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Recap

Motivated determinants through the (signed) volume.

Defined them as multilinear alternating normalised maps
taking tuples of vectors to scalars.

Proved uniqueness of the determinant function.
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Assuming existence: 2× 2 determinants

Consider

∣∣∣∣ a b
c d

∣∣∣∣
= a

∣∣∣∣ 1 b
0 d

∣∣∣∣+ c

∣∣∣∣ 0 b
1 d

∣∣∣∣
which can be column-transformed to

= ad

∣∣∣∣ 1 0
0 1

∣∣∣∣+ bc

∣∣∣∣ 0 1
1 0

∣∣∣∣.
which equals ad − bc.
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Assuming existence: Upper triangular matrices

We want to compute det(U) where

U =


u11 u12 . . . u1n
0 u22 . . . u2n
...

...
. . .

...
0 0 . . . unn

.

We claim that det(U) = u11u22 . . .. We shall prove this claim
by induction on n. For n = 1, we are done. Assume truth for
n − 1.

By scaling, det(U) = u11 det(U ′) where U ′ has e1 in the first
column. By multilinearity, i.e., column transformations, we
can “clear” the first row.
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Assuming existence: Upper-triangular matrices

det(e1, v2, . . .) =
∑

J cj22cj33 . . . det(e1, ej2 , . . .). Suppose we
need KJ interchanges of columns to permute j2, j3, . . . to
2, 3, . . . n − 1.

Then det(e1, v2, . . .) =
∑

J cj22cj33 . . . (−1)KJ det(e1, e2, . . .)
which is

∑
J cj22 . . . (−1)KJ = det(v2, . . .).

Thus det(U) = u11 det(U ′′) where U ′′ is the (n − 1)× (n − 1)
matrix obtained by deleting the first row and first column. It
is upper triangular.

We are done by the induction hypothesis.
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Assuming existence: A crucial property (Expansion along
the first column)

Note that det(v1, . . . , vn) = det(
∑

j cj1ej , v2, . . . , vn) =∑
j cj1 det(ej , v2, . . . , vn).

Property: If we define n − 1-dimensional new columns/vectors
ṽ2,j , ṽ3,j , . . . by simply deleting the ej components from v2, . . .
and replacing ej+1 with ej , ej+2 with ej+1 etc, then
det(v1, . . .) =

∑
j cj1(−1)j+1 det(ṽ2,j , ṽ3,j , . . .). Such an

(n − 1)× (n − 1) determinant is called a minor.

Note that by interchanging columns a similar property holds
for any column (if we prove it for the first column).
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ṽ2,j , ṽ3,j , . . . by simply deleting the ej components from v2, . . .
and replacing ej+1 with ej , ej+2 with ej+1 etc, then
det(v1, . . .) =

∑
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A crucial property: Proof

Fix j and neglect the j subscript in ṽ2,j , . . ..

By interchanges,
det(ej , v2, . . .) = (−1)j+1 det(v2, . . . , vj−1, ej , vj+1, . . .).

Claim:
det(v2, . . . , vj−1, ej , vj+1, . . .) = det(ṽ2, . . . , ṽj−1, ṽj+1, . . .).
This claim is enough to complete the proof.

Proof of claim: Note that
det(ṽ2, . . . , ṽj−1, ṽj+1, . . .) =

∑
I c̃i12 . . . det(ei1 , ei2 , . . .) where

i1, i2, . . . is a permutation of 1, 2, . . .. If we need K
interchanges to bring i1, . . . , in ascending order, then
det(ei1 , ei2 , . . .) = (−1)K . If the i1, i2, . . . are in ascending
order, then we are done with the claim and the proof of the
property (why?).
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By interchanges,
det(ej , v2, . . .) = (−1)j+1 det(v2, . . . , vj−1, ej , vj+1, . . .).

Claim:
det(v2, . . . , vj−1, ej , vj+1, . . .) = det(ṽ2, . . . , ṽj−1, ṽj+1, . . .).
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Existence

The construction of a determinant is done
recursively/inductively.

For a 1× 1 matrix, define det(A) = a11.

Assume that for any k × k matrix (k ≤ n − 1), the det
function exists.

It is natural to try to define
det(v1, . . . , vn) :=

∑
j cj1(−1)j+1 det(ṽ2,j , ṽ3,j , . . .).

(Expansion along the first column.)

However, we shall try det(v1, . . . , vn) :=
∑

j c1j(−1)j+1A1j

where the minor A1j is obtained by deleting the first row and
the j th column. (Expansion along the first row.) We simply
need to check that this definition satisfies all the axioms, thus
completing the induction step.
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Verification of the axioms

Scaling: If vi → tvi , for j 6= i each of the A1j scales by t by
the induction hypothesis. For j = i A1i remains unchanged by
c1i scales by t. Thus every term in the definition scales by t.

Linearity: If vi → vi + w , for j 6= i as before, A1j is linear. For
j = i , as before, the coefficient is linear. We are done.

Normalisation: det(e1, . . . , en) = A11 = 1 by the induction
hypothesis.

Alternating: It is enough to prove this property for adjacent
columns (why?) So if vi = vi+1 = v , any minor that contains
vi AND vi+1 is 0 by the induction hypothesis. The only
minors that remain are A1i ,A1i+1. So
det(v1, . . . , v , v , . . .) = (−1)i (−c1iA1i + c1i+1A1i+1). But
c1i = c1i+1 and A1i = A1i+1. Hence we are done.
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