Lecture 10 - UM 102 (Spring 2021)

Vamsi Pritham Pingali

IISc

- Motivated determinants

Recap

- Motivated determinants through the (signed) volume.

Recap

- Motivated determinants through the (signed) volume.
- Defined them as

Recap

- Motivated determinants through the (signed) volume.
- Defined them as multilinear

Recap

- Motivated determinants through the (signed) volume.
- Defined them as multilinear alternating

Recap

- Motivated determinants through the (signed) volume.
- Defined them as multilinear alternating normalised
- Motivated determinants through the (signed) volume.
- Defined them as multilinear alternating normalised maps taking tuples of vectors to scalars.

Recap

- Motivated determinants through the (signed) volume.
- Defined them as multilinear alternating normalised maps taking tuples of vectors to scalars.
- Proved uniqueness of the determinant function.

Assuming existence: 2×2 determinants

Assuming existence: 2×2 determinants

- Consider $\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|$

Assuming existence: 2×2 determinants

- Consider $\begin{array}{ll}a & b \\ c & d\end{array}$
$-=a\left|\begin{array}{ll}1 & b \\ 0 & d\end{array}\right|+c\left|\begin{array}{ll}0 & b \\ 1 & d\end{array}\right|$

Assuming existence: 2×2 determinants

- Consider $\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|$
$-=a\left|\begin{array}{ll}1 & b \\ 0 & d\end{array}\right|+c\left|\begin{array}{ll}0 & b \\ 1 & d\end{array}\right|$
- which can be column-transformed to

$$
=a d\left|\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right|+b c\left|\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right|
$$

Assuming existence: 2×2 determinants

- Consider $\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|$
$-=a\left|\begin{array}{ll}1 & b \\ 0 & d\end{array}\right|+c\left|\begin{array}{ll}0 & b \\ 1 & d\end{array}\right|$
- which can be column-transformed to

$$
=a d\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right|+b c\left|\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right|
$$

- which equals $a d-b c$.

Assuming existence: Upper triangular matrices

Assuming existence: Upper triangular matrices

- We want to compute $\operatorname{det}(U)$ where

Assuming existence: Upper triangular matrices

- We want to compute $\operatorname{det}(U)$ where

$$
U=\left[\begin{array}{cccc}
u_{11} & u_{12} & \ldots & u_{1 n} \\
0 & u_{22} & \ldots & u_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & u_{n n}
\end{array}\right]
$$

Assuming existence: Upper triangular matrices

- We want to compute $\operatorname{det}(U)$ where

$$
U=\left[\begin{array}{cccc}
u_{11} & u_{12} & \ldots & u_{1 n} \\
0 & u_{22} & \ldots & u_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & u_{n n}
\end{array}\right]
$$

- We claim that $\operatorname{det}(U)=u_{11} u_{22} \ldots$

Assuming existence: Upper triangular matrices

- We want to compute $\operatorname{det}(U)$ where

$$
U=\left[\begin{array}{cccc}
u_{11} & u_{12} & \ldots & u_{1 n} \\
0 & u_{22} & \ldots & u_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & u_{n n}
\end{array}\right]
$$

- We claim that $\operatorname{det}(U)=u_{11} u_{22} \ldots$. We shall prove this claim

Assuming existence: Upper triangular matrices

- We want to compute $\operatorname{det}(U)$ where

$$
U=\left[\begin{array}{cccc}
u_{11} & u_{12} & \ldots & u_{1 n} \\
0 & u_{22} & \ldots & u_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & u_{n n}
\end{array}\right]
$$

- We claim that $\operatorname{det}(U)=u_{11} u_{22} \ldots$. We shall prove this claim by induction on n.

Assuming existence: Upper triangular matrices

- We want to compute $\operatorname{det}(U)$ where

$$
U=\left[\begin{array}{cccc}
u_{11} & u_{12} & \ldots & u_{1 n} \\
0 & u_{22} & \ldots & u_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & u_{n n}
\end{array}\right]
$$

- We claim that $\operatorname{det}(U)=u_{11} u_{22} \ldots$. We shall prove this claim by induction on n. For $n=1$, we are done.

Assuming existence: Upper triangular matrices

- We want to compute $\operatorname{det}(U)$ where

$$
U=\left[\begin{array}{cccc}
u_{11} & u_{12} & \ldots & u_{1 n} \\
0 & u_{22} & \ldots & u_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & u_{n n}
\end{array}\right]
$$

- We claim that $\operatorname{det}(U)=u_{11} u_{22} \ldots$. We shall prove this claim by induction on n. For $n=1$, we are done. Assume truth for $n-1$.

Assuming existence: Upper triangular matrices

- We want to compute $\operatorname{det}(U)$ where

$$
U=\left[\begin{array}{cccc}
u_{11} & u_{12} & \ldots & u_{1 n} \\
0 & u_{22} & \ldots & u_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & u_{n n}
\end{array}\right]
$$

- We claim that $\operatorname{det}(U)=u_{11} u_{22} \ldots$. We shall prove this claim by induction on n. For $n=1$, we are done. Assume truth for $n-1$.
- By scaling, $\operatorname{det}(U)=u_{11} \operatorname{det}\left(U^{\prime}\right)$

Assuming existence: Upper triangular matrices

- We want to compute $\operatorname{det}(U)$ where

$$
U=\left[\begin{array}{cccc}
u_{11} & u_{12} & \ldots & u_{1 n} \\
0 & u_{22} & \ldots & u_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & u_{n n}
\end{array}\right]
$$

- We claim that $\operatorname{det}(U)=u_{11} u_{22} \ldots$. We shall prove this claim by induction on n. For $n=1$, we are done. Assume truth for $n-1$.
- By scaling, $\operatorname{det}(U)=u_{11} \operatorname{det}\left(U^{\prime}\right)$ where U^{\prime} has e_{1} in the first column.

Assuming existence: Upper triangular matrices

- We want to compute $\operatorname{det}(U)$ where

$$
U=\left[\begin{array}{cccc}
u_{11} & u_{12} & \ldots & u_{1 n} \\
0 & u_{22} & \ldots & u_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & u_{n n}
\end{array}\right]
$$

- We claim that $\operatorname{det}(U)=u_{11} u_{22} \ldots$. We shall prove this claim by induction on n. For $n=1$, we are done. Assume truth for $n-1$.
- By scaling, $\operatorname{det}(U)=u_{11} \operatorname{det}\left(U^{\prime}\right)$ where U^{\prime} has e_{1} in the first column. By multilinearity, i.e.,

Assuming existence: Upper triangular matrices

- We want to compute $\operatorname{det}(U)$ where

$$
U=\left[\begin{array}{cccc}
u_{11} & u_{12} & \ldots & u_{1 n} \\
0 & u_{22} & \ldots & u_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & u_{n n}
\end{array}\right]
$$

- We claim that $\operatorname{det}(U)=u_{11} u_{22} \ldots$. We shall prove this claim by induction on n. For $n=1$, we are done. Assume truth for $n-1$.
- By scaling, $\operatorname{det}(U)=u_{11} \operatorname{det}\left(U^{\prime}\right)$ where U^{\prime} has e_{1} in the first column. By multilinearity, i.e., column transformations,

Assuming existence: Upper triangular matrices

- We want to compute $\operatorname{det}(U)$ where

$$
U=\left[\begin{array}{cccc}
u_{11} & u_{12} & \ldots & u_{1 n} \\
0 & u_{22} & \ldots & u_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & u_{n n}
\end{array}\right]
$$

- We claim that $\operatorname{det}(U)=u_{11} u_{22} \ldots$. We shall prove this claim by induction on n. For $n=1$, we are done. Assume truth for $n-1$.
- By scaling, $\operatorname{det}(U)=u_{11} \operatorname{det}\left(U^{\prime}\right)$ where U^{\prime} has e_{1} in the first column. By multilinearity, i.e., column transformations, we can "clear" the first row.

Assuming existence: Upper-triangular matrices

Assuming existence: Upper-triangular matrices

- $\operatorname{det}\left(e_{1}, v_{2}, \ldots\right)=\sum_{J} c_{j_{2} 2} c_{j_{3}} \ldots \operatorname{det}\left(e_{1}, e_{j_{2}}, \ldots\right)$.

Assuming existence: Upper-triangular matrices

- $\operatorname{det}\left(e_{1}, v_{2}, \ldots\right)=\sum_{J} c_{j_{2} 2} c_{j_{3} 3} \ldots \operatorname{det}\left(e_{1}, e_{j_{2}}, \ldots\right)$. Suppose we need K_{J} interchanges of columns

Assuming existence: Upper-triangular matrices

- $\operatorname{det}\left(e_{1}, v_{2}, \ldots\right)=\sum_{J} c_{j_{2} 2} c_{j_{3} 3} \ldots \operatorname{det}\left(e_{1}, e_{j_{2}}, \ldots\right)$. Suppose we need K_{J} interchanges of columns to permute j_{2}, j_{3}, \ldots to $2,3, \ldots n-1$.

Assuming existence: Upper-triangular matrices

- $\operatorname{det}\left(e_{1}, v_{2}, \ldots\right)=\sum_{J} c_{j_{2} 2} c_{j_{3} 3} \ldots \operatorname{det}\left(e_{1}, e_{j_{2}}, \ldots\right)$. Suppose we need K_{J} interchanges of columns to permute j_{2}, j_{3}, \ldots to $2,3, \ldots n-1$.
- Then $\operatorname{det}\left(e_{1}, v_{2}, \ldots\right)=\sum_{J} c_{j_{2} 2} c_{j_{3} 3} \ldots(-1)^{K_{J}} \operatorname{det}\left(e_{1}, e_{2}, \ldots\right)$ which is

Assuming existence: Upper-triangular matrices

- $\operatorname{det}\left(e_{1}, v_{2}, \ldots\right)=\sum_{J} c_{j_{2} 2} c_{j_{3} 3} \ldots \operatorname{det}\left(e_{1}, e_{j_{2}}, \ldots\right)$. Suppose we need K_{J} interchanges of columns to permute j_{2}, j_{3}, \ldots to $2,3, \ldots n-1$.
- Then $\operatorname{det}\left(e_{1}, v_{2}, \ldots\right)=\sum_{\jmath} c_{j_{2} 2} c_{j_{3} 3} \ldots(-1)^{K_{J}} \operatorname{det}\left(e_{1}, e_{2}, \ldots\right)$ which is $\sum_{J} c_{j_{2} 2} \ldots(-1)^{K_{J}}=\operatorname{det}\left(v_{2}, \ldots\right)$.

Assuming existence: Upper-triangular matrices

- $\operatorname{det}\left(e_{1}, v_{2}, \ldots\right)=\sum_{J} c_{j_{2} 2} c_{j_{3} 3} \ldots \operatorname{det}\left(e_{1}, e_{j_{2}}, \ldots\right)$. Suppose we need K_{J} interchanges of columns to permute j_{2}, j_{3}, \ldots to $2,3, \ldots n-1$.
- Then $\operatorname{det}\left(e_{1}, v_{2}, \ldots\right)=\sum_{J} c_{j_{2} 2} c_{j_{3} 3} \ldots(-1)^{K_{J}} \operatorname{det}\left(e_{1}, e_{2}, \ldots\right)$ which is $\sum_{J} c_{j_{2} 2} \ldots(-1)^{K_{J}}=\operatorname{det}\left(v_{2}, \ldots\right)$.
- Thus $\operatorname{det}(U)=u_{11} \operatorname{det}\left(U^{\prime \prime}\right)$

Assuming existence: Upper-triangular matrices

- $\operatorname{det}\left(e_{1}, v_{2}, \ldots\right)=\sum_{J} c_{j_{2} 2} c_{j_{3} 3} \ldots \operatorname{det}\left(e_{1}, e_{j_{2}}, \ldots\right)$. Suppose we need K_{J} interchanges of columns to permute j_{2}, j_{3}, \ldots to $2,3, \ldots n-1$.
- Then $\operatorname{det}\left(e_{1}, v_{2}, \ldots\right)=\sum_{J} c_{j_{2} 2} c_{j_{3} 3} \ldots(-1)^{K_{J}} \operatorname{det}\left(e_{1}, e_{2}, \ldots\right)$ which is $\sum_{J} c_{j 2} \ldots(-1)^{K_{J}}=\operatorname{det}\left(v_{2}, \ldots\right)$.
- Thus $\operatorname{det}(U)=u_{11} \operatorname{det}\left(U^{\prime \prime}\right)$ where $U^{\prime \prime}$ is the $(n-1) \times(n-1)$ matrix

Assuming existence: Upper-triangular matrices

- $\operatorname{det}\left(e_{1}, v_{2}, \ldots\right)=\sum_{J} c_{j_{2} 2} c_{j_{3} 3} \ldots \operatorname{det}\left(e_{1}, e_{j_{2}}, \ldots\right)$. Suppose we need K_{J} interchanges of columns to permute j_{2}, j_{3}, \ldots to $2,3, \ldots n-1$.
- Then $\operatorname{det}\left(e_{1}, v_{2}, \ldots\right)=\sum_{\jmath} c_{j_{2} 2} c_{j_{3} 3} \ldots(-1)^{K_{J}} \operatorname{det}\left(e_{1}, e_{2}, \ldots\right)$ which is $\sum_{J} c_{j 2} \ldots(-1)^{K_{J}}=\operatorname{det}\left(v_{2}, \ldots\right)$.
- Thus $\operatorname{det}(U)=u_{11} \operatorname{det}\left(U^{\prime \prime}\right)$ where $U^{\prime \prime}$ is the $(n-1) \times(n-1)$ matrix obtained by deleting the first row and first column.

Assuming existence: Upper-triangular matrices

- $\operatorname{det}\left(e_{1}, v_{2}, \ldots\right)=\sum_{J} c_{j_{2} 2} c_{j_{3} 3} \ldots \operatorname{det}\left(e_{1}, e_{j_{2}}, \ldots\right)$. Suppose we need K_{J} interchanges of columns to permute j_{2}, j_{3}, \ldots to $2,3, \ldots n-1$.
- Then $\operatorname{det}\left(e_{1}, v_{2}, \ldots\right)=\sum_{\jmath} c_{j_{2} 2} c_{j_{3} 3} \ldots(-1)^{K_{J}} \operatorname{det}\left(e_{1}, e_{2}, \ldots\right)$ which is $\sum_{J} c_{j_{2} 2} \ldots(-1)^{K_{J}}=\operatorname{det}\left(v_{2}, \ldots\right)$.
- Thus $\operatorname{det}(U)=u_{11} \operatorname{det}\left(U^{\prime \prime}\right)$ where $U^{\prime \prime}$ is the $(n-1) \times(n-1)$ matrix obtained by deleting the first row and first column. It is upper triangular.

Assuming existence: Upper-triangular matrices

- $\operatorname{det}\left(e_{1}, v_{2}, \ldots\right)=\sum_{J} c_{j_{2} 2} c_{j_{3} 3} \ldots \operatorname{det}\left(e_{1}, e_{j_{2}}, \ldots\right)$. Suppose we need K_{J} interchanges of columns to permute j_{2}, j_{3}, \ldots to $2,3, \ldots n-1$.
- Then $\operatorname{det}\left(e_{1}, v_{2}, \ldots\right)=\sum_{\jmath} c_{j_{2} 2} c_{j_{3} 3} \ldots(-1)^{K_{J}} \operatorname{det}\left(e_{1}, e_{2}, \ldots\right)$ which is $\sum_{J} c_{j_{2} 2} \ldots(-1)^{K_{J}}=\operatorname{det}\left(v_{2}, \ldots\right)$.
- Thus $\operatorname{det}(U)=u_{11} \operatorname{det}\left(U^{\prime \prime}\right)$ where $U^{\prime \prime}$ is the $(n-1) \times(n-1)$ matrix obtained by deleting the first row and first column. It is upper triangular.
- We are done by the induction hypothesis.

Assuming existence: A crucial property (Expansion along the first column)

Assuming existence: A crucial property (Expansion along the first column)

- Note that $\operatorname{det}\left(v_{1}, \ldots, v_{n}\right)=\operatorname{det}\left(\sum_{j} c_{j 1} e_{j}, v_{2}, \ldots, v_{n}\right)=$ $\sum_{j} c_{j 1} \operatorname{det}\left(e_{j}, v_{2}, \ldots, v_{n}\right)$.

Assuming existence: A crucial property (Expansion along the first column)

- Note that $\operatorname{det}\left(v_{1}, \ldots, v_{n}\right)=\operatorname{det}\left(\sum_{j} c_{j 1} e_{j}, v_{2}, \ldots, v_{n}\right)=$ $\sum_{j} c_{j 1} \operatorname{det}\left(e_{j}, v_{2}, \ldots, v_{n}\right)$.
- Property:

Assuming existence: A crucial property (Expansion along the first column)

- Note that $\operatorname{det}\left(v_{1}, \ldots, v_{n}\right)=\operatorname{det}\left(\sum_{j} c_{j 1} e_{j}, v_{2}, \ldots, v_{n}\right)=$ $\sum_{j} c_{j 1} \operatorname{det}\left(e_{j}, v_{2}, \ldots, v_{n}\right)$.
- Property: If we define n-1-dimensional new columns/vectors

Assuming existence: A crucial property (Expansion along the first column)

- Note that $\operatorname{det}\left(v_{1}, \ldots, v_{n}\right)=\operatorname{det}\left(\sum_{j} c_{j 1} e_{j}, v_{2}, \ldots, v_{n}\right)=$ $\sum_{j} c_{j 1} \operatorname{det}\left(e_{j}, v_{2}, \ldots, v_{n}\right)$.
- Property: If we define n-1-dimensional new columns/vectors $\tilde{v}_{2, j}, \tilde{v}_{3, j}, \ldots$ by simply

Assuming existence: A crucial property (Expansion along the first column)

- Note that $\operatorname{det}\left(v_{1}, \ldots, v_{n}\right)=\operatorname{det}\left(\sum_{j} c_{j 1} e_{j}, v_{2}, \ldots, v_{n}\right)=$ $\sum_{j} c_{j 1} \operatorname{det}\left(e_{j}, v_{2}, \ldots, v_{n}\right)$.
- Property: If we define n-1-dimensional new columns/vectors $\tilde{v}_{2, j}, \tilde{v}_{3, j}, \ldots$ by simply deleting the e_{j} components from

Assuming existence: A crucial property (Expansion along the first column)

- Note that $\operatorname{det}\left(v_{1}, \ldots, v_{n}\right)=\operatorname{det}\left(\sum_{j} c_{j 1} e_{j}, v_{2}, \ldots, v_{n}\right)=$ $\sum_{j} c_{j 1} \operatorname{det}\left(e_{j}, v_{2}, \ldots, v_{n}\right)$.
- Property: If we define n-1-dimensional new columns/vectors $\tilde{v}_{2, j}, \tilde{v}_{3, j}, \ldots$ by simply deleting the e_{j} components from v_{2}, \ldots and

Assuming existence: A crucial property (Expansion along the first column)

- Note that $\operatorname{det}\left(v_{1}, \ldots, v_{n}\right)=\operatorname{det}\left(\sum_{j} c_{j 1} e_{j}, v_{2}, \ldots, v_{n}\right)=$ $\sum_{j} c_{j 1} \operatorname{det}\left(e_{j}, v_{2}, \ldots, v_{n}\right)$.
- Property: If we define n-1-dimensional new columns/vectors $\tilde{v}_{2, j}, \tilde{v}_{3, j}, \ldots$ by simply deleting the e_{j} components from v_{2}, \ldots and replacing e_{j+1} with e_{j}, e_{j+2} with e_{j+1} etc,

Assuming existence: A crucial property (Expansion along

 the first column)- Note that $\operatorname{det}\left(v_{1}, \ldots, v_{n}\right)=\operatorname{det}\left(\sum_{j} c_{j 1} e_{j}, v_{2}, \ldots, v_{n}\right)=$ $\sum_{j} c_{j 1} \operatorname{det}\left(e_{j}, v_{2}, \ldots, v_{n}\right)$.
- Property: If we define n-1-dimensional new columns/vectors $\tilde{v}_{2, j}, \tilde{v}_{3, j}, \ldots$ by simply deleting the e_{j} components from v_{2}, \ldots and replacing e_{j+1} with e_{j}, e_{j+2} with e_{j+1} etc, then $\operatorname{det}\left(v_{1}, \ldots\right)=\sum_{j} c_{j 1}(-1)^{j+1} \operatorname{det}\left(\tilde{v}_{2, j}, \tilde{v}_{3, j}, \ldots\right)$.

Assuming existence: A crucial property (Expansion along

 the first column)- Note that $\operatorname{det}\left(v_{1}, \ldots, v_{n}\right)=\operatorname{det}\left(\sum_{j} c_{j 1} e_{j}, v_{2}, \ldots, v_{n}\right)=$ $\sum_{j} c_{j 1} \operatorname{det}\left(e_{j}, v_{2}, \ldots, v_{n}\right)$.
- Property: If we define n-1-dimensional new columns/vectors $\tilde{v}_{2, j}, \tilde{v}_{3, j}, \ldots$ by simply deleting the e_{j} components from v_{2}, \ldots and replacing e_{j+1} with e_{j}, e_{j+2} with e_{j+1} etc, then $\operatorname{det}\left(v_{1}, \ldots\right)=\sum_{j} c_{j 1}(-1)^{j+1} \operatorname{det}\left(\tilde{v}_{2, j}, \tilde{v}_{3, j}, \ldots\right)$. Such an $(n-1) \times(n-1)$ determinant is called a

Assuming existence: A crucial property (Expansion along

 the first column)- Note that $\operatorname{det}\left(v_{1}, \ldots, v_{n}\right)=\operatorname{det}\left(\sum_{j} c_{j 1} e_{j}, v_{2}, \ldots, v_{n}\right)=$ $\sum_{j} c_{j 1} \operatorname{det}\left(e_{j}, v_{2}, \ldots, v_{n}\right)$.
- Property: If we define n-1-dimensional new columns/vectors $\tilde{v}_{2, j}, \tilde{v}_{3, j}, \ldots$ by simply deleting the e_{j} components from v_{2}, \ldots and replacing e_{j+1} with e_{j}, e_{j+2} with e_{j+1} etc, then $\operatorname{det}\left(v_{1}, \ldots\right)=\sum_{j} c_{j 1}(-1)^{j+1} \operatorname{det}\left(\tilde{v}_{2, j}, \tilde{v}_{3, j}, \ldots\right)$. Such an $(n-1) \times(n-1)$ determinant is called a minor.

Assuming existence: A crucial property (Expansion along

 the first column)- Note that $\operatorname{det}\left(v_{1}, \ldots, v_{n}\right)=\operatorname{det}\left(\sum_{j} c_{j 1} e_{j}, v_{2}, \ldots, v_{n}\right)=$ $\sum_{j} c_{j 1} \operatorname{det}\left(e_{j}, v_{2}, \ldots, v_{n}\right)$.
- Property: If we define n-1-dimensional new columns/vectors $\tilde{v}_{2, j}, \tilde{v}_{3, j}, \ldots$ by simply deleting the e_{j} components from v_{2}, \ldots and replacing e_{j+1} with e_{j}, e_{j+2} with e_{j+1} etc, then $\operatorname{det}\left(v_{1}, \ldots\right)=\sum_{j} c_{j 1}(-1)^{j+1} \operatorname{det}\left(\tilde{v}_{2, j}, \tilde{v}_{3, j}, \ldots\right)$. Such an $(n-1) \times(n-1)$ determinant is called a minor.
- Note that

Assuming existence: A crucial property (Expansion along

 the first column)- Note that $\operatorname{det}\left(v_{1}, \ldots, v_{n}\right)=\operatorname{det}\left(\sum_{j} c_{j 1} e_{j}, v_{2}, \ldots, v_{n}\right)=$ $\sum_{j} c_{j 1} \operatorname{det}\left(e_{j}, v_{2}, \ldots, v_{n}\right)$.
- Property: If we define n-1-dimensional new columns/vectors $\tilde{v}_{2, j}, \tilde{v}_{3, j}, \ldots$ by simply deleting the e_{j} components from v_{2}, \ldots and replacing e_{j+1} with e_{j}, e_{j+2} with e_{j+1} etc, then $\operatorname{det}\left(v_{1}, \ldots\right)=\sum_{j} c_{j 1}(-1)^{j+1} \operatorname{det}\left(\tilde{v}_{2, j}, \tilde{v}_{3, j}, \ldots\right)$. Such an $(n-1) \times(n-1)$ determinant is called a minor.
- Note that by interchanging columns

Assuming existence: A crucial property (Expansion along

 the first column)- Note that $\operatorname{det}\left(v_{1}, \ldots, v_{n}\right)=\operatorname{det}\left(\sum_{j} c_{j 1} e_{j}, v_{2}, \ldots, v_{n}\right)=$ $\sum_{j} c_{j 1} \operatorname{det}\left(e_{j}, v_{2}, \ldots, v_{n}\right)$.
- Property: If we define n-1-dimensional new columns/vectors $\tilde{v}_{2, j}, \tilde{v}_{3, j}, \ldots$ by simply deleting the e_{j} components from v_{2}, \ldots and replacing e_{j+1} with e_{j}, e_{j+2} with e_{j+1} etc, then $\operatorname{det}\left(v_{1}, \ldots\right)=\sum_{j} c_{j 1}(-1)^{j+1} \operatorname{det}\left(\tilde{v}_{2, j}, \tilde{v}_{3, j}, \ldots\right)$. Such an $(n-1) \times(n-1)$ determinant is called a minor.
- Note that by interchanging columns a similar property holds for

Assuming existence: A crucial property (Expansion along

 the first column)- Note that $\operatorname{det}\left(v_{1}, \ldots, v_{n}\right)=\operatorname{det}\left(\sum_{j} c_{j 1} e_{j}, v_{2}, \ldots, v_{n}\right)=$ $\sum_{j} c_{j 1} \operatorname{det}\left(e_{j}, v_{2}, \ldots, v_{n}\right)$.
- Property: If we define n-1-dimensional new columns/vectors $\tilde{v}_{2, j}, \tilde{v}_{3, j}, \ldots$ by simply deleting the e_{j} components from v_{2}, \ldots and replacing e_{j+1} with e_{j}, e_{j+2} with e_{j+1} etc, then $\operatorname{det}\left(v_{1}, \ldots\right)=\sum_{j} c_{j 1}(-1)^{j+1} \operatorname{det}\left(\tilde{v}_{2, j}, \tilde{v}_{3, j}, \ldots\right)$. Such an $(n-1) \times(n-1)$ determinant is called a minor.
- Note that by interchanging columns a similar property holds for any column (

Assuming existence: A crucial property (Expansion along

 the first column)- Note that $\operatorname{det}\left(v_{1}, \ldots, v_{n}\right)=\operatorname{det}\left(\sum_{j} c_{j 1} e_{j}, v_{2}, \ldots, v_{n}\right)=$ $\sum_{j} c_{j 1} \operatorname{det}\left(e_{j}, v_{2}, \ldots, v_{n}\right)$.
- Property: If we define n-1-dimensional new columns/vectors $\tilde{v}_{2, j}, \tilde{v}_{3, j}, \ldots$ by simply deleting the e_{j} components from v_{2}, \ldots and replacing e_{j+1} with e_{j}, e_{j+2} with e_{j+1} etc, then $\operatorname{det}\left(v_{1}, \ldots\right)=\sum_{j} c_{j 1}(-1)^{j+1} \operatorname{det}\left(\tilde{v}_{2, j}, \tilde{v}_{3, j}, \ldots\right)$. Such an $(n-1) \times(n-1)$ determinant is called a minor.
- Note that by interchanging columns a similar property holds for any column (if we prove it for the first column).

A crucial property: Proof

A crucial property: Proof

- Fix j and

A crucial property: Proof

- Fix j and neglect the j subscript in $\tilde{v}_{2, j}, \ldots$.

A crucial property: Proof

- Fix j and neglect the j subscript in $\tilde{v}_{2, j}, \ldots$.
- By interchanges,

A crucial property: Proof

- Fix j and neglect the j subscript in $\tilde{v}_{2, j}, \ldots$.
- By interchanges,

$$
\operatorname{det}\left(e_{j}, v_{2}, \ldots\right)=(-1)^{j+1} \operatorname{det}\left(v_{2}, \ldots, v_{j-1}, e_{j}, v_{j+1}, \ldots\right)
$$

A crucial property: Proof

- Fix j and neglect the j subscript in $\tilde{v}_{2, j}, \ldots$.
- By interchanges, $\operatorname{det}\left(e_{j}, v_{2}, \ldots\right)=(-1)^{j+1} \operatorname{det}\left(v_{2}, \ldots, v_{j-1}, e_{j}, v_{j+1}, \ldots\right)$.
- Claim:

A crucial property: Proof

- Fix j and neglect the j subscript in $\tilde{v}_{2, j}, \ldots$.
- By interchanges,

$$
\operatorname{det}\left(e_{j}, v_{2}, \ldots\right)=(-1)^{j+1} \operatorname{det}\left(v_{2}, \ldots, v_{j-1}, e_{j}, v_{j+1}, \ldots\right)
$$

- Claim:

$$
\operatorname{det}\left(v_{2}, \ldots, v_{j-1}, e_{j}, v_{j+1}, \ldots\right)=\operatorname{det}\left(\tilde{v}_{2}, \ldots, \tilde{v}_{j-1}, \tilde{v}_{j+1}, \ldots\right)
$$

A crucial property: Proof

- Fix j and neglect the j subscript in $\tilde{v}_{2, j}, \ldots$.
- By interchanges,

$$
\operatorname{det}\left(e_{j}, v_{2}, \ldots\right)=(-1)^{j+1} \operatorname{det}\left(v_{2}, \ldots, v_{j-1}, e_{j}, v_{j+1}, \ldots\right)
$$

- Claim:
$\operatorname{det}\left(v_{2}, \ldots, v_{j-1}, e_{j}, v_{j+1}, \ldots\right)=\operatorname{det}\left(\tilde{v}_{2}, \ldots, \tilde{v}_{j-1}, \tilde{v}_{j+1}, \ldots\right)$.
This claim is enough to complete the proof.

A crucial property: Proof

- Fix j and neglect the j subscript in $\tilde{v}_{2, j}, \ldots$.
- By interchanges,

$$
\operatorname{det}\left(e_{j}, v_{2}, \ldots\right)=(-1)^{j+1} \operatorname{det}\left(v_{2}, \ldots, v_{j-1}, e_{j}, v_{j+1}, \ldots\right)
$$

- Claim:
$\operatorname{det}\left(v_{2}, \ldots, v_{j-1}, e_{j}, v_{j+1}, \ldots\right)=\operatorname{det}\left(\tilde{v}_{2}, \ldots, \tilde{v}_{j-1}, \tilde{v}_{j+1}, \ldots\right)$.
This claim is enough to complete the proof.
- Proof of claim: Note that $\operatorname{det}\left(\tilde{v}_{2}, \ldots, \tilde{v}_{j-1}, \tilde{v}_{j+1}, \ldots\right)=\sum_{l} \tilde{c}_{i_{1} 2} \ldots \operatorname{det}\left(e_{i_{1}}, e_{i_{2}}, \ldots\right)$

A crucial property: Proof

- Fix j and neglect the j subscript in $\tilde{v}_{2, j}, \ldots$.
- By interchanges,

$$
\operatorname{det}\left(e_{j}, v_{2}, \ldots\right)=(-1)^{j+1} \operatorname{det}\left(v_{2}, \ldots, v_{j-1}, e_{j}, v_{j+1}, \ldots\right)
$$

- Claim:
$\operatorname{det}\left(v_{2}, \ldots, v_{j-1}, e_{j}, v_{j+1}, \ldots\right)=\operatorname{det}\left(\tilde{v}_{2}, \ldots, \tilde{v}_{j-1}, \tilde{v}_{j+1}, \ldots\right)$. This claim is enough to complete the proof.
- Proof of claim: Note that $\operatorname{det}\left(\tilde{v}_{2}, \ldots, \tilde{v}_{j-1}, \tilde{v}_{j+1}, \ldots\right)=\sum_{l} \tilde{c}_{i_{1} 2} \ldots \operatorname{det}\left(e_{i_{1}}, e_{i_{2}}, \ldots\right)$ where i_{1}, i_{2}, \ldots is a permutation of $1,2, \ldots$

A crucial property: Proof

- Fix j and neglect the j subscript in $\tilde{v}_{2, j}, \ldots$.
- By interchanges,

$$
\operatorname{det}\left(e_{j}, v_{2}, \ldots\right)=(-1)^{j+1} \operatorname{det}\left(v_{2}, \ldots, v_{j-1}, e_{j}, v_{j+1}, \ldots\right)
$$

- Claim:
$\operatorname{det}\left(v_{2}, \ldots, v_{j-1}, e_{j}, v_{j+1}, \ldots\right)=\operatorname{det}\left(\tilde{v}_{2}, \ldots, \tilde{v}_{j-1}, \tilde{v}_{j+1}, \ldots\right)$. This claim is enough to complete the proof.
- Proof of claim: Note that $\operatorname{det}\left(\tilde{v}_{2}, \ldots, \tilde{v}_{j-1}, \tilde{v}_{j+1}, \ldots\right)=\sum_{l} \tilde{c}_{i_{1} 2} \ldots \operatorname{det}\left(e_{i_{1}}, e_{i_{2}}, \ldots\right)$ where i_{1}, i_{2}, \ldots is a permutation of $1,2, \ldots$. If we need K interchanges to

A crucial property: Proof

- Fix j and neglect the j subscript in $\tilde{v}_{2, j}, \ldots$.
- By interchanges,

$$
\operatorname{det}\left(e_{j}, v_{2}, \ldots\right)=(-1)^{j+1} \operatorname{det}\left(v_{2}, \ldots, v_{j-1}, e_{j}, v_{j+1}, \ldots\right)
$$

- Claim:
$\operatorname{det}\left(v_{2}, \ldots, v_{j-1}, e_{j}, v_{j+1}, \ldots\right)=\operatorname{det}\left(\tilde{v}_{2}, \ldots, \tilde{v}_{j-1}, \tilde{v}_{j+1}, \ldots\right)$. This claim is enough to complete the proof.
- Proof of claim: Note that $\operatorname{det}\left(\tilde{v}_{2}, \ldots, \tilde{v}_{j-1}, \tilde{v}_{j+1}, \ldots\right)=\sum_{l} \tilde{c}_{i_{1} 2} \ldots \operatorname{det}\left(e_{i_{1}}, e_{i_{2}}, \ldots\right)$ where i_{1}, i_{2}, \ldots is a permutation of $1,2, \ldots$. If we need K interchanges to bring i_{1}, \ldots, in ascending order,

A crucial property: Proof

- Fix j and neglect the j subscript in $\tilde{v}_{2, j}, \ldots$.
- By interchanges, $\operatorname{det}\left(e_{j}, v_{2}, \ldots\right)=(-1)^{j+1} \operatorname{det}\left(v_{2}, \ldots, v_{j-1}, e_{j}, v_{j+1}, \ldots\right)$.
- Claim: $\operatorname{det}\left(v_{2}, \ldots, v_{j-1}, e_{j}, v_{j+1}, \ldots\right)=\operatorname{det}\left(\tilde{v}_{2}, \ldots, \tilde{v}_{j-1}, \tilde{v}_{j+1}, \ldots\right)$. This claim is enough to complete the proof.
- Proof of claim: Note that $\operatorname{det}\left(\tilde{v}_{2}, \ldots, \tilde{v}_{j-1}, \tilde{v}_{j+1}, \ldots\right)=\sum_{l} \tilde{c}_{i_{1} 2} \ldots \operatorname{det}\left(e_{i_{1}}, e_{i_{2}}, \ldots\right)$ where i_{1}, i_{2}, \ldots is a permutation of $1,2, \ldots$. If we need K interchanges to bring i_{1}, \ldots, in ascending order, then $\operatorname{det}\left(e_{i_{1}}, e_{i_{2}}, \ldots\right)=(-1)^{K}$.

A crucial property: Proof

- Fix j and neglect the j subscript in $\tilde{v}_{2, j}, \ldots$.
- By interchanges, $\operatorname{det}\left(e_{j}, v_{2}, \ldots\right)=(-1)^{j+1} \operatorname{det}\left(v_{2}, \ldots, v_{j-1}, e_{j}, v_{j+1}, \ldots\right)$.
- Claim: $\operatorname{det}\left(v_{2}, \ldots, v_{j-1}, e_{j}, v_{j+1}, \ldots\right)=\operatorname{det}\left(\tilde{v}_{2}, \ldots, \tilde{v}_{j-1}, \tilde{v}_{j+1}, \ldots\right)$. This claim is enough to complete the proof.
- Proof of claim: Note that $\operatorname{det}\left(\tilde{v}_{2}, \ldots, \tilde{v}_{j-1}, \tilde{v}_{j+1}, \ldots\right)=\sum_{l} \tilde{c}_{i_{1} 2} \ldots \operatorname{det}\left(e_{i_{1}}, e_{i_{2}}, \ldots\right)$ where i_{1}, i_{2}, \ldots is a permutation of $1,2, \ldots$. If we need K interchanges to bring i_{1}, \ldots, in ascending order, then $\operatorname{det}\left(e_{i_{1}}, e_{i_{2}}, \ldots\right)=(-1)^{K}$. If the i_{1}, i_{2}, \ldots are in ascending order,

A crucial property: Proof

- Fix j and neglect the j subscript in $\tilde{v}_{2, j}, \ldots$.
- By interchanges, $\operatorname{det}\left(e_{j}, v_{2}, \ldots\right)=(-1)^{j+1} \operatorname{det}\left(v_{2}, \ldots, v_{j-1}, e_{j}, v_{j+1}, \ldots\right)$.
- Claim: $\operatorname{det}\left(v_{2}, \ldots, v_{j-1}, e_{j}, v_{j+1}, \ldots\right)=\operatorname{det}\left(\tilde{v}_{2}, \ldots, \tilde{v}_{j-1}, \tilde{v}_{j+1}, \ldots\right)$. This claim is enough to complete the proof.
- Proof of claim: Note that $\operatorname{det}\left(\tilde{v}_{2}, \ldots, \tilde{v}_{j-1}, \tilde{v}_{j+1}, \ldots\right)=\sum_{l} \tilde{c}_{i_{1} 2} \ldots \operatorname{det}\left(e_{i_{1}}, e_{i_{2}}, \ldots\right)$ where i_{1}, i_{2}, \ldots is a permutation of $1,2, \ldots$. If we need K interchanges to bring i_{1}, \ldots, in ascending order, then $\operatorname{det}\left(e_{i_{1}}, e_{i_{2}}, \ldots\right)=(-1)^{K}$. If the i_{1}, i_{2}, \ldots are in ascending order, then we are done with the claim and the proof of the property (why?).

Existence

Existence

- The construction of a determinant

Existence

- The construction of a determinant is done recursively/inductively.

Existence

- The construction of a determinant is done recursively/inductively.
- For a 1×1 matrix,

Existence

- The construction of a determinant is done recursively/inductively.
- For a 1×1 matrix, $\operatorname{define} \operatorname{det}(A)=a_{11}$.

Existence

- The construction of a determinant is done recursively/inductively.
- For a 1×1 matrix, $\operatorname{define} \operatorname{det}(A)=a_{11}$.
- Assume that for
- The construction of a determinant is done recursively/inductively.
- For a 1×1 matrix, $\operatorname{define} \operatorname{det}(A)=a_{11}$.
- Assume that for any $k \times k$ matrix $(k \leq n-1)$,
- The construction of a determinant is done recursively/inductively.
- For a 1×1 matrix, $\operatorname{define} \operatorname{det}(A)=a_{11}$.
- Assume that for any $k \times k$ matrix $(k \leq n-1)$, the det function exists.
- The construction of a determinant is done recursively/inductively.
- For a 1×1 matrix, $\operatorname{define} \operatorname{det}(A)=a_{11}$.
- Assume that for any $k \times k$ matrix $(k \leq n-1)$, the det function exists.
- It is natural to try to define
- The construction of a determinant is done recursively/inductively.
- For a 1×1 matrix, $\operatorname{define} \operatorname{det}(A)=a_{11}$.
- Assume that for any $k \times k$ matrix $(k \leq n-1)$, the det function exists.
- It is natural to try to define $\operatorname{det}\left(v_{1}, \ldots, v_{n}\right):=\sum_{j} c_{j 1}(-1)^{j+1} \operatorname{det}\left(\tilde{v}_{2, j}, \tilde{v}_{3, j}, \ldots\right)$. (
- The construction of a determinant is done recursively/inductively.
- For a 1×1 matrix, $\operatorname{define} \operatorname{det}(A)=a_{11}$.
- Assume that for any $k \times k$ matrix $(k \leq n-1)$, the det function exists.
- It is natural to try to define $\operatorname{det}\left(v_{1}, \ldots, v_{n}\right):=\sum_{j} c_{j 1}(-1)^{j+1} \operatorname{det}\left(\tilde{v}_{2, j}, \tilde{v}_{3, j}, \ldots\right)$. (Expansion along
- The construction of a determinant is done recursively/inductively.
- For a 1×1 matrix, $\operatorname{define} \operatorname{det}(A)=a_{11}$.
- Assume that for any $k \times k$ matrix $(k \leq n-1)$, the det function exists.
- It is natural to try to define $\operatorname{det}\left(v_{1}, \ldots, v_{n}\right):=\sum_{j} c_{j 1}(-1)^{j+1} \operatorname{det}\left(\tilde{v}_{2, j}, \tilde{v}_{3, j}, \ldots\right)$. (Expansion along the first column.)
- The construction of a determinant is done recursively/inductively.
- For a 1×1 matrix, $\operatorname{define} \operatorname{det}(A)=a_{11}$.
- Assume that for any $k \times k$ matrix $(k \leq n-1)$, the det function exists.
- It is natural to try to define $\operatorname{det}\left(v_{1}, \ldots, v_{n}\right):=\sum_{j} c_{j 1}(-1)^{j+1} \operatorname{det}\left(\tilde{v}_{2, j}, \tilde{v}_{3, j}, \ldots\right)$. (Expansion along the first column.)
- However,
- The construction of a determinant is done recursively/inductively.
- For a 1×1 matrix, $\operatorname{define} \operatorname{det}(A)=a_{11}$.
- Assume that for any $k \times k$ matrix $(k \leq n-1)$, the det function exists.
- It is natural to try to define $\operatorname{det}\left(v_{1}, \ldots, v_{n}\right):=\sum_{j} c_{j 1}(-1)^{j+1} \operatorname{det}\left(\tilde{v}_{2, j}, \tilde{v}_{3, j}, \ldots\right)$. (Expansion along the first column.)
- However, we shall try
- The construction of a determinant is done recursively/inductively.
- For a 1×1 matrix, $\operatorname{define} \operatorname{det}(A)=a_{11}$.
- Assume that for any $k \times k$ matrix $(k \leq n-1)$, the det function exists.
- It is natural to try to define $\operatorname{det}\left(v_{1}, \ldots, v_{n}\right):=\sum_{j} c_{j 1}(-1)^{j+1} \operatorname{det}\left(\tilde{v}_{2, j}, \tilde{v}_{3, j}, \ldots\right)$. (Expansion along the first column.)
- However, we shall try $\operatorname{det}\left(v_{1}, \ldots, v_{n}\right):=\sum_{j} c_{1 j}(-1)^{j+1} A_{1 j}$ where
- The construction of a determinant is done recursively/inductively.
- For a 1×1 matrix, $\operatorname{define} \operatorname{det}(A)=a_{11}$.
- Assume that for any $k \times k$ matrix $(k \leq n-1)$, the det function exists.
- It is natural to try to define $\operatorname{det}\left(v_{1}, \ldots, v_{n}\right):=\sum_{j} c_{j 1}(-1)^{j+1} \operatorname{det}\left(\tilde{v}_{2, j}, \tilde{v}_{3, j}, \ldots\right)$. (Expansion along the first column.)
- However, we shall try $\operatorname{det}\left(v_{1}, \ldots, v_{n}\right):=\sum_{j} c_{1 j}(-1)^{j+1} A_{1 j}$ where the minor $A_{1 j}$ is obtained by
- The construction of a determinant is done recursively/inductively.
- For a 1×1 matrix, $\operatorname{define} \operatorname{det}(A)=a_{11}$.
- Assume that for any $k \times k$ matrix $(k \leq n-1)$, the det function exists.
- It is natural to try to define $\operatorname{det}\left(v_{1}, \ldots, v_{n}\right):=\sum_{j} c_{j 1}(-1)^{j+1} \operatorname{det}\left(\tilde{v}_{2, j}, \tilde{v}_{3, j}, \ldots\right)$. (Expansion along the first column.)
- However, we shall try $\operatorname{det}\left(v_{1}, \ldots, v_{n}\right):=\sum_{j} c_{1 j}(-1)^{j+1} A_{1 j}$ where the minor $A_{1 j}$ is obtained by deleting the first row and
- The construction of a determinant is done recursively/inductively.
- For a 1×1 matrix, $\operatorname{define} \operatorname{det}(A)=a_{11}$.
- Assume that for any $k \times k$ matrix $(k \leq n-1)$, the det function exists.
- It is natural to try to define $\operatorname{det}\left(v_{1}, \ldots, v_{n}\right):=\sum_{j} c_{j 1}(-1)^{j+1} \operatorname{det}\left(\tilde{v}_{2, j}, \tilde{v}_{3, j}, \ldots\right)$. (Expansion along the first column.)
- However, we shall try $\operatorname{det}\left(v_{1}, \ldots, v_{n}\right):=\sum_{j} c_{1 j}(-1)^{j+1} A_{1 j}$ where the minor $A_{1 j}$ is obtained by deleting the first row and the $j^{\text {th }}$ column. (
- The construction of a determinant is done recursively/inductively.
- For a 1×1 matrix, $\operatorname{define} \operatorname{det}(A)=a_{11}$.
- Assume that for any $k \times k$ matrix $(k \leq n-1)$, the det function exists.
- It is natural to try to define $\operatorname{det}\left(v_{1}, \ldots, v_{n}\right):=\sum_{j} c_{j 1}(-1)^{j+1} \operatorname{det}\left(\tilde{v}_{2, j}, \tilde{v}_{3, j}, \ldots\right)$. (Expansion along the first column.)
- However, we shall try $\operatorname{det}\left(v_{1}, \ldots, v_{n}\right):=\sum_{j} c_{1 j}(-1)^{j+1} A_{1 j}$ where the minor $A_{1 j}$ is obtained by deleting the first row and the $j^{\text {th }}$ column. (Expansion along
- The construction of a determinant is done recursively/inductively.
- For a 1×1 matrix, $\operatorname{define} \operatorname{det}(A)=a_{11}$.
- Assume that for any $k \times k$ matrix $(k \leq n-1)$, the det function exists.
- It is natural to try to define $\operatorname{det}\left(v_{1}, \ldots, v_{n}\right):=\sum_{j} c_{j 1}(-1)^{j+1} \operatorname{det}\left(\tilde{v}_{2, j}, \tilde{v}_{3, j}, \ldots\right)$. (Expansion along the first column.)
- However, we shall try $\operatorname{det}\left(v_{1}, \ldots, v_{n}\right):=\sum_{j} c_{1 j}(-1)^{j+1} A_{1 j}$ where the minor $A_{1 j}$ is obtained by deleting the first row and the $j^{\text {th }}$ column. (Expansion along the first row.)
- The construction of a determinant is done recursively/inductively.
- For a 1×1 matrix, $\operatorname{define} \operatorname{det}(A)=a_{11}$.
- Assume that for any $k \times k$ matrix $(k \leq n-1)$, the det function exists.
- It is natural to try to define $\operatorname{det}\left(v_{1}, \ldots, v_{n}\right):=\sum_{j} c_{j 1}(-1)^{j+1} \operatorname{det}\left(\tilde{v}_{2, j}, \tilde{v}_{3, j}, \ldots\right)$. (Expansion along the first column.)
- However, we shall try $\operatorname{det}\left(v_{1}, \ldots, v_{n}\right):=\sum_{j} c_{1 j}(-1)^{j+1} A_{1 j}$ where the minor $A_{1 j}$ is obtained by deleting the first row and the $j^{\text {th }}$ column. (Expansion along the first row.) We simply need to check that
- The construction of a determinant is done recursively/inductively.
- For a 1×1 matrix, $\operatorname{define} \operatorname{det}(A)=a_{11}$.
- Assume that for any $k \times k$ matrix $(k \leq n-1)$, the det function exists.
- It is natural to try to define $\operatorname{det}\left(v_{1}, \ldots, v_{n}\right):=\sum_{j} c_{j 1}(-1)^{j+1} \operatorname{det}\left(\tilde{v}_{2, j}, \tilde{v}_{3, j}, \ldots\right)$. (Expansion along the first column.)
- However, we shall try $\operatorname{det}\left(v_{1}, \ldots, v_{n}\right):=\sum_{j} c_{1 j}(-1)^{j+1} A_{1 j}$ where the minor $A_{1 j}$ is obtained by deleting the first row and the $j^{t h}$ column. (Expansion along the first row.) We simply need to check that this definition satisfies
- The construction of a determinant is done recursively/inductively.
- For a 1×1 matrix, $\operatorname{define} \operatorname{det}(A)=a_{11}$.
- Assume that for any $k \times k$ matrix $(k \leq n-1)$, the det function exists.
- It is natural to try to define $\operatorname{det}\left(v_{1}, \ldots, v_{n}\right):=\sum_{j} c_{j 1}(-1)^{j+1} \operatorname{det}\left(\tilde{v}_{2, j}, \tilde{v}_{3, j}, \ldots\right)$. (Expansion along the first column.)
- However, we shall try $\operatorname{det}\left(v_{1}, \ldots, v_{n}\right):=\sum_{j} c_{1 j}(-1)^{j+1} A_{1 j}$ where the minor $A_{1 j}$ is obtained by deleting the first row and the $j^{\text {th }}$ column. (Expansion along the first row.) We simply need to check that this definition satisfies all the axioms,
- The construction of a determinant is done recursively/inductively.
- For a 1×1 matrix, $\operatorname{define} \operatorname{det}(A)=a_{11}$.
- Assume that for any $k \times k$ matrix $(k \leq n-1)$, the det function exists.
- It is natural to try to define $\operatorname{det}\left(v_{1}, \ldots, v_{n}\right):=\sum_{j} c_{j 1}(-1)^{j+1} \operatorname{det}\left(\tilde{v}_{2, j}, \tilde{v}_{3, j}, \ldots\right)$. (Expansion along the first column.)
- However, we shall try $\operatorname{det}\left(v_{1}, \ldots, v_{n}\right):=\sum_{j} c_{1 j}(-1)^{j+1} A_{1 j}$ where the minor $A_{1 j}$ is obtained by deleting the first row and the $j^{t h}$ column. (Expansion along the first row.) We simply need to check that this definition satisfies all the axioms, thus completing the induction step.

Verification of the axioms

Verification of the axioms

- Scaling:

Verification of the axioms

- Scaling: If $v_{i} \rightarrow t v_{i}$,

Verification of the axioms

- Scaling: If $v_{i} \rightarrow t v_{i}$, for $j \neq i$ each of the $A_{1 j}$

Verification of the axioms

- Scaling: If $v_{i} \rightarrow t v_{i}$, for $j \neq i$ each of the $A_{1 j}$ scales by t

Verification of the axioms

- Scaling: If $v_{i} \rightarrow t v_{i}$, for $j \neq i$ each of the $A_{1 j}$ scales by t by the induction hypothesis.

Verification of the axioms

- Scaling: If $v_{i} \rightarrow t v_{i}$, for $j \neq i$ each of the $A_{1 j}$ scales by t by the induction hypothesis. For $j=i$

Verification of the axioms

- Scaling: If $v_{i} \rightarrow t v_{i}$, for $j \neq i$ each of the $A_{1 j}$ scales by t by the induction hypothesis. For $j=i A_{1 i}$ remains unchanged by $c_{1 i}$ scales by t.

Verification of the axioms

- Scaling: If $v_{i} \rightarrow t v_{i}$, for $j \neq i$ each of the $A_{1 j}$ scales by t by the induction hypothesis. For $j=i A_{1 i}$ remains unchanged by $c_{1 i}$ scales by t. Thus every term

Verification of the axioms

- Scaling: If $v_{i} \rightarrow t v_{i}$, for $j \neq i$ each of the $A_{1 j}$ scales by t by the induction hypothesis. For $j=i A_{1 i}$ remains unchanged by $c_{1 i}$ scales by t. Thus every term in the definition

Verification of the axioms

- Scaling: If $v_{i} \rightarrow t v_{i}$, for $j \neq i$ each of the $A_{1 j}$ scales by t by the induction hypothesis. For $j=i A_{1 i}$ remains unchanged by $c_{1 i}$ scales by t. Thus every term in the definition scales by t.

Verification of the axioms

- Scaling: If $v_{i} \rightarrow t v_{i}$, for $j \neq i$ each of the $A_{1 j}$ scales by t by the induction hypothesis. For $j=i A_{1 i}$ remains unchanged by $c_{1 i}$ scales by t. Thus every term in the definition scales by t.
- Linearity:

Verification of the axioms

- Scaling: If $v_{i} \rightarrow t v_{i}$, for $j \neq i$ each of the $A_{1 j}$ scales by t by the induction hypothesis. For $j=i A_{1 i}$ remains unchanged by $c_{1 i}$ scales by t. Thus every term in the definition scales by t.
- Linearity: If $v_{i} \rightarrow v_{i}+w$,

Verification of the axioms

- Scaling: If $v_{i} \rightarrow t v_{i}$, for $j \neq i$ each of the $A_{1 j}$ scales by t by the induction hypothesis. For $j=i A_{1 i}$ remains unchanged by $c_{1 i}$ scales by t. Thus every term in the definition scales by t.
- Linearity: If $v_{i} \rightarrow v_{i}+w$, for $j \neq i$ as before, $A_{1 j}$ is linear.

Verification of the axioms

- Scaling: If $v_{i} \rightarrow t v_{i}$, for $j \neq i$ each of the $A_{1 j}$ scales by t by the induction hypothesis. For $j=i A_{1 i}$ remains unchanged by $c_{1 i}$ scales by t. Thus every term in the definition scales by t.
- Linearity: If $v_{i} \rightarrow v_{i}+w$, for $j \neq i$ as before, $A_{1 j}$ is linear. For $j=i$, as before, the coefficient is linear.

Verification of the axioms

- Scaling: If $v_{i} \rightarrow t v_{i}$, for $j \neq i$ each of the $A_{1 j}$ scales by t by the induction hypothesis. For $j=i A_{1 i}$ remains unchanged by $c_{1 i}$ scales by t. Thus every term in the definition scales by t.
- Linearity: If $v_{i} \rightarrow v_{i}+w$, for $j \neq i$ as before, $A_{1 j}$ is linear. For $j=i$, as before, the coefficient is linear. We are done.

Verification of the axioms

- Scaling: If $v_{i} \rightarrow t v_{i}$, for $j \neq i$ each of the $A_{1 j}$ scales by t by the induction hypothesis. For $j=i A_{1 i}$ remains unchanged by $c_{1 i}$ scales by t. Thus every term in the definition scales by t.
- Linearity: If $v_{i} \rightarrow v_{i}+w$, for $j \neq i$ as before, $A_{1 j}$ is linear. For $j=i$, as before, the coefficient is linear. We are done.
- Normalisation:

Verification of the axioms

- Scaling: If $v_{i} \rightarrow t v_{i}$, for $j \neq i$ each of the $A_{1 j}$ scales by t by the induction hypothesis. For $j=i A_{1 i}$ remains unchanged by $c_{1 i}$ scales by t. Thus every term in the definition scales by t.
- Linearity: If $v_{i} \rightarrow v_{i}+w$, for $j \neq i$ as before, $A_{1 j}$ is linear. For $j=i$, as before, the coefficient is linear. We are done.
- Normalisation: $\operatorname{det}\left(e_{1}, \ldots, e_{n}\right)=A_{11}=1$ by the induction hypothesis.

Verification of the axioms

- Scaling: If $v_{i} \rightarrow t v_{i}$, for $j \neq i$ each of the $A_{1 j}$ scales by t by the induction hypothesis. For $j=i A_{1 i}$ remains unchanged by $c_{1 i}$ scales by t. Thus every term in the definition scales by t.
- Linearity: If $v_{i} \rightarrow v_{i}+w$, for $j \neq i$ as before, $A_{1 j}$ is linear. For $j=i$, as before, the coefficient is linear. We are done.
- Normalisation: $\operatorname{det}\left(e_{1}, \ldots, e_{n}\right)=A_{11}=1$ by the induction hypothesis.
- Alternating:

Verification of the axioms

- Scaling: If $v_{i} \rightarrow t v_{i}$, for $j \neq i$ each of the $A_{1 j}$ scales by t by the induction hypothesis. For $j=i A_{1 i}$ remains unchanged by $c_{1 i}$ scales by t. Thus every term in the definition scales by t.
- Linearity: If $v_{i} \rightarrow v_{i}+w$, for $j \neq i$ as before, $A_{1 j}$ is linear. For $j=i$, as before, the coefficient is linear. We are done.
- Normalisation: $\operatorname{det}\left(e_{1}, \ldots, e_{n}\right)=A_{11}=1$ by the induction hypothesis.
- Alternating: It is enough to prove

Verification of the axioms

- Scaling: If $v_{i} \rightarrow t v_{i}$, for $j \neq i$ each of the $A_{1 j}$ scales by t by the induction hypothesis. For $j=i A_{1 i}$ remains unchanged by $c_{1 i}$ scales by t. Thus every term in the definition scales by t.
- Linearity: If $v_{i} \rightarrow v_{i}+w$, for $j \neq i$ as before, $A_{1 j}$ is linear. For $j=i$, as before, the coefficient is linear. We are done.
- Normalisation: $\operatorname{det}\left(e_{1}, \ldots, e_{n}\right)=A_{11}=1$ by the induction hypothesis.
- Alternating: It is enough to prove this property for adjacent columns (why?)

Verification of the axioms

- Scaling: If $v_{i} \rightarrow t v_{i}$, for $j \neq i$ each of the $A_{1 j}$ scales by t by the induction hypothesis. For $j=i A_{1 i}$ remains unchanged by $c_{1 i}$ scales by t. Thus every term in the definition scales by t.
- Linearity: If $v_{i} \rightarrow v_{i}+w$, for $j \neq i$ as before, $A_{1 j}$ is linear. For $j=i$, as before, the coefficient is linear. We are done.
- Normalisation: $\operatorname{det}\left(e_{1}, \ldots, e_{n}\right)=A_{11}=1$ by the induction hypothesis.
- Alternating: It is enough to prove this property for adjacent columns (why?) So if $v_{i}=v_{i+1}=v$,

Verification of the axioms

- Scaling: If $v_{i} \rightarrow t v_{i}$, for $j \neq i$ each of the $A_{1 j}$ scales by t by the induction hypothesis. For $j=i A_{1 i}$ remains unchanged by $c_{1 i}$ scales by t. Thus every term in the definition scales by t.
- Linearity: If $v_{i} \rightarrow v_{i}+w$, for $j \neq i$ as before, $A_{1 j}$ is linear. For $j=i$, as before, the coefficient is linear. We are done.
- Normalisation: $\operatorname{det}\left(e_{1}, \ldots, e_{n}\right)=A_{11}=1$ by the induction hypothesis.
- Alternating: It is enough to prove this property for adjacent columns (why?) So if $v_{i}=v_{i+1}=v$, any minor that

Verification of the axioms

- Scaling: If $v_{i} \rightarrow t v_{i}$, for $j \neq i$ each of the $A_{1 j}$ scales by t by the induction hypothesis. For $j=i A_{1 i}$ remains unchanged by $c_{1 i}$ scales by t. Thus every term in the definition scales by t.
- Linearity: If $v_{i} \rightarrow v_{i}+w$, for $j \neq i$ as before, $A_{1 j}$ is linear. For $j=i$, as before, the coefficient is linear. We are done.
- Normalisation: $\operatorname{det}\left(e_{1}, \ldots, e_{n}\right)=A_{11}=1$ by the induction hypothesis.
- Alternating: It is enough to prove this property for adjacent columns (why?) So if $v_{i}=v_{i+1}=v$, any minor that contains v_{i} AND v_{i+1}
- Scaling: If $v_{i} \rightarrow t v_{i}$, for $j \neq i$ each of the $A_{1 j}$ scales by t by the induction hypothesis. For $j=i A_{1 i}$ remains unchanged by $c_{1 i}$ scales by t. Thus every term in the definition scales by t.
- Linearity: If $v_{i} \rightarrow v_{i}+w$, for $j \neq i$ as before, $A_{1 j}$ is linear. For $j=i$, as before, the coefficient is linear. We are done.
- Normalisation: $\operatorname{det}\left(e_{1}, \ldots, e_{n}\right)=A_{11}=1$ by the induction hypothesis.
- Alternating: It is enough to prove this property for adjacent columns (why?) So if $v_{i}=v_{i+1}=v$, any minor that contains v_{i} AND v_{i+1} is 0 by the induction hypothesis.
- Scaling: If $v_{i} \rightarrow t v_{i}$, for $j \neq i$ each of the $A_{1 j}$ scales by t by the induction hypothesis. For $j=i A_{1 i}$ remains unchanged by $c_{1 i}$ scales by t. Thus every term in the definition scales by t.
- Linearity: If $v_{i} \rightarrow v_{i}+w$, for $j \neq i$ as before, $A_{1 j}$ is linear. For $j=i$, as before, the coefficient is linear. We are done.
- Normalisation: $\operatorname{det}\left(e_{1}, \ldots, e_{n}\right)=A_{11}=1$ by the induction hypothesis.
- Alternating: It is enough to prove this property for adjacent columns (why?) So if $v_{i}=v_{i+1}=v$, any minor that contains v_{i} AND v_{i+1} is 0 by the induction hypothesis. The only minors that remain are
- Scaling: If $v_{i} \rightarrow t v_{i}$, for $j \neq i$ each of the $A_{1 j}$ scales by t by the induction hypothesis. For $j=i A_{1 i}$ remains unchanged by $c_{1 i}$ scales by t. Thus every term in the definition scales by t.
- Linearity: If $v_{i} \rightarrow v_{i}+w$, for $j \neq i$ as before, $A_{1 j}$ is linear. For $j=i$, as before, the coefficient is linear. We are done.
- Normalisation: $\operatorname{det}\left(e_{1}, \ldots, e_{n}\right)=A_{11}=1$ by the induction hypothesis.
- Alternating: It is enough to prove this property for adjacent columns (why?) So if $v_{i}=v_{i+1}=v$, any minor that contains v_{i} AND v_{i+1} is 0 by the induction hypothesis. The only minors that remain are $A_{1 i}, A_{1 i+1}$.
- Scaling: If $v_{i} \rightarrow t v_{i}$, for $j \neq i$ each of the $A_{1 j}$ scales by t by the induction hypothesis. For $j=i A_{1 i}$ remains unchanged by $c_{1 i}$ scales by t. Thus every term in the definition scales by t.
- Linearity: If $v_{i} \rightarrow v_{i}+w$, for $j \neq i$ as before, $A_{1 j}$ is linear. For $j=i$, as before, the coefficient is linear. We are done.
- Normalisation: $\operatorname{det}\left(e_{1}, \ldots, e_{n}\right)=A_{11}=1$ by the induction hypothesis.
- Alternating: It is enough to prove this property for adjacent columns (why?) So if $v_{i}=v_{i+1}=v$, any minor that contains v_{i} AND v_{i+1} is 0 by the induction hypothesis. The only minors that remain are $A_{1 i}, A_{1 i+1}$. So $\operatorname{det}\left(v_{1}, \ldots, v, v, \ldots\right)=(-1)^{i}\left(-c_{1 i} A_{1 i}+c_{1 i+1} A_{1 i+1}\right)$.
- Scaling: If $v_{i} \rightarrow t v_{i}$, for $j \neq i$ each of the $A_{1 j}$ scales by t by the induction hypothesis. For $j=i A_{1 i}$ remains unchanged by $c_{1 i}$ scales by t. Thus every term in the definition scales by t.
- Linearity: If $v_{i} \rightarrow v_{i}+w$, for $j \neq i$ as before, $A_{1 j}$ is linear. For $j=i$, as before, the coefficient is linear. We are done.
- Normalisation: $\operatorname{det}\left(e_{1}, \ldots, e_{n}\right)=A_{11}=1$ by the induction hypothesis.
- Alternating: It is enough to prove this property for adjacent columns (why?) So if $v_{i}=v_{i+1}=v$, any minor that contains v_{i} AND v_{i+1} is 0 by the induction hypothesis. The only minors that remain are $A_{1 i}, A_{1 i+1}$. So $\operatorname{det}\left(v_{1}, \ldots, v, v, \ldots\right)=(-1)^{i}\left(-c_{1 i} A_{1 i}+c_{1 i+1} A_{1 i+1}\right)$. But $c_{1 i}=c_{1 i+1}$ and
- Scaling: If $v_{i} \rightarrow t v_{i}$, for $j \neq i$ each of the $A_{1 j}$ scales by t by the induction hypothesis. For $j=i A_{1 i}$ remains unchanged by $c_{1 i}$ scales by t. Thus every term in the definition scales by t.
- Linearity: If $v_{i} \rightarrow v_{i}+w$, for $j \neq i$ as before, $A_{1 j}$ is linear. For $j=i$, as before, the coefficient is linear. We are done.
- Normalisation: $\operatorname{det}\left(e_{1}, \ldots, e_{n}\right)=A_{11}=1$ by the induction hypothesis.
- Alternating: It is enough to prove this property for adjacent columns (why?) So if $v_{i}=v_{i+1}=v$, any minor that contains v_{i} AND v_{i+1} is 0 by the induction hypothesis. The only minors that remain are $A_{1 i}, A_{1 i+1}$. So $\operatorname{det}\left(v_{1}, \ldots, v, v, \ldots\right)=(-1)^{i}\left(-c_{1 i} A_{1 i}+c_{1 i+1} A_{1 i+1}\right)$. But $c_{1 i}=c_{1 i+1}$ and $A_{1 i}=A_{1 i+1}$.
- Scaling: If $v_{i} \rightarrow t v_{i}$, for $j \neq i$ each of the $A_{1 j}$ scales by t by the induction hypothesis. For $j=i A_{1 i}$ remains unchanged by $c_{1 i}$ scales by t. Thus every term in the definition scales by t.
- Linearity: If $v_{i} \rightarrow v_{i}+w$, for $j \neq i$ as before, $A_{1 j}$ is linear. For $j=i$, as before, the coefficient is linear. We are done.
- Normalisation: $\operatorname{det}\left(e_{1}, \ldots, e_{n}\right)=A_{11}=1$ by the induction hypothesis.
- Alternating: It is enough to prove this property for adjacent columns (why?) So if $v_{i}=v_{i+1}=v$, any minor that contains v_{i} AND v_{i+1} is 0 by the induction hypothesis. The only minors that remain are $A_{1 i}, A_{1 i+1}$. So $\operatorname{det}\left(v_{1}, \ldots, v, v, \ldots\right)=(-1)^{i}\left(-c_{1 i} A_{1 i}+c_{1 i+1} A_{1 i+1}\right)$. But $c_{1 i}=c_{1 i+1}$ and $A_{1 i}=A_{1 i+1}$. Hence we are done.

