Lecture 10 - UM 102 (Spring 2021)

Vamsi Pritham Pingali

IISc

Recap

★ 문 ► ★ 문 ►

æ

• Motivated determinants

æ

Ξ.

• Motivated determinants through the (signed) volume.

æ

- Motivated determinants through the (signed) volume.
- Defined them as

э

- Motivated determinants through the (signed) volume.
- Defined them as multilinear

- Motivated determinants through the (signed) volume.
- Defined them as multilinear alternating

- Motivated determinants through the (signed) volume.
- Defined them as multilinear alternating normalised

- Motivated determinants through the (signed) volume.
- Defined them as multilinear alternating normalised maps taking tuples of vectors to scalars.

- Motivated determinants through the (signed) volume.
- Defined them as multilinear alternating normalised maps taking tuples of vectors to scalars.
- Proved uniqueness of the determinant function.

Assuming existence: 2×2 determinants

Assuming existence: 2×2 determinants

• Consider
$$\begin{vmatrix} a & b \\ c & d \end{vmatrix}$$

• Consider
$$\begin{vmatrix} a & b \\ c & d \end{vmatrix}$$

• $= a \begin{vmatrix} 1 & b \\ 0 & d \end{vmatrix} + c \begin{vmatrix} 0 & b \\ 1 & d \end{vmatrix}$

• Consider
$$\begin{vmatrix} a & b \\ c & d \end{vmatrix}$$

• $= a \begin{vmatrix} 1 & b \\ 0 & d \end{vmatrix} + c \begin{vmatrix} 0 & b \\ 1 & d \end{vmatrix}$
• which can be column-transformed to
 $= ad \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} + bc \begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix}$.

< ≣ >

æ

• Consider
$$\begin{vmatrix} a & b \\ c & d \end{vmatrix}$$

• $= a \begin{vmatrix} 1 & b \\ 0 & d \end{vmatrix} + c \begin{vmatrix} 0 & b \\ 1 & d \end{vmatrix}$
• which can be column-transformed to
 $= ad \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} + bc \begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix}$.
• which equals $ad - bc$.

æ

$$U = \begin{bmatrix} u_{11} & u_{12} & \dots & u_{1n} \\ 0 & u_{22} & \dots & u_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & u_{nn} \end{bmatrix}$$

• We want to compute det(U) where

$$U = \begin{bmatrix} u_{11} & u_{12} & \dots & u_{1n} \\ 0 & u_{22} & \dots & u_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & u_{nn} \end{bmatrix}.$$

• We claim that $det(U) = u_{11}u_{22}\ldots$

• We want to compute det(U) where

$$U = \begin{bmatrix} u_{11} & u_{12} & \dots & u_{1n} \\ 0 & u_{22} & \dots & u_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & u_{nn} \end{bmatrix}.$$

• We claim that $det(U) = u_{11}u_{22}...$ We shall prove this claim

4/9

• We want to compute det(U) where

 $U = \begin{bmatrix} u_{11} & u_{12} & \dots & u_{1n} \\ 0 & u_{22} & \dots & u_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & u_{nn} \end{bmatrix}.$

• We claim that $det(U) = u_{11}u_{22}...$ We shall prove this claim by induction on n.

4/9

 $U = \begin{bmatrix} u_{11} & u_{12} & \dots & u_{1n} \\ 0 & u_{22} & \dots & u_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & u_{nn} \end{bmatrix}.$

• We claim that det(U) = $u_{11}u_{22}...$ We shall prove this claim by induction on *n*. For n = 1, we are done.

4/9

$$U = \begin{bmatrix} u_{11} & u_{12} & \dots & u_{1n} \\ 0 & u_{22} & \dots & u_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & u_{nn} \end{bmatrix}$$

• We claim that $det(U) = u_{11}u_{22}...$ We shall prove this claim by induction on n. For n = 1, we are done. Assume truth for n - 1.

$$U = \begin{bmatrix} u_{11} & u_{12} & \dots & u_{1n} \\ 0 & u_{22} & \dots & u_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & u_{nn} \end{bmatrix}$$

- We claim that $det(U) = u_{11}u_{22}...$ We shall prove this claim by induction on n. For n = 1, we are done. Assume truth for n 1.
- By scaling, $\det(U) = u_{11} \det(U')$

<i>U</i> =	<i>u</i> ₁₁	u_{12}		u _{1n}	
	0	u ₂₂		U _{2n}	
	÷	÷	•••	÷	.
	0	0		u _{nn}	

- We claim that det(U) = u₁₁u₂₂.... We shall prove this claim by induction on n. For n = 1, we are done. Assume truth for n − 1.
- By scaling, det(U) = u₁₁ det(U') where U' has e₁ in the first column.

<i>U</i> =	<i>u</i> ₁₁	u_{12}		u _{1n}	
	0	u ₂₂		U _{2n}	
	÷	÷	•••	÷	.
	0	0		u _{nn}	

- We claim that $det(U) = u_{11}u_{22}...$ We shall prove this claim by induction on n. For n = 1, we are done. Assume truth for n 1.
- By scaling, det(U) = u₁₁ det(U') where U' has e₁ in the first column. By multilinearity, i.e.,

	<i>u</i> ₁₁	u_{12}		u _{1n}	
U =	0	u ₂₂		u _{2n}	
	÷	÷	·	÷	.
	0	0		u _{nn}	

- We claim that $det(U) = u_{11}u_{22}...$ We shall prove this claim by induction on n. For n = 1, we are done. Assume truth for n 1.
- By scaling, $det(U) = u_{11} det(U')$ where U' has e_1 in the first column. By multilinearity, i.e., column transformations,

	<i>u</i> ₁₁	u_{12}		u _{1n}	
<i>U</i> =	0	u ₂₂		u _{2n}	
	÷	÷	·	÷	.
	0	0		u _{nn}	

- We claim that det(U) = u₁₁u₂₂.... We shall prove this claim by induction on n. For n = 1, we are done. Assume truth for n − 1.
- By scaling, det(U) = u₁₁ det(U') where U' has e₁ in the first column. By multilinearity, i.e., column transformations, we can "clear" the first row.

•
$$\det(e_1, v_2, \ldots) = \sum_J c_{j_2 2} c_{j_3 3} \ldots \det(e_1, e_{j_2}, \ldots).$$

• $det(e_1, v_2, \ldots) = \sum_J c_{j_2 2} c_{j_3 3} \ldots det(e_1, e_{j_2}, \ldots)$. Suppose we need K_J interchanges of columns

• det $(e_1, v_2, \ldots) = \sum_J c_{j_2 2} c_{j_3 3} \ldots$ det (e_1, e_{j_2}, \ldots) . Suppose we need K_J interchanges of columns to permute j_2, j_3, \ldots to $2, 3, \ldots n - 1$.

- det $(e_1, v_2, \ldots) = \sum_J c_{j_2 2} c_{j_3 3} \ldots$ det (e_1, e_{j_2}, \ldots) . Suppose we need K_J interchanges of columns to permute j_2, j_3, \ldots to $2, 3, \ldots n 1$.
- Then $\det(e_1, v_2, \ldots) = \sum_J c_{j_2 2} c_{j_3 3} \ldots (-1)^{K_J} \det(e_1, e_2, \ldots)$ which is

- det $(e_1, v_2, \ldots) = \sum_J c_{j_2 2} c_{j_3 3} \ldots$ det (e_1, e_{j_2}, \ldots) . Suppose we need K_J interchanges of columns to permute j_2, j_3, \ldots to $2, 3, \ldots n 1$.
- Then $\det(e_1, v_2, \ldots) = \sum_J c_{j_2 2} c_{j_3 3} \ldots (-1)^{K_J} \det(e_1, e_2, \ldots)$ which is $\sum_J c_{j_2 2} \ldots (-1)^{K_J} = \det(v_2, \ldots)$.

- det $(e_1, v_2, \ldots) = \sum_J c_{j_2 2} c_{j_3 3} \ldots$ det (e_1, e_{j_2}, \ldots) . Suppose we need K_J interchanges of columns to permute j_2, j_3, \ldots to $2, 3, \ldots n 1$.
- Then $\det(e_1, v_2, \ldots) = \sum_J c_{j_2 2} c_{j_3 3} \ldots (-1)^{K_J} \det(e_1, e_2, \ldots)$ which is $\sum_J c_{j_2 2} \ldots (-1)^{K_J} = \det(v_2, \ldots).$

• Thus $det(U) = u_{11} det(U'')$

- det $(e_1, v_2, \ldots) = \sum_J c_{j_2 2} c_{j_3 3} \ldots$ det (e_1, e_{j_2}, \ldots) . Suppose we need K_J interchanges of columns to permute j_2, j_3, \ldots to $2, 3, \ldots n 1$.
- Then $\det(e_1, v_2, \ldots) = \sum_J c_{j_2 2} c_{j_3 3} \ldots (-1)^{K_J} \det(e_1, e_2, \ldots)$ which is $\sum_J c_{j_2 2} \ldots (-1)^{K_J} = \det(v_2, \ldots).$
- Thus $\det(U) = u_{11} \det(U'')$ where U'' is the $(n-1) \times (n-1)$ matrix

Assuming existence: Upper-triangular matrices

- det $(e_1, v_2, \ldots) = \sum_J c_{j_2 2} c_{j_3 3} \ldots$ det (e_1, e_{j_2}, \ldots) . Suppose we need K_J interchanges of columns to permute j_2, j_3, \ldots to $2, 3, \ldots n 1$.
- Then $\det(e_1, v_2, \ldots) = \sum_J c_{j_2 2} c_{j_3 3} \ldots (-1)^{K_J} \det(e_1, e_2, \ldots)$ which is $\sum_J c_{j_2 2} \ldots (-1)^{K_J} = \det(v_2, \ldots).$
- Thus det(U) = u₁₁ det(U") where U" is the (n − 1) × (n − 1) matrix obtained by deleting the first row and first column.

Assuming existence: Upper-triangular matrices

- det $(e_1, v_2, \ldots) = \sum_J c_{j_2 2} c_{j_3 3} \ldots$ det (e_1, e_{j_2}, \ldots) . Suppose we need K_J interchanges of columns to permute j_2, j_3, \ldots to $2, 3, \ldots n 1$.
- Then $\det(e_1, v_2, \ldots) = \sum_J c_{j_2 2} c_{j_3 3} \ldots (-1)^{K_J} \det(e_1, e_2, \ldots)$ which is $\sum_J c_{j_2 2} \ldots (-1)^{K_J} = \det(v_2, \ldots).$
- Thus det(U) = u₁₁ det(U") where U" is the (n − 1) × (n − 1) matrix obtained by deleting the first row and first column. It is upper triangular.

Assuming existence: Upper-triangular matrices

- det $(e_1, v_2, \ldots) = \sum_J c_{j_2 2} c_{j_3 3} \ldots$ det (e_1, e_{j_2}, \ldots) . Suppose we need K_J interchanges of columns to permute j_2, j_3, \ldots to $2, 3, \ldots n 1$.
- Then $\det(e_1, v_2, \ldots) = \sum_J c_{j_2 2} c_{j_3 3} \ldots (-1)^{K_J} \det(e_1, e_2, \ldots)$ which is $\sum_J c_{j_2 2} \ldots (-1)^{K_J} = \det(v_2, \ldots).$
- Thus det(U) = u₁₁ det(U") where U" is the (n − 1) × (n − 1) matrix obtained by deleting the first row and first column. It is upper triangular.
- We are done by the induction hypothesis.

• Note that $\det(v_1, \ldots, v_n) = \det(\sum_j c_{j1}e_j, v_2, \ldots, v_n) = \sum_j c_{j1} \det(e_j, v_2, \ldots, v_n).$

- Note that $\det(v_1, \ldots, v_n) = \det(\sum_j c_{j1}e_j, v_2, \ldots, v_n) = \sum_j c_{j1} \det(e_j, v_2, \ldots, v_n).$
- Property:

- Note that $\det(v_1, \ldots, v_n) = \det(\sum_j c_{j1}e_j, v_2, \ldots, v_n) = \sum_j c_{j1} \det(e_j, v_2, \ldots, v_n).$
- Property: If we define n-1-dimensional new columns/vectors

- Note that $\det(v_1, \ldots, v_n) = \det(\sum_j c_{j1}e_j, v_2, \ldots, v_n) = \sum_j c_{j1} \det(e_j, v_2, \ldots, v_n).$
- Property: If we define n 1-dimensional new columns/vectors $\tilde{v}_{2,j}, \tilde{v}_{3,j}, \ldots$ by simply

- Note that $\det(v_1, ..., v_n) = \det(\sum_j c_{j1}e_j, v_2, ..., v_n) = \sum_j c_{j1} \det(e_j, v_2, ..., v_n).$
- Property: If we define n 1-dimensional new columns/vectors $\tilde{v}_{2,j}, \tilde{v}_{3,j}, \ldots$ by simply *deleting* the e_j components from

- Note that $\det(v_1, ..., v_n) = \det(\sum_j c_{j1}e_j, v_2, ..., v_n) = \sum_j c_{j1} \det(e_j, v_2, ..., v_n).$
- Property: If we define n 1-dimensional new columns/vectors $\tilde{v}_{2,j}, \tilde{v}_{3,j}, \ldots$ by simply *deleting* the e_j components from v_2, \ldots and

6/9

- Note that $\det(v_1, \ldots, v_n) = \det(\sum_j c_{j1}e_j, v_2, \ldots, v_n) = \sum_j c_{j1} \det(e_j, v_2, \ldots, v_n).$
- Property: If we define n − 1-dimensional new columns/vectors v
 _{2,j}, v
 _{3,j},... by simply *deleting* the e_j components from v₂,... and replacing e_{j+1} with e_j, e_{j+2} with e_{j+1} etc,

- Note that $\det(v_1, \ldots, v_n) = \det(\sum_j c_{j1}e_j, v_2, \ldots, v_n) = \sum_j c_{j1} \det(e_j, v_2, \ldots, v_n).$
- Property: If we define n 1-dimensional new columns/vectors $\tilde{v}_{2,j}, \tilde{v}_{3,j}, \ldots$ by simply *deleting* the e_j components from v_2, \ldots and replacing e_{j+1} with e_j, e_{j+2} with e_{j+1} etc, then $\det(v_1, \ldots) = \sum_j c_{j1}(-1)^{j+1} \det(\tilde{v}_{2,j}, \tilde{v}_{3,j}, \ldots)$.

- Note that $\det(v_1, \ldots, v_n) = \det(\sum_j c_{j1}e_j, v_2, \ldots, v_n) = \sum_j c_{j1} \det(e_j, v_2, \ldots, v_n).$
- Property: If we define n 1-dimensional new columns/vectors $\tilde{v}_{2,j}, \tilde{v}_{3,j}, \ldots$ by simply *deleting* the e_j components from v_2, \ldots and replacing e_{j+1} with e_j, e_{j+2} with e_{j+1} etc, then $\det(v_1, \ldots) = \sum_j c_{j1}(-1)^{j+1} \det(\tilde{v}_{2,j}, \tilde{v}_{3,j}, \ldots)$. Such an $(n-1) \times (n-1)$ determinant is called a

- Note that $\det(v_1, \ldots, v_n) = \det(\sum_j c_{j1}e_j, v_2, \ldots, v_n) = \sum_j c_{j1} \det(e_j, v_2, \ldots, v_n).$
- Property: If we define n 1-dimensional new columns/vectors $\tilde{v}_{2,j}, \tilde{v}_{3,j}, \ldots$ by simply *deleting* the e_j components from v_2, \ldots and replacing e_{j+1} with e_j, e_{j+2} with e_{j+1} etc, then $\det(v_1, \ldots) = \sum_j c_{j1}(-1)^{j+1} \det(\tilde{v}_{2,j}, \tilde{v}_{3,j}, \ldots)$. Such an $(n-1) \times (n-1)$ determinant is called a *minor*.

- Note that $\det(v_1, \ldots, v_n) = \det(\sum_j c_{j1}e_j, v_2, \ldots, v_n) = \sum_j c_{j1} \det(e_j, v_2, \ldots, v_n).$
- Property: If we define n 1-dimensional new columns/vectors $\tilde{v}_{2,j}, \tilde{v}_{3,j}, \ldots$ by simply *deleting* the e_j components from v_2, \ldots and replacing e_{j+1} with e_j, e_{j+2} with e_{j+1} etc, then $\det(v_1, \ldots) = \sum_j c_{j1}(-1)^{j+1} \det(\tilde{v}_{2,j}, \tilde{v}_{3,j}, \ldots)$. Such an $(n-1) \times (n-1)$ determinant is called a *minor*.
- Note that

- Note that $\det(v_1, \ldots, v_n) = \det(\sum_j c_{j1}e_j, v_2, \ldots, v_n) = \sum_j c_{j1} \det(e_j, v_2, \ldots, v_n).$
- Property: If we define n 1-dimensional new columns/vectors $\tilde{v}_{2,j}, \tilde{v}_{3,j}, \ldots$ by simply *deleting* the e_j components from v_2, \ldots and replacing e_{j+1} with e_j, e_{j+2} with e_{j+1} etc, then $\det(v_1, \ldots) = \sum_j c_{j1}(-1)^{j+1} \det(\tilde{v}_{2,j}, \tilde{v}_{3,j}, \ldots)$. Such an $(n-1) \times (n-1)$ determinant is called a *minor*.
- Note that by interchanging columns

- Note that $\det(v_1, \ldots, v_n) = \det(\sum_j c_{j1}e_j, v_2, \ldots, v_n) = \sum_j c_{j1} \det(e_j, v_2, \ldots, v_n).$
- Property: If we define n 1-dimensional new columns/vectors $\tilde{v}_{2,j}, \tilde{v}_{3,j}, \ldots$ by simply *deleting* the e_j components from v_2, \ldots and replacing e_{j+1} with e_j, e_{j+2} with e_{j+1} etc, then $\det(v_1, \ldots) = \sum_j c_{j1}(-1)^{j+1} \det(\tilde{v}_{2,j}, \tilde{v}_{3,j}, \ldots)$. Such an $(n-1) \times (n-1)$ determinant is called a *minor*.
- Note that by interchanging columns a *similar* property holds for

- Note that $\det(v_1, ..., v_n) = \det(\sum_j c_{j1}e_j, v_2, ..., v_n) = \sum_j c_{j1} \det(e_j, v_2, ..., v_n).$
- Property: If we define n 1-dimensional new columns/vectors $\tilde{v}_{2,j}, \tilde{v}_{3,j}, \ldots$ by simply *deleting* the e_j components from v_2, \ldots and replacing e_{j+1} with e_j, e_{j+2} with e_{j+1} etc, then $\det(v_1, \ldots) = \sum_j c_{j1}(-1)^{j+1} \det(\tilde{v}_{2,j}, \tilde{v}_{3,j}, \ldots)$. Such an $(n-1) \times (n-1)$ determinant is called a *minor*.
- Note that by interchanging columns a *similar* property holds for any column (

- Note that $\det(v_1, ..., v_n) = \det(\sum_j c_{j1}e_j, v_2, ..., v_n) = \sum_j c_{j1} \det(e_j, v_2, ..., v_n).$
- Property: If we define n 1-dimensional new columns/vectors $\tilde{v}_{2,j}, \tilde{v}_{3,j}, \ldots$ by simply *deleting* the e_j components from v_2, \ldots and replacing e_{j+1} with e_j, e_{j+2} with e_{j+1} etc, then $\det(v_1, \ldots) = \sum_j c_{j1}(-1)^{j+1} \det(\tilde{v}_{2,j}, \tilde{v}_{3,j}, \ldots)$. Such an $(n-1) \times (n-1)$ determinant is called a *minor*.
- Note that by interchanging columns a *similar* property holds for any column (if we prove it for the first column).

• Fix j and neglect the j subscript in $\tilde{v}_{2,j}, \ldots$

- Fix j and neglect the j subscript in $\tilde{v}_{2,j}, \ldots$
- By interchanges,

∃ >

- Fix j and neglect the j subscript in $\tilde{v}_{2,j}, \ldots$
- By interchanges, $\det(e_j, v_2, ...) = (-1)^{j+1} \det(v_2, ..., v_{j-1}, e_j, v_{j+1}, ...).$

글 > - < 글 >

- Fix j and neglect the j subscript in $\tilde{v}_{2,j}, \ldots$
- By interchanges, $\det(e_j, v_2, ...) = (-1)^{j+1} \det(v_2, ..., v_{j-1}, e_j, v_{j+1}, ...).$
- Claim:

글 > - < 글 >

- Fix j and neglect the j subscript in $\tilde{v}_{2,j}, \ldots$
- By interchanges, $det(e_j, v_2, ...) = (-1)^{j+1} det(v_2, ..., v_{j-1}, e_j, v_{j+1}, ...).$
- Claim:

 $\mathsf{det}(v_2,\ldots,v_{j-1},e_j,v_{j+1},\ldots)=\mathsf{det}(\tilde{v}_2,\ldots,\tilde{v}_{j-1},\tilde{v}_{j+1},\ldots).$

- Fix j and neglect the j subscript in $\tilde{v}_{2,j}, \ldots$
- By interchanges, $\det(e_j, v_2, ...) = (-1)^{j+1} \det(v_2, ..., v_{j-1}, e_j, v_{j+1}, ...).$
- Claim:

 $det(v_2, \ldots, v_{j-1}, e_j, v_{j+1}, \ldots) = det(\tilde{v}_2, \ldots, \tilde{v}_{j-1}, \tilde{v}_{j+1}, \ldots).$ This claim is enough to complete the proof.

- Fix j and neglect the j subscript in $\tilde{v}_{2,j}, \ldots$
- By interchanges, $\det(e_j, v_2, ...) = (-1)^{j+1} \det(v_2, ..., v_{j-1}, e_j, v_{j+1}, ...).$
- Claim:

 $det(v_2, \ldots, v_{j-1}, e_j, v_{j+1}, \ldots) = det(\tilde{v}_2, \ldots, \tilde{v}_{j-1}, \tilde{v}_{j+1}, \ldots).$ This claim is enough to complete the proof.

• Proof of claim: Note that $\det(\tilde{v}_2, \ldots, \tilde{v}_{j-1}, \tilde{v}_{j+1}, \ldots) = \sum_I \tilde{c}_{i_1 2} \ldots \det(e_{i_1}, e_{i_2}, \ldots)$

- Fix j and neglect the j subscript in $\tilde{v}_{2,j}, \ldots$
- By interchanges, $\det(e_j, v_2, ...) = (-1)^{j+1} \det(v_2, ..., v_{j-1}, e_j, v_{j+1}, ...).$
- Claim:

 $det(v_2, \ldots, v_{j-1}, e_j, v_{j+1}, \ldots) = det(\tilde{v}_2, \ldots, \tilde{v}_{j-1}, \tilde{v}_{j+1}, \ldots).$ This claim is enough to complete the proof.

• Proof of claim: Note that $det(\tilde{v}_2, \ldots, \tilde{v}_{j-1}, \tilde{v}_{j+1}, \ldots) = \sum_I \tilde{c}_{i_1 2} \ldots det(e_{i_1}, e_{i_2}, \ldots)$ where i_1, i_2, \ldots is a permutation of $1, 2, \ldots$.

- Fix j and neglect the j subscript in $\tilde{v}_{2,j}, \ldots$
- By interchanges, $\det(e_j, v_2, ...) = (-1)^{j+1} \det(v_2, ..., v_{j-1}, e_j, v_{j+1}, ...).$
- Claim:

 $det(v_2, \ldots, v_{j-1}, e_j, v_{j+1}, \ldots) = det(\tilde{v}_2, \ldots, \tilde{v}_{j-1}, \tilde{v}_{j+1}, \ldots).$ This claim is enough to complete the proof.

• Proof of claim: Note that $det(\tilde{v}_2, \ldots, \tilde{v}_{j-1}, \tilde{v}_{j+1}, \ldots) = \sum_I \tilde{c}_{i_1 2} \ldots det(e_{i_1}, e_{i_2}, \ldots) \text{ where } i_1, i_2, \ldots \text{ is a permutation of } 1, 2, \ldots \text{ If we need } K$ interchanges to

- Fix j and neglect the j subscript in $\tilde{v}_{2,j}, \ldots$
- By interchanges, $\det(e_j, v_2, ...) = (-1)^{j+1} \det(v_2, ..., v_{j-1}, e_j, v_{j+1}, ...).$
- Claim:

 $det(v_2, \ldots, v_{j-1}, e_j, v_{j+1}, \ldots) = det(\tilde{v}_2, \ldots, \tilde{v}_{j-1}, \tilde{v}_{j+1}, \ldots).$ This claim is enough to complete the proof.

• Proof of claim: Note that $det(\tilde{v}_2, \ldots, \tilde{v}_{j-1}, \tilde{v}_{j+1}, \ldots) = \sum_l \tilde{c}_{i_1 2} \ldots det(e_{i_1}, e_{i_2}, \ldots)$ where i_1, i_2, \ldots is a permutation of $1, 2, \ldots$. If we need Kinterchanges to bring i_1, \ldots , in ascending order,

- Fix j and neglect the j subscript in $\tilde{v}_{2,j}, \ldots$
- By interchanges, $\det(e_j, v_2, ...) = (-1)^{j+1} \det(v_2, ..., v_{j-1}, e_j, v_{j+1}, ...).$
- Claim:

 $det(v_2, \ldots, v_{j-1}, e_j, v_{j+1}, \ldots) = det(\tilde{v}_2, \ldots, \tilde{v}_{j-1}, \tilde{v}_{j+1}, \ldots).$ This claim is enough to complete the proof.

• Proof of claim: Note that $\det(\tilde{v}_2, \ldots, \tilde{v}_{j-1}, \tilde{v}_{j+1}, \ldots) = \sum_I \tilde{c}_{i_1 2} \ldots \det(e_{i_1}, e_{i_2}, \ldots) \text{ where}$ $i_1, i_2, \ldots \text{ is a permutation of } 1, 2, \ldots \text{ If we need } K$ interchanges to bring i_1, \ldots , in ascending order, then $\det(e_{i_1}, e_{i_2}, \ldots) = (-1)^K.$

- Fix j and neglect the j subscript in $\tilde{v}_{2,j}, \ldots$
- By interchanges, $\det(e_j, v_2, ...) = (-1)^{j+1} \det(v_2, ..., v_{j-1}, e_j, v_{j+1}, ...).$
- Claim:

 $det(v_2, \ldots, v_{j-1}, e_j, v_{j+1}, \ldots) = det(\tilde{v}_2, \ldots, \tilde{v}_{j-1}, \tilde{v}_{j+1}, \ldots).$ This claim is enough to complete the proof.

• Proof of claim: Note that $det(\tilde{v}_2, \ldots, \tilde{v}_{j-1}, \tilde{v}_{j+1}, \ldots) = \sum_I \tilde{c}_{i_1 2} \ldots det(e_{i_1}, e_{i_2}, \ldots) \text{ where } i_1, i_2, \ldots \text{ is a permutation of } 1, 2, \ldots \text{ If we need } K$ interchanges to bring i_1, \ldots , in ascending order, then $det(e_{i_1}, e_{i_2}, \ldots) = (-1)^K. \text{ If the } i_1, i_2, \ldots \text{ are in ascending order,}$

- Fix j and neglect the j subscript in $\tilde{v}_{2,j}, \ldots$
- By interchanges, $\det(e_j, v_2, ...) = (-1)^{j+1} \det(v_2, ..., v_{j-1}, e_j, v_{j+1}, ...).$
- Claim:

 $det(v_2, \ldots, v_{j-1}, e_j, v_{j+1}, \ldots) = det(\tilde{v}_2, \ldots, \tilde{v}_{j-1}, \tilde{v}_{j+1}, \ldots).$ This claim is enough to complete the proof.

• Proof of claim: Note that $det(\tilde{v}_2, \ldots, \tilde{v}_{j-1}, \tilde{v}_{j+1}, \ldots) = \sum_l \tilde{c}_{i_1 2} \ldots det(e_{i_1}, e_{i_2}, \ldots)$ where i_1, i_2, \ldots is a permutation of $1, 2, \ldots$. If we need Kinterchanges to bring i_1, \ldots , in ascending order, then $det(e_{i_1}, e_{i_2}, \ldots) = (-1)^K$. If the i_1, i_2, \ldots are in ascending order, then we are done with the claim and the proof of the property (why?).

< 口 > < 🗗

æ

-∢ ≣⇒

• The construction of a determinant

문 🛌 문

• The construction of a determinant is done recursively/inductively.

э

- The construction of a determinant is done recursively/inductively.
- $\bullet~\mbox{For a }1\times 1$ matrix,

э

- The construction of a determinant is done recursively/inductively.
- For a 1×1 matrix, define det $(A) = a_{11}$.

- The construction of a determinant is done recursively/inductively.
- For a 1×1 matrix, define det $(A) = a_{11}$.
- Assume that for

- The construction of a determinant is done recursively/inductively.
- For a 1×1 matrix, define det $(A) = a_{11}$.
- Assume that for any $k \times k$ matrix $(k \le n-1)$,

- The construction of a determinant is done recursively/inductively.
- For a 1×1 matrix, define det $(A) = a_{11}$.
- Assume that for any k × k matrix (k ≤ n − 1), the det function exists.

- The construction of a determinant is done recursively/inductively.
- For a 1×1 matrix, define det $(A) = a_{11}$.
- Assume that for any k × k matrix (k ≤ n − 1), the det function exists.
- It is natural to try to define

- The construction of a determinant is done recursively/inductively.
- For a 1×1 matrix, define det $(A) = a_{11}$.
- Assume that for any k × k matrix (k ≤ n − 1), the det function exists.
- It is natural to try to define $\det(v_1,\ldots,v_n) := \sum_j c_{j1}(-1)^{j+1} \det(\tilde{v}_{2,j},\tilde{v}_{3,j},\ldots).$

- The construction of a determinant is done recursively/inductively.
- For a 1×1 matrix, define det $(A) = a_{11}$.
- Assume that for any k × k matrix (k ≤ n − 1), the det function exists.
- It is natural to try to define $det(v_1, \ldots, v_n) := \sum_j c_{j1}(-1)^{j+1} det(\tilde{v}_{2,j}, \tilde{v}_{3,j}, \ldots).$ (Expansion along

- The construction of a determinant is done recursively/inductively.
- For a 1×1 matrix, define det $(A) = a_{11}$.
- Assume that for any k × k matrix (k ≤ n − 1), the det function exists.
- It is natural to try to define $det(v_1, \ldots, v_n) := \sum_j c_{j1}(-1)^{j+1} det(\tilde{v}_{2,j}, \tilde{v}_{3,j}, \ldots).$ (Expansion along the first *column*.)

- The construction of a determinant is done recursively/inductively.
- For a 1×1 matrix, define det $(A) = a_{11}$.
- Assume that for any k × k matrix (k ≤ n − 1), the det function exists.
- It is natural to try to define $det(v_1, \ldots, v_n) := \sum_j c_{j1}(-1)^{j+1} det(\tilde{v}_{2,j}, \tilde{v}_{3,j}, \ldots).$ (Expansion along the first *column*.)
- However,

- The construction of a determinant is done recursively/inductively.
- For a 1×1 matrix, define det $(A) = a_{11}$.
- Assume that for any k × k matrix (k ≤ n − 1), the det function exists.
- It is natural to try to define $det(v_1, \ldots, v_n) := \sum_j c_{j1}(-1)^{j+1} det(\tilde{v}_{2,j}, \tilde{v}_{3,j}, \ldots).$ (Expansion along the first *column*.)
- However, we shall try

- The construction of a determinant is done recursively/inductively.
- For a 1×1 matrix, define det $(A) = a_{11}$.
- Assume that for any k × k matrix (k ≤ n − 1), the det function exists.
- It is natural to try to define $det(v_1, \ldots, v_n) := \sum_j c_{j1}(-1)^{j+1} det(\tilde{v}_{2,j}, \tilde{v}_{3,j}, \ldots).$ (Expansion along the first *column*.)
- However, we shall try $\det(v_1,\ldots,v_n) := \sum_j c_{1j}(-1)^{j+1}A_{1j}$ where

- The construction of a determinant is done recursively/inductively.
- For a 1×1 matrix, define det $(A) = a_{11}$.
- Assume that for any k × k matrix (k ≤ n − 1), the det function exists.
- It is natural to try to define $det(v_1, \ldots, v_n) := \sum_j c_{j1}(-1)^{j+1} det(\tilde{v}_{2,j}, \tilde{v}_{3,j}, \ldots).$ (Expansion along the first *column*.)
- However, we shall try $\det(v_1, \ldots, v_n) := \sum_j c_{1j} (-1)^{j+1} A_{1j}$ where the minor A_{1j} is obtained by

- The construction of a determinant is done recursively/inductively.
- For a 1×1 matrix, define det $(A) = a_{11}$.
- Assume that for any k × k matrix (k ≤ n − 1), the det function exists.
- It is natural to try to define $det(v_1, \ldots, v_n) := \sum_j c_{j1}(-1)^{j+1} det(\tilde{v}_{2,j}, \tilde{v}_{3,j}, \ldots).$ (Expansion along the first *column*.)
- However, we shall try $det(v_1, \ldots, v_n) := \sum_j c_{1j}(-1)^{j+1}A_{1j}$ where the minor A_{1j} is obtained by deleting the first row and

- The construction of a determinant is done recursively/inductively.
- For a 1×1 matrix, define det $(A) = a_{11}$.
- Assume that for any k × k matrix (k ≤ n − 1), the det function exists.
- It is natural to try to define $det(v_1, \ldots, v_n) := \sum_j c_{j1}(-1)^{j+1} det(\tilde{v}_{2,j}, \tilde{v}_{3,j}, \ldots).$ (Expansion along the first *column*.)
- However, we shall try $\det(v_1, \ldots, v_n) := \sum_j c_{1j}(-1)^{j+1}A_{1j}$ where the minor A_{1j} is obtained by deleting the first row and the j^{th} column. (

- The construction of a determinant is done recursively/inductively.
- For a 1×1 matrix, define det $(A) = a_{11}$.
- Assume that for any k × k matrix (k ≤ n − 1), the det function exists.
- It is natural to try to define $det(v_1, \ldots, v_n) := \sum_j c_{j1}(-1)^{j+1} det(\tilde{v}_{2,j}, \tilde{v}_{3,j}, \ldots).$ (Expansion along the first *column*.)
- However, we shall try $det(v_1, \ldots, v_n) := \sum_j c_{1j}(-1)^{j+1}A_{1j}$ where the minor A_{1j} is obtained by deleting the first row and the j^{th} column. (Expansion along

- The construction of a determinant is done recursively/inductively.
- For a 1×1 matrix, define det $(A) = a_{11}$.
- Assume that for any k × k matrix (k ≤ n − 1), the det function exists.
- It is natural to try to define $det(v_1, \ldots, v_n) := \sum_j c_{j1}(-1)^{j+1} det(\tilde{v}_{2,j}, \tilde{v}_{3,j}, \ldots).$ (Expansion along the first *column*.)
- However, we shall try det $(v_1, \ldots, v_n) := \sum_j c_{1j} (-1)^{j+1} A_{1j}$ where the minor A_{1j} is obtained by deleting the first row and the j^{th} column. (Expansion along the first row.)

- The construction of a determinant is done recursively/inductively.
- For a 1×1 matrix, define det $(A) = a_{11}$.
- Assume that for any k × k matrix (k ≤ n − 1), the det function exists.
- It is natural to try to define $det(v_1, \ldots, v_n) := \sum_j c_{j1}(-1)^{j+1} det(\tilde{v}_{2,j}, \tilde{v}_{3,j}, \ldots).$ (Expansion along the first *column*.)
- However, we shall try $\det(v_1, \ldots, v_n) := \sum_j c_{1j} (-1)^{j+1} A_{1j}$ where the minor A_{1j} is obtained by deleting the first row and the j^{th} column. (Expansion along the first row.) We simply need to check that

- The construction of a determinant is done recursively/inductively.
- For a 1×1 matrix, define det $(A) = a_{11}$.
- Assume that for any k × k matrix (k ≤ n − 1), the det function exists.
- It is natural to try to define $det(v_1, \ldots, v_n) := \sum_j c_{j1}(-1)^{j+1} det(\tilde{v}_{2,j}, \tilde{v}_{3,j}, \ldots).$ (Expansion along the first *column*.)
- However, we shall try $\det(v_1, \ldots, v_n) := \sum_j c_{1j}(-1)^{j+1}A_{1j}$ where the minor A_{1j} is obtained by deleting the first row and the j^{th} column. (Expansion along the first row.) We simply need to check that this definition satisfies

- The construction of a determinant is done recursively/inductively.
- For a 1×1 matrix, define det $(A) = a_{11}$.
- Assume that for any k × k matrix (k ≤ n − 1), the det function exists.
- It is natural to try to define $det(v_1, \ldots, v_n) := \sum_j c_{j1}(-1)^{j+1} det(\tilde{v}_{2,j}, \tilde{v}_{3,j}, \ldots).$ (Expansion along the first *column*.)
- However, we shall try $\det(v_1, \ldots, v_n) := \sum_j c_{1j}(-1)^{j+1}A_{1j}$ where the minor A_{1j} is obtained by deleting the first row and the j^{th} column. (Expansion along the first row.) We simply need to check that this definition satisfies all the axioms,

- The construction of a determinant is done recursively/inductively.
- For a 1×1 matrix, define det $(A) = a_{11}$.
- Assume that for any k × k matrix (k ≤ n − 1), the det function exists.
- It is natural to try to define $det(v_1, \ldots, v_n) := \sum_j c_{j1}(-1)^{j+1} det(\tilde{v}_{2,j}, \tilde{v}_{3,j}, \ldots).$ (Expansion along the first *column*.)
- However, we shall try det $(v_1, \ldots, v_n) := \sum_j c_{1j} (-1)^{j+1} A_{1j}$ where the minor A_{1j} is obtained by deleting the first row and the j^{th} column. (Expansion along the first row.) We simply need to check that this definition satisfies all the axioms, thus completing the induction step.

æ

æ

æ

• Scaling: If $v_i \rightarrow tv_i$,

• Scaling: If $v_i \rightarrow tv_i$, for $j \neq i$ each of the A_{1j}

• Scaling: If $v_i \rightarrow t v_i$, for $j \neq i$ each of the A_{1j} scales by t

• Scaling: If $v_i \rightarrow tv_i$, for $j \neq i$ each of the A_{1j} scales by t by the induction hypothesis.

• Scaling: If $v_i \rightarrow tv_i$, for $j \neq i$ each of the A_{1j} scales by t by the induction hypothesis. For j = i

• Scaling: If $v_i \rightarrow tv_i$, for $j \neq i$ each of the A_{1j} scales by t by the induction hypothesis. For $j = i A_{1i}$ remains unchanged by c_{1i} scales by t.

• Scaling: If $v_i \rightarrow tv_i$, for $j \neq i$ each of the A_{1j} scales by t by the induction hypothesis. For $j = i A_{1i}$ remains unchanged by c_{1i} scales by t. Thus every term

• Scaling: If $v_i \rightarrow tv_i$, for $j \neq i$ each of the A_{1j} scales by t by the induction hypothesis. For $j = i A_{1i}$ remains unchanged by c_{1i} scales by t. Thus every term in the definition

• Scaling: If $v_i \rightarrow tv_i$, for $j \neq i$ each of the A_{1j} scales by t by the induction hypothesis. For $j = i A_{1i}$ remains unchanged by c_{1i} scales by t. Thus every term in the definition scales by t.

- Scaling: If $v_i \rightarrow tv_i$, for $j \neq i$ each of the A_{1j} scales by t by the induction hypothesis. For $j = i A_{1i}$ remains unchanged by c_{1i} scales by t. Thus every term in the definition scales by t.
- Linearity:

- Scaling: If $v_i \rightarrow tv_i$, for $j \neq i$ each of the A_{1j} scales by t by the induction hypothesis. For $j = i A_{1i}$ remains unchanged by c_{1i} scales by t. Thus every term in the definition scales by t.
- Linearity: If $v_i \rightarrow v_i + w$,

- Scaling: If $v_i \rightarrow tv_i$, for $j \neq i$ each of the A_{1j} scales by t by the induction hypothesis. For $j = i A_{1i}$ remains unchanged by c_{1i} scales by t. Thus every term in the definition scales by t.
- Linearity: If $v_i \rightarrow v_i + w$, for $j \neq i$ as before, A_{1j} is linear.

- Scaling: If $v_i \rightarrow tv_i$, for $j \neq i$ each of the A_{1j} scales by t by the induction hypothesis. For $j = i A_{1i}$ remains unchanged by c_{1i} scales by t. Thus every term in the definition scales by t.
- Linearity: If $v_i \rightarrow v_i + w$, for $j \neq i$ as before, A_{1j} is linear. For j = i, as before, the coefficient is linear.

- Scaling: If $v_i \rightarrow tv_i$, for $j \neq i$ each of the A_{1j} scales by t by the induction hypothesis. For $j = i A_{1i}$ remains unchanged by c_{1i} scales by t. Thus every term in the definition scales by t.
- Linearity: If $v_i \rightarrow v_i + w$, for $j \neq i$ as before, A_{1j} is linear. For j = i, as before, the coefficient is linear. We are done.

- Scaling: If $v_i \rightarrow tv_i$, for $j \neq i$ each of the A_{1j} scales by t by the induction hypothesis. For $j = i A_{1i}$ remains unchanged by c_{1i} scales by t. Thus every term in the definition scales by t.
- Linearity: If $v_i \rightarrow v_i + w$, for $j \neq i$ as before, A_{1j} is linear. For j = i, as before, the coefficient is linear. We are done.
- Normalisation:

- Scaling: If $v_i \rightarrow tv_i$, for $j \neq i$ each of the A_{1j} scales by t by the induction hypothesis. For $j = i A_{1i}$ remains unchanged by c_{1i} scales by t. Thus every term in the definition scales by t.
- Linearity: If $v_i \rightarrow v_i + w$, for $j \neq i$ as before, A_{1j} is linear. For j = i, as before, the coefficient is linear. We are done.
- Normalisation: det(e_1, \ldots, e_n) = $A_{11} = 1$ by the induction hypothesis.

9/9

- Scaling: If $v_i \rightarrow tv_i$, for $j \neq i$ each of the A_{1j} scales by t by the induction hypothesis. For $j = i A_{1i}$ remains unchanged by c_{1i} scales by t. Thus every term in the definition scales by t.
- Linearity: If $v_i \rightarrow v_i + w$, for $j \neq i$ as before, A_{1j} is linear. For j = i, as before, the coefficient is linear. We are done.
- Normalisation: det(e_1, \ldots, e_n) = $A_{11} = 1$ by the induction hypothesis.
- Alternating:

- Scaling: If $v_i \rightarrow tv_i$, for $j \neq i$ each of the A_{1j} scales by t by the induction hypothesis. For $j = i A_{1i}$ remains unchanged by c_{1i} scales by t. Thus every term in the definition scales by t.
- Linearity: If $v_i \rightarrow v_i + w$, for $j \neq i$ as before, A_{1j} is linear. For j = i, as before, the coefficient is linear. We are done.
- Normalisation: det(e_1, \ldots, e_n) = $A_{11} = 1$ by the induction hypothesis.
- Alternating: It is enough to prove

9/9

- Scaling: If $v_i \rightarrow tv_i$, for $j \neq i$ each of the A_{1j} scales by t by the induction hypothesis. For $j = i A_{1i}$ remains unchanged by c_{1i} scales by t. Thus every term in the definition scales by t.
- Linearity: If $v_i \rightarrow v_i + w$, for $j \neq i$ as before, A_{1j} is linear. For j = i, as before, the coefficient is linear. We are done.
- Normalisation: det(e_1, \ldots, e_n) = $A_{11} = 1$ by the induction hypothesis.
- Alternating: It is enough to prove this property for *adjacent* columns (why?)

- Scaling: If $v_i \rightarrow tv_i$, for $j \neq i$ each of the A_{1j} scales by t by the induction hypothesis. For $j = i A_{1i}$ remains unchanged by c_{1i} scales by t. Thus every term in the definition scales by t.
- Linearity: If $v_i \rightarrow v_i + w$, for $j \neq i$ as before, A_{1j} is linear. For j = i, as before, the coefficient is linear. We are done.
- Normalisation: det(e_1, \ldots, e_n) = $A_{11} = 1$ by the induction hypothesis.
- Alternating: It is enough to prove this property for adjacent columns (why?) So if v_i = v_{i+1} = v,

- Scaling: If $v_i \rightarrow tv_i$, for $j \neq i$ each of the A_{1j} scales by t by the induction hypothesis. For $j = i A_{1i}$ remains unchanged by c_{1i} scales by t. Thus every term in the definition scales by t.
- Linearity: If $v_i \rightarrow v_i + w$, for $j \neq i$ as before, A_{1j} is linear. For j = i, as before, the coefficient is linear. We are done.
- Normalisation: det(e_1, \ldots, e_n) = $A_{11} = 1$ by the induction hypothesis.
- Alternating: It is enough to prove this property for adjacent columns (why?) So if v_i = v_{i+1} = v, any minor that

9/9

- Scaling: If $v_i \rightarrow tv_i$, for $j \neq i$ each of the A_{1j} scales by t by the induction hypothesis. For $j = i A_{1i}$ remains unchanged by c_{1i} scales by t. Thus every term in the definition scales by t.
- Linearity: If $v_i \rightarrow v_i + w$, for $j \neq i$ as before, A_{1j} is linear. For j = i, as before, the coefficient is linear. We are done.
- Normalisation: det(e_1, \ldots, e_n) = $A_{11} = 1$ by the induction hypothesis.
- Alternating: It is enough to prove this property for adjacent columns (why?) So if v_i = v_{i+1} = v, any minor that contains v_i AND v_{i+1}

- Scaling: If $v_i \rightarrow tv_i$, for $j \neq i$ each of the A_{1j} scales by t by the induction hypothesis. For $j = i A_{1i}$ remains unchanged by c_{1i} scales by t. Thus every term in the definition scales by t.
- Linearity: If $v_i \rightarrow v_i + w$, for $j \neq i$ as before, A_{1j} is linear. For j = i, as before, the coefficient is linear. We are done.
- Normalisation: det(e_1, \ldots, e_n) = $A_{11} = 1$ by the induction hypothesis.
- Alternating: It is enough to prove this property for adjacent columns (why?) So if v_i = v_{i+1} = v, any minor that contains v_i AND v_{i+1} is 0 by the induction hypothesis.

- Scaling: If $v_i \rightarrow tv_i$, for $j \neq i$ each of the A_{1j} scales by t by the induction hypothesis. For $j = i A_{1i}$ remains unchanged by c_{1i} scales by t. Thus every term in the definition scales by t.
- Linearity: If $v_i \rightarrow v_i + w$, for $j \neq i$ as before, A_{1j} is linear. For j = i, as before, the coefficient is linear. We are done.
- Normalisation: det(e_1, \ldots, e_n) = $A_{11} = 1$ by the induction hypothesis.
- Alternating: It is enough to prove this property for adjacent columns (why?) So if v_i = v_{i+1} = v, any minor that contains v_i AND v_{i+1} is 0 by the induction hypothesis. The only minors that remain are

- Scaling: If $v_i \rightarrow tv_i$, for $j \neq i$ each of the A_{1j} scales by t by the induction hypothesis. For $j = i A_{1i}$ remains unchanged by c_{1i} scales by t. Thus every term in the definition scales by t.
- Linearity: If $v_i \rightarrow v_i + w$, for $j \neq i$ as before, A_{1j} is linear. For j = i, as before, the coefficient is linear. We are done.
- Normalisation: det(e_1, \ldots, e_n) = $A_{11} = 1$ by the induction hypothesis.
- Alternating: It is enough to prove this property for adjacent columns (why?) So if v_i = v_{i+1} = v, any minor that contains v_i AND v_{i+1} is 0 by the induction hypothesis. The only minors that remain are A_{1i}, A_{1i+1}.

- Scaling: If $v_i \rightarrow tv_i$, for $j \neq i$ each of the A_{1j} scales by t by the induction hypothesis. For $j = i A_{1i}$ remains unchanged by c_{1i} scales by t. Thus every term in the definition scales by t.
- Linearity: If $v_i \rightarrow v_i + w$, for $j \neq i$ as before, A_{1j} is linear. For j = i, as before, the coefficient is linear. We are done.
- Normalisation: det(e_1, \ldots, e_n) = $A_{11} = 1$ by the induction hypothesis.
- Alternating: It is enough to prove this property for adjacent columns (why?) So if v_i = v_{i+1} = v, any minor that contains v_i AND v_{i+1} is 0 by the induction hypothesis. The only minors that remain are A_{1i}, A_{1i+1}. So det(v₁,...,v,v,...) = (-1)ⁱ(-c_{1i}A_{1i} + c_{1i+1}A_{1i+1}).

- Scaling: If v_i → tv_i, for j ≠ i each of the A_{1j} scales by t by the induction hypothesis. For j = i A_{1i} remains unchanged by c_{1i} scales by t. Thus every term in the definition scales by t.
- Linearity: If $v_i \rightarrow v_i + w$, for $j \neq i$ as before, A_{1j} is linear. For j = i, as before, the coefficient is linear. We are done.
- Normalisation: det(e_1, \ldots, e_n) = $A_{11} = 1$ by the induction hypothesis.
- Alternating: It is enough to prove this property for adjacent columns (why?) So if v_i = v_{i+1} = v, any minor that contains v_i AND v_{i+1} is 0 by the induction hypothesis. The only minors that remain are A_{1i}, A_{1i+1}. So det(v₁,...,v,v,...) = (-1)ⁱ(-c_{1i}A_{1i} + c_{1i+1}A_{1i+1}). But c_{1i} = c_{1i+1} and

- Scaling: If $v_i \rightarrow tv_i$, for $j \neq i$ each of the A_{1j} scales by t by the induction hypothesis. For $j = i A_{1i}$ remains unchanged by c_{1i} scales by t. Thus every term in the definition scales by t.
- Linearity: If $v_i \rightarrow v_i + w$, for $j \neq i$ as before, A_{1j} is linear. For j = i, as before, the coefficient is linear. We are done.
- Normalisation: det(e_1, \ldots, e_n) = $A_{11} = 1$ by the induction hypothesis.
- Alternating: It is enough to prove this property for adjacent columns (why?) So if v_i = v_{i+1} = v, any minor that contains v_i AND v_{i+1} is 0 by the induction hypothesis. The only minors that remain are A_{1i}, A_{1i+1}. So det(v₁,...,v,v,...) = (-1)ⁱ(-c_{1i}A_{1i} + c_{1i+1}A_{1i+1}). But c_{1i} = c_{1i+1} and A_{1i} = A_{1i+1}.

- Scaling: If $v_i \rightarrow tv_i$, for $j \neq i$ each of the A_{1j} scales by t by the induction hypothesis. For $j = i A_{1i}$ remains unchanged by c_{1i} scales by t. Thus every term in the definition scales by t.
- Linearity: If $v_i \rightarrow v_i + w$, for $j \neq i$ as before, A_{1j} is linear. For j = i, as before, the coefficient is linear. We are done.
- Normalisation: det(e_1, \ldots, e_n) = $A_{11} = 1$ by the induction hypothesis.
- Alternating: It is enough to prove this property for *adjacent* columns (why?) So if $v_i = v_{i+1} = v$, any minor that contains v_i AND v_{i+1} is 0 by the induction hypothesis. The only minors that remain are A_{1i}, A_{1i+1} . So $det(v_1, \ldots, v, v, \ldots) = (-1)^i (-c_{1i}A_{1i} + c_{1i+1}A_{1i+1})$. But $c_{1i} = c_{1i+1}$ and $A_{1i} = A_{1i+1}$. Hence we are done.