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Recap

Proved an important criterion for invertibility, i.e., a square
matrix A is invertible if and only if its rank is full. A is
invertible if and only if Ax = 0 has a trivial solution if and
only if Ax = b has a solution for every b. If Ax = b has more
than one solution, then it has infinitely many.

Discussed the Gauss-Jordan method to compute inverses and
illustrated it with an example.
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A general simple linear system

Suppose we consider ax + by = e, cx + dy = f . We can easily
solve to get (ad − bc)x = ed − bf , (ad − bc)y = af − ce.

Thus if ad − bc = 0 then unless ed − bf = 0, af − ce = 0, we
cannot solve the equations. If ad − bc 6= 0, we have a unique
solution.

By our criterion for invertibility, the coefficient matrix is
invertible if and only if ad − bc 6= 0.
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A geometric viewpoint

Solving the above linear system is equivalent to finding the
intersection set of two lines (Actually, if a = b = e = 0, then
it is just one line and if a = b = e = c = d = f = 0, it is all
of R2!)

Either they intersect at a single point or they are parallel and
do not intersect or they intersect in a line or they are all of R2.

Indeed, if ad − bc = 0, ed − bf = 0, af − ce = 0, they
coincide.

If they intersect non-trivially the area of the “obvious”
parallelogram is not zero.

The (signed) area is ~v × ~w = (ad − bc)k̂.
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In three dimensions

For 3× 3 systems, clearly a unique solution implies that the
(signed) volume of a parallelopiped is non-zero.

This volume is (~u × ~v).~w . (The “scalar triple product”.)

By analogy, the (signed) volume in n-dimensions ought to be
some complicated polynomial expression in the components.

This quantity shall be called the determinant of the square
matrix formed by the n vectors.
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Towards a definition

Note that the (signed) volume of n-vectors in Rn, v1, . . . , vn
must

scale with each vector,
be 1 for the standard basis,
vanish if two vectors are equal, and
Since the only operations in a general vector space are linear
combinations, we must check how the 2, 3-dimensional
volumes behave. (~v1 + ~v2)× ~w = ~v1 × ~w + ~v2 × ~w and likewise
for the triple product. So we hope that the signed volume in
higher dimensions obeys this multi-linearity property as well.
To prove such a statement, we can use the Fubini theorem (to
be stated much later).
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Definition

Let v1, v2, . . . , vn be an ordered collection of n vectors in Fn.
A function F that takes this tuple to F is called a determinant
function if it satisfies the following axioms.

Scaling: If vk is replaced with tvk (and the other vi s are left
intact), then F gets scaled by t.
Additivity:
F (. . . , vk + w , . . .) = F (. . . , vk , . . .) + F (. . . ,w , . . .). A
function that satisfies the first two properties is said to be
multilinear.
Alternating: F (. . . , v , . . . , v , . . .) = 0.
Normalisation: F (e1, . . . , en) = 1.
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Properties of an alternating (not necessarily normalised)
multilinear function

Linearity with more than one vector:
F (. . . , vk + c1w1 + c2w2 + . . . + cmwm, . . .) =
F (. . . , vk , . . .) + c1F (. . . ,w1, . . .) + . . . (HW).

It vanishes if some vector is 0:
F (. . . , 0, . . .) = 0F (. . . , 0, . . .) = 0.

(Antisymmetry) If vi ↔ vj F changes sign:
F (. . . , vi + vj , . . . , vi + vj , . . .) = 0 and hence
F (. . . , vi , . . . , vi + vj , . . .) = −F (. . . , vj , . . . , vi + vj , . . .). Thus
0 + F (. . . , vi , . . . vj , . . .) = −F (. . . , vj , . . . , vi , . . .) + 0.
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Uniqueness theorem

Suppose d is a determinant function and f is an alternatng
multilinear function. Then
f (v1, . . . , vn) = d(v1, . . . , vn)f (e1, . . . , en). So if f is also a
determinant function, then f = d .

Proof: Let vi =
∑

j cijej . Then
f (
∑

j1
c1j1ej1 ,

∑
j2
c2j2ej2 , . . .) =

∑
c1j1c2j2 . . . f (ej1 , ej2 , . . .).

If any of the ji coincide, that term will be 0. So we may
assume that all the ji are different, i.e., j1, j2, . . . , jn is a
permutation of 1, 2, . . . , n.
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Uniqueness theorem

We can prove by induction on n that any permutation can be
obtained by a finite number of interchanges. Indeed, it is
trivial for n = 1. One of ji corresponds to n. Suppose it is jk .
Now [1, 2, . . . , n − 1]→ [j1, . . . , jk−1, jn, jk+1, . . . , jn−1] is a
permutation of n − 1 things. By the induction hypothesis, it
can be obtained using a finite number of interchanges. That
is, [1, 2 . . . , n]→ [j1, . . . , jk−1, jn, jk+1, . . . , jn−1, jk = n] can be
obtained that way. Now interchange jk with jn to get the
desired permutation.

Using the above result we see that
d(ej1 , . . . , ejn) = (−1)Kd(e1, . . . , en) = (−1)K and
f (ej1 , . . . , ejn) = (−1)K f (e1, . . . , en) =
d(ej1 , . . . , ejn)f (e1, . . . , en).

Thus f (v1, . . . , vn) =
∑

c1j1 . . . d(ej1 , . . . , ejn)f (e1, . . . , en) =
d(v1, . . . , vn)f (e1, . . . , en).
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