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invertible if and only if Ax = 0 has a trivial solution if and
only if Ax = b has a solution for every b.
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@ Proved an important criterion for invertibility, i.e., a square
matrix A is invertible if and only if its rank is full. A'is
invertible if and only if Ax = 0 has a trivial solution if and
only if Ax = b has a solution for every b. If Ax = b has more
than one solution, then it has infinitely many.

@ Discussed the Gauss-Jordan method to compute inverses and
illustrated it with an example.
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A general simple linear system

@ Suppose we consider ax + by = e, cx+ dy = f. We can easily
solve to get (ad — bc)x = ed — bf, (ad — bc)y = af — ce.
@ Thus if ad — bc = 0 then unless ed — bf = 0,af — ce =0, we

cannot solve the equations. If ad — bc # 0, we have a unique
solution.

@ By our criterion for invertibility, the coefficient matrix is
invertible if and only if ad — bc # 0.
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A geometric viewpoint

Solving the above linear system is equivalent to finding the
intersection set of two lines (Actually, if a= b= e =0, then
itis justonelineandifa=b=e=c=d=1f=0,itisall
of R?!)

Either they intersect at a single point or they are parallel and
do not intersect or they intersect in a line or they are all of R.
Indeed, if ad — bc =0,ed — bf =0, af — ce =0, they
coincide.

If they intersect non-trivially the area of the “obvious”
parallelogram is not zero.

The (signed) area is vV x w = (ad — bc)k.
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In three dimensions

@ For 3 x 3 systems, clearly a unique solution implies that the
(signed) volume of a parallelopiped is non-zero.

—

@ This volume is (7 x V).w. (The “scalar triple product”.)

@ By analogy, the (signed) volume in n-dimensions ought to be
some complicated polynomial expression in the components.

@ This quantity shall be called the determinant of the square
matrix formed by the n vectors.
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Towards a definition

o Note that the (signed) volume of n-vectors in R", vq,..., v,
must

o scale with each vector,

e be 1 for the standard basis,

e vanish if two vectors are equal, and

e Since the only operations in a general vector space are linear
combinations, we must check how the 2, 3-dimensional
volumes behave. (v} +5) X W = v X W + Vo X w and likewise
for the triple product. So we hope that the signed volume in
higher dimensions obeys this multi-linearity property as well.
To prove such a statement, we can use the Fubini theorem (to
be stated much later).
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@ Let vi,w,..., Vv, be an ordered collection of n vectors in F”.
A function F that takes this tuple to F is called a determinant
function if it satisfies the following axioms.

o Scaling: If vy is replaced with tvy (and the other v;s are left
intact), then F gets scaled by t.
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function if it satisfies the following axioms.

o Scaling: If vy is replaced with tvy (and the other v;s are left
intact), then F gets scaled by t.

o Additivity:
F(oooovk+w,..)=F( .. vky.. )+ F( .. w,..). A
function that satisfies the first two properties is said to be
multilinear.

o Alternating: F(...,v,...,v,...)=0.

o Normalisation: F(ey,...,e,) = 1.

Vamsi Pritham Pingali Lecture 9 7/10



Properties of an alternating (not necessarily normalised)

multilinear function

Vamsi Pritham Pingali Lecture 9 8/10



Properties of an alternating (not necessarily normalised)

multilinear function

@ Linearity with more than one vector:

Vamsi Pritham Pingali Lecture 9 8/10



Properties of an alternating (not necessarily normalised)

multilinear function

@ Linearity with more than one vector:
F(...,vk +cawvs + owo + ... + CmWpm, . ..) =
F(.ooyviy...)+aF(...,w,...)+ ... (HW).

Vamsi Pritham Pingali Lecture 9 8/10



Properties of an alternating (not necessarily normalised)

multilinear function

@ Linearity with more than one vector:
F(...,vk +cawvs + owo + ... + CmWpm, . ..) =
F(.ooyviy...)+aF(...,w,...)+ ... (HW).

@ It vanishes if

Vamsi Pritham Pingali Lecture 9 8/10



Properties of an alternating (not necessarily normalised)

multilinear function

@ Linearity with more than one vector:
F(...,vk +cawvs + owo + ... + CmWpm, . ..) =
F(.ooyviy...)+aF(...,w,...)+ ... (HW).

@ It vanishes if some vector is 0:

Vamsi Pritham Pingali Lecture 9 8/10



Properties of an alternating (not necessarily normalised)

multilinear function

@ Linearity with more than one vector:
F(...,vk +cawvs + owo + ... + CmWpm, . ..) =
F(.ooyviy...)+aF(...,w,...)+ ... (HW).

@ It vanishes if some vector is O:
F(...,0,...)=0F(...,0,...)=0.

Vamsi Pritham Pingali Lecture 9 8/10



Properties of an alternating (not necessarily normalised)

multilinear function

@ Linearity with more than one vector:
F(...,vk +cawvs + owo + ... + CmWpm, . ..) =
F(.ooyviy...)+aF(...,w,...)+ ... (HW).

@ It vanishes if some vector is O:
F(...,0,...)=0F(...,0,...)=0.

o (Antisymmetry) If v; < v;

Vamsi Pritham Pingali Lecture 9 8/10



Properties of an alternating (not necessarily normalised)

multilinear function

@ Linearity with more than one vector:
F(...,vk +cawvs + owo + ... + CmWpm, . ..) =
F(.ooyviy...)+aF(...,w,...)+ ... (HW).

@ It vanishes if some vector is O:
F(...,0,...)=0F(...,0,...)=0.

o (Antisymmetry) If v; <+ v; F changes sign:

Vamsi Pritham Pingali Lecture 9 8/10



Properties of an alternating (not necessarily normalised)

multilinear function

@ Linearity with more than one vector:
F(...,vk +cawvs + owo + ... + CmWpm, . ..) =
F(.ooyviy...)+aF(...,w,...)+ ... (HW).

@ It vanishes if some vector is 0:
F(...,0,...)=0F(...,0,...)=0.

o (Antisymmetry) If v; <+ v; F changes sign:
F(...,vi+vj,...,vi+vj,...) =0 and hence

Vamsi Pritham Pingali Lecture 9 8/10



Properties of an alternating (not necessarily normalised)

multilinear function

@ Linearity with more than one vector:
F(...,vk +cawvs + owo + ... + CmWpm, . ..) =
F(.ooyviy...)+aF(...,w,...)+ ... (HW).

@ It vanishes if some vector is 0:
F(...,0,...)=0F(...,0,...)=0.

o (Antisymmetry) If v; <+ v; F changes sign:
F(...,vi+vj,...,vi+vj,...) =0 and hence
F(..oviyooovit v, o) =—F(..,vj, .., vi+ v, ..

Vamsi Pritham Pingali Lecture 9 8/10



Properties of an alternating (not necessarily normalised)

multilinear function

@ Linearity with more than one vector:
F(...,vk +cawvs + owo + ... + CmWpm, . ..) =
F(.ooyviy...)+aF(...,w,...)+ ... (HW).

@ It vanishes if some vector is 0:
F(...,0,...)=0F(...,0,...)=0.

o (Antisymmetry) If v; <+ v; F changes sign:
F(...,vi+vj,...,vi+vj,...) =0 and hence
F(...ovi,...,vi+v,...)=—F(...,vj,...,vi+vj,...). Thus
0+ F(..,viy.oovjy..)=—=F(...,vj,...,vi,...) +0.

Vamsi Pritham Pingali Lecture 9 8/10



Properties of an alternating (not necessarily normalised)

multilinear function

@ Linearity with more than one vector:
F(...,vk +cawvs + owo + ... + CmWpm, . ..) =
F(.ooyviy...)+aF(...,w,...)+ ... (HW).

@ It vanishes if some vector is 0:
F(...,0,...)=0F(...,0,...)=0.

o (Antisymmetry) If v; <+ v; F changes sign:
F(...,vi+vj,...,vi+vj,...) =0 and hence
F(...ovi,...,vi+v,...)=—F(...,vj,...,vi+vj,...). Thus
0+ F(..,viy.oovjy..)=—=F(...,vj,...,vi,...) +0.

o If the vectors are linearly dependent

Vamsi Pritham Pingali Lecture 9 8/10



Properties of an alternating (not necessarily normalised)

multilinear function

@ Linearity with more than one vector:
F(...,vk +cawvs + owo + ... + CmWpm, . ..) =
F(.ooyviy...)+aF(...,w,...)+ ... (HW).

@ It vanishes if some vector is 0:
F(...,0,...)=0F(...,0,...)=0.

o (Antisymmetry) If v; <+ v; F changes sign:
F(...,vi+vj,...,vi+vj,...) =0 and hence
F(...ovi,...,vi+v,...)=—F(...,vj,...,vi+vj,...). Thus
0+ F(..,viy.oovjy..)=—=F(...,vj,...,vi,...) +0.

@ If the vectors are linearly dependent then F vanishes:

Vamsi Pritham Pingali Lecture 9 8/10



Properties of an alternating (not necessarily normalised)

multilinear function

@ Linearity with more than one vector:
F(...,vk +cawvs + owo + ... + CmWpm, . ..) =
F(.ooyviy...)+aF(...,w,...)+ ... (HW).

@ It vanishes if some vector is 0:
F(...,0,...)=0F(...,0,...)=0.

o (Antisymmetry) If v; <+ v; F changes sign:
F(...,vi+vj,...,vi+vj,...) =0 and hence
F(...ovi,...,vi+v,...)=—F(...,vj,...,vi+vj,...). Thus
0+ F(..,viy.oovjy..)=—=F(...,vj,...,vi,...) +0.

@ If the vectors are linearly dependent then F vanishes: Suppose
> civi =0 with ¢ # 0.

Vamsi Pritham Pingali Lecture 9 8/10



Properties of an alternating (not necessarily normalised)

multilinear function

@ Linearity with more than one vector:
F(...,vk +cawvs + owo + ... + CmWpm, . ..) =
F(.ooyviy...)+aF(...,w,...)+ ... (HW).

@ It vanishes if some vector is 0:
F(...,0,...)=0F(...,0,...)=0.

o (Antisymmetry) If v; <+ v; F changes sign:
F(...,vi+vj,...,vi+vj,...) =0 and hence
F(...ovi,...,vi+v,...)=—F(...,vj,...,vi+vj,...). Thus
0+ F(..,viy.oovjy..)=—=F(...,vj,...,vi,...) +0.

@ If the vectors are linearly dependent then F vanishes: Suppose
2 civi = 0 with ¢, # 0. Then F = Z-F(..., kv, ...) which
is

Vamsi Pritham Pingali Lecture 9 8/10



Properties of an alternating (not necessarily normalised)

multilinear function

@ Linearity with more than one vector:
F(...,vk +cawvs + owo + ... + CmWpm, . ..) =
F(.ooyviy...)+aF(...,w,...)+ ... (HW).

@ It vanishes if some vector is 0:
F(...,0,...)=0F(...,0,...)=0.

o (Antisymmetry) If v; <+ v; F changes sign:
F(...,vi+vj,...,vi+vj,...) =0 and hence
F(...ovi,...,vi+v,...)=—F(...,vj,...,vi+vj,...). Thus
0+ F(..,viy.oovjy..)=—=F(...,vj,...,vi,...) +0.

@ If the vectors are linearly dependent then F vanishes: Suppose
2 civi = 0 with ¢, # 0. Then F = Z-F(..., kv, ...) which
is
?iF(""_Zi¢kciVi):Zi¢k_c:F( ...,V,',...):O.
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Uniqueness theorem

@ Suppose d is a determinant function and f is an alternatng
multilinear function.
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Uniqueness theorem

@ Suppose d is a determinant function and f is an alternatng
multilinear function. Then

f(viy...,vn) =d(va,...,va)f(€1,...,€n).
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@ Suppose d is a determinant function and f is an alternatng
multilinear function. Then
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multilinear function. Then
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Uniqueness theorem

@ Suppose d is a determinant function and f is an alternatng
multilinear function. Then
f(vi,...,vn) =d(vi,...,vy)f(er, en). Soif f is also a
determinant function, then f= d
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Uniqueness theorem

@ Suppose d is a determinant function and f is an alternatng
multilinear function. Then
f(vi,...,vn) =d(vi,...,vn)f(e1,...,en). Soif f is also a
determinant function, then f = d.

@ Proof:
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Uniqueness theorem

@ Suppose d is a determinant function and f is an alternatng
multilinear function. Then
f(vi,...,vn) =d(vi,...,vy)f(er, en). Soif f is also a
determinant function, then f= d

® Proof: Let v; =3 cjje;.
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Uniqueness theorem

@ Suppose d is a determinant function and f is an alternatng
multilinear function. Then
f(vi,...,vn) =d(vi,...,vn)f(e1,...,en). Soif f is also a
determinant function, then f = d.

o Proof: Let v; = . cjej. Then
F(O2) CLin€iis 2o, C2p€has---) = D C1jyCojy - - - (€15 €, - ).
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trivial for n = 1.
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Now [1,2,...,[7— 1] — [jl;w-7jk71,jn7jk+1;~-7jn—1] is a

Vamsi Pritham Pingali Lecture 9 10/10



Uniqueness theorem

@ We can prove by induction on n that any permutation can be
obtained by a finite number of interchanges. Indeed, it is
trivial for n = 1. One of j; corresponds to n. Suppose it is ji.

Now [].7 2, N (e 1] — [jl; e 7jk717.jn7jk+1a e 7./’7—1] is a
permutation of

Vamsi Pritham Pingali Lecture 9 10/10



Uniqueness theorem

@ We can prove by induction on n that any permutation can be
obtained by a finite number of interchanges. Indeed, it is
trivial for n = 1. One of j; corresponds to n. Suppose it is ji.

Now [1,2,...,[7— 1] — [jl;w-7jk71,jn7jk+1;~-7jn—1] is a
permutation of n — 1 things.

Vamsi Pritham Pingali Lecture 9 10/10



Uniqueness theorem

@ We can prove by induction on n that any permutation can be
obtained by a finite number of interchanges. Indeed, it is
trivial for n = 1. One of j; corresponds to n. Suppose it is ji.
Now [1,2,...,[7— 1] — [jl;w-7jk71,jn7jk+1;~-7jn—1] is a
permutation of n — 1 things. By the induction hypothesis,

Vamsi Pritham Pingali Lecture 9 10/10



Uniqueness theorem

@ We can prove by induction on n that any permutation can be
obtained by a finite number of interchanges. Indeed, it is
trivial for n = 1. One of j; corresponds to n. Suppose it is ji.
Now [1,2,...,[7— 1] — [jl;w-7jk71,jn7jk+1;~-7jn—1] is a
permutation of n — 1 things. By the induction hypothesis, it
can be obtained using a

Vamsi Pritham Pingali Lecture 9 10/10



Uniqueness theorem

@ We can prove by induction on n that any permutation can be
obtained by a finite number of interchanges. Indeed, it is
trivial for n = 1. One of j; corresponds to n. Suppose it is ji.
Now [1,2,...,[7— 1] — [jl;w-7jk71,jn7jk+1;~-7jn—1] is a
permutation of n — 1 things. By the induction hypothesis, it
can be obtained using a finite number of interchanges.

Vamsi Pritham Pingali Lecture 9 10/10



Uniqueness theorem

@ We can prove by induction on n that any permutation can be
obtained by a finite number of interchanges. Indeed, it is
trivial for n = 1. One of j; corresponds to n. Suppose it is ji.
Now [1,2,...,[7— 1] — [jl;w-7jk71,jn7jk+1;~-7jn—1] is a
permutation of n — 1 things. By the induction hypothesis, it
can be obtained using a finite number of interchanges. That

is, [1,2...,n] = [j1,- - jk=1,JnsJk+1s - - - »Jn—1,Jk = n] can be

Vamsi Pritham Pingali Lecture 9 10/10



Uniqueness theorem

@ We can prove by induction on n that any permutation can be
obtained by a finite number of interchanges. Indeed, it is
trivial for n = 1. One of j; corresponds to n. Suppose it is ji.
Now [1,2,...,[7— 1] — [jl;w-7jk71,jn7jk+1;~-7jn—1] is a
permutation of n — 1 things. By the induction hypothesis, it
can be obtained using a finite number of interchanges. That
is, [17 2... ) n] — Ul? s ajk—la.jnvjk—i—l? s ajnflv.jk = n] can be
obtained that way.

Vamsi Pritham Pingali Lecture 9 10/10



Uniqueness theorem

@ We can prove by induction on n that any permutation can be
obtained by a finite number of interchanges. Indeed, it is
trivial for n = 1. One of j; corresponds to n. Suppose it is ji.
Now [1,2,...,[7— 1] — [jl;w-7jk71,jn7jk+1;~-7jn—1] is a
permutation of n — 1 things. By the induction hypothesis, it
can be obtained using a finite number of interchanges. That
is, [13 2... ) n] — U17 s ajk—la.jnvjk—i—l? s ajnflv.jk = n] can be
obtained that way. Now interchange ji with j, to get

Vamsi Pritham Pingali Lecture 9 10/10



Uniqueness theorem

@ We can prove by induction on n that any permutation can be
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trivial for n = 1. One of j; corresponds to n. Suppose it is ji.
Now [1,2,...,[7— 1] — [jl;w-7jk71,jn7jk+1;~-7jn—1] is a
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obtained that way. Now interchange ji with j, to get the
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@ We can prove by induction on n that any permutation can be
obtained by a finite number of interchanges. Indeed, it is
trivial for n = 1. One of j; corresponds to n. Suppose it is ji.
Now [1,2,...,[7— 1] — [jl;w-7jk71,jn7jk+1;~-7jn—1] is a
permutation of n — 1 things. By the induction hypothesis, it
can be obtained using a finite number of interchanges. That
is, [1,2...,n] = [j1,-- s k—1JnsJk+1s - - - »Jn—1,Jk = N] can be
obtained that way. Now interchange ji with j, to get the
desired permutation.

@ Using the above result we see that
d(ej,,-..,6,) = (-1)Kd(e,...,e,) = (—1)K and
f(&,---,6,) = (—1)Kf(er,...,en) =
d(ej,...,ej,)f(er,...,en).
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Uniqueness theorem

@ We can prove by induction on n that any permutation can be
obtained by a finite number of interchanges. Indeed, it is
trivial for n = 1. One of j; corresponds to n. Suppose it is ji.
Now [1,2,...,[7— 1] — [jl;w-7jk71,jn7jk+1;~-7jn—1] is a
permutation of n — 1 things. By the induction hypothesis, it
can be obtained using a finite number of interchanges. That
is, [1,2...,n] = [j1,-- s k—1JnsJk+1s - - - »Jn—1,Jk = N] can be
obtained that way. Now interchange ji with j, to get the
desired permutation.

@ Using the above result we see that
d(ey,...,e,) = (-D)Xd(ey,...,e,) = (—1)K and
flej,...,ej,) = (—D)Kf(er,...,e,) =
d(ej,...,ej,)f(er,...,en).

® Thus f(vi,...,va) =D cuj,...d(ey,...,¢,)f(er,...,en) =
d(Vl, ey vn)f(el, ey e,,).
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