Lecture 9 - UM 102 (Spring 2021)

Vamsi Pritham Pingali

IISc

Recap

- Proved an important criterion

Recap

- Proved an important criterion for invertibility, i.e.,

Recap

- Proved an important criterion for invertibility, i.e., a square matrix A is invertible

Recap

- Proved an important criterion for invertibility, i.e., a square matrix A is invertible if and only if

Recap

- Proved an important criterion for invertibility, i.e., a square matrix A is invertible if and only if its rank is full.
- Proved an important criterion for invertibility, i.e., a square matrix A is invertible if and only if its rank is full. A is invertible if and only if
- Proved an important criterion for invertibility, i.e., a square matrix A is invertible if and only if its rank is full. A is invertible if and only if $A x=0$ has a trivial solution
- Proved an important criterion for invertibility, i.e., a square matrix A is invertible if and only if its rank is full. A is invertible if and only if $A x=0$ has a trivial solution if and only if $A x=b$ has a solution

Recap

- Proved an important criterion for invertibility, i.e., a square matrix A is invertible if and only if its rank is full. A is invertible if and only if $A x=0$ has a trivial solution if and only if $A x=b$ has a solution for every b.

Recap

- Proved an important criterion for invertibility, i.e., a square matrix A is invertible if and only if its rank is full. A is invertible if and only if $A x=0$ has a trivial solution if and only if $A x=b$ has a solution for every b. If $A x=b$ has

Recap

- Proved an important criterion for invertibility, i.e., a square matrix A is invertible if and only if its rank is full. A is invertible if and only if $A x=0$ has a trivial solution if and only if $A x=b$ has a solution for every b. If $A x=b$ has more than one solution,

Recap

- Proved an important criterion for invertibility, i.e., a square matrix A is invertible if and only if its rank is full. A is invertible if and only if $A x=0$ has a trivial solution if and only if $A x=b$ has a solution for every b. If $A x=b$ has more than one solution, then it has infinitely many.

Recap

- Proved an important criterion for invertibility, i.e., a square matrix A is invertible if and only if its rank is full. A is invertible if and only if $A x=0$ has a trivial solution if and only if $A x=b$ has a solution for every b. If $A x=b$ has more than one solution, then it has infinitely many.
- Discussed the Gauss-Jordan method

Recap

- Proved an important criterion for invertibility, i.e., a square matrix A is invertible if and only if its rank is full. A is invertible if and only if $A x=0$ has a trivial solution if and only if $A x=b$ has a solution for every b. If $A x=b$ has more than one solution, then it has infinitely many.
- Discussed the Gauss-Jordan method to compute inverses and

Recap

- Proved an important criterion for invertibility, i.e., a square matrix A is invertible if and only if its rank is full. A is invertible if and only if $A x=0$ has a trivial solution if and only if $A x=b$ has a solution for every b. If $A x=b$ has more than one solution, then it has infinitely many.
- Discussed the Gauss-Jordan method to compute inverses and illustrated it with an example.

A general simple linear system

A general simple linear system

- Suppose we consider

A general simple linear system

- Suppose we consider $a x+b y=e, c x+d y=f$.

A general simple linear system

- Suppose we consider $a x+b y=e, c x+d y=f$. We can easily solve to get

A general simple linear system

- Suppose we consider $a x+b y=e, c x+d y=f$. We can easily solve to get $(a d-b c) x=e d-b f,(a d-b c) y=a f-c e$.

A general simple linear system

- Suppose we consider $a x+b y=e, c x+d y=f$. We can easily solve to get $(a d-b c) x=e d-b f,(a d-b c) y=a f-c e$.
- Thus if $a d-b c=0$

A general simple linear system

- Suppose we consider $a x+b y=e, c x+d y=f$. We can easily solve to get $(a d-b c) x=e d-b f,(a d-b c) y=a f-c e$.
- Thus if $a d-b c=0$ then unless $e d-b f=0, a f-c e=0$,

A general simple linear system

- Suppose we consider $a x+b y=e, c x+d y=f$. We can easily solve to get $(a d-b c) x=e d-b f,(a d-b c) y=a f-c e$.
- Thus if $a d-b c=0$ then unless $e d-b f=0, a f-c e=0$, we cannot solve the equations.

A general simple linear system

- Suppose we consider $a x+b y=e, c x+d y=f$. We can easily solve to get $(a d-b c) x=e d-b f,(a d-b c) y=a f-c e$.
- Thus if $a d-b c=0$ then unless ed $-b f=0, a f-c e=0$, we cannot solve the equations. If $a d-b c \neq 0$,

A general simple linear system

- Suppose we consider $a x+b y=e, c x+d y=f$. We can easily solve to get $(a d-b c) x=e d-b f,(a d-b c) y=a f-c e$.
- Thus if $a d-b c=0$ then unless $e d-b f=0, a f-c e=0$, we cannot solve the equations. If $a d-b c \neq 0$, we have a unique solution.

A general simple linear system

- Suppose we consider $a x+b y=e, c x+d y=f$. We can easily solve to get $(a d-b c) x=e d-b f,(a d-b c) y=a f-c e$.
- Thus if $a d-b c=0$ then unless $e d-b f=0, a f-c e=0$, we cannot solve the equations. If $a d-b c \neq 0$, we have a unique solution.
- By our criterion for invertibility,

A general simple linear system

- Suppose we consider $a x+b y=e, c x+d y=f$. We can easily solve to get $(a d-b c) x=e d-b f,(a d-b c) y=a f-c e$.
- Thus if $a d-b c=0$ then unless $e d-b f=0, a f-c e=0$, we cannot solve the equations. If $a d-b c \neq 0$, we have a unique solution.
- By our criterion for invertibility, the coefficient matrix is invertible

A general simple linear system

- Suppose we consider $a x+b y=e, c x+d y=f$. We can easily solve to get $(a d-b c) x=e d-b f,(a d-b c) y=a f-c e$.
- Thus if $a d-b c=0$ then unless $e d-b f=0, a f-c e=0$, we cannot solve the equations. If $a d-b c \neq 0$, we have a unique solution.
- By our criterion for invertibility, the coefficient matrix is invertible if and only if $a d-b c \neq 0$.

A geometric viewpoint

A geometric viewpoint

- Solving the above linear system is

A geometric viewpoint

- Solving the above linear system is equivalent to finding the intersection set of two lines (

A geometric viewpoint

- Solving the above linear system is equivalent to finding the intersection set of two lines (Actually, if $a=b=e=0$, then it is just one line and

A geometric viewpoint

- Solving the above linear system is equivalent to finding the intersection set of two lines (Actually, if $a=b=e=0$, then it is just one line and if $a=b=e=c=d=f=0$, it is all of \mathbb{R}^{2} !)

A geometric viewpoint

- Solving the above linear system is equivalent to finding the intersection set of two lines (Actually, if $a=b=e=0$, then it is just one line and if $a=b=e=c=d=f=0$, it is all of \mathbb{R}^{2} !)
- Either they intersect at a

A geometric viewpoint

- Solving the above linear system is equivalent to finding the intersection set of two lines (Actually, if $a=b=e=0$, then it is just one line and if $a=b=e=c=d=f=0$, it is all of \mathbb{R}^{2} !)
- Either they intersect at a single point or

A geometric viewpoint

- Solving the above linear system is equivalent to finding the intersection set of two lines (Actually, if $a=b=e=0$, then it is just one line and if $a=b=e=c=d=f=0$, it is all of \mathbb{R}^{2} !)
- Either they intersect at a single point or they are parallel and do not intersect or

A geometric viewpoint

- Solving the above linear system is equivalent to finding the intersection set of two lines (Actually, if $a=b=e=0$, then it is just one line and if $a=b=e=c=d=f=0$, it is all of \mathbb{R}^{2} !)
- Either they intersect at a single point or they are parallel and do not intersect or they intersect in a line or

A geometric viewpoint

- Solving the above linear system is equivalent to finding the intersection set of two lines (Actually, if $a=b=e=0$, then it is just one line and if $a=b=e=c=d=f=0$, it is all of \mathbb{R}^{2} !)
- Either they intersect at a single point or they are parallel and do not intersect or they intersect in a line or they are all of \mathbb{R}^{2}.

A geometric viewpoint

- Solving the above linear system is equivalent to finding the intersection set of two lines (Actually, if $a=b=e=0$, then it is just one line and if $a=b=e=c=d=f=0$, it is all of \mathbb{R}^{2} !)
- Either they intersect at a single point or they are parallel and do not intersect or they intersect in a line or they are all of \mathbb{R}^{2}.
- Indeed, if $a d-b c=0, e d-b f=0, a f-c e=0$,

A geometric viewpoint

- Solving the above linear system is equivalent to finding the intersection set of two lines (Actually, if $a=b=e=0$, then it is just one line and if $a=b=e=c=d=f=0$, it is all of \mathbb{R}^{2} !)
- Either they intersect at a single point or they are parallel and do not intersect or they intersect in a line or they are all of \mathbb{R}^{2}.
- Indeed, if $a d-b c=0, e d-b f=0, a f-c e=0$, they coincide.

A geometric viewpoint

- Solving the above linear system is equivalent to finding the intersection set of two lines (Actually, if $a=b=e=0$, then it is just one line and if $a=b=e=c=d=f=0$, it is all of \mathbb{R}^{2} !)
- Either they intersect at a single point or they are parallel and do not intersect or they intersect in a line or they are all of \mathbb{R}^{2}.
- Indeed, if $a d-b c=0, e d-b f=0, a f-c e=0$, they coincide.
- If they intersect non-trivially

A geometric viewpoint

- Solving the above linear system is equivalent to finding the intersection set of two lines (Actually, if $a=b=e=0$, then it is just one line and if $a=b=e=c=d=f=0$, it is all of \mathbb{R}^{2} !)
- Either they intersect at a single point or they are parallel and do not intersect or they intersect in a line or they are all of \mathbb{R}^{2}.
- Indeed, if $a d-b c=0, e d-b f=0, a f-c e=0$, they coincide.
- If they intersect non-trivially the area of the "obvious" parallelogram is not zero.

A geometric viewpoint

- Solving the above linear system is equivalent to finding the intersection set of two lines (Actually, if $a=b=e=0$, then it is just one line and if $a=b=e=c=d=f=0$, it is all of \mathbb{R}^{2} !)
- Either they intersect at a single point or they are parallel and do not intersect or they intersect in a line or they are all of \mathbb{R}^{2}.
- Indeed, if $a d-b c=0, e d-b f=0, a f-c e=0$, they coincide.
- If they intersect non-trivially the area of the "obvious" parallelogram is not zero.
- The (signed) area is $\vec{v} \times \vec{w}=(a d-b c) \hat{k}$.

In three dimensions

In three dimensions

- For 3×3 systems,

In three dimensions

- For 3×3 systems, clearly a unique solution implies that

In three dimensions

- For 3×3 systems, clearly a unique solution implies that the (signed) volume of a parallelopiped is non-zero.

In three dimensions

- For 3×3 systems, clearly a unique solution implies that the (signed) volume of a parallelopiped is non-zero.
- This volume is

In three dimensions

- For 3×3 systems, clearly a unique solution implies that the (signed) volume of a parallelopiped is non-zero.
- This volume is $(\vec{u} \times \vec{v}) \cdot \vec{w}$. (

In three dimensions

- For 3×3 systems, clearly a unique solution implies that the (signed) volume of a parallelopiped is non-zero.
- This volume is $(\vec{u} \times \vec{v}) \cdot \vec{w}$. (The "scalar triple product".)

In three dimensions

- For 3×3 systems, clearly a unique solution implies that the (signed) volume of a parallelopiped is non-zero.
- This volume is $(\vec{u} \times \vec{v}) \cdot \vec{w}$. (The "scalar triple product".)
- By analogy,

In three dimensions

- For 3×3 systems, clearly a unique solution implies that the (signed) volume of a parallelopiped is non-zero.
- This volume is $(\vec{u} \times \vec{v}) \cdot \vec{w}$. (The "scalar triple product".)
- By analogy, the (signed) volume in n-dimensions

In three dimensions

- For 3×3 systems, clearly a unique solution implies that the (signed) volume of a parallelopiped is non-zero.
- This volume is $(\vec{u} \times \vec{v}) \cdot \vec{w}$. (The "scalar triple product".)
- By analogy, the (signed) volume in n-dimensions ought to be some complicated polynomial expression in

In three dimensions

- For 3×3 systems, clearly a unique solution implies that the (signed) volume of a parallelopiped is non-zero.
- This volume is $(\vec{u} \times \vec{v}) \cdot \vec{w}$. (The "scalar triple product".)
- By analogy, the (signed) volume in n-dimensions ought to be some complicated polynomial expression in the components.

In three dimensions

- For 3×3 systems, clearly a unique solution implies that the (signed) volume of a parallelopiped is non-zero.
- This volume is $(\vec{u} \times \vec{v}) \cdot \vec{w}$. (The "scalar triple product".)
- By analogy, the (signed) volume in n-dimensions ought to be some complicated polynomial expression in the components.
- This quantity shall be called

In three dimensions

- For 3×3 systems, clearly a unique solution implies that the (signed) volume of a parallelopiped is non-zero.
- This volume is $(\vec{u} \times \vec{v}) \cdot \vec{w}$. (The "scalar triple product".)
- By analogy, the (signed) volume in n-dimensions ought to be some complicated polynomial expression in the components.
- This quantity shall be called the determinant of

In three dimensions

- For 3×3 systems, clearly a unique solution implies that the (signed) volume of a parallelopiped is non-zero.
- This volume is $(\vec{u} \times \vec{v}) \cdot \vec{w}$. (The "scalar triple product".)
- By analogy, the (signed) volume in n-dimensions ought to be some complicated polynomial expression in the components.
- This quantity shall be called the determinant of the square matrix formed by the n vectors.
- Note that the (signed) volume of
- Note that the (signed) volume of n-vectors in $\mathbb{R}^{n}, v_{1}, \ldots, v_{n}$
- Note that the (signed) volume of n-vectors in $\mathbb{R}^{n}, v_{1}, \ldots, v_{n}$ must
- Note that the (signed) volume of n-vectors in $\mathbb{R}^{n}, v_{1}, \ldots, v_{n}$ must
- scale with each vector,
- Note that the (signed) volume of n-vectors in $\mathbb{R}^{n}, v_{1}, \ldots, v_{n}$ must
- scale with each vector,
- be 1 for the standard basis,
- Note that the (signed) volume of n-vectors in $\mathbb{R}^{n}, v_{1}, \ldots, v_{n}$ must
- scale with each vector,
- be 1 for the standard basis,
- vanish if two vectors are equal, and
- Note that the (signed) volume of n-vectors in $\mathbb{R}^{n}, v_{1}, \ldots, v_{n}$ must
- scale with each vector,
- be 1 for the standard basis,
- vanish if two vectors are equal, and
- Since the only operations
- Note that the (signed) volume of n-vectors in $\mathbb{R}^{n}, v_{1}, \ldots, v_{n}$ must
- scale with each vector,
- be 1 for the standard basis,
- vanish if two vectors are equal, and
- Since the only operations in a general vector space
- Note that the (signed) volume of n-vectors in $\mathbb{R}^{n}, v_{1}, \ldots, v_{n}$ must
- scale with each vector,
- be 1 for the standard basis,
- vanish if two vectors are equal, and
- Since the only operations in a general vector space are linear combinations,
- Note that the (signed) volume of n-vectors in $\mathbb{R}^{n}, v_{1}, \ldots, v_{n}$ must
- scale with each vector,
- be 1 for the standard basis,
- vanish if two vectors are equal, and
- Since the only operations in a general vector space are linear combinations, we must check how the 2,3-dimensional volumes behave.
- Note that the (signed) volume of n-vectors in $\mathbb{R}^{n}, v_{1}, \ldots, v_{n}$ must
- scale with each vector,
- be 1 for the standard basis,
- vanish if two vectors are equal, and
- Since the only operations in a general vector space are linear combinations, we must check how the 2,3-dimensional volumes behave. $\left(\overrightarrow{v_{1}}+\overrightarrow{v_{2}}\right) \times \vec{w}=\overrightarrow{v_{1}} \times \vec{w}+\overrightarrow{v_{2}} \times \vec{w}$ and
- Note that the (signed) volume of n-vectors in $\mathbb{R}^{n}, v_{1}, \ldots, v_{n}$ must
- scale with each vector,
- be 1 for the standard basis,
- vanish if two vectors are equal, and
- Since the only operations in a general vector space are linear combinations, we must check how the 2, 3-dimensional volumes behave. $\left(\vec{v}_{1}+\vec{v}_{2}\right) \times \vec{w}=\vec{v}_{1} \times \vec{w}+\vec{v}_{2} \times \vec{w}$ and likewise for the triple product.
- Note that the (signed) volume of n-vectors in $\mathbb{R}^{n}, v_{1}, \ldots, v_{n}$ must
- scale with each vector,
- be 1 for the standard basis,
- vanish if two vectors are equal, and
- Since the only operations in a general vector space are linear combinations, we must check how the 2, 3-dimensional volumes behave. $\left(\vec{v}_{1}+\vec{v}_{2}\right) \times \vec{w}=\vec{v}_{1} \times \vec{w}+\vec{v}_{2} \times \vec{w}$ and likewise for the triple product. So we hope that
- Note that the (signed) volume of n-vectors in $\mathbb{R}^{n}, v_{1}, \ldots, v_{n}$ must
- scale with each vector,
- be 1 for the standard basis,
- vanish if two vectors are equal, and
- Since the only operations in a general vector space are linear combinations, we must check how the 2,3-dimensional volumes behave. $\left(\overrightarrow{v_{1}}+\overrightarrow{v_{2}}\right) \times \vec{w}=\overrightarrow{v_{1}} \times \vec{w}+\vec{v}_{2} \times \vec{w}$ and likewise for the triple product. So we hope that the signed volume in higher dimensions obeys this
- Note that the (signed) volume of n-vectors in $\mathbb{R}^{n}, v_{1}, \ldots, v_{n}$ must
- scale with each vector,
- be 1 for the standard basis,
- vanish if two vectors are equal, and
- Since the only operations in a general vector space are linear combinations, we must check how the 2,3-dimensional volumes behave. $\left(\overrightarrow{v_{1}}+\overrightarrow{v_{2}}\right) \times \vec{w}=\overrightarrow{v_{1}} \times \vec{w}+\vec{v}_{2} \times \vec{w}$ and likewise for the triple product. So we hope that the signed volume in higher dimensions obeys this multi-linearity property as well.
- Note that the (signed) volume of n-vectors in $\mathbb{R}^{n}, v_{1}, \ldots, v_{n}$ must
- scale with each vector,
- be 1 for the standard basis,
- vanish if two vectors are equal, and
- Since the only operations in a general vector space are linear combinations, we must check how the 2,3-dimensional volumes behave. $\left(\vec{v}_{1}+\vec{v}_{2}\right) \times \vec{w}=\overrightarrow{v_{1}} \times \vec{w}+\vec{v}_{2} \times \vec{w}$ and likewise for the triple product. So we hope that the signed volume in higher dimensions obeys this multi-linearity property as well. To prove such a statement,
- Note that the (signed) volume of n-vectors in $\mathbb{R}^{n}, v_{1}, \ldots, v_{n}$ must
- scale with each vector,
- be 1 for the standard basis,
- vanish if two vectors are equal, and
- Since the only operations in a general vector space are linear combinations, we must check how the 2,3-dimensional volumes behave. $\left(\vec{v}_{1}+\vec{v}_{2}\right) \times \vec{w}=\overrightarrow{v_{1}} \times \vec{w}+\vec{v}_{2} \times \vec{w}$ and likewise for the triple product. So we hope that the signed volume in higher dimensions obeys this multi-linearity property as well. To prove such a statement, we can use
- Note that the (signed) volume of n-vectors in $\mathbb{R}^{n}, v_{1}, \ldots, v_{n}$ must
- scale with each vector,
- be 1 for the standard basis,
- vanish if two vectors are equal, and
- Since the only operations in a general vector space are linear combinations, we must check how the 2,3-dimensional volumes behave. $\left(\vec{v}_{1}+\vec{v}_{2}\right) \times \vec{w}=\overrightarrow{v_{1}} \times \vec{w}+\vec{v}_{2} \times \vec{w}$ and likewise for the triple product. So we hope that the signed volume in higher dimensions obeys this multi-linearity property as well. To prove such a statement, we can use the Fubini theorem (to be stated much later).

Definition

Definition

- Let $v_{1}, v_{2}, \ldots, v_{n}$ be

Definition

- Let $v_{1}, v_{2}, \ldots, v_{n}$ be an ordered collection of n vectors in

Definition

- Let $v_{1}, v_{2}, \ldots, v_{n}$ be an ordered collection of n vectors in \mathbb{F}^{n}.

Definition

- Let $v_{1}, v_{2}, \ldots, v_{n}$ be an ordered collection of n vectors in \mathbb{F}^{n}. A function F

Definition

- Let $v_{1}, v_{2}, \ldots, v_{n}$ be an ordered collection of n vectors in \mathbb{F}^{n}. A function F that takes this tuple to \mathbb{F}

Definition

- Let $v_{1}, v_{2}, \ldots, v_{n}$ be an ordered collection of n vectors in \mathbb{F}^{n}. A function F that takes this tuple to \mathbb{F} is called a determinant function

Definition

- Let $v_{1}, v_{2}, \ldots, v_{n}$ be an ordered collection of n vectors in \mathbb{F}^{n}. A function F that takes this tuple to \mathbb{F} is called a determinant function if it satisfies the following axioms.

Definition

- Let $v_{1}, v_{2}, \ldots, v_{n}$ be an ordered collection of n vectors in \mathbb{F}^{n}. A function F that takes this tuple to \mathbb{F} is called a determinant function if it satisfies the following axioms.
- Scaling: If v_{k} is replaced with $t v_{k}$ (and the other $v_{i} s$ are left intact),

Definition

- Let $v_{1}, v_{2}, \ldots, v_{n}$ be an ordered collection of n vectors in \mathbb{F}^{n}. A function F that takes this tuple to \mathbb{F} is called a determinant function if it satisfies the following axioms.
- Scaling: If v_{k} is replaced with $t v_{k}$ (and the other $v_{i} s$ are left intact), then F gets scaled by t.

Definition

- Let $v_{1}, v_{2}, \ldots, v_{n}$ be an ordered collection of n vectors in \mathbb{F}^{n}. A function F that takes this tuple to \mathbb{F} is called a determinant function if it satisfies the following axioms.
- Scaling: If v_{k} is replaced with $t v_{k}$ (and the other $v_{i} s$ are left intact), then F gets scaled by t.
- Additivity:

$$
F\left(\ldots, v_{k}+w, \ldots\right)=F\left(\ldots, v_{k}, \ldots\right)+F(\ldots, w, \ldots) .
$$

Definition

- Let $v_{1}, v_{2}, \ldots, v_{n}$ be an ordered collection of n vectors in \mathbb{F}^{n}. A function F that takes this tuple to \mathbb{F} is called a determinant function if it satisfies the following axioms.
- Scaling: If v_{k} is replaced with $t v_{k}$ (and the other $v_{i} s$ are left intact), then F gets scaled by t.
- Additivity:
$F\left(\ldots, v_{k}+w, \ldots\right)=F\left(\ldots, v_{k}, \ldots\right)+F(\ldots, w, \ldots) . A$
function that satisfies

Definition

- Let $v_{1}, v_{2}, \ldots, v_{n}$ be an ordered collection of n vectors in \mathbb{F}^{n}. A function F that takes this tuple to \mathbb{F} is called a determinant function if it satisfies the following axioms.
- Scaling: If v_{k} is replaced with $t v_{k}$ (and the other $v_{i} s$ are left intact), then F gets scaled by t.
- Additivity:
$F\left(\ldots, v_{k}+w, \ldots\right)=F\left(\ldots, v_{k}, \ldots\right)+F(\ldots, w, \ldots) . A$
function that satisfies the first two properties

Definition

- Let $v_{1}, v_{2}, \ldots, v_{n}$ be an ordered collection of n vectors in \mathbb{F}^{n}. A function F that takes this tuple to \mathbb{F} is called a determinant function if it satisfies the following axioms.
- Scaling: If v_{k} is replaced with $t v_{k}$ (and the other $v_{i} s$ are left intact), then F gets scaled by t.
- Additivity:
$F\left(\ldots, v_{k}+w, \ldots\right)=F\left(\ldots, v_{k}, \ldots\right)+F(\ldots, w, \ldots) . A$
function that satisfies the first two properties is said to be

Definition

- Let $v_{1}, v_{2}, \ldots, v_{n}$ be an ordered collection of n vectors in \mathbb{F}^{n}. A function F that takes this tuple to \mathbb{F} is called a determinant function if it satisfies the following axioms.
- Scaling: If v_{k} is replaced with $t v_{k}$ (and the other $v_{i} s$ are left intact), then F gets scaled by t.
- Additivity:
$F\left(\ldots, v_{k}+w, \ldots\right)=F\left(\ldots, v_{k}, \ldots\right)+F(\ldots, w, \ldots) . A$
function that satisfies the first two properties is said to be multilinear.

Definition

- Let $v_{1}, v_{2}, \ldots, v_{n}$ be an ordered collection of n vectors in \mathbb{F}^{n}. A function F that takes this tuple to \mathbb{F} is called a determinant function if it satisfies the following axioms.
- Scaling: If v_{k} is replaced with $t v_{k}$ (and the other $v_{i} s$ are left intact), then F gets scaled by t.
- Additivity:
$F\left(\ldots, v_{k}+w, \ldots\right)=F\left(\ldots, v_{k}, \ldots\right)+F(\ldots, w, \ldots) . A$
function that satisfies the first two properties is said to be multilinear.
- Alternating: $F(\ldots, v, \ldots, v, \ldots)=0$.

Definition

- Let $v_{1}, v_{2}, \ldots, v_{n}$ be an ordered collection of n vectors in \mathbb{F}^{n}. A function F that takes this tuple to \mathbb{F} is called a determinant function if it satisfies the following axioms.
- Scaling: If v_{k} is replaced with $t v_{k}$ (and the other $v_{i} s$ are left intact), then F gets scaled by t.
- Additivity:
$F\left(\ldots, v_{k}+w, \ldots\right)=F\left(\ldots, v_{k}, \ldots\right)+F(\ldots, w, \ldots) . A$
function that satisfies the first two properties is said to be multilinear.
- Alternating: $F(\ldots, v, \ldots, v, \ldots)=0$.
- Normalisation: $F\left(e_{1}, \ldots, e_{n}\right)=1$.

Properties of an alternating (not necessarily normalised) multilinear function

Properties of an alternating (not necessarily normalised) multilinear function

- Linearity with more than one vector:

Properties of an alternating (not necessarily normalised) multilinear function

- Linearity with more than one vector:

$$
\begin{aligned}
& F\left(\ldots, v_{k}+c_{1} w_{1}+c_{2} w_{2}+\ldots+c_{m} w_{m}, \ldots\right)= \\
& F\left(\ldots, v_{k}, \ldots\right)+c_{1} F\left(\ldots, w_{1}, \ldots\right)+\ldots(\mathrm{HW}) .
\end{aligned}
$$

Properties of an alternating (not necessarily normalised) multilinear function

- Linearity with more than one vector:

$$
\begin{aligned}
& F\left(\ldots, v_{k}+c_{1} w_{1}+c_{2} w_{2}+\ldots+c_{m} w_{m}, \ldots\right)= \\
& F\left(\ldots, v_{k}, \ldots\right)+c_{1} F\left(\ldots, w_{1}, \ldots\right)+\ldots(\mathrm{HW}) .
\end{aligned}
$$

- It vanishes if

Properties of an alternating (not necessarily normalised) multilinear function

- Linearity with more than one vector:

$$
\begin{aligned}
& F\left(\ldots, v_{k}+c_{1} w_{1}+c_{2} w_{2}+\ldots+c_{m} w_{m}, \ldots\right)= \\
& F\left(\ldots, v_{k}, \ldots\right)+c_{1} F\left(\ldots, w_{1}, \ldots\right)+\ldots(\mathrm{HW}) .
\end{aligned}
$$

- It vanishes if some vector is 0 :

Properties of an alternating (not necessarily normalised) multilinear function

- Linearity with more than one vector:

$$
\begin{aligned}
& F\left(\ldots, v_{k}+c_{1} w_{1}+c_{2} w_{2}+\ldots+c_{m} w_{m}, \ldots\right)= \\
& F\left(\ldots, v_{k}, \ldots\right)+c_{1} F\left(\ldots, w_{1}, \ldots\right)+\ldots(\mathrm{HW}) .
\end{aligned}
$$

- It vanishes if some vector is 0 :
$F(\ldots, 0, \ldots)=0 F(\ldots, 0, \ldots)=0$.

Properties of an alternating (not necessarily normalised) multilinear function

- Linearity with more than one vector:

$$
\begin{aligned}
& F\left(\ldots, v_{k}+c_{1} w_{1}+c_{2} w_{2}+\ldots+c_{m} w_{m}, \ldots\right)= \\
& F\left(\ldots, v_{k}, \ldots\right)+c_{1} F\left(\ldots, w_{1}, \ldots\right)+\ldots(\mathrm{HW}) .
\end{aligned}
$$

- It vanishes if some vector is 0 :
$F(\ldots, 0, \ldots)=0 F(\ldots, 0, \ldots)=0$.
- (Antisymmetry) If $v_{i} \leftrightarrow v_{j}$

Properties of an alternating (not necessarily normalised) multilinear function

- Linearity with more than one vector:

$$
\begin{aligned}
& F\left(\ldots, v_{k}+c_{1} w_{1}+c_{2} w_{2}+\ldots+c_{m} w_{m}, \ldots\right)= \\
& F\left(\ldots, v_{k}, \ldots\right)+c_{1} F\left(\ldots, w_{1}, \ldots\right)+\ldots(\mathrm{HW}) .
\end{aligned}
$$

- It vanishes if some vector is 0 :
$F(\ldots, 0, \ldots)=0 F(\ldots, 0, \ldots)=0$.
- (Antisymmetry) If $v_{i} \leftrightarrow v_{j} F$ changes sign:

Properties of an alternating (not necessarily normalised) multilinear function

- Linearity with more than one vector:

$$
\begin{aligned}
& F\left(\ldots, v_{k}+c_{1} w_{1}+c_{2} w_{2}+\ldots+c_{m} w_{m}, \ldots\right)= \\
& F\left(\ldots, v_{k}, \ldots\right)+c_{1} F\left(\ldots, w_{1}, \ldots\right)+\ldots(\mathrm{HW}) .
\end{aligned}
$$

- It vanishes if some vector is 0 :
$F(\ldots, 0, \ldots)=0 F(\ldots, 0, \ldots)=0$.
- (Antisymmetry) If $v_{i} \leftrightarrow v_{j} F$ changes sign: $F\left(\ldots, v_{i}+v_{j}, \ldots, v_{i}+v_{j}, \ldots\right)=0$ and hence

Properties of an alternating (not necessarily normalised) multilinear function

- Linearity with more than one vector:

$$
\begin{aligned}
& F\left(\ldots, v_{k}+c_{1} w_{1}+c_{2} w_{2}+\ldots+c_{m} w_{m}, \ldots\right)= \\
& F\left(\ldots, v_{k}, \ldots\right)+c_{1} F\left(\ldots, w_{1}, \ldots\right)+\ldots(\mathrm{HW}) .
\end{aligned}
$$

- It vanishes if some vector is 0 :

$$
F(\ldots, 0, \ldots)=0 F(\ldots, 0, \ldots)=0
$$

- (Antisymmetry) If $v_{i} \leftrightarrow v_{j} F$ changes sign:
$F\left(\ldots, v_{i}+v_{j}, \ldots, v_{i}+v_{j}, \ldots\right)=0$ and hence
$F\left(\ldots, v_{i}, \ldots, v_{i}+v_{j}, \ldots\right)=-F\left(\ldots, v_{j}, \ldots, v_{i}+v_{j}, \ldots\right)$.

Properties of an alternating (not necessarily normalised) multilinear function

- Linearity with more than one vector:

$$
\begin{aligned}
& F\left(\ldots, v_{k}+c_{1} w_{1}+c_{2} w_{2}+\ldots+c_{m} w_{m}, \ldots\right)= \\
& F\left(\ldots, v_{k}, \ldots\right)+c_{1} F\left(\ldots, w_{1}, \ldots\right)+\ldots(\mathrm{HW})
\end{aligned}
$$

- It vanishes if some vector is 0 :

$$
F(\ldots, 0, \ldots)=0 F(\ldots, 0, \ldots)=0
$$

- (Antisymmetry) If $v_{i} \leftrightarrow v_{j} F$ changes sign:
$F\left(\ldots, v_{i}+v_{j}, \ldots, v_{i}+v_{j}, \ldots\right)=0$ and hence
$F\left(\ldots, v_{i}, \ldots, v_{i}+v_{j}, \ldots\right)=-F\left(\ldots, v_{j}, \ldots, v_{i}+v_{j}, \ldots\right)$. Thus
$0+F\left(\ldots, v_{i}, \ldots v_{j}, \ldots\right)=-F\left(\ldots, v_{j}, \ldots, v_{i}, \ldots\right)+0$.

Properties of an alternating (not necessarily normalised) multilinear function

- Linearity with more than one vector:

$$
\begin{aligned}
& F\left(\ldots, v_{k}+c_{1} w_{1}+c_{2} w_{2}+\ldots+c_{m} w_{m}, \ldots\right)= \\
& F\left(\ldots, v_{k}, \ldots\right)+c_{1} F\left(\ldots, w_{1}, \ldots\right)+\ldots(\mathrm{HW})
\end{aligned}
$$

- It vanishes if some vector is 0 :

$$
F(\ldots, 0, \ldots)=0 F(\ldots, 0, \ldots)=0
$$

- (Antisymmetry) If $v_{i} \leftrightarrow v_{j} F$ changes sign:
$F\left(\ldots, v_{i}+v_{j}, \ldots, v_{i}+v_{j}, \ldots\right)=0$ and hence
$F\left(\ldots, v_{i}, \ldots, v_{i}+v_{j}, \ldots\right)=-F\left(\ldots, v_{j}, \ldots, v_{i}+v_{j}, \ldots\right)$. Thus
$0+F\left(\ldots, v_{i}, \ldots v_{j}, \ldots\right)=-F\left(\ldots, v_{j}, \ldots, v_{i}, \ldots\right)+0$.
- If the vectors are linearly dependent

Properties of an alternating (not necessarily normalised) multilinear function

- Linearity with more than one vector:

$$
\begin{aligned}
& F\left(\ldots, v_{k}+c_{1} w_{1}+c_{2} w_{2}+\ldots+c_{m} w_{m}, \ldots\right)= \\
& F\left(\ldots, v_{k}, \ldots\right)+c_{1} F\left(\ldots, w_{1}, \ldots\right)+\ldots(\mathrm{HW})
\end{aligned}
$$

- It vanishes if some vector is 0 :

$$
F(\ldots, 0, \ldots)=0 F(\ldots, 0, \ldots)=0
$$

- (Antisymmetry) If $v_{i} \leftrightarrow v_{j} F$ changes sign:
$F\left(\ldots, v_{i}+v_{j}, \ldots, v_{i}+v_{j}, \ldots\right)=0$ and hence
$F\left(\ldots, v_{i}, \ldots, v_{i}+v_{j}, \ldots\right)=-F\left(\ldots, v_{j}, \ldots, v_{i}+v_{j}, \ldots\right)$. Thus
$0+F\left(\ldots, v_{i}, \ldots v_{j}, \ldots\right)=-F\left(\ldots, v_{j}, \ldots, v_{i}, \ldots\right)+0$.
- If the vectors are linearly dependent then F vanishes:

Properties of an alternating (not necessarily normalised) multilinear function

- Linearity with more than one vector:

$$
\begin{aligned}
& F\left(\ldots, v_{k}+c_{1} w_{1}+c_{2} w_{2}+\ldots+c_{m} w_{m}, \ldots\right)= \\
& F\left(\ldots, v_{k}, \ldots\right)+c_{1} F\left(\ldots, w_{1}, \ldots\right)+\ldots(\mathrm{HW}) .
\end{aligned}
$$

- It vanishes if some vector is 0 :

$$
F(\ldots, 0, \ldots)=0 F(\ldots, 0, \ldots)=0
$$

- (Antisymmetry) If $v_{i} \leftrightarrow v_{j} F$ changes sign:
$F\left(\ldots, v_{i}+v_{j}, \ldots, v_{i}+v_{j}, \ldots\right)=0$ and hence
$F\left(\ldots, v_{i}, \ldots, v_{i}+v_{j}, \ldots\right)=-F\left(\ldots, v_{j}, \ldots, v_{i}+v_{j}, \ldots\right)$. Thus
$0+F\left(\ldots, v_{i}, \ldots v_{j}, \ldots\right)=-F\left(\ldots, v_{j}, \ldots, v_{i}, \ldots\right)+0$.
- If the vectors are linearly dependent then F vanishes: Suppose $\sum_{i} c_{i} v_{i}=0$ with $c_{k} \neq 0$.

Properties of an alternating (not necessarily normalised) multilinear function

- Linearity with more than one vector:

$$
\begin{aligned}
& F\left(\ldots, v_{k}+c_{1} w_{1}+c_{2} w_{2}+\ldots+c_{m} w_{m}, \ldots\right)= \\
& F\left(\ldots, v_{k}, \ldots\right)+c_{1} F\left(\ldots, w_{1}, \ldots\right)+\ldots(\mathrm{HW}) .
\end{aligned}
$$

- It vanishes if some vector is 0 :

$$
F(\ldots, 0, \ldots)=0 F(\ldots, 0, \ldots)=0
$$

- (Antisymmetry) If $v_{i} \leftrightarrow v_{j} F$ changes sign:
$F\left(\ldots, v_{i}+v_{j}, \ldots, v_{i}+v_{j}, \ldots\right)=0$ and hence
$F\left(\ldots, v_{i}, \ldots, v_{i}+v_{j}, \ldots\right)=-F\left(\ldots, v_{j}, \ldots, v_{i}+v_{j}, \ldots\right)$. Thus
$0+F\left(\ldots, v_{i}, \ldots v_{j}, \ldots\right)=-F\left(\ldots, v_{j}, \ldots, v_{i}, \ldots\right)+0$.
- If the vectors are linearly dependent then F vanishes: Suppose $\sum_{i} c_{i} v_{i}=0$ with $c_{k} \neq 0$. Then $F=\frac{1}{c_{k}} F\left(\ldots, c_{k} v_{k}, \ldots\right)$ which is

Properties of an alternating (not necessarily normalised) multilinear function

- Linearity with more than one vector:

$$
\begin{aligned}
& F\left(\ldots, v_{k}+c_{1} w_{1}+c_{2} w_{2}+\ldots+c_{m} w_{m}, \ldots\right)= \\
& F\left(\ldots, v_{k}, \ldots\right)+c_{1} F\left(\ldots, w_{1}, \ldots\right)+\ldots(\mathrm{HW}) .
\end{aligned}
$$

- It vanishes if some vector is 0 :

$$
F(\ldots, 0, \ldots)=0 F(\ldots, 0, \ldots)=0
$$

- (Antisymmetry) If $v_{i} \leftrightarrow v_{j} F$ changes sign:
$F\left(\ldots, v_{i}+v_{j}, \ldots, v_{i}+v_{j}, \ldots\right)=0$ and hence
$F\left(\ldots, v_{i}, \ldots, v_{i}+v_{j}, \ldots\right)=-F\left(\ldots, v_{j}, \ldots, v_{i}+v_{j}, \ldots\right)$. Thus
$0+F\left(\ldots, v_{i}, \ldots v_{j}, \ldots\right)=-F\left(\ldots, v_{j}, \ldots, v_{i}, \ldots\right)+0$.
- If the vectors are linearly dependent then F vanishes: Suppose $\sum_{i} c_{i} v_{i}=0$ with $c_{k} \neq 0$. Then $F=\frac{1}{c_{k}} F\left(\ldots, c_{k} v_{k}, \ldots\right)$ which is

$$
\frac{1}{c_{k}} F\left(\ldots,-\sum_{i \neq k} c_{i} v_{i}\right)=\sum_{i \neq k} \frac{-c_{i}}{c_{k}} F\left(\ldots, v_{i}, \ldots, v_{i}, \ldots\right)=0
$$

Uniqueness theorem

Uniqueness theorem

- Suppose d is a

Uniqueness theorem

- Suppose d is a determinant function

Uniqueness theorem

- Suppose d is a determinant function and f is an

Uniqueness theorem

- Suppose d is a determinant function and f is an alternatng multilinear function.

Uniqueness theorem

- Suppose d is a determinant function and f is an alternatng multilinear function. Then $f\left(v_{1}, \ldots, v_{n}\right)=d\left(v_{1}, \ldots, v_{n}\right) f\left(e_{1}, \ldots, e_{n}\right)$.

Uniqueness theorem

- Suppose d is a determinant function and f is an alternatng multilinear function. Then $f\left(v_{1}, \ldots, v_{n}\right)=d\left(v_{1}, \ldots, v_{n}\right) f\left(e_{1}, \ldots, e_{n}\right)$. So if f is also

Uniqueness theorem

- Suppose d is a determinant function and f is an alternatng multilinear function. Then $f\left(v_{1}, \ldots, v_{n}\right)=d\left(v_{1}, \ldots, v_{n}\right) f\left(e_{1}, \ldots, e_{n}\right)$. So if f is also a determinant function,

Uniqueness theorem

- Suppose d is a determinant function and f is an alternatng multilinear function. Then $f\left(v_{1}, \ldots, v_{n}\right)=d\left(v_{1}, \ldots, v_{n}\right) f\left(e_{1}, \ldots, e_{n}\right)$. So if f is also a determinant function, then $f=d$.

Uniqueness theorem

- Suppose d is a determinant function and f is an alternatng multilinear function. Then $f\left(v_{1}, \ldots, v_{n}\right)=d\left(v_{1}, \ldots, v_{n}\right) f\left(e_{1}, \ldots, e_{n}\right)$. So if f is also a determinant function, then $f=d$.
- Proof:

Uniqueness theorem

- Suppose d is a determinant function and f is an alternatng multilinear function. Then $f\left(v_{1}, \ldots, v_{n}\right)=d\left(v_{1}, \ldots, v_{n}\right) f\left(e_{1}, \ldots, e_{n}\right)$. So if f is also a determinant function, then $f=d$.
- Proof: Let $v_{i}=\sum_{j} c_{i j} e_{j}$.

Uniqueness theorem

- Suppose d is a determinant function and f is an alternatng multilinear function. Then $f\left(v_{1}, \ldots, v_{n}\right)=d\left(v_{1}, \ldots, v_{n}\right) f\left(e_{1}, \ldots, e_{n}\right)$. So if f is also a determinant function, then $f=d$.
- Proof: Let $v_{i}=\sum_{j} c_{i j} e_{j}$. Then
$f\left(\sum_{j_{1}} c_{j_{1}} e_{j_{1}}, \sum_{j_{2}} c_{2 j_{2}} e_{j_{2}}, \ldots\right)=\sum c_{1 j_{1}} c_{2 j_{2}} \ldots f\left(e_{j_{1}}, e_{j_{2}}, \ldots\right)$.

Uniqueness theorem

- Suppose d is a determinant function and f is an alternatng multilinear function. Then $f\left(v_{1}, \ldots, v_{n}\right)=d\left(v_{1}, \ldots, v_{n}\right) f\left(e_{1}, \ldots, e_{n}\right)$. So if f is also a determinant function, then $f=d$.
- Proof: Let $v_{i}=\sum_{j} c_{i j} e_{j}$. Then $f\left(\sum_{j_{1}} c_{1 j_{1}} e_{j_{1}}, \sum_{j_{2}} c_{2 j_{2}} e_{j_{2}}, \ldots\right)=\sum c_{1 j_{1}} c_{2 j_{2}} \ldots f\left(e_{j_{1}}, e_{j_{2}}, \ldots\right)$.
- If any of the j_{i}

Uniqueness theorem

- Suppose d is a determinant function and f is an alternatng multilinear function. Then $f\left(v_{1}, \ldots, v_{n}\right)=d\left(v_{1}, \ldots, v_{n}\right) f\left(e_{1}, \ldots, e_{n}\right)$. So if f is also a determinant function, then $f=d$.
- Proof: Let $v_{i}=\sum_{j} c_{i j} e_{j}$. Then
$f\left(\sum_{j_{1}} c_{1 j_{1}} e_{j_{1}}, \sum_{j_{2}} c_{2 j_{2}} e_{j_{2}}, \ldots\right)=\sum c_{1 j_{1}} c_{2 j_{2}} \ldots f\left(e_{j_{1}}, e_{j_{2}}, \ldots\right)$.
- If any of the j_{i} coincide,

Uniqueness theorem

- Suppose d is a determinant function and f is an alternatng multilinear function. Then $f\left(v_{1}, \ldots, v_{n}\right)=d\left(v_{1}, \ldots, v_{n}\right) f\left(e_{1}, \ldots, e_{n}\right)$. So if f is also a determinant function, then $f=d$.
- Proof: Let $v_{i}=\sum_{j} c_{i j} e_{j}$. Then
$f\left(\sum_{j_{1}} c_{1 j_{1}} e_{j_{1}}, \sum_{j_{2}} c_{2 j_{2}} e_{j_{2}}, \ldots\right)=\sum c_{1 j_{1}} c_{2 j_{2}} \ldots f\left(e_{j_{1}}, e_{j_{2}}, \ldots\right)$.
- If any of the j_{i} coincide, that term will be 0 .

Uniqueness theorem

- Suppose d is a determinant function and f is an alternatng multilinear function. Then $f\left(v_{1}, \ldots, v_{n}\right)=d\left(v_{1}, \ldots, v_{n}\right) f\left(e_{1}, \ldots, e_{n}\right)$. So if f is also a determinant function, then $f=d$.
- Proof: Let $v_{i}=\sum_{j} c_{i j} e_{j}$. Then $f\left(\sum_{j_{1}} c_{j_{1}} e_{j_{1}}, \sum_{j_{2}} c_{2 j_{2}} e_{j_{2}}, \ldots\right)=\sum c_{1 j_{1}} c_{2 j_{2}} \ldots f\left(e_{j_{1}}, e_{j_{2}}, \ldots\right)$.
- If any of the j_{i} coincide, that term will be 0 . So we may assume that

Uniqueness theorem

- Suppose d is a determinant function and f is an alternatng multilinear function. Then $f\left(v_{1}, \ldots, v_{n}\right)=d\left(v_{1}, \ldots, v_{n}\right) f\left(e_{1}, \ldots, e_{n}\right)$. So if f is also a determinant function, then $f=d$.
- Proof: Let $v_{i}=\sum_{j} c_{i j} e_{j}$. Then $f\left(\sum_{j_{1}} c_{j_{1}} e_{j_{1}}, \sum_{j_{2}} c_{2 j_{2}} e_{j_{2}}, \ldots\right)=\sum c_{1 j_{1}} c_{2 j_{2}} \ldots f\left(e_{j_{1}}, e_{j_{2}}, \ldots\right)$.
- If any of the j_{i} coincide, that term will be 0 . So we may assume that all the j_{i} are

Uniqueness theorem

- Suppose d is a determinant function and f is an alternatng multilinear function. Then $f\left(v_{1}, \ldots, v_{n}\right)=d\left(v_{1}, \ldots, v_{n}\right) f\left(e_{1}, \ldots, e_{n}\right)$. So if f is also a determinant function, then $f=d$.
- Proof: Let $v_{i}=\sum_{j} c_{i j} e_{j}$. Then $f\left(\sum_{j_{1}} c_{j_{1}} e_{j_{1}}, \sum_{j_{2}} c_{2 j_{2}} e_{j_{2}}, \ldots\right)=\sum c_{1 j_{1}} c_{2 j_{2}} \ldots f\left(e_{j_{1}}, e_{j_{2}}, \ldots\right)$.
- If any of the j_{i} coincide, that term will be 0 . So we may assume that all the j_{i} are different, i.e.,

Uniqueness theorem

- Suppose d is a determinant function and f is an alternatng multilinear function. Then $f\left(v_{1}, \ldots, v_{n}\right)=d\left(v_{1}, \ldots, v_{n}\right) f\left(e_{1}, \ldots, e_{n}\right)$. So if f is also a determinant function, then $f=d$.
- Proof: Let $v_{i}=\sum_{j} c_{i j} e_{j}$. Then $f\left(\sum_{j_{1}} c_{j_{1}} e_{j_{1}}, \sum_{j_{2}} c_{2 j_{2}} e_{j_{2}}, \ldots\right)=\sum c_{1 j_{1}} c_{2 j_{2}} \ldots f\left(e_{j_{1}}, e_{j_{2}}, \ldots\right)$.
- If any of the j_{i} coincide, that term will be 0 . So we may assume that all the j_{i} are different, i.e., $j_{1}, j_{2}, \ldots, j_{n}$ is a

Uniqueness theorem

- Suppose d is a determinant function and f is an alternatng multilinear function. Then $f\left(v_{1}, \ldots, v_{n}\right)=d\left(v_{1}, \ldots, v_{n}\right) f\left(e_{1}, \ldots, e_{n}\right)$. So if f is also a determinant function, then $f=d$.
- Proof: Let $v_{i}=\sum_{j} c_{i j} e_{j}$. Then $f\left(\sum_{j_{1}} c_{j_{1}} e_{j_{1}}, \sum_{j_{2}} c_{2 j_{2}} e_{j_{2}}, \ldots\right)=\sum c_{1 j_{1}} c_{2 j_{2}} \ldots f\left(e_{j_{1}}, e_{j_{2}}, \ldots\right)$.
- If any of the j_{i} coincide, that term will be 0 . So we may assume that all the j_{i} are different, i.e., $j_{1}, j_{2}, \ldots, j_{n}$ is a permutation of

Uniqueness theorem

- Suppose d is a determinant function and f is an alternatng multilinear function. Then $f\left(v_{1}, \ldots, v_{n}\right)=d\left(v_{1}, \ldots, v_{n}\right) f\left(e_{1}, \ldots, e_{n}\right)$. So if f is also a determinant function, then $f=d$.
- Proof: Let $v_{i}=\sum_{j} c_{i j} e_{j}$. Then $f\left(\sum_{j_{1}} c_{j_{1}} e_{j_{1}}, \sum_{j_{2}} c_{2 j_{2}} e_{j_{2}}, \ldots\right)=\sum c_{1 j_{1}} c_{2 j_{2}} \ldots f\left(e_{j_{1}}, e_{j_{2}}, \ldots\right)$.
- If any of the j_{i} coincide, that term will be 0 . So we may assume that all the j_{i} are different, i.e., $j_{1}, j_{2}, \ldots, j_{n}$ is a permutation of $1,2, \ldots, n$.

Uniqueness theorem

Uniqueness theorem

- We can prove

Uniqueness theorem

- We can prove by induction on n

Uniqueness theorem

- We can prove by induction on n that any permutation

Uniqueness theorem

- We can prove by induction on n that any permutation can be obtained

Uniqueness theorem

- We can prove by induction on n that any permutation can be obtained by a finite number of interchanges.

Uniqueness theorem

- We can prove by induction on n that any permutation can be obtained by a finite number of interchanges. Indeed, it is trivial for $n=1$.

Uniqueness theorem

- We can prove by induction on n that any permutation can be obtained by a finite number of interchanges. Indeed, it is trivial for $n=1$. One of j_{i} corresponds to n.

Uniqueness theorem

- We can prove by induction on n that any permutation can be obtained by a finite number of interchanges. Indeed, it is trivial for $n=1$. One of j_{i} corresponds to n. Suppose it is j_{k}. Now $[1,2, \ldots, n-1] \rightarrow\left[j_{1}, \ldots, j_{k-1}, j_{n}, j_{k+1}, \ldots, j_{n-1}\right]$ is a

Uniqueness theorem

- We can prove by induction on n that any permutation can be obtained by a finite number of interchanges. Indeed, it is trivial for $n=1$. One of j_{i} corresponds to n. Suppose it is j_{k}. Now $[1,2, \ldots, n-1] \rightarrow\left[j_{1}, \ldots, j_{k-1}, j_{n}, j_{k+1}, \ldots, j_{n-1}\right]$ is a permutation of

Uniqueness theorem

- We can prove by induction on n that any permutation can be obtained by a finite number of interchanges. Indeed, it is trivial for $n=1$. One of j_{i} corresponds to n. Suppose it is j_{k}. Now $[1,2, \ldots, n-1] \rightarrow\left[j_{1}, \ldots, j_{k-1}, j_{n}, j_{k+1}, \ldots, j_{n-1}\right]$ is a permutation of $n-1$ things.

Uniqueness theorem

- We can prove by induction on n that any permutation can be obtained by a finite number of interchanges. Indeed, it is trivial for $n=1$. One of j_{i} corresponds to n. Suppose it is j_{k}. Now $[1,2, \ldots, n-1] \rightarrow\left[j_{1}, \ldots, j_{k-1}, j_{n}, j_{k+1}, \ldots, j_{n-1}\right]$ is a permutation of $n-1$ things. By the induction hypothesis,

Uniqueness theorem

- We can prove by induction on n that any permutation can be obtained by a finite number of interchanges. Indeed, it is trivial for $n=1$. One of j_{i} corresponds to n. Suppose it is j_{k}. Now $[1,2, \ldots, n-1] \rightarrow\left[j_{1}, \ldots, j_{k-1}, j_{n}, j_{k+1}, \ldots, j_{n-1}\right]$ is a permutation of $n-1$ things. By the induction hypothesis, it can be obtained using a

Uniqueness theorem

- We can prove by induction on n that any permutation can be obtained by a finite number of interchanges. Indeed, it is trivial for $n=1$. One of j_{i} corresponds to n. Suppose it is j_{k}. Now $[1,2, \ldots, n-1] \rightarrow\left[j_{1}, \ldots, j_{k-1}, j_{n}, j_{k+1}, \ldots, j_{n-1}\right]$ is a permutation of $n-1$ things. By the induction hypothesis, it can be obtained using a finite number of interchanges.

Uniqueness theorem

- We can prove by induction on n that any permutation can be obtained by a finite number of interchanges. Indeed, it is trivial for $n=1$. One of j_{i} corresponds to n. Suppose it is j_{k}. Now $[1,2, \ldots, n-1] \rightarrow\left[j_{1}, \ldots, j_{k-1}, j_{n}, j_{k+1}, \ldots, j_{n-1}\right]$ is a permutation of $n-1$ things. By the induction hypothesis, it can be obtained using a finite number of interchanges. That is, $[1,2 \ldots, n] \rightarrow\left[j_{1}, \ldots, j_{k-1}, j_{n}, j_{k+1}, \ldots, j_{n-1}, j_{k}=n\right]$ can be

Uniqueness theorem

- We can prove by induction on n that any permutation can be obtained by a finite number of interchanges. Indeed, it is trivial for $n=1$. One of j_{i} corresponds to n. Suppose it is j_{k}. Now $[1,2, \ldots, n-1] \rightarrow\left[j_{1}, \ldots, j_{k-1}, j_{n}, j_{k+1}, \ldots, j_{n-1}\right]$ is a permutation of $n-1$ things. By the induction hypothesis, it can be obtained using a finite number of interchanges. That is, $[1,2 \ldots, n] \rightarrow\left[j_{1}, \ldots, j_{k-1}, j_{n}, j_{k+1}, \ldots, j_{n-1}, j_{k}=n\right]$ can be obtained that way.

Uniqueness theorem

- We can prove by induction on n that any permutation can be obtained by a finite number of interchanges. Indeed, it is trivial for $n=1$. One of j_{i} corresponds to n. Suppose it is j_{k}. Now $[1,2, \ldots, n-1] \rightarrow\left[j_{1}, \ldots, j_{k-1}, j_{n}, j_{k+1}, \ldots, j_{n-1}\right]$ is a permutation of $n-1$ things. By the induction hypothesis, it can be obtained using a finite number of interchanges. That is, $[1,2 \ldots, n] \rightarrow\left[j_{1}, \ldots, j_{k-1}, j_{n}, j_{k+1}, \ldots, j_{n-1}, j_{k}=n\right]$ can be obtained that way. Now interchange j_{k} with j_{n} to get

Uniqueness theorem

- We can prove by induction on n that any permutation can be obtained by a finite number of interchanges. Indeed, it is trivial for $n=1$. One of j_{i} corresponds to n. Suppose it is j_{k}. Now $[1,2, \ldots, n-1] \rightarrow\left[j_{1}, \ldots, j_{k-1}, j_{n}, j_{k+1}, \ldots, j_{n-1}\right]$ is a permutation of $n-1$ things. By the induction hypothesis, it can be obtained using a finite number of interchanges. That is, $[1,2 \ldots, n] \rightarrow\left[j_{1}, \ldots, j_{k-1}, j_{n}, j_{k+1}, \ldots, j_{n-1}, j_{k}=n\right]$ can be obtained that way. Now interchange j_{k} with j_{n} to get the desired permutation.

Uniqueness theorem

- We can prove by induction on n that any permutation can be obtained by a finite number of interchanges. Indeed, it is trivial for $n=1$. One of j_{i} corresponds to n. Suppose it is j_{k}. Now $[1,2, \ldots, n-1] \rightarrow\left[j_{1}, \ldots, j_{k-1}, j_{n}, j_{k+1}, \ldots, j_{n-1}\right]$ is a permutation of $n-1$ things. By the induction hypothesis, it can be obtained using a finite number of interchanges. That is, $[1,2 \ldots, n] \rightarrow\left[j_{1}, \ldots, j_{k-1}, j_{n}, j_{k+1}, \ldots, j_{n-1}, j_{k}=n\right]$ can be obtained that way. Now interchange j_{k} with j_{n} to get the desired permutation.
- Using the above result

Uniqueness theorem

- We can prove by induction on n that any permutation can be obtained by a finite number of interchanges. Indeed, it is trivial for $n=1$. One of j_{i} corresponds to n. Suppose it is j_{k}. Now $[1,2, \ldots, n-1] \rightarrow\left[j_{1}, \ldots, j_{k-1}, j_{n}, j_{k+1}, \ldots, j_{n-1}\right]$ is a permutation of $n-1$ things. By the induction hypothesis, it can be obtained using a finite number of interchanges. That is, $[1,2 \ldots, n] \rightarrow\left[j_{1}, \ldots, j_{k-1}, j_{n}, j_{k+1}, \ldots, j_{n-1}, j_{k}=n\right]$ can be obtained that way. Now interchange j_{k} with j_{n} to get the desired permutation.
- Using the above result we see that

Uniqueness theorem

- We can prove by induction on n that any permutation can be obtained by a finite number of interchanges. Indeed, it is trivial for $n=1$. One of j_{i} corresponds to n. Suppose it is j_{k}. Now $[1,2, \ldots, n-1] \rightarrow\left[j_{1}, \ldots, j_{k-1}, j_{n}, j_{k+1}, \ldots, j_{n-1}\right]$ is a permutation of $n-1$ things. By the induction hypothesis, it can be obtained using a finite number of interchanges. That is, $[1,2 \ldots, n] \rightarrow\left[j_{1}, \ldots, j_{k-1}, j_{n}, j_{k+1}, \ldots, j_{n-1}, j_{k}=n\right]$ can be obtained that way. Now interchange j_{k} with j_{n} to get the desired permutation.
- Using the above result we see that

$$
d\left(e_{j_{1}}, \ldots, e_{j_{n}}\right)=(-1)^{K} d\left(e_{1}, \ldots, e_{n}\right)=(-1)^{K} \text { and }
$$

Uniqueness theorem

- We can prove by induction on n that any permutation can be obtained by a finite number of interchanges. Indeed, it is trivial for $n=1$. One of j_{i} corresponds to n. Suppose it is j_{k}. Now $[1,2, \ldots, n-1] \rightarrow\left[j_{1}, \ldots, j_{k-1}, j_{n}, j_{k+1}, \ldots, j_{n-1}\right]$ is a permutation of $n-1$ things. By the induction hypothesis, it can be obtained using a finite number of interchanges. That is, $[1,2 \ldots, n] \rightarrow\left[j_{1}, \ldots, j_{k-1}, j_{n}, j_{k+1}, \ldots, j_{n-1}, j_{k}=n\right]$ can be obtained that way. Now interchange j_{k} with j_{n} to get the desired permutation.
- Using the above result we see that

$$
\begin{aligned}
& d\left(e_{j_{1}}, \ldots, e_{j_{n}}\right)=(-1)^{K} d\left(e_{1}, \ldots, e_{n}\right)=(-1)^{K} \text { and } \\
& f\left(e_{j_{1}}, \ldots, e_{j_{n}}\right)=(-1)^{K} f\left(e_{1}, \ldots, e_{n}\right)= \\
& d\left(e_{j_{1}}, \ldots, e_{j_{n}}\right) f\left(e_{1}, \ldots, e_{n}\right)
\end{aligned}
$$

Uniqueness theorem

- We can prove by induction on n that any permutation can be obtained by a finite number of interchanges. Indeed, it is trivial for $n=1$. One of j_{i} corresponds to n. Suppose it is j_{k}. Now $[1,2, \ldots, n-1] \rightarrow\left[j_{1}, \ldots, j_{k-1}, j_{n}, j_{k+1}, \ldots, j_{n-1}\right]$ is a permutation of $n-1$ things. By the induction hypothesis, it can be obtained using a finite number of interchanges. That is, $[1,2 \ldots, n] \rightarrow\left[j_{1}, \ldots, j_{k-1}, j_{n}, j_{k+1}, \ldots, j_{n-1}, j_{k}=n\right]$ can be obtained that way. Now interchange j_{k} with j_{n} to get the desired permutation.
- Using the above result we see that

$$
\begin{aligned}
& d\left(e_{j_{1}}, \ldots, e_{j_{n}}\right)=(-1)^{K} d\left(e_{1}, \ldots, e_{n}\right)=(-1)^{K} \text { and } \\
& f\left(e_{j_{1}}, \ldots, e_{j_{n}}\right)=(-1)^{K} f\left(e_{1}, \ldots, e_{n}\right)= \\
& d\left(e_{j_{1}}, \ldots, e_{j_{n}}\right) f\left(e_{1}, \ldots, e_{n}\right) .
\end{aligned}
$$

- Thus $f\left(v_{1}, \ldots, v_{n}\right)=\sum c_{j_{1}} \ldots d\left(e_{j_{1}}, \ldots, e_{j_{n}}\right) f\left(e_{1}, \ldots, e_{n}\right)=$ $d\left(v_{1}, \ldots, v_{n}\right) f\left(e_{1}, \ldots, e_{n}\right)$.

