Row-Reduced Echelon Form (RREF).
- Applied it to solve linear equations or to prove they are inconsistent.
- Defined row space, column space, and stated that row rank=column rank=rank as a linear map.

Inverses of linear maps vs matrices

Inverses of linear maps vs matrices

- An $n \times n$

Inverses of linear maps vs matrices

- An $n \times n$ (square) matrix A is said to be

Inverses of linear maps vs matrices

- An $n \times n$ (square) matrix A is said to be invertible if there exists

Inverses of linear maps vs matrices

- An $n \times n$ (square) matrix A is said to be invertible if there exists an $n \times n$ matrix B

Inverses of linear maps vs matrices

- An $n \times n$ (square) matrix A is said to be invertible if there exists an $n \times n$ matrix B such that $B A=A B=I$.

Inverses of linear maps vs matrices

- An $n \times n$ (square) matrix A is said to be invertible if there exists an $n \times n$ matrix B such that $B A=A B=I . B$ is called the

Inverses of linear maps vs matrices

- An $n \times n$ (square) matrix A is said to be invertible if there exists an $n \times n$ matrix B such that $B A=A B=I . B$ is called the inverse of A and

Inverses of linear maps vs matrices

- An $n \times n$ (square) matrix A is said to be invertible if there exists an $n \times n$ matrix B such that $B A=A B=I . B$ is called the inverse of A and is denoted as A^{-1}.

Inverses of linear maps vs matrices

- An $n \times n$ (square) matrix A is said to be invertible if there exists an $n \times n$ matrix B such that $B A=A B=I . B$ is called the inverse of A and is denoted as A^{-1}.
- Recall that

Inverses of linear maps vs matrices

- An $n \times n$ (square) matrix A is said to be invertible if there exists an $n \times n$ matrix B such that $B A=A B=I . B$ is called the inverse of A and is denoted as A^{-1}.
- Recall that A defines a linear map

Inverses of linear maps vs matrices

- An $n \times n$ (square) matrix A is said to be invertible if there exists an $n \times n$ matrix B such that $B A=A B=I . B$ is called the inverse of A and is denoted as A^{-1}.
- Recall that A defines a linear map $T: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$

Inverses of linear maps vs matrices

- An $n \times n$ (square) matrix A is said to be invertible if there exists an $n \times n$ matrix B such that $B A=A B=I . B$ is called the inverse of A and is denoted as A^{-1}.
- Recall that A defines a linear map $T: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ as $T(v)=A v$ and

Inverses of linear maps vs matrices

- An $n \times n$ (square) matrix A is said to be invertible if there exists an $n \times n$ matrix B such that $B A=A B=I . B$ is called the inverse of A and is denoted as A^{-1}.
- Recall that A defines a linear map $T: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ as $T(v)=A v$ and the matrix of T in the

Inverses of linear maps vs matrices

- An $n \times n$ (square) matrix A is said to be invertible if there exists an $n \times n$ matrix B such that $B A=A B=I . B$ is called the inverse of A and is denoted as A^{-1}.
- Recall that A defines a linear map $T: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ as $T(v)=A v$ and the matrix of T in the standard basis of \mathbb{F}^{n} is

Inverses of linear maps vs matrices

- An $n \times n$ (square) matrix A is said to be invertible if there exists an $n \times n$ matrix B such that $B A=A B=I . B$ is called the inverse of A and is denoted as A^{-1}.
- Recall that A defines a linear map $T: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ as $T(v)=A v$ and the matrix of T in the standard basis of \mathbb{F}^{n} is A.

Inverses of linear maps vs matrices

- An $n \times n$ (square) matrix A is said to be invertible if there exists an $n \times n$ matrix B such that $B A=A B=I . B$ is called the inverse of A and is denoted as A^{-1}.
- Recall that A defines a linear map $T: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ as $T(v)=A v$ and the matrix of T in the standard basis of \mathbb{F}^{n} is A. Note that

Inverses of linear maps vs matrices

- An $n \times n$ (square) matrix A is said to be invertible if there exists an $n \times n$ matrix B such that $B A=A B=I . B$ is called the inverse of A and is denoted as A^{-1}.
- Recall that A defines a linear map $T: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ as $T(v)=A v$ and the matrix of T in the standard basis of \mathbb{F}^{n} is A. Note that the column space of A is

Inverses of linear maps vs matrices

- An $n \times n$ (square) matrix A is said to be invertible if there exists an $n \times n$ matrix B such that $B A=A B=I . B$ is called the inverse of A and is denoted as A^{-1}.
- Recall that A defines a linear map $T: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ as $T(v)=A v$ and the matrix of T in the standard basis of \mathbb{F}^{n} is A. Note that the column space of A is the range of T.

Inverses of linear maps vs matrices

- An $n \times n$ (square) matrix A is said to be invertible if there exists an $n \times n$ matrix B such that $B A=A B=I . B$ is called the inverse of A and is denoted as A^{-1}.
- Recall that A defines a linear map $T: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ as $T(v)=A v$ and the matrix of T in the standard basis of \mathbb{F}^{n} is A. Note that the column space of A is the range of T.
- Here is an important result:

Inverses of linear maps vs matrices

- An $n \times n$ (square) matrix A is said to be invertible if there exists an $n \times n$ matrix B such that $B A=A B=I . B$ is called the inverse of A and is denoted as A^{-1}.
- Recall that A defines a linear map $T: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ as $T(v)=A v$ and the matrix of T in the standard basis of \mathbb{F}^{n} is A. Note that the column space of A is the range of T.
- Here is an important result: The linear map T is invertible if and only if

Inverses of linear maps vs matrices

- An $n \times n$ (square) matrix A is said to be invertible if there exists an $n \times n$ matrix B such that $B A=A B=I . B$ is called the inverse of A and is denoted as A^{-1}.
- Recall that A defines a linear map $T: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ as $T(v)=A v$ and the matrix of T in the standard basis of \mathbb{F}^{n} is A. Note that the column space of A is the range of T.
- Here is an important result: The linear map T is invertible if and only if A is an invertible matrix.

Inverses of linear maps vs matrices

- An $n \times n$ (square) matrix A is said to be invertible if there exists an $n \times n$ matrix B such that $B A=A B=I . B$ is called the inverse of A and is denoted as A^{-1}.
- Recall that A defines a linear map $T: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ as $T(v)=A v$ and the matrix of T in the standard basis of \mathbb{F}^{n} is A. Note that the column space of A is the range of T.
- Here is an important result: The linear map T is invertible if and only if A is an invertible matrix. Moreover, the matrix associated to

Inverses of linear maps vs matrices

- An $n \times n$ (square) matrix A is said to be invertible if there exists an $n \times n$ matrix B such that $B A=A B=I . B$ is called the inverse of A and is denoted as A^{-1}.
- Recall that A defines a linear map $T: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ as $T(v)=A v$ and the matrix of T in the standard basis of \mathbb{F}^{n} is A. Note that the column space of A is the range of T.
- Here is an important result: The linear map T is invertible if and only if A is an invertible matrix. Moreover, the matrix associated to T^{-1} in the standard basis of \mathbb{F}^{n}

Inverses of linear maps vs matrices

- An $n \times n$ (square) matrix A is said to be invertible if there exists an $n \times n$ matrix B such that $B A=A B=I . B$ is called the inverse of A and is denoted as A^{-1}.
- Recall that A defines a linear map $T: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ as $T(v)=A v$ and the matrix of T in the standard basis of \mathbb{F}^{n} is A. Note that the column space of A is the range of T.
- Here is an important result: The linear map T is invertible if and only if A is an invertible matrix. Moreover, the matrix associated to T^{-1} in the standard basis of \mathbb{F}^{n} is A^{-1}.

Proof

- If T is (left-)invertible:

Proof

- If T is (left-)invertible: There is a map $T^{-1}: V \rightarrow V$ such that

Proof

- If T is (left-) invertible: There is a map $T^{-1}: V \rightarrow V$ such that $T^{-1} T=T T^{-1}=l$.

Proof

- If T is (left-) invertible: There is a map $T^{-1}: V \rightarrow V$ such that $T^{-1} T=T T^{-1}=I$. Suppose the matrix associated to

Proof

- If T is (left-) invertible: There is a map $T^{-1}: V \rightarrow V$ such that $T^{-1} T=T T^{-1}=l$. Suppose the matrix associated to T^{-1} is B.
- If T is (left-) invertible: There is a map $T^{-1}: V \rightarrow V$ such that $T^{-1} T=T T^{-1}=I$. Suppose the matrix associated to T^{-1} is B. By properties of composition,
- If T is (left-) invertible: There is a map $T^{-1}: V \rightarrow V$ such that $T^{-1} T=T T^{-1}=l$. Suppose the matrix associated to T^{-1} is B. By properties of composition, $B A=A B=I$.
- If T is (left-) invertible: There is a map $T^{-1}: V \rightarrow V$ such that $T^{-1} T=T T^{-1}=l$. Suppose the matrix associated to T^{-1} is B. By properties of composition, $B A=A B=I$. Hence A is invertible and
- If T is (left-)invertible: There is a map $T^{-1}: V \rightarrow V$ such that $T^{-1} T=T T^{-1}=l$. Suppose the matrix associated to T^{-1} is B. By properties of composition, $B A=A B=I$. Hence A is invertible and B is its inverse.
- If T is (left-)invertible: There is a map $T^{-1}: V \rightarrow V$ such that $T^{-1} T=T T^{-1}=I$. Suppose the matrix associated to T^{-1} is B. By properties of composition, $B A=A B=I$. Hence A is invertible and B is its inverse.
- If A is (left-)invertible:
- If T is (left-)invertible: There is a map $T^{-1}: V \rightarrow V$ such that $T^{-1} T=T T^{-1}=I$. Suppose the matrix associated to T^{-1} is B. By properties of composition, $B A=A B=I$. Hence A is invertible and B is its inverse.
- If A is (left-)invertible: There is a matrix B
- If T is (left-)invertible: There is a map $T^{-1}: V \rightarrow V$ such that $T^{-1} T=T T^{-1}=I$. Suppose the matrix associated to T^{-1} is B. By properties of composition, $B A=A B=I$.
Hence A is invertible and B is its inverse.
- If A is (left-) invertible: There is a matrix B such that $B A=l$.
- If T is (left-)invertible: There is a map $T^{-1}: V \rightarrow V$ such that $T^{-1} T=T T^{-1}=I$. Suppose the matrix associated to T^{-1} is B. By properties of composition, $B A=A B=I$. Hence A is invertible and B is its inverse.
- If A is (left-)invertible: There is a matrix B such that $B A=l$. Hence, the corresponding linear map
- If T is (left-)invertible: There is a map $T^{-1}: V \rightarrow V$ such that $T^{-1} T=T T^{-1}=I$. Suppose the matrix associated to T^{-1} is B. By properties of composition, $B A=A B=I$. Hence A is invertible and B is its inverse.
- If A is (left-)invertible: There is a matrix B such that $B A=l$. Hence, the corresponding linear map \tilde{T} satisfies
- If T is (left-) invertible: There is a map $T^{-1}: V \rightarrow V$ such that $T^{-1} T=T T^{-1}=I$. Suppose the matrix associated to T^{-1} is B. By properties of composition, $B A=A B=I$. Hence A is invertible and B is its inverse.
- If A is (left-)invertible: There is a matrix B such that $B A=l$. Hence, the corresponding linear map \tilde{T} satisfies $\tilde{T} T=I$.
- If T is (left-)invertible: There is a map $T^{-1}: V \rightarrow V$ such that $T^{-1} T=T T^{-1}=I$. Suppose the matrix associated to T^{-1} is B. By properties of composition, $B A=A B=I$. Hence A is invertible and B is its inverse.
- If A is (left-)invertible: There is a matrix B such that $B A=l$. Hence, the corresponding linear map \tilde{T} satisfies $\tilde{T} T=I$. Since a left inverse is
- If T is (left-)invertible: There is a map $T^{-1}: V \rightarrow V$ such that $T^{-1} T=T T^{-1}=I$. Suppose the matrix associated to T^{-1} is B. By properties of composition, $B A=A B=I$. Hence A is invertible and B is its inverse.
- If A is (left-)invertible: There is a matrix B such that $B A=l$. Hence, the corresponding linear map \tilde{T} satisfies $\tilde{T} T=I$. Since a left inverse is the inverse, $T \tilde{T}=I$. (
- If T is (left-)invertible: There is a map $T^{-1}: V \rightarrow V$ such that $T^{-1} T=T T^{-1}=I$. Suppose the matrix associated to T^{-1} is B. By properties of composition, $B A=A B=I$. Hence A is invertible and B is its inverse.
- If A is (left-)invertible: There is a matrix B such that $B A=l$. Hence, the corresponding linear map \tilde{T} satisfies $\tilde{T} T=I$. Since a left inverse is the inverse, $T \tilde{T}=l$. (As a consequence,
- If T is (left-)invertible: There is a map $T^{-1}: V \rightarrow V$ such that $T^{-1} T=T T^{-1}=I$. Suppose the matrix associated to T^{-1} is B. By properties of composition, $B A=A B=I$. Hence A is invertible and B is its inverse.
- If A is (left-)invertible: There is a matrix B such that $B A=l$. Hence, the corresponding linear map \tilde{T} satisfies $\tilde{T} T=I$. Since a left inverse is the inverse, $T \tilde{T}=l$. (As a consequence, the left inverse of the matrix A is
- If T is (left-)invertible: There is a map $T^{-1}: V \rightarrow V$ such that $T^{-1} T=T T^{-1}=I$. Suppose the matrix associated to T^{-1} is B. By properties of composition, $B A=A B=I$. Hence A is invertible and B is its inverse.
- If A is (left-)invertible: There is a matrix B such that $B A=l$. Hence, the corresponding linear map \tilde{T} satisfies $\tilde{T} T=I$. Since a left inverse is the inverse, $T \tilde{T}=l$. (As a consequence, the left inverse of the matrix A is its right inverse.)

An important criterion for invertibility

An important criterion for invertibility

- An $n \times n$ matrix A is

An important criterion for invertibility

- An $n \times n$ matrix A is invertible if and only if

An important criterion for invertibility

- An $n \times n$ matrix A is invertible if and only if its (column) rank is n. (

An important criterion for invertibility

- An $n \times n$ matrix A is invertible if and only if its (column) rank is n. (Sometimes, one says

An important criterion for invertibility

- An $n \times n$ matrix A is invertible if and only if its (column) rank is n. (Sometimes, one says "the column rank is full" or

An important criterion for invertibility

- An $n \times n$ matrix A is invertible if and only if its (column) rank is n. (Sometimes, one says "the column rank is full" or "the matrix has full rank".)

An important criterion for invertibility

- An $n \times n$ matrix A is invertible if and only if its (column) rank is n. (Sometimes, one says "the column rank is full" or "the matrix has full rank".) Alternatively,

An important criterion for invertibility

- An $n \times n$ matrix A is invertible if and only if its (column) rank is n. (Sometimes, one says "the column rank is full" or "the matrix has full rank".) Alternatively, A is invertible if and only if

An important criterion for invertibility

- An $n \times n$ matrix A is invertible if and only if its (column) rank is n. (Sometimes, one says "the column rank is full" or "the matrix has full rank".) Alternatively, A is invertible if and only if $A x=0$ has a trivial solution.

An important criterion for invertibility

- An $n \times n$ matrix A is invertible if and only if its (column) rank is n. (Sometimes, one says "the column rank is full" or "the matrix has full rank".) Alternatively, A is invertible if and only if $A x=0$ has a trivial solution.
- Proof:

An important criterion for invertibility

- An $n \times n$ matrix A is invertible if and only if its (column) rank is n. (Sometimes, one says "the column rank is full" or "the matrix has full rank".) Alternatively, A is invertible if and only if $A x=0$ has a trivial solution.
- Proof:
- If A is invertible:

An important criterion for invertibility

- An $n \times n$ matrix A is invertible if and only if its (column) rank is n. (Sometimes, one says "the column rank is full" or "the matrix has full rank".) Alternatively, A is invertible if and only if $A x=0$ has a trivial solution.
- Proof:
- If A is invertible: The linear map $T: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$

An important criterion for invertibility

- An $n \times n$ matrix A is invertible if and only if its (column) rank is n. (Sometimes, one says "the column rank is full" or "the matrix has full rank".) Alternatively, A is invertible if and only if $A x=0$ has a trivial solution.
- Proof:
- If A is invertible: The linear map $T: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ defined as $T(v)=A v$

An important criterion for invertibility

- An $n \times n$ matrix A is invertible if and only if its (column) rank is n. (Sometimes, one says "the column rank is full" or "the matrix has full rank".) Alternatively, A is invertible if and only if $A x=0$ has a trivial solution.
- Proof:
- If A is invertible: The linear map $T: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ defined as $T(v)=A v$ is also invertible.

An important criterion for invertibility

- An $n \times n$ matrix A is invertible if and only if its (column) rank is n. (Sometimes, one says "the column rank is full" or "the matrix has full rank".) Alternatively, A is invertible if and only if $A x=0$ has a trivial solution.
- Proof:
- If A is invertible: The linear map $T: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ defined as $T(v)=A v$ is also invertible. Hence, if e_{1}, \ldots, e_{n} is a basis,

An important criterion for invertibility

- An $n \times n$ matrix A is invertible if and only if its (column) rank is n. (Sometimes, one says "the column rank is full" or "the matrix has full rank".) Alternatively, A is invertible if and only if $A x=0$ has a trivial solution.
- Proof:
- If A is invertible: The linear map $T: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ defined as $T(v)=A v$ is also invertible. Hence, if e_{1}, \ldots, e_{n} is a basis, then so is $T\left(e_{1}\right), T\left(e_{2}\right), \ldots$.

An important criterion for invertibility

- An $n \times n$ matrix A is invertible if and only if its (column) rank is n. (Sometimes, one says "the column rank is full" or "the matrix has full rank".) Alternatively, A is invertible if and only if $A x=0$ has a trivial solution.
- Proof:
- If A is invertible: The linear map $T: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ defined as $T(v)=A v$ is also invertible. Hence, if e_{1}, \ldots, e_{n} is a basis, then so is $T\left(e_{1}\right), T\left(e_{2}\right), \ldots$. Thus, the column space is

An important criterion for invertibility

- An $n \times n$ matrix A is invertible if and only if its (column) rank is n. (Sometimes, one says "the column rank is full" or "the matrix has full rank".) Alternatively, A is invertible if and only if $A x=0$ has a trivial solution.
- Proof:
- If A is invertible: The linear map $T: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ defined as $T(v)=A v$ is also invertible. Hence, if e_{1}, \ldots, e_{n} is a basis, then so is $T\left(e_{1}\right), T\left(e_{2}\right), \ldots$ Thus, the column space is all of \mathbb{F}^{n}.

An important criterion for invertibility

- An $n \times n$ matrix A is invertible if and only if its (column) rank is n. (Sometimes, one says "the column rank is full" or "the matrix has full rank".) Alternatively, A is invertible if and only if $A x=0$ has a trivial solution.
- Proof:
- If A is invertible: The linear map $T: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ defined as $T(v)=A v$ is also invertible. Hence, if e_{1}, \ldots, e_{n} is a basis, then so is $T\left(e_{1}\right), T\left(e_{2}\right), \ldots$. Thus, the column space is all of \mathbb{F}^{n}. Hence the rank is n.

An important criterion for invertibility

- An $n \times n$ matrix A is invertible if and only if its (column) rank is n. (Sometimes, one says "the column rank is full" or "the matrix has full rank".) Alternatively, A is invertible if and only if $A x=0$ has a trivial solution.
- Proof:
- If A is invertible: The linear map $T: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ defined as $T(v)=A v$ is also invertible. Hence, if e_{1}, \ldots, e_{n} is a basis, then so is $T\left(e_{1}\right), T\left(e_{2}\right), \ldots$. Thus, the column space is all of \mathbb{F}^{n}. Hence the rank is n.
- If the rank is n :

An important criterion for invertibility

- An $n \times n$ matrix A is invertible if and only if its (column) rank is n. (Sometimes, one says "the column rank is full" or "the matrix has full rank".) Alternatively, A is invertible if and only if $A x=0$ has a trivial solution.
- Proof:
- If A is invertible: The linear map $T: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ defined as $T(v)=A v$ is also invertible. Hence, if e_{1}, \ldots, e_{n} is a basis, then so is $T\left(e_{1}\right), T\left(e_{2}\right), \ldots$. Thus, the column space is all of \mathbb{F}^{n}. Hence the rank is n.
- If the rank is n : The column space is all of \mathbb{F}^{n}.

An important criterion for invertibility

- An $n \times n$ matrix A is invertible if and only if its (column) rank is n. (Sometimes, one says "the column rank is full" or "the matrix has full rank".) Alternatively, A is invertible if and only if $A x=0$ has a trivial solution.
- Proof:
- If A is invertible: The linear map $T: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ defined as $T(v)=A v$ is also invertible. Hence, if e_{1}, \ldots, e_{n} is a basis, then so is $T\left(e_{1}\right), T\left(e_{2}\right), \ldots$. Thus, the column space is all of \mathbb{F}^{n}. Hence the rank is n.
- If the rank is n : The column space is all of \mathbb{F}^{n}. Hence $T\left(e_{1}\right), T\left(e_{2}\right), \ldots T\left(e_{n}\right)$ form a basis.

An important criterion for invertibility

- An $n \times n$ matrix A is invertible if and only if its (column) rank is n. (Sometimes, one says "the column rank is full" or "the matrix has full rank".) Alternatively, A is invertible if and only if $A x=0$ has a trivial solution.
- Proof:
- If A is invertible: The linear map $T: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ defined as $T(v)=A v$ is also invertible. Hence, if e_{1}, \ldots, e_{n} is a basis, then so is $T\left(e_{1}\right), T\left(e_{2}\right), \ldots$. Thus, the column space is all of \mathbb{F}^{n}. Hence the rank is n.
- If the rank is n : The column space is all of \mathbb{F}^{n}. Hence $T\left(e_{1}\right), T\left(e_{2}\right), \ldots T\left(e_{n}\right)$ form a basis. Therefore T is invertible.

An important criterion for invertibility

- An $n \times n$ matrix A is invertible if and only if its (column) rank is n. (Sometimes, one says "the column rank is full" or "the matrix has full rank".) Alternatively, A is invertible if and only if $A x=0$ has a trivial solution.
- Proof:
- If A is invertible: The linear map $T: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ defined as $T(v)=A v$ is also invertible. Hence, if e_{1}, \ldots, e_{n} is a basis, then so is $T\left(e_{1}\right), T\left(e_{2}\right), \ldots$. Thus, the column space is all of \mathbb{F}^{n}. Hence the rank is n.
- If the rank is n : The column space is all of \mathbb{F}^{n}. Hence $T\left(e_{1}\right), T\left(e_{2}\right), \ldots T\left(e_{n}\right)$ form a basis. Therefore T is invertible. Thus, so is A.

An important criterion for invertibility

- An $n \times n$ matrix A is invertible if and only if its (column) rank is n. (Sometimes, one says "the column rank is full" or "the matrix has full rank".) Alternatively, A is invertible if and only if $A x=0$ has a trivial solution.
- Proof:
- If A is invertible: The linear map $T: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ defined as $T(v)=A v$ is also invertible. Hence, if e_{1}, \ldots, e_{n} is a basis, then so is $T\left(e_{1}\right), T\left(e_{2}\right), \ldots$. Thus, the column space is all of \mathbb{F}^{n}. Hence the rank is n.
- If the rank is n : The column space is all of \mathbb{F}^{n}. Hence $T\left(e_{1}\right), T\left(e_{2}\right), \ldots T\left(e_{n}\right)$ form a basis. Therefore T is invertible. Thus, so is A.
- By nullity-rank theorem,

An important criterion for invertibility

- An $n \times n$ matrix A is invertible if and only if its (column) rank is n. (Sometimes, one says "the column rank is full" or "the matrix has full rank".) Alternatively, A is invertible if and only if $A x=0$ has a trivial solution.
- Proof:
- If A is invertible: The linear map $T: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ defined as $T(v)=A v$ is also invertible. Hence, if e_{1}, \ldots, e_{n} is a basis, then so is $T\left(e_{1}\right), T\left(e_{2}\right), \ldots$. Thus, the column space is all of \mathbb{F}^{n}. Hence the rank is n.
- If the rank is n : The column space is all of \mathbb{F}^{n}. Hence $T\left(e_{1}\right), T\left(e_{2}\right), \ldots T\left(e_{n}\right)$ form a basis. Therefore T is invertible. Thus, so is A.
- By nullity-rank theorem, the alternative statement is true as well.

An important criterion for invertibility

- An $n \times n$ matrix A is invertible if and only if its (column) rank is n. (Sometimes, one says "the column rank is full" or "the matrix has full rank".) Alternatively, A is invertible if and only if $A x=0$ has a trivial solution.
- Proof:
- If A is invertible: The linear map $T: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ defined as $T(v)=A v$ is also invertible. Hence, if e_{1}, \ldots, e_{n} is a basis, then so is $T\left(e_{1}\right), T\left(e_{2}\right), \ldots$. Thus, the column space is all of \mathbb{F}^{n}. Hence the rank is n.
- If the rank is n : The column space is all of \mathbb{F}^{n}. Hence $T\left(e_{1}\right), T\left(e_{2}\right), \ldots T\left(e_{n}\right)$ form a basis. Therefore T is invertible. Thus, so is A.
- By nullity-rank theorem, the alternative statement is true as well.
- Later on,

An important criterion for invertibility

- An $n \times n$ matrix A is invertible if and only if its (column) rank is n. (Sometimes, one says "the column rank is full" or "the matrix has full rank".) Alternatively, A is invertible if and only if $A x=0$ has a trivial solution.
- Proof:
- If A is invertible: The linear map $T: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ defined as $T(v)=A v$ is also invertible. Hence, if e_{1}, \ldots, e_{n} is a basis, then so is $T\left(e_{1}\right), T\left(e_{2}\right), \ldots$. Thus, the column space is all of \mathbb{F}^{n}. Hence the rank is n.
- If the rank is n : The column space is all of \mathbb{F}^{n}. Hence $T\left(e_{1}\right), T\left(e_{2}\right), \ldots T\left(e_{n}\right)$ form a basis. Therefore T is invertible. Thus, so is A.
- By nullity-rank theorem, the alternative statement is true as well.
- Later on, we shall see that

An important criterion for invertibility

- An $n \times n$ matrix A is invertible if and only if its (column) rank is n. (Sometimes, one says "the column rank is full" or "the matrix has full rank".) Alternatively, A is invertible if and only if $A x=0$ has a trivial solution.
- Proof:
- If A is invertible: The linear map $T: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ defined as $T(v)=A v$ is also invertible. Hence, if e_{1}, \ldots, e_{n} is a basis, then so is $T\left(e_{1}\right), T\left(e_{2}\right), \ldots$. Thus, the column space is all of \mathbb{F}^{n}. Hence the rank is n.
- If the rank is n : The column space is all of \mathbb{F}^{n}. Hence $T\left(e_{1}\right), T\left(e_{2}\right), \ldots T\left(e_{n}\right)$ form a basis. Therefore T is invertible. Thus, so is A.
- By nullity-rank theorem, the alternative statement is true as well.
- Later on, we shall see that the rank is full if and only if

An important criterion for invertibility

- An $n \times n$ matrix A is invertible if and only if its (column) rank is n. (Sometimes, one says "the column rank is full" or "the matrix has full rank".) Alternatively, A is invertible if and only if $A x=0$ has a trivial solution.
- Proof:
- If A is invertible: The linear map $T: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ defined as $T(v)=A v$ is also invertible. Hence, if e_{1}, \ldots, e_{n} is a basis, then so is $T\left(e_{1}\right), T\left(e_{2}\right), \ldots$. Thus, the column space is all of \mathbb{F}^{n}. Hence the rank is n.
- If the rank is n : The column space is all of \mathbb{F}^{n}. Hence $T\left(e_{1}\right), T\left(e_{2}\right), \ldots T\left(e_{n}\right)$ form a basis. Therefore T is invertible. Thus, so is A.
- By nullity-rank theorem, the alternative statement is true as well.
- Later on, we shall see that the rank is full if and only if a certain expression

An important criterion for invertibility

- An $n \times n$ matrix A is invertible if and only if its (column) rank is n. (Sometimes, one says "the column rank is full" or "the matrix has full rank".) Alternatively, A is invertible if and only if $A x=0$ has a trivial solution.
- Proof:
- If A is invertible: The linear map $T: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ defined as $T(v)=A v$ is also invertible. Hence, if e_{1}, \ldots, e_{n} is a basis, then so is $T\left(e_{1}\right), T\left(e_{2}\right), \ldots$. Thus, the column space is all of \mathbb{F}^{n}. Hence the rank is n.
- If the rank is n : The column space is all of \mathbb{F}^{n}. Hence $T\left(e_{1}\right), T\left(e_{2}\right), \ldots T\left(e_{n}\right)$ form a basis. Therefore T is invertible. Thus, so is A.
- By nullity-rank theorem, the alternative statement is true as well.
- Later on, we shall see that the rank is full if and only if a certain expression called the 'determinant' is

An important criterion for invertibility

- An $n \times n$ matrix A is invertible if and only if its (column) rank is n. (Sometimes, one says "the column rank is full" or "the matrix has full rank".) Alternatively, A is invertible if and only if $A x=0$ has a trivial solution.
- Proof:
- If A is invertible: The linear map $T: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ defined as $T(v)=A v$ is also invertible. Hence, if e_{1}, \ldots, e_{n} is a basis, then so is $T\left(e_{1}\right), T\left(e_{2}\right), \ldots$. Thus, the column space is all of \mathbb{F}^{n}. Hence the rank is n.
- If the rank is n : The column space is all of \mathbb{F}^{n}. Hence $T\left(e_{1}\right), T\left(e_{2}\right), \ldots T\left(e_{n}\right)$ form a basis. Therefore T is invertible. Thus, so is A.
- By nullity-rank theorem, the alternative statement is true as well.
- Later on, we shall see that the rank is full if and only if a certain expression called the 'determinant' is non-zero.

How does one compute inverses ?

How does one compute inverses?

- The key observation is that

How does one compute inverses?

- The key observation is that computing an inverse

How does one compute inverses?

- The key observation is that computing an inverse is the same as

How does one compute inverses?

- The key observation is that computing an inverse is the same as solving a certain system of

How does one compute inverses?

- The key observation is that computing an inverse is the same as solving a certain system of linear equations.

How does one compute inverses?

- The key observation is that computing an inverse is the same as solving a certain system of linear equations. This system can of course

How does one compute inverses?

- The key observation is that computing an inverse is the same as solving a certain system of linear equations. This system can of course be solved (

How does one compute inverses?

- The key observation is that computing an inverse is the same as solving a certain system of linear equations. This system can of course be solved (or proved to be inconsistent)

How does one compute inverses?

- The key observation is that computing an inverse is the same as solving a certain system of linear equations. This system can of course be solved (or proved to be inconsistent) using the Gauss-Jordan algorithm.

How does one compute inverses?

- The key observation is that computing an inverse is the same as solving a certain system of linear equations. This system can of course be solved (or proved to be inconsistent) using the Gauss-Jordan algorithm.
- Indeed,

How does one compute inverses?

- The key observation is that computing an inverse is the same as solving a certain system of linear equations. This system can of course be solved (or proved to be inconsistent) using the Gauss-Jordan algorithm.
- Indeed, suppose A is invertible and

How does one compute inverses?

- The key observation is that computing an inverse is the same as solving a certain system of linear equations. This system can of course be solved (or proved to be inconsistent) using the Gauss-Jordan algorithm.
- Indeed, suppose A is invertible and $\left[A^{-1}\right]_{i j}=b_{i j}$.

How does one compute inverses?

- The key observation is that computing an inverse is the same as solving a certain system of linear equations. This system can of course be solved (or proved to be inconsistent) using the Gauss-Jordan algorithm.
- Indeed, suppose A is invertible and $\left[A^{-1}\right]_{i j}=b_{i j}$. Then $A B=I$ is equivalent to

How does one compute inverses ?

- The key observation is that computing an inverse is the same as solving a certain system of linear equations. This system can of course be solved (or proved to be inconsistent) using the Gauss-Jordan algorithm.
- Indeed, suppose A is invertible and $\left[A^{-1}\right]_{i j}=b_{i j}$. Then $A B=I$ is equivalent to $\sum_{k} a_{i k} b_{k j}=\delta_{i j}$ where

How does one compute inverses?

- The key observation is that computing an inverse is the same as solving a certain system of linear equations. This system can of course be solved (or proved to be inconsistent) using the Gauss-Jordan algorithm.
- Indeed, suppose A is invertible and $\left[A^{-1}\right]_{i j}=b_{i j}$. Then $A B=I$ is equivalent to $\sum_{k} a_{i k} b_{k j}=\delta_{i j}$ where $\delta_{i j}=[I]_{i j}($

How does one compute inverses?

- The key observation is that computing an inverse is the same as solving a certain system of linear equations. This system can of course be solved (or proved to be inconsistent) using the Gauss-Jordan algorithm.
- Indeed, suppose A is invertible and $\left[A^{-1}\right]_{i j}=b_{i j}$. Then $A B=I$ is equivalent to $\sum_{k} a_{i k} b_{k j}=\delta_{i j}$ where $\delta_{i j}=[I]_{i j}$ (the so called

How does one compute inverses?

- The key observation is that computing an inverse is the same as solving a certain system of linear equations. This system can of course be solved (or proved to be inconsistent) using the Gauss-Jordan algorithm.
- Indeed, suppose A is invertible and $\left[A^{-1}\right]_{i j}=b_{i j}$. Then $A B=I$ is equivalent to $\sum_{k} a_{i k} b_{k j}=\delta_{i j}$ where $\delta_{i j}=[I]_{i j}$ (the so called Kronecker delta.)

How does one compute inverses?

- The key observation is that computing an inverse is the same as solving a certain system of linear equations. This system can of course be solved (or proved to be inconsistent) using the Gauss-Jordan algorithm.
- Indeed, suppose A is invertible and $\left[A^{-1}\right]_{i j}=b_{i j}$. Then $A B=I$ is equivalent to $\sum_{k} a_{i k} b_{k j}=\delta_{i j}$ where $\delta_{i j}=[I]_{i j}$ (the so called Kronecker delta.)
- In other words,

How does one compute inverses?

- The key observation is that computing an inverse is the same as solving a certain system of linear equations. This system can of course be solved (or proved to be inconsistent) using the Gauss-Jordan algorithm.
- Indeed, suppose A is invertible and $\left[A^{-1}\right]_{i j}=b_{i j}$. Then $A B=I$ is equivalent to $\sum_{k} a_{i k} b_{k j}=\delta_{i j}$ where $\delta_{i j}=[I]_{i j}$ (the so called Kronecker delta.)
- In other words, for every fixed j,

How does one compute inverses?

- The key observation is that computing an inverse is the same as solving a certain system of linear equations. This system can of course be solved (or proved to be inconsistent) using the Gauss-Jordan algorithm.
- Indeed, suppose A is invertible and $\left[A^{-1}\right]_{i j}=b_{i j}$. Then $A B=I$ is equivalent to $\sum_{k} a_{i k} b_{k j}=\delta_{i j}$ where $\delta_{i j}=[I]_{i j}$ (the so called Kronecker delta.)
- In other words, for every fixed j, we have to solve a linear system

How does one compute inverses?

- The key observation is that computing an inverse is the same as solving a certain system of linear equations. This system can of course be solved (or proved to be inconsistent) using the Gauss-Jordan algorithm.
- Indeed, suppose A is invertible and $\left[A^{-1}\right]_{i j}=b_{i j}$. Then $A B=I$ is equivalent to $\sum_{k} a_{i k} b_{k j}=\delta_{i j}$ where $\delta_{i j}=[I]_{i j}$ (the so called Kronecker delta.)
- In other words, for every fixed j, we have to solve a linear system for $b_{1 j}, b_{2 j}, \ldots$.

How does one compute inverses?

- The key observation is that computing an inverse is the same as solving a certain system of linear equations. This system can of course be solved (or proved to be inconsistent) using the Gauss-Jordan algorithm.
- Indeed, suppose A is invertible and $\left[A^{-1}\right]_{i j}=b_{i j}$. Then $A B=I$ is equivalent to $\sum_{k} a_{i k} b_{k j}=\delta_{i j}$ where $\delta_{i j}=[I]_{i j}$ (the so called Kronecker delta.)
- In other words, for every fixed j, we have to solve a linear system for $b_{1 j}, b_{2 j}, \ldots$.
- The other way of looking

How does one compute inverses?

- The key observation is that computing an inverse is the same as solving a certain system of linear equations. This system can of course be solved (or proved to be inconsistent) using the Gauss-Jordan algorithm.
- Indeed, suppose A is invertible and $\left[A^{-1}\right]_{i j}=b_{i j}$. Then $A B=I$ is equivalent to $\sum_{k} a_{i k} b_{k j}=\delta_{i j}$ where $\delta_{i j}=[I]_{i j}$ (the so called Kronecker delta.)
- In other words, for every fixed j, we have to solve a linear system for $b_{1 j}, b_{2 j}, \ldots$.
- The other way of looking at the problem

How does one compute inverses?

- The key observation is that computing an inverse is the same as solving a certain system of linear equations. This system can of course be solved (or proved to be inconsistent) using the Gauss-Jordan algorithm.
- Indeed, suppose A is invertible and $\left[A^{-1}\right]_{i j}=b_{i j}$. Then $A B=I$ is equivalent to $\sum_{k} a_{i k} b_{k j}=\delta_{i j}$ where $\delta_{i j}=[I]_{i j}$ (the so called Kronecker delta.)
- In other words, for every fixed j, we have to solve a linear system for $b_{1 j}, b_{2 j}, \ldots$.
- The other way of looking at the problem is that

How does one compute inverses?

- The key observation is that computing an inverse is the same as solving a certain system of linear equations. This system can of course be solved (or proved to be inconsistent) using the Gauss-Jordan algorithm.
- Indeed, suppose A is invertible and $\left[A^{-1}\right]_{i j}=b_{i j}$. Then $A B=I$ is equivalent to $\sum_{k} a_{i k} b_{k j}=\delta_{i j}$ where $\delta_{i j}=[I]_{i j}$ (the so called Kronecker delta.)
- In other words, for every fixed j, we have to solve a linear system for $b_{1 j}, b_{2 j}, \ldots$.
- The other way of looking at the problem is that each column of B

How does one compute inverses?

- The key observation is that computing an inverse is the same as solving a certain system of linear equations. This system can of course be solved (or proved to be inconsistent) using the Gauss-Jordan algorithm.
- Indeed, suppose A is invertible and $\left[A^{-1}\right]_{i j}=b_{i j}$. Then $A B=I$ is equivalent to $\sum_{k} a_{i k} b_{k j}=\delta_{i j}$ where $\delta_{i j}=[I]_{i j}$ (the so called Kronecker delta.)
- In other words, for every fixed j, we have to solve a linear system for $b_{1 j}, b_{2 j}, \ldots$.
- The other way of looking at the problem is that each column of B is an unknown vector x_{i}

How does one compute inverses?

- The key observation is that computing an inverse is the same as solving a certain system of linear equations. This system can of course be solved (or proved to be inconsistent) using the Gauss-Jordan algorithm.
- Indeed, suppose A is invertible and $\left[A^{-1}\right]_{i j}=b_{i j}$. Then $A B=I$ is equivalent to $\sum_{k} a_{i k} b_{k j}=\delta_{i j}$ where $\delta_{i j}=[I]_{i j}$ (the so called Kronecker delta.)
- In other words, for every fixed j, we have to solve a linear system for $b_{1 j}, b_{2 j}, \ldots$.
- The other way of looking at the problem is that each column of B is an unknown vector x_{i} satisfying $A x_{i}=e_{i}$.

Gauss-Jordan elimination to compute inverses

Gauss-Jordan elimination to compute inverses

- We need to form

Gauss-Jordan elimination to compute inverses

- We need to form n augmented matrices

Gauss-Jordan elimination to compute inverses

- We need to form n augmented matrices $\left[A \mid e_{1}\right],\left[A \mid e_{2}\right], \ldots,\left[A \mid e_{n}\right]$.

Gauss-Jordan elimination to compute inverses

- We need to form n augmented matrices $\left[A \mid e_{1}\right],\left[A \mid e_{2}\right], \ldots,\left[A \mid e_{n}\right]$.
- Unless the resulting equations

Gauss-Jordan elimination to compute inverses

- We need to form n augmented matrices $\left[A \mid e_{1}\right],\left[A \mid e_{2}\right], \ldots,\left[A \mid e_{n}\right]$.
- Unless the resulting equations are inconsistent,

Gauss-Jordan elimination to compute inverses

- We need to form n augmented matrices $\left[A \mid e_{1}\right],\left[A \mid e_{2}\right], \ldots,\left[A \mid e_{n}\right]$.
- Unless the resulting equations are inconsistent, that is, A is not invertible,

Gauss-Jordan elimination to compute inverses

- We need to form n augmented matrices $\left[A \mid e_{1}\right],\left[A \mid e_{2}\right], \ldots,\left[A \mid e_{n}\right]$.
- Unless the resulting equations are inconsistent, that is, A is not invertible, one can bring all n augmented matrices

Gauss-Jordan elimination to compute inverses

- We need to form n augmented matrices $\left[A \mid e_{1}\right],\left[A \mid e_{2}\right], \ldots,\left[A \mid e_{n}\right]$.
- Unless the resulting equations are inconsistent, that is, A is not invertible, one can bring all n augmented matrices to their RREFs simultaneously,

Gauss-Jordan elimination to compute inverses

- We need to form n augmented matrices $\left[A \mid e_{1}\right],\left[A \mid e_{2}\right], \ldots,\left[A \mid e_{n}\right]$.
- Unless the resulting equations are inconsistent, that is, A is not invertible, one can bring all n augmented matrices to their RREFs simultaneously, by the same row operations. (

Gauss-Jordan elimination to compute inverses

- We need to form n augmented matrices $\left[A \mid e_{1}\right],\left[A \mid e_{2}\right], \ldots,\left[A \mid e_{n}\right]$.
- Unless the resulting equations are inconsistent, that is, A is not invertible, one can bring all n augmented matrices to their RREFs simultaneously, by the same row operations. (Indeed, the A part is the same

Gauss-Jordan elimination to compute inverses

- We need to form n augmented matrices $\left[A \mid e_{1}\right],\left[A \mid e_{2}\right], \ldots,\left[A \mid e_{n}\right]$.
- Unless the resulting equations are inconsistent, that is, A is not invertible, one can bring all n augmented matrices to their RREFs simultaneously, by the same row operations. (Indeed, the A part is the same for all n matrices.)

Gauss-Jordan elimination to compute inverses

- We need to form n augmented matrices $\left[A \mid e_{1}\right],\left[A \mid e_{2}\right], \ldots,\left[A \mid e_{n}\right]$.
- Unless the resulting equations are inconsistent, that is, A is not invertible, one can bring all n augmented matrices to their RREFs simultaneously, by the same row operations. (Indeed, the A part is the same for all n matrices.)
- So in practice,

Gauss-Jordan elimination to compute inverses

- We need to form n augmented matrices $\left[A \mid e_{1}\right],\left[A \mid e_{2}\right], \ldots,\left[A \mid e_{n}\right]$.
- Unless the resulting equations are inconsistent, that is, A is not invertible, one can bring all n augmented matrices to their RREFs simultaneously, by the same row operations. (Indeed, the A part is the same for all n matrices.)
- So in practice, one applies row operations to

Gauss-Jordan elimination to compute inverses

- We need to form n augmented matrices $\left[A \mid e_{1}\right],\left[A \mid e_{2}\right], \ldots,\left[A \mid e_{n}\right]$.
- Unless the resulting equations are inconsistent, that is, A is not invertible, one can bring all n augmented matrices to their RREFs simultaneously, by the same row operations. (Indeed, the A part is the same for all n matrices.)
- So in practice, one applies row operations to $[A \mid I]$ to get

Gauss-Jordan elimination to compute inverses

- We need to form n augmented matrices $\left[A \mid e_{1}\right],\left[A \mid e_{2}\right], \ldots,\left[A \mid e_{n}\right]$.
- Unless the resulting equations are inconsistent, that is, A is not invertible, one can bring all n augmented matrices to their RREFs simultaneously, by the same row operations. (Indeed, the A part is the same for all n matrices.)
- So in practice, one applies row operations to $[A \mid I]$ to get $\left[I \mid A^{-1}\right]$. (

Gauss-Jordan elimination to compute inverses

- We need to form n augmented matrices $\left[A \mid e_{1}\right],\left[A \mid e_{2}\right], \ldots,\left[A \mid e_{n}\right]$.
- Unless the resulting equations are inconsistent, that is, A is not invertible, one can bring all n augmented matrices to their RREFs simultaneously, by the same row operations. (Indeed, the A part is the same for all n matrices.)
- So in practice, one applies row operations to $[A \mid I]$ to get [$\| \mid A^{-1}$]. (After all,

Gauss-Jordan elimination to compute inverses

- We need to form n augmented matrices $\left[A \mid e_{1}\right],\left[A \mid e_{2}\right], \ldots,\left[A \mid e_{n}\right]$.
- Unless the resulting equations are inconsistent, that is, A is not invertible, one can bring all n augmented matrices to their RREFs simultaneously, by the same row operations. (Indeed, the A part is the same for all n matrices.)
- So in practice, one applies row operations to $[A \mid I]$ to get $\left[I \mid A^{-1}\right]$. (After all, if the column rank is full,

Gauss-Jordan elimination to compute inverses

- We need to form n augmented matrices $\left[A \mid e_{1}\right],\left[A \mid e_{2}\right], \ldots,\left[A \mid e_{n}\right]$.
- Unless the resulting equations are inconsistent, that is, A is not invertible, one can bring all n augmented matrices to their RREFs simultaneously, by the same row operations. (Indeed, the A part is the same for all n matrices.)
- So in practice, one applies row operations to $[A \mid I]$ to get $\left[I \mid A^{-1}\right]$. (After all, if the column rank is full, then the RREF is I.)

Gauss-Jordan elimination to compute inverses

- We need to form n augmented matrices $\left[A \mid e_{1}\right],\left[A \mid e_{2}\right], \ldots,\left[A \mid e_{n}\right]$.
- Unless the resulting equations are inconsistent, that is, A is not invertible, one can bring all n augmented matrices to their RREFs simultaneously, by the same row operations. (Indeed, the A part is the same for all n matrices.)
- So in practice, one applies row operations to $[A \mid I]$ to get $\left[I \mid A^{-1}\right.$]. (After all, if the column rank is full, then the RREF is I.) Note that this procedue also

Gauss-Jordan elimination to compute inverses

- We need to form n augmented matrices $\left[A \mid e_{1}\right],\left[A \mid e_{2}\right], \ldots,\left[A \mid e_{n}\right]$.
- Unless the resulting equations are inconsistent, that is, A is not invertible, one can bring all n augmented matrices to their RREFs simultaneously, by the same row operations. (Indeed, the A part is the same for all n matrices.)
- So in practice, one applies row operations to $[A \mid I]$ to get $\left[I \mid A^{-1}\right.$]. (After all, if the column rank is full, then the RREF is I.) Note that this procedue also lets us know whether A

Gauss-Jordan elimination to compute inverses

- We need to form n augmented matrices $\left[A \mid e_{1}\right],\left[A \mid e_{2}\right], \ldots,\left[A \mid e_{n}\right]$.
- Unless the resulting equations are inconsistent, that is, A is not invertible, one can bring all n augmented matrices to their RREFs simultaneously, by the same row operations. (Indeed, the A part is the same for all n matrices.)
- So in practice, one applies row operations to $[A \mid I]$ to get $\left[I \mid A^{-1}\right.$]. (After all, if the column rank is full, then the RREF is I.) Note that this procedue also lets us know whether A is invertible or not.

Gauss-Jordan elimination to compute inverses

- We need to form n augmented matrices $\left[A \mid e_{1}\right],\left[A \mid e_{2}\right], \ldots,\left[A \mid e_{n}\right]$.
- Unless the resulting equations are inconsistent, that is, A is not invertible, one can bring all n augmented matrices to their RREFs simultaneously, by the same row operations. (Indeed, the A part is the same for all n matrices.)
- So in practice, one applies row operations to $[A \mid I]$ to get $\left[I \mid A^{-1}\right.$]. (After all, if the column rank is full, then the RREF is I.) Note that this procedue also lets us know whether A is invertible or not.
- On paper,

Gauss-Jordan elimination to compute inverses

- We need to form n augmented matrices $\left[A \mid e_{1}\right],\left[A \mid e_{2}\right], \ldots,\left[A \mid e_{n}\right]$.
- Unless the resulting equations are inconsistent, that is, A is not invertible, one can bring all n augmented matrices to their RREFs simultaneously, by the same row operations. (Indeed, the A part is the same for all n matrices.)
- So in practice, one applies row operations to $[A \mid I]$ to get $\left[I \mid A^{-1}\right.$]. (After all, if the column rank is full, then the RREF is I.) Note that this procedue also lets us know whether A is invertible or not.
- On paper, if A is invertible,

Gauss-Jordan elimination to compute inverses

- We need to form n augmented matrices $\left[A \mid e_{1}\right],\left[A \mid e_{2}\right], \ldots,\left[A \mid e_{n}\right]$.
- Unless the resulting equations are inconsistent, that is, A is not invertible, one can bring all n augmented matrices to their RREFs simultaneously, by the same row operations. (Indeed, the A part is the same for all n matrices.)
- So in practice, one applies row operations to $[A \mid I]$ to get $\left[I \mid A^{-1}\right.$]. (After all, if the column rank is full, then the RREF is I.) Note that this procedue also lets us know whether A is invertible or not.
- On paper, if A is invertible, and we know the inverse A^{-1},

Gauss-Jordan elimination to compute inverses

- We need to form n augmented matrices $\left[A \mid e_{1}\right],\left[A \mid e_{2}\right], \ldots,\left[A \mid e_{n}\right]$.
- Unless the resulting equations are inconsistent, that is, A is not invertible, one can bring all n augmented matrices to their RREFs simultaneously, by the same row operations. (Indeed, the A part is the same for all n matrices.)
- So in practice, one applies row operations to $[A \mid I]$ to get $\left[I \mid A^{-1}\right.$]. (After all, if the column rank is full, then the RREF is I.) Note that this procedue also lets us know whether A is invertible or not.
- On paper, if A is invertible, and we know the inverse A^{-1}, any linear system $A x=b$

Gauss-Jordan elimination to compute inverses

- We need to form n augmented matrices $\left[A \mid e_{1}\right],\left[A \mid e_{2}\right], \ldots,\left[A \mid e_{n}\right]$.
- Unless the resulting equations are inconsistent, that is, A is not invertible, one can bring all n augmented matrices to their RREFs simultaneously, by the same row operations. (Indeed, the A part is the same for all n matrices.)
- So in practice, one applies row operations to $[A \mid I]$ to get $\left[I \mid A^{-1}\right.$]. (After all, if the column rank is full, then the RREF is I.) Note that this procedue also lets us know whether A is invertible or not.
- On paper, if A is invertible, and we know the inverse A^{-1}, any linear system $A x=b$ can be solved using $x=A^{-1} b$.

Gauss-Jordan elimination to compute inverses

- We need to form n augmented matrices $\left[A \mid e_{1}\right],\left[A \mid e_{2}\right], \ldots,\left[A \mid e_{n}\right]$.
- Unless the resulting equations are inconsistent, that is, A is not invertible, one can bring all n augmented matrices to their RREFs simultaneously, by the same row operations. (Indeed, the A part is the same for all n matrices.)
- So in practice, one applies row operations to $[A \mid I]$ to get $\left[I \mid A^{-1}\right]$. (After all, if the column rank is full, then the RREF is I.) Note that this procedue also lets us know whether A is invertible or not.
- On paper, if A is invertible, and we know the inverse A^{-1}, any linear system $A x=b$ can be solved using $x=A^{-1} b$. However, in practice,

Gauss-Jordan elimination to compute inverses

- We need to form n augmented matrices $\left[A \mid e_{1}\right],\left[A \mid e_{2}\right], \ldots,\left[A \mid e_{n}\right]$.
- Unless the resulting equations are inconsistent, that is, A is not invertible, one can bring all n augmented matrices to their RREFs simultaneously, by the same row operations. (Indeed, the A part is the same for all n matrices.)
- So in practice, one applies row operations to $[A \mid I]$ to get $\left[I \mid A^{-1}\right.$]. (After all, if the column rank is full, then the RREF is I.) Note that this procedue also lets us know whether A is invertible or not.
- On paper, if A is invertible, and we know the inverse A^{-1}, any linear system $A x=b$ can be solved using $x=A^{-1} b$. However, in practice, computing the inverse is inefficient and

Gauss-Jordan elimination to compute inverses

- We need to form n augmented matrices $\left[A \mid e_{1}\right],\left[A \mid e_{2}\right], \ldots,\left[A \mid e_{n}\right]$.
- Unless the resulting equations are inconsistent, that is, A is not invertible, one can bring all n augmented matrices to their RREFs simultaneously, by the same row operations. (Indeed, the A part is the same for all n matrices.)
- So in practice, one applies row operations to $[A \mid I]$ to get $\left[I \mid A^{-1}\right.$]. (After all, if the column rank is full, then the RREF is I.) Note that this procedue also lets us know whether A is invertible or not.
- On paper, if A is invertible, and we know the inverse A^{-1}, any linear system $A x=b$ can be solved using $x=A^{-1} b$. However, in practice, computing the inverse is inefficient and subject to rounding-off errors.

Example

Example

- Determine if

Example

- Determine if $A=\left[\begin{array}{ccc}2 & 3 & 4 \\ 2 & 1 & 1 \\ -1 & 1 & 2\end{array}\right]$ is invertible.

Example

- Determine if $A=\left[\begin{array}{ccc}2 & 3 & 4 \\ 2 & 1 & 1 \\ -1 & 1 & 2\end{array}\right]$ is invertible. If so, find the inverse.

Example

- Determine if $A=\left[\begin{array}{ccc}2 & 3 & 4 \\ 2 & 1 & 1 \\ -1 & 1 & 2\end{array}\right]$ is invertible. If so, find the inverse.
- We must row-reduce

Example

- Determine if $A=\left[\begin{array}{ccc}2 & 3 & 4 \\ 2 & 1 & 1 \\ -1 & 1 & 2\end{array}\right]$ is invertible. If so, find the inverse.
- We must row-reduce $[A \mid I]$.

Example

- Determine if $A=\left[\begin{array}{ccc}2 & 3 & 4 \\ 2 & 1 & 1 \\ -1 & 1 & 2\end{array}\right]$ is invertible. If so, find the inverse.
- We must row-reduce $[A \mid I] . \quad R_{1} \leftrightarrow R_{3}$ and $R_{1} \rightarrow-R_{1}$:

Example

- Determine if $A=\left[\begin{array}{ccc}2 & 3 & 4 \\ 2 & 1 & 1 \\ -1 & 1 & 2\end{array}\right]$ is invertible. If so, find the inverse.
- We must row-reduce $[A \mid I] . \quad R_{1} \leftrightarrow R_{3}$ and $R_{1} \rightarrow-R_{1}$:

$$
\left[\begin{array}{ccc|ccc}
1 & -1 & -2 & 0 & 0 & -1 \\
2 & 1 & 1 & 0 & 1 & 0 \\
2 & 3 & 4 & 1 & 0 & 0
\end{array}\right]
$$

Example

- Determine if $A=\left[\begin{array}{ccc}2 & 3 & 4 \\ 2 & 1 & 1 \\ -1 & 1 & 2\end{array}\right]$ is invertible. If so, find the inverse.
- We must row-reduce $[A \mid I] . \quad R_{1} \leftrightarrow R_{3}$ and $R_{1} \rightarrow-R_{1}$:

$$
\left[\begin{array}{ccc|ccc}
1 & -1 & -2 & 0 & 0 & -1 \\
2 & 1 & 1 & 0 & 1 & 0 \\
2 & 3 & 4 & 1 & 0 & 0
\end{array}\right]
$$

- To clear the first column,

Example

- Determine if $A=\left[\begin{array}{ccc}2 & 3 & 4 \\ 2 & 1 & 1 \\ -1 & 1 & 2\end{array}\right]$ is invertible. If so, find the inverse.
- We must row-reduce $[A \mid I] . \quad R_{1} \leftrightarrow R_{3}$ and $R_{1} \rightarrow-R_{1}$:

$$
\left[\begin{array}{ccc|ccc}
1 & -1 & -2 & 0 & 0 & -1 \\
2 & 1 & 1 & 0 & 1 & 0 \\
2 & 3 & 4 & 1 & 0 & 0
\end{array}\right]
$$

- To clear the first column, $R_{2} \rightarrow R_{2}-2 R_{1}, R_{3} \rightarrow R_{3}-2 R_{1}$:

Example

- Determine if $A=\left[\begin{array}{ccc}2 & 3 & 4 \\ 2 & 1 & 1 \\ -1 & 1 & 2\end{array}\right]$ is invertible. If so, find the inverse.
- We must row-reduce $[A \mid I] . \quad R_{1} \leftrightarrow R_{3}$ and $R_{1} \rightarrow-R_{1}$:

$$
\left[\begin{array}{ccc|ccc}
1 & -1 & -2 & 0 & 0 & -1 \\
2 & 1 & 1 & 0 & 1 & 0 \\
2 & 3 & 4 & 1 & 0 & 0
\end{array}\right]
$$

- To clear the first column, $R_{2} \rightarrow R_{2}-2 R_{1}, R_{3} \rightarrow R_{3}-2 R_{1}$:

$$
\left[\begin{array}{ccc|ccc}
1 & -1 & -2 & 0 & 0 & -1 \\
0 & 3 & 5 & 0 & 1 & 2 \\
0 & 5 & 8 & 1 & 0 & 2
\end{array}\right]
$$

Example

Example

- $R_{2} \rightarrow R_{2} / 3, R_{3} \rightarrow R_{3}-5 R_{2}$,

$$
R_{1} \rightarrow R_{1}+R_{2}:
$$

Example

- $R_{2} \rightarrow R_{2} / 3, R_{3} \rightarrow R_{3}-5 R_{2}$,

$$
R_{1} \rightarrow R_{1}+R_{2}:\left[\begin{array}{ccc|ccc}
1 & 0 & -\frac{1}{3} & 0 & \frac{1}{3} & -\frac{1}{3} \\
0 & 1 & \frac{5}{3} & 0 & \frac{1}{3} & \frac{2}{3} \\
0 & 0 & -\frac{1}{3} & 1 & -\frac{5}{3} & -\frac{4}{3}
\end{array}\right]
$$

Example

- $R_{2} \rightarrow R_{2} / 3, R_{3} \rightarrow R_{3}-5 R_{2}$,
$R_{1} \rightarrow R_{1}+R_{2}:\left[\begin{array}{ccc|ccc}1 & 0 & -\frac{1}{3} & 0 & \frac{1}{3} & -\frac{1}{3} \\ 0 & 1 & \frac{5}{3} & 0 & \frac{1}{3} & \frac{2}{3} \\ 0 & 0 & -\frac{1}{3} & 1 & -\frac{5}{3} & -\frac{4}{3}\end{array}\right]$.
- $R_{3} \rightarrow-3 R_{3}, R_{2} \rightarrow R_{2}-\frac{5}{3} R_{3}, R_{1} \rightarrow R_{1}+\frac{1}{3} R_{3}$:

Example

- $R_{2} \rightarrow R_{2} / 3, R_{3} \rightarrow R_{3}-5 R_{2}$,

$$
R_{1} \rightarrow R_{1}+R_{2}:\left[\begin{array}{ccc|ccc}
1 & 0 & -\frac{1}{3} & 0 & \frac{1}{3} & -\frac{1}{3} \\
0 & 1 & \frac{5}{3} & 0 & \frac{1}{3} & \frac{2}{3} \\
0 & 0 & -\frac{1}{3} & 1 & -\frac{5}{3} & -\frac{4}{3}
\end{array}\right] .
$$

- $R_{3} \rightarrow-3 R_{3}, R_{2} \rightarrow R_{2}-\frac{5}{3} R_{3}, R_{1} \rightarrow R_{1}+\frac{1}{3} R_{3}$:
$\left[\begin{array}{ccc|ccc}1 & 0 & 0 & -1 & 2 & 1 \\ 0 & 1 & 0 & 5 & -8 & -6 \\ 0 & 0 & 1 & -3 & 5 & 4\end{array}\right]$.

Example

- $R_{2} \rightarrow R_{2} / 3, R_{3} \rightarrow R_{3}-5 R_{2}$,
$R_{1} \rightarrow R_{1}+R_{2}:\left[\begin{array}{ccc|ccc}1 & 0 & -\frac{1}{3} & 0 & \frac{1}{3} & -\frac{1}{3} \\ 0 & 1 & \frac{5}{3} & 0 & \frac{1}{3} & \frac{2}{3} \\ 0 & 0 & -\frac{1}{3} & 1 & -\frac{5}{3} & -\frac{4}{3}\end{array}\right]$.
- $R_{3} \rightarrow-3 R_{3}, R_{2} \rightarrow R_{2}-\frac{5}{3} R_{3}, R_{1} \rightarrow R_{1}+\frac{1}{3} R_{3}$:
$\left[\begin{array}{ccc|ccc}1 & 0 & 0 & -1 & 2 & 1 \\ 0 & 1 & 0 & 5 & -8 & -6 \\ 0 & 0 & 1 & -3 & 5 & 4\end{array}\right]$.
- Hence A is invertible and A^{-1} is

Example

- $R_{2} \rightarrow R_{2} / 3, R_{3} \rightarrow R_{3}-5 R_{2}$,

$$
R_{1} \rightarrow R_{1}+R_{2}:\left[\begin{array}{ccc|ccc}
1 & 0 & -\frac{1}{3} & 0 & \frac{1}{3} & -\frac{1}{3} \\
0 & 1 & \frac{5}{3} & 0 & \frac{1}{3} & \frac{2}{3} \\
0 & 0 & -\frac{1}{3} & 1 & -\frac{5}{3} & -\frac{4}{3}
\end{array}\right]
$$

- $R_{3} \rightarrow-3 R_{3}, R_{2} \rightarrow R_{2}-\frac{5}{3} R_{3}, R_{1} \rightarrow R_{1}+\frac{1}{3} R_{3}$:
$\left[\begin{array}{ccc|ccc}1 & 0 & 0 & -1 & 2 & 1 \\ 0 & 1 & 0 & 5 & -8 & -6 \\ 0 & 0 & 1 & -3 & 5 & 4\end{array}\right]$.
- Hence A is invertible and A^{-1} is $\left[\begin{array}{ccc}-1 & 2 & 1 \\ 5 & -8 & -6 \\ -3 & 5 & 4\end{array}\right]$.

Elementary row matrices

Elementary row matrices

- Each of the row operations

Elementary row matrices

- Each of the row operations is linear, i.e.,

Elementary row matrices

- Each of the row operations is linear, i.e., a linear map from the

Elementary row matrices

- Each of the row operations is linear, i.e., a linear map from the row space to itself.

Elementary row matrices

- Each of the row operations is linear, i.e., a linear map from the row space to itself.
- An interesting observation is:

Elementary row matrices

- Each of the row operations is linear, i.e., a linear map from the row space to itself.
- An interesting observation is: If $C=A B$,

Elementary row matrices

- Each of the row operations is linear, i.e., a linear map from the row space to itself.
- An interesting observation is: If $C=A B$, the rows of C are

Elementary row matrices

- Each of the row operations is linear, i.e., a linear map from the row space to itself.
- An interesting observation is: If $C=A B$, the rows of C are linear combinations of the

Elementary row matrices

- Each of the row operations is linear, i.e., a linear map from the row space to itself.
- An interesting observation is: If $C=A B$, the rows of C are linear combinations of the rows of

Elementary row matrices

- Each of the row operations is linear, i.e., a linear map from the row space to itself.
- An interesting observation is: If $C=A B$, the rows of C are linear combinations of the rows of B and

Elementary row matrices

- Each of the row operations is linear, i.e., a linear map from the row space to itself.
- An interesting observation is: If $C=A B$, the rows of C are linear combinations of the rows of B and the columns of C are

Elementary row matrices

- Each of the row operations is linear, i.e., a linear map from the row space to itself.
- An interesting observation is: If $C=A B$, the rows of C are linear combinations of the rows of B and the columns of C are linear combinations of the

Elementary row matrices

- Each of the row operations is linear, i.e., a linear map from the row space to itself.
- An interesting observation is: If $C=A B$, the rows of C are linear combinations of the rows of B and the columns of C are linear combinations of the columns of A.

Elementary row matrices

- Each of the row operations is linear, i.e., a linear map from the row space to itself.
- An interesting observation is: If $C=A B$, the rows of C are linear combinations of the rows of B and the columns of C are linear combinations of the columns of A.
- So we expect an elementary row operation

Elementary row matrices

- Each of the row operations is linear, i.e., a linear map from the row space to itself.
- An interesting observation is: If $C=A B$, the rows of C are linear combinations of the rows of B and the columns of C are linear combinations of the columns of A.
- So we expect an elementary row operation on an $m \times n$ matrix A to

Elementary row matrices

- Each of the row operations is linear, i.e., a linear map from the row space to itself.
- An interesting observation is: If $C=A B$, the rows of C are linear combinations of the rows of B and the columns of C are linear combinations of the columns of A.
- So we expect an elementary row operation on an $m \times n$ matrix A to be equivalent to

Elementary row matrices

- Each of the row operations is linear, i.e., a linear map from the row space to itself.
- An interesting observation is: If $C=A B$, the rows of C are linear combinations of the rows of B and the columns of C are linear combinations of the columns of A.
- So we expect an elementary row operation on an $m \times n$ matrix A to be equivalent to left-multiplying with an $m \times m$ matrix.

Elementary row matrices

- Each of the row operations is linear, i.e., a linear map from the row space to itself.
- An interesting observation is: If $C=A B$, the rows of C are linear combinations of the rows of B and the columns of C are linear combinations of the columns of A.
- So we expect an elementary row operation on an $m \times n$ matrix A to be equivalent to left-multiplying with an $m \times m$ matrix.
- Indeed, these matrices exist

Elementary row matrices

- Each of the row operations is linear, i.e., a linear map from the row space to itself.
- An interesting observation is: If $C=A B$, the rows of C are linear combinations of the rows of B and the columns of C are linear combinations of the columns of A.
- So we expect an elementary row operation on an $m \times n$ matrix A to be equivalent to left-multiplying with an $m \times m$ matrix.
- Indeed, these matrices exist and are called

Elementary row matrices

- Each of the row operations is linear, i.e., a linear map from the row space to itself.
- An interesting observation is: If $C=A B$, the rows of C are linear combinations of the rows of B and the columns of C are linear combinations of the columns of A.
- So we expect an elementary row operation on an $m \times n$ matrix A to be equivalent to left-multiplying with an $m \times m$ matrix.
- Indeed, these matrices exist and are called elementary row matrices.

Elementary row matrices

Elementary row matrices

- $R_{i} \leftrightarrow R_{j}:$

Elementary row matrices

- $R_{i} \leftrightarrow R_{j}: B=E_{1} A$ where

Elementary row matrices

- $R_{i} \leftrightarrow R_{j}: B=E_{1} A$ where E_{1} is the matrix

Elementary row matrices

- $R_{i} \leftrightarrow R_{j}: B=E_{1} A$ where E_{1} is the matrix obtained by interchanging the rows of $I_{m \times m}$.

Elementary row matrices

- $R_{i} \leftrightarrow R_{j}: B=E_{1} A$ where E_{1} is the matrix obtained by interchanging the rows of $I_{m \times m}$. It is invertible

Elementary row matrices

- $R_{i} \leftrightarrow R_{j}: B=E_{1} A$ where E_{1} is the matrix obtained by interchanging the rows of $I_{m \times m}$. It is invertible with the inverse being itself.

Elementary row matrices

- $R_{i} \leftrightarrow R_{j}: B=E_{1} A$ where E_{1} is the matrix obtained by interchanging the rows of $I_{m \times m}$. It is invertible with the inverse being itself.
- $R_{i} \rightarrow c R_{i}($

Elementary row matrices

- $R_{i} \leftrightarrow R_{j}: B=E_{1} A$ where E_{1} is the matrix obtained by interchanging the rows of $I_{m \times m}$. It is invertible with the inverse being itself.
- $R_{i} \rightarrow c R_{i}(c \neq 0)$:

Elementary row matrices

- $R_{i} \leftrightarrow R_{j}: B=E_{1} A$ where E_{1} is the matrix obtained by interchanging the rows of $I_{m \times m}$. It is invertible with the inverse being itself.
- $R_{i} \rightarrow c R_{i}(c \neq 0): B=E_{2} A$ where
- $R_{i} \leftrightarrow R_{j}: B=E_{1} A$ where E_{1} is the matrix obtained by interchanging the rows of $I_{m \times m}$. It is invertible with the inverse being itself.
- $R_{i} \rightarrow c R_{i}(c \neq 0): B=E_{2} A$ where E_{2} is again obtained the same way.

Elementary row matrices

- $R_{i} \leftrightarrow R_{j}: B=E_{1} A$ where E_{1} is the matrix obtained by interchanging the rows of $I_{m \times m}$. It is invertible with the inverse being itself.
- $R_{i} \rightarrow c R_{i}(c \neq 0): B=E_{2} A$ where E_{2} is again obtained the same way. Its $i^{\text {th }}$ row has

Elementary row matrices

- $R_{i} \leftrightarrow R_{j}: B=E_{1} A$ where E_{1} is the matrix obtained by interchanging the rows of $I_{m \times m}$. It is invertible with the inverse being itself.
- $R_{i} \rightarrow c R_{i}(c \neq 0): B=E_{2} A$ where E_{2} is again obtained the same way. Its $i^{\text {th }}$ row has c instead of 1 .

Elementary row matrices

- $R_{i} \leftrightarrow R_{j}: B=E_{1} A$ where E_{1} is the matrix obtained by interchanging the rows of $I_{m \times m}$. It is invertible with the inverse being itself.
- $R_{i} \rightarrow c R_{i}(c \neq 0): B=E_{2} A$ where E_{2} is again obtained the same way. Its $i^{\text {th }}$ row has c instead of 1 . Its inverse has $\frac{1}{c}$ instead of 1 .

Elementary row matrices

- $R_{i} \leftrightarrow R_{j}: B=E_{1} A$ where E_{1} is the matrix obtained by interchanging the rows of $I_{m \times m}$. It is invertible with the inverse being itself.
- $R_{i} \rightarrow c R_{i}(c \neq 0): B=E_{2} A$ where E_{2} is again obtained the same way. Its $i^{\text {th }}$ row has c instead of 1 . Its inverse has $\frac{1}{c}$ instead of 1.
- $R_{i} \rightarrow R_{i}+c R_{j}:$

Elementary row matrices

- $R_{i} \leftrightarrow R_{j}: B=E_{1} A$ where E_{1} is the matrix obtained by interchanging the rows of $I_{m \times m}$. It is invertible with the inverse being itself.
- $R_{i} \rightarrow c R_{i}(c \neq 0): B=E_{2} A$ where E_{2} is again obtained the same way. Its $i^{\text {th }}$ row has c instead of 1 . Its inverse has $\frac{1}{c}$ instead of 1 .
- $R_{i} \rightarrow R_{i}+c R_{j}: B=E_{3} A$ where

Elementary row matrices

- $R_{i} \leftrightarrow R_{j}: B=E_{1} A$ where E_{1} is the matrix obtained by interchanging the rows of $I_{m \times m}$. It is invertible with the inverse being itself.
- $R_{i} \rightarrow c R_{i}(c \neq 0): B=E_{2} A$ where E_{2} is again obtained the same way. Its $i^{\text {th }}$ row has c instead of 1 . Its inverse has $\frac{1}{c}$ instead of 1 .
- $R_{i} \rightarrow R_{i}+c R_{j}: B=E_{3} A$ where E_{3} is obtained similarly.

Elementary row matrices

- $R_{i} \leftrightarrow R_{j}: B=E_{1} A$ where E_{1} is the matrix obtained by interchanging the rows of $I_{m \times m}$. It is invertible with the inverse being itself.
- $R_{i} \rightarrow c R_{i}(c \neq 0): B=E_{2} A$ where E_{2} is again obtained the same way. Its $i^{\text {th }}$ row has c instead of 1 . Its inverse has $\frac{1}{c}$ instead of 1 .
- $R_{i} \rightarrow R_{i}+c R_{j}: B=E_{3} A$ where E_{3} is obtained similarly. Its inverse is obtained by

Elementary row matrices

- $R_{i} \leftrightarrow R_{j}: B=E_{1} A$ where E_{1} is the matrix obtained by interchanging the rows of $I_{m \times m}$. It is invertible with the inverse being itself.
- $R_{i} \rightarrow c R_{i}(c \neq 0): B=E_{2} A$ where E_{2} is again obtained the same way. Its $i^{\text {th }}$ row has c instead of 1 . Its inverse has $\frac{1}{c}$ instead of 1 .
- $R_{i} \rightarrow R_{i}+c R_{j}: B=E_{3} A$ where E_{3} is obtained similarly. Its inverse is obtained by replacing c with $-c$.

Elementary row matrices

- $R_{i} \leftrightarrow R_{j}: B=E_{1} A$ where E_{1} is the matrix obtained by interchanging the rows of $I_{m \times m}$. It is invertible with the inverse being itself.
- $R_{i} \rightarrow c R_{i}(c \neq 0): B=E_{2} A$ where E_{2} is again obtained the same way. Its $i^{\text {th }}$ row has c instead of 1 . Its inverse has $\frac{1}{c}$ instead of 1 .
- $R_{i} \rightarrow R_{i}+c R_{j}: B=E_{3} A$ where E_{3} is obtained similarly. Its inverse is obtained by replacing c with $-c$.
- So row-reduction is

Elementary row matrices

- $R_{i} \leftrightarrow R_{j}: B=E_{1} A$ where E_{1} is the matrix obtained by interchanging the rows of $I_{m \times m}$. It is invertible with the inverse being itself.
- $R_{i} \rightarrow c R_{i}(c \neq 0): B=E_{2} A$ where E_{2} is again obtained the same way. Its $i^{\text {th }}$ row has c instead of 1 . Its inverse has $\frac{1}{c}$ instead of 1.
- $R_{i} \rightarrow R_{i}+c R_{j}: B=E_{3} A$ where E_{3} is obtained similarly. Its inverse is obtained by replacing c with $-c$.
- So row-reduction is equivalent to left-multiplying with a

Elementary row matrices

- $R_{i} \leftrightarrow R_{j}: B=E_{1} A$ where E_{1} is the matrix obtained by interchanging the rows of $I_{m \times m}$. It is invertible with the inverse being itself.
- $R_{i} \rightarrow c R_{i}(c \neq 0): B=E_{2} A$ where E_{2} is again obtained the same way. Its $i^{\text {th }}$ row has c instead of 1 . Its inverse has $\frac{1}{c}$ instead of 1.
- $R_{i} \rightarrow R_{i}+c R_{j}: B=E_{3} A$ where E_{3} is obtained similarly. Its inverse is obtained by replacing c with $-c$.
- So row-reduction is equivalent to left-multiplying with a product of elementary row matrices.

Elementary row matrices

- $R_{i} \leftrightarrow R_{j}: B=E_{1} A$ where E_{1} is the matrix obtained by interchanging the rows of $I_{m \times m}$. It is invertible with the inverse being itself.
- $R_{i} \rightarrow c R_{i}(c \neq 0): B=E_{2} A$ where E_{2} is again obtained the same way. Its $i^{\text {th }}$ row has c instead of 1 . Its inverse has $\frac{1}{c}$ instead of 1 .
- $R_{i} \rightarrow R_{i}+c R_{j}: B=E_{3} A$ where E_{3} is obtained similarly. Its inverse is obtained by replacing c with $-c$.
- So row-reduction is equivalent to left-multiplying with a product of elementary row matrices. So if row-reduction leads to I,

Elementary row matrices

- $R_{i} \leftrightarrow R_{j}: B=E_{1} A$ where E_{1} is the matrix obtained by interchanging the rows of $I_{m \times m}$. It is invertible with the inverse being itself.
- $R_{i} \rightarrow c R_{i}(c \neq 0): B=E_{2} A$ where E_{2} is again obtained the same way. Its $i^{\text {th }}$ row has c instead of 1 . Its inverse has $\frac{1}{c}$ instead of 1 .
- $R_{i} \rightarrow R_{i}+c R_{j}: B=E_{3} A$ where E_{3} is obtained similarly. Its inverse is obtained by replacing c with $-c$.
- So row-reduction is equivalent to left-multiplying with a product of elementary row matrices. So if row-reduction leads to I, , then $E A=I$ and hence

Elementary row matrices

- $R_{i} \leftrightarrow R_{j}: B=E_{1} A$ where E_{1} is the matrix obtained by interchanging the rows of $I_{m \times m}$. It is invertible with the inverse being itself.
- $R_{i} \rightarrow c R_{i}(c \neq 0): B=E_{2} A$ where E_{2} is again obtained the same way. Its $i^{\text {th }}$ row has c instead of 1 . Its inverse has $\frac{1}{c}$ instead of 1 .
- $R_{i} \rightarrow R_{i}+c R_{j}: B=E_{3} A$ where E_{3} is obtained similarly. Its inverse is obtained by replacing c with $-c$.
- So row-reduction is equivalent to left-multiplying with a product of elementary row matrices. So if row-reduction leads to I, , then $E A=I$ and hence $A^{-1}=E$.

