
Lecture 11 - UM 102 (Spring 2021)

Vamsi Pritham Pingali

IISc

Vamsi Pritham Pingali Lecture 11 1/11



Recap

Computed determinants of 2× 2 matrices and
upper-triangular matrices.

Proved the expansion-along-the-first-column property
assuming existence. Hence expansion-along-any-column.

Proved existence and by construction, the
expansion-along-any-row-property.
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Determinant of a transpose

For any n × n matrix A det(A) = det(AT ).

As a consequence, row operations of the form Ri → Ri + cRj

keep the determinant invariant! scaling a row scales the
determinant and if two rows are equal the determinant
vanishes.

Proof: We prove by induction on n. n = 1 is trivial. Assume
truth for n − 1. For n, expand A along its first row:
det(A) =

∑
j A1j(−1)1+jM1j . Expand AT along its first

column: det(AT ) =
∑

j(A
T )j1(−1)1+jM ′j1. But (AT )j1 = A1j

and M ′j1 = M1j by the induction hypothesis.
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Computing determinants using the Gauss-Jordan technique

Since the RREF U of a square matrix A is upper-triangular
(why?), and we can use Gauss-Jordan row operations to bring
it to such a form, we can compute the determinant of the
matrix easily.

Each time we scale a row by a constant ci the determinant
scales and each row-exchange leads to a −1.

So det(A) = (−1)p det(U)
c1c2...

.
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An example

Compute

∣∣∣∣∣∣
1 x x2

1 y y2

1 z z2

∣∣∣∣∣∣ (a Vandermonde determinant)

R2 → R2 − R1,R3 → R3 − R1 do not change the determinant

and yield

∣∣∣∣∣∣
1 x x2

0 y − x y2 − x2

0 z − x z2 − x2

∣∣∣∣∣∣
Scaling gives (y − x)(z − x)

∣∣∣∣∣∣
1 x x2

0 1 x + y
0 1 x + z

∣∣∣∣∣∣ which is (after

R3 → R3 − R2) (y − x)(z − x)

∣∣∣∣∣∣
1 x x2

0 1 x + y
0 0 z − y

∣∣∣∣∣∣ which is

upper-triangular and hence equal to (y − x)(z − x)(z − y).
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The product formula

If A,B are two n× n matrices, then det(AB) = det(A) det(B).
This formula is extremely important.

Denote the i th column of of B by Bi . Recall that the i th

column of (AB), i.e., (AB)i is ABi .

Thus det((AB)1, (AB)2, (AB)3, . . .) = det(AB1,AB2, . . .).

Fix A and define F (B1, . . . ,Bn) = det(AB1,AB2, . . .). Note
that F is

1 multilinear: F (. . . , tBi + sv , . . .) = det(. . . ,A(tBi + sv), . . .) =
det(. . . , tABi + sAv , . . .) which is
t det(. . . ,ABi , . . .) + s det(. . . ,Av , . . .) and hence
F (. . . , tBi + sv , . . .) = tF (. . . ,Bi , . . .) + sF (. . . , v , . . .).

2 alternating: F (. . . ,Bi = v , . . . ,Bj = v , . . .) =
det(. . . ,Av , . . . ,Av , . . .) = 0.

Hence by uniqueness,
F (B1, . . . ,Bn) = det(B1, . . . ,Bn)F (e1, . . . , en). Thus
det(AB) = det(B) det(A).
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Invertibility and determinants

If an n × n matrix A is invertible then AA−1 = I . Thus
det(A) det(A−1) = 1 and hence det(A) 6= 0.

Recall that if a set of n vectors v1, . . . , vn from Fn is linearly
dependent, then det(v1, . . . , vn) = 0.

Thus, if det(A) 6= 0, its columns are linearly independent and
hence its column rank is full. Thus A is invertible.

Therefore, A is invertible if and only if det(A) 6= 0.

Equivalently, the set v1, . . . , vn is independent if and only if
det(v1, . . . , vn) 6= 0.
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Block-diagonal matrices

Let A be an n × n matrix and D be an m ×m matrix.

Then the matrix M =

[
A 0
0 D

]
is an (n + m)× (n + m)

“block diagonal” matrix.

Note that M =

[
A 0
0 I

] [
I 0
0 D

]
. So det(M) is a product

of two other determinants.

The function F (A1, . . . ,An) = det

[
A 0
0 I

]
satisfies all the

axioms of multilinear alternating functions and hence by
uniqueness, F (A1, . . .) = det(A)F (e1, . . .) = det(A). Likewise
for D. Thus det(M) = det(A) det(D).
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Change of basis

Given a linear map T : V → V where as always, V is a f.d
vector space, how can we define its determinant?

One naive thing to do is to consider an ordered basis
e1, . . . , en for both, the domain and the target. Then T is
represented by a matrix [T ]. We can attempt to define
det(T ) as det([T ]). However, what happens when we change
the ordered basis?

Let e ′1, e
′
2, . . . be a new ordered basis. Recall that

e ′i =
∑

j Pjiej for some Pji ∈ F. Also recall that in an ordered
basis the first column of the matrix associated to T is simply
the component vector of T (e ′1) and likewise for the other
columns.
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Change of basis

Now T (e ′i ) =
∑

j PjiT (ej) which is
∑
j ,k

Pji [T ]kjek .

We wish to express T (e ′i ) in terms of the e ′s (as opposed to
es).

So we want to “solve” for the es in terms of the e ′s using
e ′i =

∑
j Pjiej . These are simply linear equations!

Formally treating the es and e ′s as variables we can form “row
vectors” e = [e1 e2 e3 . . .] and e ′ = [e ′1 e ′2 e ′3 . . .].

Now e ′ = e[P] as matrix multiplication! If [P] is not invertible
then its rows must be linearly dependent. That would mean a
non-trivial linear relationship between the basis vectors ei .
Therefore, [P] is invertible.

Thus e ′[P]−1 = e. In terms of matrices,
T (e ′) = [T (e ′1) T (e ′2) . . .]] = e[T ][P]. Thus
T (e ′) = e ′[P]−1[T ][P].
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Similar matrices

In other words, [T ]′ = [P]−1[T ][P]. Two n × n matrices A,B
are said to be similar if there is an invertible matrix P such
that B = P−1AP. We just proved that if we change ordered
bases using an invertible matrix P (whose columns represent
the new basis) then [T ] and [T ]′ are similar.

One can prove the converse too (HW).

Now one can see that
det([T ]′) = det([P]−1) det([T ]) det([P]) = det([T ]). Hence
the determinant of a linear map can be defined by choosing
any ordered basis.
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