Lecture 11 - UM 102 (Spring 2021)

Vamsi Pritham Pingali

IISc

4 $\square>4$ 吕 1 〈

Recap

- Computed determinants of

Recap

- Computed determinants of 2×2 matrices and

Recap

- Computed determinants of 2×2 matrices and upper-triangular matrices.
- Computed determinants of 2×2 matrices and upper-triangular matrices.
- Proved the expansion-along-the-first-column property
- Computed determinants of 2×2 matrices and upper-triangular matrices.
- Proved the expansion-along-the-first-column property assuming existence.
- Computed determinants of 2×2 matrices and upper-triangular matrices.
- Proved the expansion-along-the-first-column property assuming existence. Hence expansion-along-any-column.

Recap

- Computed determinants of 2×2 matrices and upper-triangular matrices.
- Proved the expansion-along-the-first-column property assuming existence. Hence expansion-along-any-column.
- Proved existence

Recap

- Computed determinants of 2×2 matrices and upper-triangular matrices.
- Proved the expansion-along-the-first-column property assuming existence. Hence expansion-along-any-column.
- Proved existence and by construction,

Recap

- Computed determinants of 2×2 matrices and upper-triangular matrices.
- Proved the expansion-along-the-first-column property assuming existence. Hence expansion-along-any-column.
- Proved existence and by construction, the expansion-along-any-row-property.

Determinant of a transpose

Determinant of a transpose

- For any $n \times n$ matrix A

Determinant of a transpose

- For any $n \times n$ matrix $A \operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$.

Determinant of a transpose

- For any $n \times n$ matrix $A \operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$.
- As a consequence,

Determinant of a transpose

- For any $n \times n$ matrix $A \operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$.
- As a consequence, row operations of the form

Determinant of a transpose

- For any $n \times n$ matrix $A \operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$.
- As a consequence, row operations of the form $R_{i} \rightarrow R_{i}+c R_{j}$

Determinant of a transpose

- For any $n \times n$ matrix $A \operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$.
- As a consequence, row operations of the form $R_{i} \rightarrow R_{i}+c R_{j}$ keep the determinant invariant!

Determinant of a transpose

- For any $n \times n$ matrix $A \operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$.
- As a consequence, row operations of the form $R_{i} \rightarrow R_{i}+c R_{j}$ keep the determinant invariant! scaling a row

Determinant of a transpose

- For any $n \times n$ matrix $A \operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$.
- As a consequence, row operations of the form $R_{i} \rightarrow R_{i}+c R_{j}$ keep the determinant invariant! scaling a row scales the determinant and

Determinant of a transpose

- For any $n \times n$ matrix $A \operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$.
- As a consequence, row operations of the form $R_{i} \rightarrow R_{i}+c R_{j}$ keep the determinant invariant! scaling a row scales the determinant and if two rows are equal

Determinant of a transpose

- For any $n \times n$ matrix $A \operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$.
- As a consequence, row operations of the form $R_{i} \rightarrow R_{i}+c R_{j}$ keep the determinant invariant! scaling a row scales the determinant and if two rows are equal the determinant vanishes.

Determinant of a transpose

- For any $n \times n$ matrix $A \operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$.
- As a consequence, row operations of the form $R_{i} \rightarrow R_{i}+c R_{j}$ keep the determinant invariant! scaling a row scales the determinant and if two rows are equal the determinant vanishes.
- Proof: We prove by induction on n.

Determinant of a transpose

- For any $n \times n$ matrix $A \operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$.
- As a consequence, row operations of the form $R_{i} \rightarrow R_{i}+c R_{j}$ keep the determinant invariant! scaling a row scales the determinant and if two rows are equal the determinant vanishes.
- Proof: We prove by induction on n. $n=1$ is trivial.

Determinant of a transpose

- For any $n \times n$ matrix $A \operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$.
- As a consequence, row operations of the form $R_{i} \rightarrow R_{i}+c R_{j}$ keep the determinant invariant! scaling a row scales the determinant and if two rows are equal the determinant vanishes.
- Proof: We prove by induction on $n . n=1$ is trivial. Assume truth for $n-1$.

Determinant of a transpose

- For any $n \times n$ matrix $A \operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$.
- As a consequence, row operations of the form $R_{i} \rightarrow R_{i}+c R_{j}$ keep the determinant invariant! scaling a row scales the determinant and if two rows are equal the determinant vanishes.
- Proof: We prove by induction on $n . n=1$ is trivial. Assume truth for $n-1$. For n,

Determinant of a transpose

- For any $n \times n$ matrix $A \operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$.
- As a consequence, row operations of the form $R_{i} \rightarrow R_{i}+c R_{j}$ keep the determinant invariant! scaling a row scales the determinant and if two rows are equal the determinant vanishes.
- Proof: We prove by induction on $n . n=1$ is trivial. Assume truth for $n-1$. For n, expand A along

Determinant of a transpose

- For any $n \times n$ matrix $A \operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$.
- As a consequence, row operations of the form $R_{i} \rightarrow R_{i}+c R_{j}$ keep the determinant invariant! scaling a row scales the determinant and if two rows are equal the determinant vanishes.
- Proof: We prove by induction on $n . n=1$ is trivial. Assume truth for $n-1$. For n, expand A along its first row:

Determinant of a transpose

- For any $n \times n$ matrix $A \operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$.
- As a consequence, row operations of the form $R_{i} \rightarrow R_{i}+c R_{j}$ keep the determinant invariant! scaling a row scales the determinant and if two rows are equal the determinant vanishes.
- Proof: We prove by induction on $n . n=1$ is trivial. Assume truth for $n-1$. For n, expand A along its first row: $\operatorname{det}(A)=\sum_{j} A_{1 j}(-1)^{1+j} M_{1 j}$.

Determinant of a transpose

- For any $n \times n$ matrix $A \operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$.
- As a consequence, row operations of the form $R_{i} \rightarrow R_{i}+c R_{j}$ keep the determinant invariant! scaling a row scales the determinant and if two rows are equal the determinant vanishes.
- Proof: We prove by induction on $n . n=1$ is trivial. Assume truth for $n-1$. For n, expand A along its first row: $\operatorname{det}(A)=\sum_{j} A_{1 j}(-1)^{1+j} M_{1 j}$. Expand A^{T} along

Determinant of a transpose

- For any $n \times n$ matrix $A \operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$.
- As a consequence, row operations of the form $R_{i} \rightarrow R_{i}+c R_{j}$ keep the determinant invariant! scaling a row scales the determinant and if two rows are equal the determinant vanishes.
- Proof: We prove by induction on $n . n=1$ is trivial. Assume truth for $n-1$. For n, expand A along its first row: $\operatorname{det}(A)=\sum_{j} A_{1 j}(-1)^{1+j} M_{1 j}$. Expand A^{T} along its first column:

Determinant of a transpose

- For any $n \times n$ matrix $A \operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$.
- As a consequence, row operations of the form $R_{i} \rightarrow R_{i}+c R_{j}$ keep the determinant invariant! scaling a row scales the determinant and if two rows are equal the determinant vanishes.
- Proof: We prove by induction on $n . n=1$ is trivial. Assume truth for $n-1$. For n, expand A along its first row: $\operatorname{det}(A)=\sum_{j} A_{1 j}(-1)^{1+j} M_{1 j}$. Expand A^{T} along its first column: $\operatorname{det}\left(A^{T}\right)=\sum_{j}\left(A^{T}\right)_{j 1}(-1)^{1+j} M_{j 1}^{\prime}$.

Determinant of a transpose

- For any $n \times n$ matrix $A \operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$.
- As a consequence, row operations of the form $R_{i} \rightarrow R_{i}+c R_{j}$ keep the determinant invariant! scaling a row scales the determinant and if two rows are equal the determinant vanishes.
- Proof: We prove by induction on $n . n=1$ is trivial. Assume truth for $n-1$. For n, expand A along its first row: $\operatorname{det}(A)=\sum_{j} A_{1 j}(-1)^{1+j} M_{1 j}$. Expand A^{T} along its first column: $\operatorname{det}\left(A^{T}\right)=\sum_{j}\left(A^{T}\right)_{j 1}(-1)^{1+j} M_{j 1}^{\prime}$. But $\left(A^{T}\right)_{j 1}=A_{1 j}$ and

Determinant of a transpose

- For any $n \times n$ matrix $A \operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$.
- As a consequence, row operations of the form $R_{i} \rightarrow R_{i}+c R_{j}$ keep the determinant invariant! scaling a row scales the determinant and if two rows are equal the determinant vanishes.
- Proof: We prove by induction on $n . n=1$ is trivial. Assume truth for $n-1$. For n, expand A along its first row: $\operatorname{det}(A)=\sum_{j} A_{1 j}(-1)^{1+j} M_{1 j}$. Expand A^{T} along its first column: $\operatorname{det}\left(A^{T}\right)=\sum_{j}\left(A^{T}\right)_{j 1}(-1)^{1+j} M_{j 1}^{\prime}$. But $\left(A^{T}\right)_{j 1}=A_{1 j}$ and $M_{j 1}^{\prime}=M_{1 j}$ by the induction hypothesis.

Computing determinants using the Gauss-Jordan technique

Computing determinants using the Gauss-Jordan technique

- Since the RREF U

Computing determinants using the Gauss-Jordan technique

- Since the RREF U of a square matrix A

Computing determinants using the Gauss-Jordan technique

- Since the RREF U of a square matrix A is upper-triangular (why?),

Computing determinants using the Gauss-Jordan technique

- Since the RREF U of a square matrix A is upper-triangular (why?), and we can use Gauss-Jordan row operations

Computing determinants using the Gauss-Jordan technique

- Since the RREF U of a square matrix A is upper-triangular (why?), and we can use Gauss-Jordan row operations to bring it to such a form,

Computing determinants using the Gauss-Jordan technique

- Since the RREF U of a square matrix A is upper-triangular (why?), and we can use Gauss-Jordan row operations to bring it to such a form, we can compute the determinant of the matrix easily.

Computing determinants using the Gauss-Jordan technique

- Since the RREF U of a square matrix A is upper-triangular (why?), and we can use Gauss-Jordan row operations to bring it to such a form, we can compute the determinant of the matrix easily.
- Each time

Computing determinants using the Gauss-Jordan technique

- Since the RREF U of a square matrix A is upper-triangular (why?), and we can use Gauss-Jordan row operations to bring it to such a form, we can compute the determinant of the matrix easily.
- Each time we scale a row by a constant c_{i}

Computing determinants using the Gauss-Jordan technique

- Since the RREF U of a square matrix A is upper-triangular (why?), and we can use Gauss-Jordan row operations to bring it to such a form, we can compute the determinant of the matrix easily.
- Each time we scale a row by a constant c_{i} the determinant scales

Computing determinants using the Gauss-Jordan technique

- Since the RREF U of a square matrix A is upper-triangular (why?), and we can use Gauss-Jordan row operations to bring it to such a form, we can compute the determinant of the matrix easily.
- Each time we scale a row by a constant c_{i} the determinant scales and each row-exchange leads to a -1 .

Computing determinants using the Gauss-Jordan technique

- Since the RREF U of a square matrix A is upper-triangular (why?), and we can use Gauss-Jordan row operations to bring it to such a form, we can compute the determinant of the matrix easily.
- Each time we scale a row by a constant c_{i} the determinant scales and each row-exchange leads to a -1 .
- So $\operatorname{det}(A)=\frac{(-1)^{p} \operatorname{det}(U)}{c_{1} c_{2} \ldots}$.

An example

An example

- Compute $\left|\begin{array}{lll}1 & x & x^{2} \\ 1 & y & y^{2} \\ 1 & z & z^{2}\end{array}\right|($

An example

- Compute $\left|\begin{array}{lll}1 & x & x^{2} \\ 1 & y & y^{2} \\ 1 & z & z^{2}\end{array}\right|$ (a Vandermonde determinant)

An example

- Compute $\left|\begin{array}{lll}1 & x & x^{2} \\ 1 & y & y^{2} \\ 1 & z & z^{2}\end{array}\right|$ (a Vandermonde determinant)
- $R_{2} \rightarrow R_{2}-R_{1}, R_{3} \rightarrow R_{3}-R_{1}$

An example

- Compute $\left|\begin{array}{lll}1 & x & x^{2} \\ 1 & y & y^{2} \\ 1 & z & z^{2}\end{array}\right|$ (a Vandermonde determinant)
- $R_{2} \rightarrow R_{2}-R_{1}, R_{3} \rightarrow R_{3}-R_{1}$ do not change the determinant and yield

An example

- Compute $\left|\begin{array}{lll}1 & x & x^{2} \\ 1 & y & y^{2} \\ 1 & z & z^{2}\end{array}\right|$ (a Vandermonde determinant)
- $R_{2} \rightarrow R_{2}-R_{1}, R_{3} \rightarrow R_{3}-R_{1}$ do not change the determinant

$$
\text { and yield }\left|\begin{array}{ccc}
1 & x & x^{2} \\
0 & y-x & y^{2}-x^{2} \\
0 & z-x & z^{2}-x^{2}
\end{array}\right|
$$

An example

- Compute $\left|\begin{array}{lll}1 & x & x^{2} \\ 1 & y & y^{2} \\ 1 & z & z^{2}\end{array}\right|$ (a Vandermonde determinant)
- $R_{2} \rightarrow R_{2}-R_{1}, R_{3} \rightarrow R_{3}-R_{1}$ do not change the determinant
and yield $\left|\begin{array}{ccc}1 & x & x^{2} \\ 0 & y-x & y^{2}-x^{2} \\ 0 & z-x & z^{2}-x^{2}\end{array}\right|$
- Scaling gives

An example

- Compute $\left|\begin{array}{lll}1 & x & x^{2} \\ 1 & y & y^{2} \\ 1 & z & z^{2}\end{array}\right|$ (a Vandermonde determinant)
- $R_{2} \rightarrow R_{2}-R_{1}, R_{3} \rightarrow R_{3}-R_{1}$ do not change the determinant and yield $\left|\begin{array}{ccc}1 & x & x^{2} \\ 0 & y-x & y^{2}-x^{2} \\ 0 & z-x & z^{2}-x^{2}\end{array}\right|$
- Scaling gives $(y-x)(z-x)\left|\begin{array}{ccc}1 & x & x^{2} \\ 0 & 1 & x+y \\ 0 & 1 & x+z\end{array}\right|$

An example

- Compute $\left|\begin{array}{lll}1 & x & x^{2} \\ 1 & y & y^{2} \\ 1 & z & z^{2}\end{array}\right|$ (a Vandermonde determinant)
- $R_{2} \rightarrow R_{2}-R_{1}, R_{3} \rightarrow R_{3}-R_{1}$ do not change the determinant
and yield $\left|\begin{array}{ccc}1 & x & x^{2} \\ 0 & y-x & y^{2}-x^{2} \\ 0 & z-x & z^{2}-x^{2}\end{array}\right|$
- Scaling gives $(y-x)(z-x)\left|\begin{array}{ccc}1 & x & x^{2} \\ 0 & 1 & x+y \\ 0 & 1 & x+z\end{array}\right|$ which is (after

$$
\left.R_{3} \rightarrow R_{3}-R_{2}\right)
$$

An example

- Compute $\left|\begin{array}{lll}1 & x & x^{2} \\ 1 & y & y^{2} \\ 1 & z & z^{2}\end{array}\right|$ (a Vandermonde determinant)
- $R_{2} \rightarrow R_{2}-R_{1}, R_{3} \rightarrow R_{3}-R_{1}$ do not change the determinant and yield $\left|\begin{array}{ccc}1 & x & x^{2} \\ 0 & y-x & y^{2}-x^{2} \\ 0 & z-x & z^{2}-x^{2}\end{array}\right|$
- Scaling gives $(y-x)(z-x)\left|\begin{array}{ccc}1 & x & x^{2} \\ 0 & 1 & x+y \\ 0 & 1 & x+z\end{array}\right|$ which is (after

$$
\left.R_{3} \rightarrow R_{3}-R_{2}\right)(y-x)(z-x)\left|\begin{array}{ccc}
1 & x & x^{2} \\
0 & 1 & x+y \\
0 & 0 & z-y
\end{array}\right|
$$

An example

- Compute $\left|\begin{array}{lll}1 & x & x^{2} \\ 1 & y & y^{2} \\ 1 & z & z^{2}\end{array}\right|$ (a Vandermonde determinant)
- $R_{2} \rightarrow R_{2}-R_{1}, R_{3} \rightarrow R_{3}-R_{1}$ do not change the determinant and yield $\left|\begin{array}{ccc}1 & x & x^{2} \\ 0 & y-x & y^{2}-x^{2} \\ 0 & z-x & z^{2}-x^{2}\end{array}\right|$
- Scaling gives $(y-x)(z-x)\left|\begin{array}{ccc}1 & x & x^{2} \\ 0 & 1 & x+y \\ 0 & 1 & x+z\end{array}\right|$ which is (after
$\left.R_{3} \rightarrow R_{3}-R_{2}\right)(y-x)(z-x)\left|\begin{array}{ccc}1 & x & x^{2} \\ 0 & 1 & x+y \\ 0 & 0 & z-y\end{array}\right|$ which is
upper-triangular and hence equal to

An example

- Compute $\left|\begin{array}{lll}1 & x & x^{2} \\ 1 & y & y^{2} \\ 1 & z & z^{2}\end{array}\right|$ (a Vandermonde determinant)
- $R_{2} \rightarrow R_{2}-R_{1}, R_{3} \rightarrow R_{3}-R_{1}$ do not change the determinant and yield $\left|\begin{array}{ccc}1 & x & x^{2} \\ 0 & y-x & y^{2}-x^{2} \\ 0 & z-x & z^{2}-x^{2}\end{array}\right|$
- Scaling gives $(y-x)(z-x)\left|\begin{array}{ccc}1 & x & x^{2} \\ 0 & 1 & x+y \\ 0 & 1 & x+z\end{array}\right|$ which is (after
$\left.R_{3} \rightarrow R_{3}-R_{2}\right)(y-x)(z-x)\left|\begin{array}{ccc}1 & x & x^{2} \\ 0 & 1 & x+y \\ 0 & 0 & z-y\end{array}\right|$ which is upper-triangular and hence equal to $(y-x)(z-x)(z-y)$.

The product formula

The product formula

- If A, B are two $n \times n$ matrices,

The product formula

- If A, B are two $n \times n$ matrices, then $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.
- If A, B are two $n \times n$ matrices, then $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$. This formula is extremely important.
- If A, B are two $n \times n$ matrices, then $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$. This formula is extremely important.
- Denote the $i^{\text {th }}$ column of
- If A, B are two $n \times n$ matrices, then $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$. This formula is extremely important.
- Denote the $i^{\text {th }}$ column of of B by B_{i}.
- If A, B are two $n \times n$ matrices, then $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$. This formula is extremely important.
- Denote the $i^{t h}$ column of of B by B_{i}. Recall that the $i^{t h}$ column of
- If A, B are two $n \times n$ matrices, then $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$. This formula is extremely important.
- Denote the $i^{t h}$ column of of B by B_{i}. Recall that the $i^{t h}$ column of $(A B)$, i.e.,
- If A, B are two $n \times n$ matrices, then $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$. This formula is extremely important.
- Denote the $i^{t h}$ column of of B by B_{i}. Recall that the $i^{t h}$ column of $(A B)$, i.e., $(A B)_{i}$ is $A B_{i}$.
- If A, B are two $n \times n$ matrices, then $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$. This formula is extremely important.
- Denote the $i^{t h}$ column of of B by B_{i}. Recall that the $i^{t h}$ column of $(A B)$, i.e., $(A B)_{i}$ is $A B_{i}$.
- Thus $\operatorname{det}\left((A B)_{1},(A B)_{2},(A B)_{3}, \ldots\right)=\operatorname{det}\left(A B_{1}, A B_{2}, \ldots\right)$.
- If A, B are two $n \times n$ matrices, then $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$. This formula is extremely important.
- Denote the $i^{t h}$ column of of B by B_{i}. Recall that the $i^{t h}$ column of $(A B)$, i.e., $(A B)_{i}$ is $A B_{i}$.
- Thus $\operatorname{det}\left((A B)_{1},(A B)_{2},(A B)_{3}, \ldots\right)=\operatorname{det}\left(A B_{1}, A B_{2}, \ldots\right)$.
- Fix A and define
- If A, B are two $n \times n$ matrices, then $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$. This formula is extremely important.
- Denote the $i^{t h}$ column of of B by B_{i}. Recall that the $i^{t h}$ column of $(A B)$, i.e., $(A B)_{i}$ is $A B_{i}$.
- Thus $\operatorname{det}\left((A B)_{1},(A B)_{2},(A B)_{3}, \ldots\right)=\operatorname{det}\left(A B_{1}, A B_{2}, \ldots\right)$.
- Fix A and define $F\left(B_{1}, \ldots, B_{n}\right)=\operatorname{det}\left(A B_{1}, A B_{2}, \ldots\right)$.
- If A, B are two $n \times n$ matrices, then $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$. This formula is extremely important.
- Denote the $i^{t h}$ column of of B by B_{i}. Recall that the $i^{\text {th }}$ column of $(A B)$, i.e., $(A B)_{i}$ is $A B_{i}$.
- Thus $\operatorname{det}\left((A B)_{1},(A B)_{2},(A B)_{3}, \ldots\right)=\operatorname{det}\left(A B_{1}, A B_{2}, \ldots\right)$.
- Fix A and define $F\left(B_{1}, \ldots, B_{n}\right)=\operatorname{det}\left(A B_{1}, A B_{2}, \ldots\right)$. Note that F is
- If A, B are two $n \times n$ matrices, then $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$. This formula is extremely important.
- Denote the $i^{t h}$ column of of B by B_{i}. Recall that the $i^{t h}$ column of $(A B)$, i.e., $(A B)_{i}$ is $A B_{i}$.
- Thus $\operatorname{det}\left((A B)_{1},(A B)_{2},(A B)_{3}, \ldots\right)=\operatorname{det}\left(A B_{1}, A B_{2}, \ldots\right)$.
- Fix A and define $F\left(B_{1}, \ldots, B_{n}\right)=\operatorname{det}\left(A B_{1}, A B_{2}, \ldots\right)$. Note that F is
(1) multilinear:
- If A, B are two $n \times n$ matrices, then $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$. This formula is extremely important.
- Denote the $i^{t h}$ column of of B by B_{i}. Recall that the $i^{t h}$ column of $(A B)$, i.e., $(A B)_{i}$ is $A B_{i}$.
- Thus $\operatorname{det}\left((A B)_{1},(A B)_{2},(A B)_{3}, \ldots\right)=\operatorname{det}\left(A B_{1}, A B_{2}, \ldots\right)$.
- Fix A and define $F\left(B_{1}, \ldots, B_{n}\right)=\operatorname{det}\left(A B_{1}, A B_{2}, \ldots\right)$. Note that F is
(1) multilinear: $F\left(\ldots, t B_{i}+s v, \ldots\right)=\operatorname{det}\left(\ldots, A\left(t B_{i}+s v\right), \ldots\right)=$ $\operatorname{det}\left(\ldots, t A B_{i}+s A v, \ldots\right)$
- If A, B are two $n \times n$ matrices, then $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$. This formula is extremely important.
- Denote the $i^{t h}$ column of of B by B_{i}. Recall that the $i^{t h}$ column of $(A B)$, i.e., $(A B)_{i}$ is $A B_{i}$.
- Thus $\operatorname{det}\left((A B)_{1},(A B)_{2},(A B)_{3}, \ldots\right)=\operatorname{det}\left(A B_{1}, A B_{2}, \ldots\right)$.
- Fix A and define $F\left(B_{1}, \ldots, B_{n}\right)=\operatorname{det}\left(A B_{1}, A B_{2}, \ldots\right)$. Note that F is
(1) multilinear: $F\left(\ldots, t B_{i}+s v, \ldots\right)=\operatorname{det}\left(\ldots, A\left(t B_{i}+s v\right), \ldots\right)=$ $\operatorname{det}\left(\ldots, t A B_{i}+s A v, \ldots\right)$ which is $t \operatorname{det}\left(\ldots, A B_{i}, \ldots\right)+s \operatorname{det}(\ldots, A v, \ldots)$
- If A, B are two $n \times n$ matrices, then $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$. This formula is extremely important.
- Denote the $i^{\text {th }}$ column of of B by B_{i}. Recall that the $i^{t h}$ column of $(A B)$, i.e., $(A B)_{i}$ is $A B_{i}$.
- Thus $\operatorname{det}\left((A B)_{1},(A B)_{2},(A B)_{3}, \ldots\right)=\operatorname{det}\left(A B_{1}, A B_{2}, \ldots\right)$.
- Fix A and define $F\left(B_{1}, \ldots, B_{n}\right)=\operatorname{det}\left(A B_{1}, A B_{2}, \ldots\right)$. Note that F is
(1) multilinear: $F\left(\ldots, t B_{i}+s v, \ldots\right)=\operatorname{det}\left(\ldots, A\left(t B_{i}+s v\right), \ldots\right)=$ $\operatorname{det}\left(\ldots, t A B_{i}+s A v, \ldots\right)$ which is $t \operatorname{det}\left(\ldots, A B_{i}, \ldots\right)+s \operatorname{det}(\ldots, A v, \ldots)$ and hence $F\left(\ldots, t B_{i}+s v, \ldots\right)=t F\left(\ldots, B_{i}, \ldots\right)+s F(\ldots, v, \ldots)$.
- If A, B are two $n \times n$ matrices, then $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$. This formula is extremely important.
- Denote the $i^{\text {th }}$ column of of B by B_{i}. Recall that the $i^{t h}$ column of $(A B)$, i.e., $(A B)_{i}$ is $A B_{i}$.
- Thus $\operatorname{det}\left((A B)_{1},(A B)_{2},(A B)_{3}, \ldots\right)=\operatorname{det}\left(A B_{1}, A B_{2}, \ldots\right)$.
- Fix A and define $F\left(B_{1}, \ldots, B_{n}\right)=\operatorname{det}\left(A B_{1}, A B_{2}, \ldots\right)$. Note that F is
(1) multilinear: $F\left(\ldots, t B_{i}+s v, \ldots\right)=\operatorname{det}\left(\ldots, A\left(t B_{i}+s v\right), \ldots\right)=$ $\operatorname{det}\left(\ldots, t A B_{i}+s A v, \ldots\right)$ which is $t \operatorname{det}\left(\ldots, A B_{i}, \ldots\right)+s \operatorname{det}(\ldots, A v, \ldots)$ and hence $F\left(\ldots, t B_{i}+s v, \ldots\right)=t F\left(\ldots, B_{i}, \ldots\right)+s F(\ldots, v, \ldots)$.
(2) alternating:
- If A, B are two $n \times n$ matrices, then $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$. This formula is extremely important.
- Denote the $i^{\text {th }}$ column of of B by B_{i}. Recall that the $i^{t h}$ column of $(A B)$, i.e., $(A B)_{i}$ is $A B_{i}$.
- Thus $\operatorname{det}\left((A B)_{1},(A B)_{2},(A B)_{3}, \ldots\right)=\operatorname{det}\left(A B_{1}, A B_{2}, \ldots\right)$.
- Fix A and define $F\left(B_{1}, \ldots, B_{n}\right)=\operatorname{det}\left(A B_{1}, A B_{2}, \ldots\right)$. Note that F is
(1) multilinear: $F\left(\ldots, t B_{i}+s v, \ldots\right)=\operatorname{det}\left(\ldots, A\left(t B_{i}+s v\right), \ldots\right)=$ $\operatorname{det}\left(\ldots, t A B_{i}+s A v, \ldots\right)$ which is $t \operatorname{det}\left(\ldots, A B_{i}, \ldots\right)+s \operatorname{det}(\ldots, A v, \ldots)$ and hence $F\left(\ldots, t B_{i}+s v, \ldots\right)=t F\left(\ldots, B_{i}, \ldots\right)+s F(\ldots, v, \ldots)$.
(2) alternating: $F\left(\ldots, B_{i}=v, \ldots, B_{j}=v, \ldots\right)=$ $\operatorname{det}(\ldots, A v, \ldots, A v, \ldots)=0$.
- If A, B are two $n \times n$ matrices, then $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$. This formula is extremely important.
- Denote the $i^{\text {th }}$ column of of B by B_{i}. Recall that the $i^{t h}$ column of $(A B)$, i.e., $(A B)_{i}$ is $A B_{i}$.
- Thus $\operatorname{det}\left((A B)_{1},(A B)_{2},(A B)_{3}, \ldots\right)=\operatorname{det}\left(A B_{1}, A B_{2}, \ldots\right)$.
- Fix A and define $F\left(B_{1}, \ldots, B_{n}\right)=\operatorname{det}\left(A B_{1}, A B_{2}, \ldots\right)$. Note that F is
(1) multilinear: $F\left(\ldots, t B_{i}+s v, \ldots\right)=\operatorname{det}\left(\ldots, A\left(t B_{i}+s v\right), \ldots\right)=$ $\operatorname{det}\left(\ldots, t A B_{i}+s A v, \ldots\right)$ which is $t \operatorname{det}\left(\ldots, A B_{i}, \ldots\right)+s \operatorname{det}(\ldots, A v, \ldots)$ and hence $F\left(\ldots, t B_{i}+s v, \ldots\right)=t F\left(\ldots, B_{i}, \ldots\right)+s F(\ldots, v, \ldots)$.
(2) alternating: $F\left(\ldots, B_{i}=v, \ldots, B_{j}=v, \ldots\right)=$ $\operatorname{det}(\ldots, A v, \ldots, A v, \ldots)=0$.
- Hence by uniqueness,
- If A, B are two $n \times n$ matrices, then $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$. This formula is extremely important.
- Denote the $i^{\text {th }}$ column of of B by B_{i}. Recall that the $i^{\text {th }}$ column of $(A B)$, i.e., $(A B)_{i}$ is $A B_{i}$.
- Thus $\operatorname{det}\left((A B)_{1},(A B)_{2},(A B)_{3}, \ldots\right)=\operatorname{det}\left(A B_{1}, A B_{2}, \ldots\right)$.
- Fix A and define $F\left(B_{1}, \ldots, B_{n}\right)=\operatorname{det}\left(A B_{1}, A B_{2}, \ldots\right)$. Note that F is
(1) multilinear: $F\left(\ldots, t B_{i}+s v, \ldots\right)=\operatorname{det}\left(\ldots, A\left(t B_{i}+s v\right), \ldots\right)=$ $\operatorname{det}\left(\ldots, t A B_{i}+s A v, \ldots\right)$ which is $t \operatorname{det}\left(\ldots, A B_{i}, \ldots\right)+s \operatorname{det}(\ldots, A v, \ldots)$ and hence $F\left(\ldots, t B_{i}+s v, \ldots\right)=t F\left(\ldots, B_{i}, \ldots\right)+s F(\ldots, v, \ldots)$.
(2) alternating: $F\left(\ldots, B_{i}=v, \ldots, B_{j}=v, \ldots\right)=$ $\operatorname{det}(\ldots, A v, \ldots, A v, \ldots)=0$.
- Hence by uniqueness, $F\left(B_{1}, \ldots, B_{n}\right)=\operatorname{det}\left(B_{1}, \ldots, B_{n}\right) F\left(e_{1}, \ldots, e_{n}\right)$.
- If A, B are two $n \times n$ matrices, then $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$. This formula is extremely important.
- Denote the $i^{\text {th }}$ column of of B by B_{i}. Recall that the $i^{\text {th }}$ column of $(A B)$, i.e., $(A B)_{i}$ is $A B_{i}$.
- Thus $\operatorname{det}\left((A B)_{1},(A B)_{2},(A B)_{3}, \ldots\right)=\operatorname{det}\left(A B_{1}, A B_{2}, \ldots\right)$.
- Fix A and define $F\left(B_{1}, \ldots, B_{n}\right)=\operatorname{det}\left(A B_{1}, A B_{2}, \ldots\right)$. Note that F is
(1) multilinear: $F\left(\ldots, t B_{i}+s v, \ldots\right)=\operatorname{det}\left(\ldots, A\left(t B_{i}+s v\right), \ldots\right)=$ $\operatorname{det}\left(\ldots, t A B_{i}+s A v, \ldots\right)$ which is $t \operatorname{det}\left(\ldots, A B_{i}, \ldots\right)+s \operatorname{det}(\ldots, A v, \ldots)$ and hence $F\left(\ldots, t B_{i}+s v, \ldots\right)=t F\left(\ldots, B_{i}, \ldots\right)+s F(\ldots, v, \ldots)$.
(2) alternating: $F\left(\ldots, B_{i}=v, \ldots, B_{j}=v, \ldots\right)=$ $\operatorname{det}(\ldots, A v, \ldots, A v, \ldots)=0$.
- Hence by uniqueness,
$F\left(B_{1}, \ldots, B_{n}\right)=\operatorname{det}\left(B_{1}, \ldots, B_{n}\right) F\left(e_{1}, \ldots, e_{n}\right)$. Thus $\operatorname{det}(A B)=\operatorname{det}(B) \operatorname{det}(A)$.

Invertibility and determinants

Invertibility and determinants

- If an $n \times n$ matrix A

Invertibility and determinants

- If an $n \times n$ matrix A is invertible

Invertibility and determinants

- If an $n \times n$ matrix A is invertible then $A A^{-1}=I$.

Invertibility and determinants

- If an $n \times n$ matrix A is invertible then $A A^{-1}=I$. Thus $\operatorname{det}(A) \operatorname{det}\left(A^{-1}\right)=1$ and hence

Invertibility and determinants

- If an $n \times n$ matrix A is invertible then $A A^{-1}=I$. Thus $\operatorname{det}(A) \operatorname{det}\left(A^{-1}\right)=1$ and hence $\operatorname{det}(A) \neq 0$.

Invertibility and determinants

- If an $n \times n$ matrix A is invertible then $A A^{-1}=I$. Thus $\operatorname{det}(A) \operatorname{det}\left(A^{-1}\right)=1$ and hence $\operatorname{det}(A) \neq 0$.
- Recall that

Invertibility and determinants

- If an $n \times n$ matrix A is invertible then $A A^{-1}=I$. Thus $\operatorname{det}(A) \operatorname{det}\left(A^{-1}\right)=1$ and hence $\operatorname{det}(A) \neq 0$.
- Recall that if a set of n vectors

Invertibility and determinants

- If an $n \times n$ matrix A is invertible then $A A^{-1}=I$. Thus $\operatorname{det}(A) \operatorname{det}\left(A^{-1}\right)=1$ and hence $\operatorname{det}(A) \neq 0$.
- Recall that if a set of n vectors v_{1}, \ldots, v_{n} from \mathbb{F}^{n}

Invertibility and determinants

- If an $n \times n$ matrix A is invertible then $A A^{-1}=I$. Thus $\operatorname{det}(A) \operatorname{det}\left(A^{-1}\right)=1$ and hence $\operatorname{det}(A) \neq 0$.
- Recall that if a set of n vectors v_{1}, \ldots, v_{n} from \mathbb{F}^{n} is linearly dependent,

Invertibility and determinants

- If an $n \times n$ matrix A is invertible then $A A^{-1}=I$. Thus $\operatorname{det}(A) \operatorname{det}\left(A^{-1}\right)=1$ and hence $\operatorname{det}(A) \neq 0$.
- Recall that if a set of n vectors v_{1}, \ldots, v_{n} from \mathbb{F}^{n} is linearly dependent, then $\operatorname{det}\left(v_{1}, \ldots, v_{n}\right)=0$.

Invertibility and determinants

- If an $n \times n$ matrix A is invertible then $A A^{-1}=I$. Thus $\operatorname{det}(A) \operatorname{det}\left(A^{-1}\right)=1$ and hence $\operatorname{det}(A) \neq 0$.
- Recall that if a set of n vectors v_{1}, \ldots, v_{n} from \mathbb{F}^{n} is linearly dependent, then $\operatorname{det}\left(v_{1}, \ldots, v_{n}\right)=0$.
- Thus, if $\operatorname{det}(A) \neq 0$,

Invertibility and determinants

- If an $n \times n$ matrix A is invertible then $A A^{-1}=I$. Thus $\operatorname{det}(A) \operatorname{det}\left(A^{-1}\right)=1$ and hence $\operatorname{det}(A) \neq 0$.
- Recall that if a set of n vectors v_{1}, \ldots, v_{n} from \mathbb{F}^{n} is linearly dependent, then $\operatorname{det}\left(v_{1}, \ldots, v_{n}\right)=0$.
- Thus, if $\operatorname{det}(A) \neq 0$, its columns are linearly independent and

Invertibility and determinants

- If an $n \times n$ matrix A is invertible then $A A^{-1}=I$. Thus $\operatorname{det}(A) \operatorname{det}\left(A^{-1}\right)=1$ and hence $\operatorname{det}(A) \neq 0$.
- Recall that if a set of n vectors v_{1}, \ldots, v_{n} from \mathbb{F}^{n} is linearly dependent, then $\operatorname{det}\left(v_{1}, \ldots, v_{n}\right)=0$.
- Thus, if $\operatorname{det}(A) \neq 0$, its columns are linearly independent and hence its column rank is full.

Invertibility and determinants

- If an $n \times n$ matrix A is invertible then $A A^{-1}=I$. Thus $\operatorname{det}(A) \operatorname{det}\left(A^{-1}\right)=1$ and hence $\operatorname{det}(A) \neq 0$.
- Recall that if a set of n vectors v_{1}, \ldots, v_{n} from \mathbb{F}^{n} is linearly dependent, then $\operatorname{det}\left(v_{1}, \ldots, v_{n}\right)=0$.
- Thus, if $\operatorname{det}(A) \neq 0$, its columns are linearly independent and hence its column rank is full. Thus A is invertible.

Invertibility and determinants

- If an $n \times n$ matrix A is invertible then $A A^{-1}=I$. Thus $\operatorname{det}(A) \operatorname{det}\left(A^{-1}\right)=1$ and hence $\operatorname{det}(A) \neq 0$.
- Recall that if a set of n vectors v_{1}, \ldots, v_{n} from \mathbb{F}^{n} is linearly dependent, then $\operatorname{det}\left(v_{1}, \ldots, v_{n}\right)=0$.
- Thus, if $\operatorname{det}(A) \neq 0$, its columns are linearly independent and hence its column rank is full. Thus A is invertible.
- Therefore,

Invertibility and determinants

- If an $n \times n$ matrix A is invertible then $A A^{-1}=I$. Thus $\operatorname{det}(A) \operatorname{det}\left(A^{-1}\right)=1$ and hence $\operatorname{det}(A) \neq 0$.
- Recall that if a set of n vectors v_{1}, \ldots, v_{n} from \mathbb{F}^{n} is linearly dependent, then $\operatorname{det}\left(v_{1}, \ldots, v_{n}\right)=0$.
- Thus, if $\operatorname{det}(A) \neq 0$, its columns are linearly independent and hence its column rank is full. Thus A is invertible.
- Therefore, A is invertible if and only if $\operatorname{det}(A) \neq 0$.

Invertibility and determinants

- If an $n \times n$ matrix A is invertible then $A A^{-1}=I$. Thus $\operatorname{det}(A) \operatorname{det}\left(A^{-1}\right)=1$ and hence $\operatorname{det}(A) \neq 0$.
- Recall that if a set of n vectors v_{1}, \ldots, v_{n} from \mathbb{F}^{n} is linearly dependent, then $\operatorname{det}\left(v_{1}, \ldots, v_{n}\right)=0$.
- Thus, if $\operatorname{det}(A) \neq 0$, its columns are linearly independent and hence its column rank is full. Thus A is invertible.
- Therefore, A is invertible if and only if $\operatorname{det}(A) \neq 0$.
- Equivalently,

Invertibility and determinants

- If an $n \times n$ matrix A is invertible then $A A^{-1}=I$. Thus $\operatorname{det}(A) \operatorname{det}\left(A^{-1}\right)=1$ and hence $\operatorname{det}(A) \neq 0$.
- Recall that if a set of n vectors v_{1}, \ldots, v_{n} from \mathbb{F}^{n} is linearly dependent, then $\operatorname{det}\left(v_{1}, \ldots, v_{n}\right)=0$.
- Thus, if $\operatorname{det}(A) \neq 0$, its columns are linearly independent and hence its column rank is full. Thus A is invertible.
- Therefore, A is invertible if and only if $\operatorname{det}(A) \neq 0$.
- Equivalently, the set v_{1}, \ldots, v_{n}

Invertibility and determinants

- If an $n \times n$ matrix A is invertible then $A A^{-1}=I$. Thus $\operatorname{det}(A) \operatorname{det}\left(A^{-1}\right)=1$ and hence $\operatorname{det}(A) \neq 0$.
- Recall that if a set of n vectors v_{1}, \ldots, v_{n} from \mathbb{F}^{n} is linearly dependent, then $\operatorname{det}\left(v_{1}, \ldots, v_{n}\right)=0$.
- Thus, if $\operatorname{det}(A) \neq 0$, its columns are linearly independent and hence its column rank is full. Thus A is invertible.
- Therefore, A is invertible if and only if $\operatorname{det}(A) \neq 0$.
- Equivalently, the set v_{1}, \ldots, v_{n} is independent if and only if

Invertibility and determinants

- If an $n \times n$ matrix A is invertible then $A A^{-1}=I$. Thus $\operatorname{det}(A) \operatorname{det}\left(A^{-1}\right)=1$ and hence $\operatorname{det}(A) \neq 0$.
- Recall that if a set of n vectors v_{1}, \ldots, v_{n} from \mathbb{F}^{n} is linearly dependent, then $\operatorname{det}\left(v_{1}, \ldots, v_{n}\right)=0$.
- Thus, if $\operatorname{det}(A) \neq 0$, its columns are linearly independent and hence its column rank is full. Thus A is invertible.
- Therefore, A is invertible if and only if $\operatorname{det}(A) \neq 0$.
- Equivalently, the set v_{1}, \ldots, v_{n} is independent if and only if $\operatorname{det}\left(v_{1}, \ldots, v_{n}\right) \neq 0$.

Block-diagonal matrices

Block-diagonal matrices

- Let A be an $n \times n$ matrix and

Block-diagonal matrices

- Let A be an $n \times n$ matrix and D be an $m \times m$ matrix.

Block-diagonal matrices

- Let A be an $n \times n$ matrix and D be an $m \times m$ matrix.
- Then the matrix $M=\left[\begin{array}{cc}A & 0 \\ 0 & D\end{array}\right]$

Block-diagonal matrices

- Let A be an $n \times n$ matrix and D be an $m \times m$ matrix.
- Then the matrix $M=\left[\begin{array}{cc}A & 0 \\ 0 & D\end{array}\right]$ is an $(n+m) \times(n+m)$ "block diagonal" matrix.

Block-diagonal matrices

- Let A be an $n \times n$ matrix and D be an $m \times m$ matrix.
- Then the matrix $M=\left[\begin{array}{cc}A & 0 \\ 0 & D\end{array}\right]$ is an $(n+m) \times(n+m)$ "block diagonal" matrix.
- Note that $M=\left[\begin{array}{ll}A & 0 \\ 0 & I\end{array}\right]\left[\begin{array}{ll}I & 0 \\ 0 & D\end{array}\right]$.

Block-diagonal matrices

- Let A be an $n \times n$ matrix and D be an $m \times m$ matrix.
- Then the matrix $M=\left[\begin{array}{cc}A & 0 \\ 0 & D\end{array}\right]$ is an $(n+m) \times(n+m)$ "block diagonal" matrix.
- Note that $M=\left[\begin{array}{ll}A & 0 \\ 0 & I\end{array}\right]\left[\begin{array}{ll}I & 0 \\ 0 & D\end{array}\right]$. So $\operatorname{det}(M)$ is

Block-diagonal matrices

- Let A be an $n \times n$ matrix and D be an $m \times m$ matrix.
- Then the matrix $M=\left[\begin{array}{cc}A & 0 \\ 0 & D\end{array}\right]$ is an $(n+m) \times(n+m)$ "block diagonal" matrix.
- Note that $M=\left[\begin{array}{ll}A & 0 \\ 0 & I\end{array}\right]\left[\begin{array}{ll}I & 0 \\ 0 & D\end{array}\right]$. So $\operatorname{det}(M)$ is a product of two other determinants.

Block-diagonal matrices

- Let A be an $n \times n$ matrix and D be an $m \times m$ matrix.
- Then the matrix $M=\left[\begin{array}{cc}A & 0 \\ 0 & D\end{array}\right]$ is an $(n+m) \times(n+m)$ "block diagonal" matrix.
- Note that $M=\left[\begin{array}{ll}A & 0 \\ 0 & I\end{array}\right]\left[\begin{array}{ll}I & 0 \\ 0 & D\end{array}\right]$. So $\operatorname{det}(M)$ is a product of two other determinants.
- The function $F\left(A_{1}, \ldots, A_{n}\right)=\operatorname{det}\left[\begin{array}{ll}A & 0 \\ 0 & I\end{array}\right]$

Block-diagonal matrices

- Let A be an $n \times n$ matrix and D be an $m \times m$ matrix.
- Then the matrix $M=\left[\begin{array}{cc}A & 0 \\ 0 & D\end{array}\right]$ is an $(n+m) \times(n+m)$ "block diagonal" matrix.
- Note that $M=\left[\begin{array}{ll}A & 0 \\ 0 & I\end{array}\right]\left[\begin{array}{ll}I & 0 \\ 0 & D\end{array}\right]$. So $\operatorname{det}(M)$ is a product of two other determinants.
- The function $F\left(A_{1}, \ldots, A_{n}\right)=\operatorname{det}\left[\begin{array}{cc}A & 0 \\ 0 & I\end{array}\right]$ satisfies all the

Block-diagonal matrices

- Let A be an $n \times n$ matrix and D be an $m \times m$ matrix.
- Then the matrix $M=\left[\begin{array}{cc}A & 0 \\ 0 & D\end{array}\right]$ is an $(n+m) \times(n+m)$ "block diagonal" matrix.
- Note that $M=\left[\begin{array}{ll}A & 0 \\ 0 & I\end{array}\right]\left[\begin{array}{ll}I & 0 \\ 0 & D\end{array}\right]$. So $\operatorname{det}(M)$ is a product of two other determinants.
- The function $F\left(A_{1}, \ldots, A_{n}\right)=\operatorname{det}\left[\begin{array}{cc}A & 0 \\ 0 & I\end{array}\right]$ satisfies all the axioms of multilinear

Block-diagonal matrices

- Let A be an $n \times n$ matrix and D be an $m \times m$ matrix.
- Then the matrix $M=\left[\begin{array}{cc}A & 0 \\ 0 & D\end{array}\right]$ is an $(n+m) \times(n+m)$ "block diagonal" matrix.
- Note that $M=\left[\begin{array}{ll}A & 0 \\ 0 & I\end{array}\right]\left[\begin{array}{ll}I & 0 \\ 0 & D\end{array}\right]$. So $\operatorname{det}(M)$ is a product of two other determinants.
- The function $F\left(A_{1}, \ldots, A_{n}\right)=\operatorname{det}\left[\begin{array}{cc}A & 0 \\ 0 & I\end{array}\right]$ satisfies all the axioms of multilinear alternating functions and

Block-diagonal matrices

- Let A be an $n \times n$ matrix and D be an $m \times m$ matrix.
- Then the matrix $M=\left[\begin{array}{cc}A & 0 \\ 0 & D\end{array}\right]$ is an $(n+m) \times(n+m)$ "block diagonal" matrix.
- Note that $M=\left[\begin{array}{ll}A & 0 \\ 0 & I\end{array}\right]\left[\begin{array}{ll}I & 0 \\ 0 & D\end{array}\right]$. So $\operatorname{det}(M)$ is a product of two other determinants.
- The function $F\left(A_{1}, \ldots, A_{n}\right)=\operatorname{det}\left[\begin{array}{cc}A & 0 \\ 0 & I\end{array}\right]$ satisfies all the axioms of multilinear alternating functions and hence by uniqueness,

Block-diagonal matrices

- Let A be an $n \times n$ matrix and D be an $m \times m$ matrix.
- Then the matrix $M=\left[\begin{array}{cc}A & 0 \\ 0 & D\end{array}\right]$ is an $(n+m) \times(n+m)$ "block diagonal" matrix.
- Note that $M=\left[\begin{array}{ll}A & 0 \\ 0 & I\end{array}\right]\left[\begin{array}{ll}I & 0 \\ 0 & D\end{array}\right]$. So $\operatorname{det}(M)$ is a product of two other determinants.
- The function $F\left(A_{1}, \ldots, A_{n}\right)=\operatorname{det}\left[\begin{array}{cc}A & 0 \\ 0 & I\end{array}\right]$ satisfies all the axioms of multilinear alternating functions and hence by uniqueness, $F\left(A_{1}, \ldots\right)=\operatorname{det}(A) F\left(e_{1}, \ldots\right)=\operatorname{det}(A)$.

Block-diagonal matrices

- Let A be an $n \times n$ matrix and D be an $m \times m$ matrix.
- Then the matrix $M=\left[\begin{array}{cc}A & 0 \\ 0 & D\end{array}\right]$ is an $(n+m) \times(n+m)$ "block diagonal" matrix.
- Note that $M=\left[\begin{array}{ll}A & 0 \\ 0 & I\end{array}\right]\left[\begin{array}{ll}I & 0 \\ 0 & D\end{array}\right]$. So $\operatorname{det}(M)$ is a product of two other determinants.
- The function $F\left(A_{1}, \ldots, A_{n}\right)=\operatorname{det}\left[\begin{array}{cc}A & 0 \\ 0 & I\end{array}\right]$ satisfies all the axioms of multilinear alternating functions and hence by uniqueness, $F\left(A_{1}, \ldots\right)=\operatorname{det}(A) F\left(e_{1}, \ldots\right)=\operatorname{det}(A)$. Likewise for D.

Block-diagonal matrices

- Let A be an $n \times n$ matrix and D be an $m \times m$ matrix.
- Then the matrix $M=\left[\begin{array}{cc}A & 0 \\ 0 & D\end{array}\right]$ is an $(n+m) \times(n+m)$ "block diagonal" matrix.
- Note that $M=\left[\begin{array}{ll}A & 0 \\ 0 & I\end{array}\right]\left[\begin{array}{ll}I & 0 \\ 0 & D\end{array}\right]$. So $\operatorname{det}(M)$ is a product of two other determinants.
- The function $F\left(A_{1}, \ldots, A_{n}\right)=\operatorname{det}\left[\begin{array}{cc}A & 0 \\ 0 & I\end{array}\right]$ satisfies all the axioms of multilinear alternating functions and hence by uniqueness, $F\left(A_{1}, \ldots\right)=\operatorname{det}(A) F\left(e_{1}, \ldots\right)=\operatorname{det}(A)$. Likewise for D. Thus $\operatorname{det}(M)=\operatorname{det}(A) \operatorname{det}(D)$.

Change of basis

Change of basis

- Given a linear map

Change of basis

- Given a linear map $T: V \rightarrow V$

Change of basis

- Given a linear map $T: V \rightarrow V$ where as always,

Change of basis

- Given a linear map $T: V \rightarrow V$ where as always, V is a f.d vector space,

Change of basis

- Given a linear map $T: V \rightarrow V$ where as always, V is a f.d vector space, how can we define

Change of basis

- Given a linear map $T: V \rightarrow V$ where as always, V is a f.d vector space, how can we define its determinant?

Change of basis

- Given a linear map $T: V \rightarrow V$ where as always, V is a f.d vector space, how can we define its determinant?
- One naive thing to do

Change of basis

- Given a linear map $T: V \rightarrow V$ where as always, V is a f.d vector space, how can we define its determinant?
- One naive thing to do is to consider an ordered basis e_{1}, \ldots, e_{n}

Change of basis

- Given a linear map $T: V \rightarrow V$ where as always, V is a f.d vector space, how can we define its determinant?
- One naive thing to do is to consider an ordered basis e_{1}, \ldots, e_{n} for both, the domain and

Change of basis

- Given a linear map $T: V \rightarrow V$ where as always, V is a f.d vector space, how can we define its determinant?
- One naive thing to do is to consider an ordered basis e_{1}, \ldots, e_{n} for both, the domain and the target.

Change of basis

- Given a linear map $T: V \rightarrow V$ where as always, V is a f.d vector space, how can we define its determinant?
- One naive thing to do is to consider an ordered basis e_{1}, \ldots, e_{n} for both, the domain and the target. Then T is represented by

Change of basis

- Given a linear map $T: V \rightarrow V$ where as always, V is a f.d vector space, how can we define its determinant?
- One naive thing to do is to consider an ordered basis e_{1}, \ldots, e_{n} for both, the domain and the target. Then T is represented by a matrix [T].

Change of basis

- Given a linear map $T: V \rightarrow V$ where as always, V is a f.d vector space, how can we define its determinant?
- One naive thing to do is to consider an ordered basis e_{1}, \ldots, e_{n} for both, the domain and the target. Then T is represented by a matrix [T]. We can attempt to define

Change of basis

- Given a linear map $T: V \rightarrow V$ where as always, V is a f.d vector space, how can we define its determinant?
- One naive thing to do is to consider an ordered basis e_{1}, \ldots, e_{n} for both, the domain and the target. Then T is represented by a matrix [T]. We can attempt to define $\operatorname{det}(T)$ as

Change of basis

- Given a linear map $T: V \rightarrow V$ where as always, V is a f.d vector space, how can we define its determinant?
- One naive thing to do is to consider an ordered basis e_{1}, \ldots, e_{n} for both, the domain and the target. Then T is represented by a matrix [T]. We can attempt to define $\operatorname{det}(T)$ as $\operatorname{det}([T])$.

Change of basis

- Given a linear map $T: V \rightarrow V$ where as always, V is a f.d vector space, how can we define its determinant?
- One naive thing to do is to consider an ordered basis e_{1}, \ldots, e_{n} for both, the domain and the target. Then T is represented by a matrix [T]. We can attempt to define $\operatorname{det}(T)$ as $\operatorname{det}([T])$. However, what happens when

Change of basis

- Given a linear map $T: V \rightarrow V$ where as always, V is a f.d vector space, how can we define its determinant?
- One naive thing to do is to consider an ordered basis e_{1}, \ldots, e_{n} for both, the domain and the target. Then T is represented by a matrix [T]. We can attempt to define $\operatorname{det}(T)$ as $\operatorname{det}([T])$. However, what happens when we change the ordered basis?

Change of basis

- Given a linear map $T: V \rightarrow V$ where as always, V is a f.d vector space, how can we define its determinant?
- One naive thing to do is to consider an ordered basis e_{1}, \ldots, e_{n} for both, the domain and the target. Then T is represented by a matrix [T]. We can attempt to define $\operatorname{det}(T)$ as $\operatorname{det}([T])$. However, what happens when we change the ordered basis?
- Let $e_{1}^{\prime}, e_{2}^{\prime}, \ldots$ be a

Change of basis

- Given a linear map $T: V \rightarrow V$ where as always, V is a f.d vector space, how can we define its determinant?
- One naive thing to do is to consider an ordered basis e_{1}, \ldots, e_{n} for both, the domain and the target. Then T is represented by a matrix [T]. We can attempt to define $\operatorname{det}(T)$ as $\operatorname{det}([T])$. However, what happens when we change the ordered basis?
- Let $e_{1}^{\prime}, e_{2}^{\prime}, \ldots$ be a new ordered basis.

Change of basis

- Given a linear map $T: V \rightarrow V$ where as always, V is a f.d vector space, how can we define its determinant?
- One naive thing to do is to consider an ordered basis e_{1}, \ldots, e_{n} for both, the domain and the target. Then T is represented by a matrix [T]. We can attempt to define $\operatorname{det}(T)$ as $\operatorname{det}([T])$. However, what happens when we change the ordered basis?
- Let $e_{1}^{\prime}, e_{2}^{\prime}, \ldots$ be a new ordered basis. Recall that

Change of basis

- Given a linear map $T: V \rightarrow V$ where as always, V is a f.d vector space, how can we define its determinant?
- One naive thing to do is to consider an ordered basis e_{1}, \ldots, e_{n} for both, the domain and the target. Then T is represented by a matrix [T]. We can attempt to define $\operatorname{det}(T)$ as $\operatorname{det}([T])$. However, what happens when we change the ordered basis?
- Let $e_{1}^{\prime}, e_{2}^{\prime}, \ldots$ be a new ordered basis. Recall that $e_{i}^{\prime}=\sum_{j} P_{j i} e_{j}$ for some

Change of basis

- Given a linear map $T: V \rightarrow V$ where as always, V is a f.d vector space, how can we define its determinant?
- One naive thing to do is to consider an ordered basis e_{1}, \ldots, e_{n} for both, the domain and the target. Then T is represented by a matrix [T]. We can attempt to define $\operatorname{det}(T)$ as $\operatorname{det}([T])$. However, what happens when we change the ordered basis?
- Let $e_{1}^{\prime}, e_{2}^{\prime}, \ldots$ be a new ordered basis. Recall that $e_{i}^{\prime}=\sum_{j} P_{j i} e_{j}$ for some $P_{j i} \in \mathbb{F}$.

Change of basis

- Given a linear map $T: V \rightarrow V$ where as always, V is a f.d vector space, how can we define its determinant?
- One naive thing to do is to consider an ordered basis e_{1}, \ldots, e_{n} for both, the domain and the target. Then T is represented by a matrix [T]. We can attempt to define $\operatorname{det}(T)$ as $\operatorname{det}([T])$. However, what happens when we change the ordered basis?
- Let $e_{1}^{\prime}, e_{2}^{\prime}, \ldots$ be a new ordered basis. Recall that $e_{i}^{\prime}=\sum_{j} P_{j i} e_{j}$ for some $P_{j i} \in \mathbb{F}$. Also recall that

Change of basis

- Given a linear map $T: V \rightarrow V$ where as always, V is a f.d vector space, how can we define its determinant?
- One naive thing to do is to consider an ordered basis e_{1}, \ldots, e_{n} for both, the domain and the target. Then T is represented by a matrix [T]. We can attempt to define $\operatorname{det}(T)$ as $\operatorname{det}([T])$. However, what happens when we change the ordered basis?
- Let $e_{1}^{\prime}, e_{2}^{\prime}, \ldots$ be a new ordered basis. Recall that $e_{i}^{\prime}=\sum_{j} P_{j i} e_{j}$ for some $P_{j i} \in \mathbb{F}$. Also recall that in an ordered basis

Change of basis

- Given a linear map $T: V \rightarrow V$ where as always, V is a f.d vector space, how can we define its determinant?
- One naive thing to do is to consider an ordered basis e_{1}, \ldots, e_{n} for both, the domain and the target. Then T is represented by a matrix [T]. We can attempt to define $\operatorname{det}(T)$ as $\operatorname{det}([T])$. However, what happens when we change the ordered basis?
- Let $e_{1}^{\prime}, e_{2}^{\prime}, \ldots$ be a new ordered basis. Recall that $e_{i}^{\prime}=\sum_{j} P_{j i} e_{j}$ for some $P_{j i} \in \mathbb{F}$. Also recall that in an ordered basis the first column of the matrix

Change of basis

- Given a linear map $T: V \rightarrow V$ where as always, V is a f.d vector space, how can we define its determinant?
- One naive thing to do is to consider an ordered basis e_{1}, \ldots, e_{n} for both, the domain and the target. Then T is represented by a matrix [T]. We can attempt to define $\operatorname{det}(T)$ as $\operatorname{det}([T])$. However, what happens when we change the ordered basis?
- Let $e_{1}^{\prime}, e_{2}^{\prime}, \ldots$ be a new ordered basis. Recall that $e_{i}^{\prime}=\sum_{j} P_{j i} e_{j}$ for some $P_{j i} \in \mathbb{F}$. Also recall that in an ordered basis the first column of the matrix associated to T

Change of basis

- Given a linear map $T: V \rightarrow V$ where as always, V is a f.d vector space, how can we define its determinant?
- One naive thing to do is to consider an ordered basis e_{1}, \ldots, e_{n} for both, the domain and the target. Then T is represented by a matrix [T]. We can attempt to define $\operatorname{det}(T)$ as $\operatorname{det}([T])$. However, what happens when we change the ordered basis?
- Let $e_{1}^{\prime}, e_{2}^{\prime}, \ldots$ be a new ordered basis. Recall that $e_{i}^{\prime}=\sum_{j} P_{j i} e_{j}$ for some $P_{j i} \in \mathbb{F}$. Also recall that in an ordered basis the first column of the matrix associated to T is simply the component vector of $T\left(e_{1}^{\prime}\right)$

Change of basis

- Given a linear map $T: V \rightarrow V$ where as always, V is a f.d vector space, how can we define its determinant?
- One naive thing to do is to consider an ordered basis e_{1}, \ldots, e_{n} for both, the domain and the target. Then T is represented by a matrix [T]. We can attempt to define $\operatorname{det}(T)$ as $\operatorname{det}([T])$. However, what happens when we change the ordered basis?
- Let $e_{1}^{\prime}, e_{2}^{\prime}, \ldots$ be a new ordered basis. Recall that $e_{i}^{\prime}=\sum_{j} P_{j i} e_{j}$ for some $P_{j i} \in \mathbb{F}$. Also recall that in an ordered basis the first column of the matrix associated to T is simply the component vector of $T\left(e_{1}^{\prime}\right)$ and likewise

Change of basis

- Given a linear map $T: V \rightarrow V$ where as always, V is a f.d vector space, how can we define its determinant?
- One naive thing to do is to consider an ordered basis e_{1}, \ldots, e_{n} for both, the domain and the target. Then T is represented by a matrix [T]. We can attempt to define $\operatorname{det}(T)$ as $\operatorname{det}([T])$. However, what happens when we change the ordered basis?
- Let $e_{1}^{\prime}, e_{2}^{\prime}, \ldots$ be a new ordered basis. Recall that $e_{i}^{\prime}=\sum_{j} P_{j i} e_{j}$ for some $P_{j i} \in \mathbb{F}$. Also recall that in an ordered basis the first column of the matrix associated to T is simply the component vector of $T\left(e_{1}^{\prime}\right)$ and likewise for the other columns.

Change of basis

Change of basis

- Now $T\left(e_{i}^{\prime}\right)=\sum_{j} P_{j i} T\left(e_{j}\right)$ which is

Change of basis

- Now $T\left(e_{i}^{\prime}\right)=\sum_{j} P_{j i} T\left(e_{j}\right)$ which is $\sum_{j, k} P_{j i}[T]_{k j} e_{k}$.

Change of basis

- Now $T\left(e_{i}^{\prime}\right)=\sum_{j} P_{j i} T\left(e_{j}\right)$ which is $\sum_{j, k} P_{j i}[T]_{k j} e_{k}$.
- We wish to express $T\left(e_{i}^{\prime}\right)$

Change of basis

- Now $T\left(e_{i}^{\prime}\right)=\sum_{j} P_{j i} T\left(e_{j}\right)$ which is $\sum_{j, k} P_{j i}[T]_{k j} e_{k}$.
- We wish to express $T\left(e_{i}^{\prime}\right)$ in terms of

Change of basis

- Now $T\left(e_{i}^{\prime}\right)=\sum_{j} P_{j i} T\left(e_{j}\right)$ which is $\sum_{j, k} P_{j i}[T]_{k j} e_{k}$.
- We wish to express $T\left(e_{i}^{\prime}\right)$ in terms of the $e^{\prime} s$ (as opposed to es).

Change of basis

- Now $T\left(e_{i}^{\prime}\right)=\sum_{j} P_{j i} T\left(e_{j}\right)$ which is $\sum_{j, k} P_{j i}[T]_{k j} e_{k}$.
- We wish to express $T\left(e_{i}^{\prime}\right)$ in terms of the $e^{\prime} s$ (as opposed to es).
- So we want to

Change of basis

- Now $T\left(e_{i}^{\prime}\right)=\sum_{j} P_{j i} T\left(e_{j}\right)$ which is $\sum_{j, k} P_{j i}[T]_{k j} e_{k}$.
- We wish to express $T\left(e_{i}^{\prime}\right)$ in terms of the $e^{\prime} s$ (as opposed to es).
- So we want to "solve" for the es

Change of basis

- Now $T\left(e_{i}^{\prime}\right)=\sum_{j} P_{j i} T\left(e_{j}\right)$ which is $\sum_{j, k} P_{j i}[T]_{k j} e_{k}$.
- We wish to express $T\left(e_{i}^{\prime}\right)$ in terms of the $e^{\prime} s$ (as opposed to es).
- So we want to "solve" for the es in terms of the e^{\prime} s using

Change of basis

- Now $T\left(e_{i}^{\prime}\right)=\sum_{j} P_{j i} T\left(e_{j}\right)$ which is $\sum_{j, k} P_{j i}[T]_{k j} e_{k}$.
- We wish to express $T\left(e_{i}^{\prime}\right)$ in terms of the $e^{\prime} s$ (as opposed to es).
- So we want to "solve" for the es in terms of the e^{\prime} s using $e_{i}^{\prime}=\sum_{j} P_{j i} e_{j}$.

Change of basis

- Now $T\left(e_{i}^{\prime}\right)=\sum_{j} P_{j i} T\left(e_{j}\right)$ which is $\sum_{j, k} P_{j i}[T]_{k j} e_{k}$.
- We wish to express $T\left(e_{i}^{\prime}\right)$ in terms of the $e^{\prime} \mathrm{s}$ (as opposed to es).
- So we want to "solve" for the es in terms of the e's using $e_{i}^{\prime}=\sum_{j} P_{j i} e_{j}$. These are simply linear equations!

Change of basis

- Now $T\left(e_{i}^{\prime}\right)=\sum_{j} P_{j i} T\left(e_{j}\right)$ which is $\sum_{j, k} P_{j i}[T]_{k j} e_{k}$.
- We wish to express $T\left(e_{i}^{\prime}\right)$ in terms of the $e^{\prime} \mathrm{s}$ (as opposed to es).
- So we want to "solve" for the es in terms of the e's using $e_{i}^{\prime}=\sum_{j} P_{j i} e_{j}$. These are simply linear equations!
- Formally treating

Change of basis

- Now $T\left(e_{i}^{\prime}\right)=\sum_{j} P_{j i} T\left(e_{j}\right)$ which is $\sum_{j, k} P_{j i}[T]_{k j} e_{k}$.
- We wish to express $T\left(e_{i}^{\prime}\right)$ in terms of the $e^{\prime} \mathrm{s}$ (as opposed to es).
- So we want to "solve" for the es in terms of the e's using $e_{i}^{\prime}=\sum_{j} P_{j i} e_{j}$. These are simply linear equations!
- Formally treating the es and $e^{\prime} s$ as variables

Change of basis

- Now $T\left(e_{i}^{\prime}\right)=\sum_{j} P_{j i} T\left(e_{j}\right)$ which is $\sum_{j, k} P_{j i}[T]_{k j} e_{k}$.
- We wish to express $T\left(e_{i}^{\prime}\right)$ in terms of the $e^{\prime} s$ (as opposed to es).
- So we want to "solve" for the es in terms of the e's using $e_{i}^{\prime}=\sum_{j} P_{j i} e_{j}$. These are simply linear equations!
- Formally treating the es and e^{\prime} s as variables we can form "row vectors"

Change of basis

- Now $T\left(e_{i}^{\prime}\right)=\sum_{j} P_{j i} T\left(e_{j}\right)$ which is $\sum_{j, k} P_{j i}[T]_{k j} e_{k}$.
- We wish to express $T\left(e_{i}^{\prime}\right)$ in terms of the $e^{\prime} s$ (as opposed to es).
- So we want to "solve" for the es in terms of the e's using $e_{i}^{\prime}=\sum_{j} P_{j i} e_{j}$. These are simply linear equations!
- Formally treating the es and e^{\prime} s as variables we can form "row vectors" $e=\left[\begin{array}{llll}e_{1} & e_{2} & e_{3} & \ldots\end{array}\right]$ and

Change of basis

- Now $T\left(e_{i}^{\prime}\right)=\sum_{j} P_{j i} T\left(e_{j}\right)$ which is $\sum_{j, k} P_{j i}[T]_{k j} e_{k}$.
- We wish to express $T\left(e_{i}^{\prime}\right)$ in terms of the $e^{\prime} s$ (as opposed to es).
- So we want to "solve" for the es in terms of the e's using $e_{i}^{\prime}=\sum_{j} P_{j i} e_{j}$. These are simply linear equations!
- Formally treating the es and e^{\prime} s as variables we can form "row vectors" $e=\left[\begin{array}{llll}e_{1} & e_{2} & e_{3} & \ldots\end{array}\right]$ and $e^{\prime}=\left[\begin{array}{llll}e_{1}^{\prime} & e_{2}^{\prime} & e_{3}^{\prime} & \ldots\end{array}\right]$.

Change of basis

- Now $T\left(e_{i}^{\prime}\right)=\sum_{j} P_{j i} T\left(e_{j}\right)$ which is $\sum_{j, k} P_{j i}[T]_{k j} e_{k}$.
- We wish to express $T\left(e_{i}^{\prime}\right)$ in terms of the $e^{\prime} \mathrm{s}$ (as opposed to es).
- So we want to "solve" for the es in terms of the e's using $e_{i}^{\prime}=\sum_{j} P_{j i} e_{j}$. These are simply linear equations!
- Formally treating the es and e^{\prime} s as variables we can form "row vectors" $e=\left[\begin{array}{llll}e_{1} & e_{2} & e_{3} & \ldots\end{array}\right]$ and $e^{\prime}=\left[\begin{array}{llll}e_{1}^{\prime} & e_{2}^{\prime} & e_{3}^{\prime} & \ldots\end{array}\right]$.
- Now $e^{\prime}=e[P]$ as

Change of basis

- Now $T\left(e_{i}^{\prime}\right)=\sum_{j} P_{j i} T\left(e_{j}\right)$ which is $\sum_{j, k} P_{j i}[T]_{k j} e_{k}$.
- We wish to express $T\left(e_{i}^{\prime}\right)$ in terms of the $e^{\prime} s$ (as opposed to es).
- So we want to "solve" for the es in terms of the e's using $e_{i}^{\prime}=\sum_{j} P_{j i} e_{j}$. These are simply linear equations!
- Formally treating the es and e^{\prime} s as variables we can form "row vectors" $e=\left[\begin{array}{llll}e_{1} & e_{2} & e_{3} & \ldots\end{array}\right]$ and $e^{\prime}=\left[\begin{array}{llll}e_{1}^{\prime} & e_{2}^{\prime} & e_{3}^{\prime} & \ldots\end{array}\right]$.
- Now $e^{\prime}=e[P]$ as matrix multiplication!

Change of basis

- Now $T\left(e_{i}^{\prime}\right)=\sum_{j} P_{j i} T\left(e_{j}\right)$ which is $\sum_{j, k} P_{j i}[T]_{k j} e_{k}$.
- We wish to express $T\left(e_{i}^{\prime}\right)$ in terms of the $e^{\prime} \mathrm{s}$ (as opposed to es).
- So we want to "solve" for the es in terms of the e's using $e_{i}^{\prime}=\sum_{j} P_{j i} e_{j}$. These are simply linear equations!
- Formally treating the es and e^{\prime} s as variables we can form "row vectors" $e=\left[\begin{array}{llll}e_{1} & e_{2} & e_{3} & \ldots\end{array}\right]$ and $e^{\prime}=\left[\begin{array}{llll}e_{1}^{\prime} & e_{2}^{\prime} & e_{3}^{\prime} & \ldots\end{array}\right]$.
- Now $e^{\prime}=e[P]$ as matrix multiplication! If $[P]$ is not invertible

Change of basis

- Now $T\left(e_{i}^{\prime}\right)=\sum_{j} P_{j i} T\left(e_{j}\right)$ which is $\sum_{j, k} P_{j i}[T]_{k j} e_{k}$.
- We wish to express $T\left(e_{i}^{\prime}\right)$ in terms of the $e^{\prime} \mathrm{s}$ (as opposed to es).
- So we want to "solve" for the es in terms of the e's using $e_{i}^{\prime}=\sum_{j} P_{j i} e_{j}$. These are simply linear equations!
- Formally treating the es and e^{\prime} s as variables we can form "row vectors" $e=\left[\begin{array}{llll}e_{1} & e_{2} & e_{3} & \ldots\end{array}\right]$ and $e^{\prime}=\left[\begin{array}{llll}e_{1}^{\prime} & e_{2}^{\prime} & e_{3}^{\prime} & \ldots\end{array}\right]$.
- Now $e^{\prime}=e[P]$ as matrix multiplication! If $[P]$ is not invertible then its rows

Change of basis

- Now $T\left(e_{i}^{\prime}\right)=\sum_{j} P_{j i} T\left(e_{j}\right)$ which is $\sum_{j, k} P_{j i}[T]_{k j} e_{k}$.
- We wish to express $T\left(e_{i}^{\prime}\right)$ in terms of the $e^{\prime} s$ (as opposed to es).
- So we want to "solve" for the es in terms of the e's using $e_{i}^{\prime}=\sum_{j} P_{j i} e_{j}$. These are simply linear equations!
- Formally treating the es and e^{\prime} s as variables we can form "row vectors" $e=\left[\begin{array}{llll}e_{1} & e_{2} & e_{3} & \ldots\end{array}\right]$ and $e^{\prime}=\left[\begin{array}{llll}e_{1}^{\prime} & e_{2}^{\prime} & e_{3}^{\prime} & \ldots\end{array}\right]$.
- Now $e^{\prime}=e[P]$ as matrix multiplication! If $[P]$ is not invertible then its rows must be linearly dependent.

Change of basis

- Now $T\left(e_{i}^{\prime}\right)=\sum_{j} P_{j i} T\left(e_{j}\right)$ which is $\sum_{j, k} P_{j i}[T]_{k j} e_{k}$.
- We wish to express $T\left(e_{i}^{\prime}\right)$ in terms of the $e^{\prime} s$ (as opposed to es).
- So we want to "solve" for the es in terms of the e's using $e_{i}^{\prime}=\sum_{j} P_{j i} e_{j}$. These are simply linear equations!
- Formally treating the es and e^{\prime} s as variables we can form "row vectors" $e=\left[\begin{array}{llll}e_{1} & e_{2} & e_{3} & \ldots\end{array}\right]$ and $e^{\prime}=\left[\begin{array}{llll}e_{1}^{\prime} & e_{2}^{\prime} & e_{3}^{\prime} & \ldots\end{array}\right]$.
- Now $e^{\prime}=e[P]$ as matrix multiplication! If $[P]$ is not invertible then its rows must be linearly dependent. That would mean a

Change of basis

- Now $T\left(e_{i}^{\prime}\right)=\sum_{j} P_{j i} T\left(e_{j}\right)$ which is $\sum_{j, k} P_{j i}[T]_{k j} e_{k}$.
- We wish to express $T\left(e_{i}^{\prime}\right)$ in terms of the $e^{\prime} \mathrm{s}$ (as opposed to es).
- So we want to "solve" for the es in terms of the e's using $e_{i}^{\prime}=\sum_{j} P_{j i} e_{j}$. These are simply linear equations!
- Formally treating the es and e^{\prime} s as variables we can form "row vectors" $e=\left[\begin{array}{llll}e_{1} & e_{2} & e_{3} & \ldots\end{array}\right]$ and $e^{\prime}=\left[\begin{array}{llll}e_{1}^{\prime} & e_{2}^{\prime} & e_{3}^{\prime} & \ldots\end{array}\right]$.
- Now $e^{\prime}=e[P]$ as matrix multiplication! If $[P]$ is not invertible then its rows must be linearly dependent. That would mean a non-trivial linear relationship

Change of basis

- Now $T\left(e_{i}^{\prime}\right)=\sum_{j} P_{j i} T\left(e_{j}\right)$ which is $\sum_{j, k} P_{j i}[T]_{k j} e_{k}$.
- We wish to express $T\left(e_{i}^{\prime}\right)$ in terms of the $e^{\prime} s$ (as opposed to es).
- So we want to "solve" for the es in terms of the e^{\prime} s using $e_{i}^{\prime}=\sum_{j} P_{j i} e_{j}$. These are simply linear equations!
- Formally treating the es and e^{\prime} s as variables we can form "row vectors" $e=\left[\begin{array}{llll}e_{1} & e_{2} & e_{3} & \ldots\end{array}\right]$ and $e^{\prime}=\left[\begin{array}{llll}e_{1}^{\prime} & e_{2}^{\prime} & e_{3}^{\prime} & \ldots\end{array}\right]$.
- Now $e^{\prime}=e[P]$ as matrix multiplication! If $[P]$ is not invertible then its rows must be linearly dependent. That would mean a non-trivial linear relationship between the basis vectors e_{i}.

Change of basis

- Now $T\left(e_{i}^{\prime}\right)=\sum_{j} P_{j i} T\left(e_{j}\right)$ which is $\sum_{j, k} P_{j i}[T]_{k j} e_{k}$.
- We wish to express $T\left(e_{i}^{\prime}\right)$ in terms of the $e^{\prime} s$ (as opposed to es).
- So we want to "solve" for the es in terms of the e^{\prime} s using $e_{i}^{\prime}=\sum_{j} P_{j i} e_{j}$. These are simply linear equations!
- Formally treating the es and e^{\prime} s as variables we can form "row vectors" $e=\left[\begin{array}{llll}e_{1} & e_{2} & e_{3} & \ldots\end{array}\right]$ and $e^{\prime}=\left[\begin{array}{llll}e_{1}^{\prime} & e_{2}^{\prime} & e_{3}^{\prime} & \ldots\end{array}\right]$.
- Now $e^{\prime}=e[P]$ as matrix multiplication! If $[P]$ is not invertible then its rows must be linearly dependent. That would mean a non-trivial linear relationship between the basis vectors e_{i}. Therefore, $[P]$ is invertible.

Change of basis

- Now $T\left(e_{i}^{\prime}\right)=\sum_{j} P_{j i} T\left(e_{j}\right)$ which is $\sum_{j, k} P_{j i}[T]_{k j} e_{k}$.
- We wish to express $T\left(e_{i}^{\prime}\right)$ in terms of the $e^{\prime} s$ (as opposed to es).
- So we want to "solve" for the es in terms of the e^{\prime} s using $e_{i}^{\prime}=\sum_{j} P_{j i} e_{j}$. These are simply linear equations!
- Formally treating the es and e^{\prime} s as variables we can form "row vectors" $e=\left[\begin{array}{llll}e_{1} & e_{2} & e_{3} & \ldots\end{array}\right]$ and $e^{\prime}=\left[\begin{array}{lll}e_{1}^{\prime} & e_{2}^{\prime} & e_{3}^{\prime}\end{array}\right.$.
- Now $e^{\prime}=e[P]$ as matrix multiplication! If $[P]$ is not invertible then its rows must be linearly dependent. That would mean a non-trivial linear relationship between the basis vectors e_{i}.
Therefore, $[P]$ is invertible.
- Thus $e^{\prime}[P]^{-1}=e$.

Change of basis

- Now $T\left(e_{i}^{\prime}\right)=\sum_{j} P_{j i} T\left(e_{j}\right)$ which is $\sum_{j, k} P_{j i}[T]_{k j} e_{k}$.
- We wish to express $T\left(e_{i}^{\prime}\right)$ in terms of the $e^{\prime} s$ (as opposed to es).
- So we want to "solve" for the es in terms of the e^{\prime} s using $e_{i}^{\prime}=\sum_{j} P_{j i} e_{j}$. These are simply linear equations!
- Formally treating the es and e^{\prime} s as variables we can form "row vectors" $e=\left[\begin{array}{llll}e_{1} & e_{2} & e_{3} & \ldots\end{array}\right]$ and $e^{\prime}=\left[\begin{array}{lll}e_{1}^{\prime} & e_{2}^{\prime} & e_{3}^{\prime}\end{array}\right.$.
- Now $e^{\prime}=e[P]$ as matrix multiplication! If $[P]$ is not invertible then its rows must be linearly dependent. That would mean a non-trivial linear relationship between the basis vectors e_{i}.
Therefore, $[P]$ is invertible.
- Thus $e^{\prime}[P]^{-1}=e$. In terms of matrices,

Change of basis

- Now $T\left(e_{i}^{\prime}\right)=\sum_{j} P_{j i} T\left(e_{j}\right)$ which is $\sum_{j, k} P_{j i}[T]_{k j} e_{k}$.
- We wish to express $T\left(e_{i}^{\prime}\right)$ in terms of the $e^{\prime} s$ (as opposed to es).
- So we want to "solve" for the es in terms of the e's using $e_{i}^{\prime}=\sum_{j} P_{j i} e_{j}$. These are simply linear equations!
- Formally treating the es and e^{\prime} s as variables we can form "row vectors" $e=\left[\begin{array}{llll}e_{1} & e_{2} & e_{3} & \ldots\end{array}\right]$ and $e^{\prime}=\left[\begin{array}{llll}e_{1}^{\prime} & e_{2}^{\prime} & e_{3}^{\prime} & \ldots\end{array}\right]$.
- Now $e^{\prime}=e[P]$ as matrix multiplication! If $[P]$ is not invertible then its rows must be linearly dependent. That would mean a non-trivial linear relationship between the basis vectors e_{i}. Therefore, $[P]$ is invertible.
- Thus $e^{\prime}[P]^{-1}=e$. In terms of matrices,

$$
\left.T\left(e^{\prime}\right)=\left[T\left(e_{1}^{\prime}\right) T\left(e_{2}^{\prime}\right) \ldots\right]\right]=e[T][P]
$$

Change of basis

- Now $T\left(e_{i}^{\prime}\right)=\sum_{j} P_{j i} T\left(e_{j}\right)$ which is $\sum_{j, k} P_{j i}[T]_{k j} e_{k}$.
- We wish to express $T\left(e_{i}^{\prime}\right)$ in terms of the $e^{\prime} \mathrm{s}$ (as opposed to es).
- So we want to "solve" for the es in terms of the e^{\prime} s using $e_{i}^{\prime}=\sum_{j} P_{j i} e_{j}$. These are simply linear equations!
- Formally treating the es and e^{\prime} s as variables we can form "row vectors" $e=\left[\begin{array}{llll}e_{1} & e_{2} & e_{3} & \ldots\end{array}\right]$ and $e^{\prime}=\left[\begin{array}{lll}e_{1}^{\prime} & e_{2}^{\prime} & e_{3}^{\prime}\end{array}\right.$.
- Now $e^{\prime}=e[P]$ as matrix multiplication! If $[P]$ is not invertible then its rows must be linearly dependent. That would mean a non-trivial linear relationship between the basis vectors e_{i}.
Therefore, $[P]$ is invertible.
- Thus $e^{\prime}[P]^{-1}=e$. In terms of matrices, $\left.T\left(e^{\prime}\right)=\left[T\left(e_{1}^{\prime}\right) T\left(e_{2}^{\prime}\right) \ldots\right]\right]=e[T][P]$. Thus $T\left(e^{\prime}\right)=e^{\prime}[P]^{-1}[T][P]$.

Similar matrices

Similar matrices

- In other words,

Similar matrices

- In other words, $[T]^{\prime}=[P]^{-1}[T][P]$.

Similar matrices

- In other words, $[T]^{\prime}=[P]^{-1}[T][P]$. Two $n \times n$ matrices A, B

Similar matrices

- In other words, $[T]^{\prime}=[P]^{-1}[T][P]$. Two $n \times n$ matrices A, B are said to be

Similar matrices

- In other words, $[T]^{\prime}=[P]^{-1}[T][P]$. Two $n \times n$ matrices A, B are said to be similar if

Similar matrices

- In other words, $[T]^{\prime}=[P]^{-1}[T][P]$. Two $n \times n$ matrices A, B are said to be similar if there is an invertible matrix P
- In other words, $[T]^{\prime}=[P]^{-1}[T][P]$. Two $n \times n$ matrices A, B are said to be similar if there is an invertible matrix P such that $B=P^{-1} A P$.
- In other words, $[T]^{\prime}=[P]^{-1}[T][P]$. Two $n \times n$ matrices A, B are said to be similar if there is an invertible matrix P such that $B=P^{-1} A P$. We just proved that if

Similar matrices

- In other words, $[T]^{\prime}=[P]^{-1}[T][P]$. Two $n \times n$ matrices A, B are said to be similar if there is an invertible matrix P such that $B=P^{-1} A P$. We just proved that if we change ordered bases

Similar matrices

- In other words, $[T]^{\prime}=[P]^{-1}[T][P]$. Two $n \times n$ matrices A, B are said to be similar if there is an invertible matrix P such that $B=P^{-1} A P$. We just proved that if we change ordered bases using an invertible matrix P
- In other words, $[T]^{\prime}=[P]^{-1}[T][P]$. Two $n \times n$ matrices A, B are said to be similar if there is an invertible matrix P such that $B=P^{-1} A P$. We just proved that if we change ordered bases using an invertible matrix P (whose columns represent the new basis)
- In other words, $[T]^{\prime}=[P]^{-1}[T][P]$. Two $n \times n$ matrices A, B are said to be similar if there is an invertible matrix P such that $B=P^{-1} A P$. We just proved that if we change ordered bases using an invertible matrix P (whose columns represent the new basis) then $[T]$ and $[T]^{\prime}$ are similar.
- In other words, $[T]^{\prime}=[P]^{-1}[T][P]$. Two $n \times n$ matrices A, B are said to be similar if there is an invertible matrix P such that $B=P^{-1} A P$. We just proved that if we change ordered bases using an invertible matrix P (whose columns represent the new basis) then $[T]$ and $[T]^{\prime}$ are similar.
- One can prove
- In other words, $[T]^{\prime}=[P]^{-1}[T][P]$. Two $n \times n$ matrices A, B are said to be similar if there is an invertible matrix P such that $B=P^{-1} A P$. We just proved that if we change ordered bases using an invertible matrix P (whose columns represent the new basis) then $[T]$ and $[T]^{\prime}$ are similar.
- One can prove the converse too (HW).
- In other words, $[T]^{\prime}=[P]^{-1}[T][P]$. Two $n \times n$ matrices A, B are said to be similar if there is an invertible matrix P such that $B=P^{-1} A P$. We just proved that if we change ordered bases using an invertible matrix P (whose columns represent the new basis) then $[T]$ and $[T]^{\prime}$ are similar.
- One can prove the converse too (HW).
- Now one can see that
- In other words, $[T]^{\prime}=[P]^{-1}[T][P]$. Two $n \times n$ matrices A, B are said to be similar if there is an invertible matrix P such that $B=P^{-1} A P$. We just proved that if we change ordered bases using an invertible matrix P (whose columns represent the new basis) then $[T]$ and $[T]^{\prime}$ are similar.
- One can prove the converse too (HW).
- Now one can see that

$$
\operatorname{det}\left([T]^{\prime}\right)=\operatorname{det}\left([P]^{-1}\right) \operatorname{det}([T]) \operatorname{det}([P])=\operatorname{det}([T])
$$

- In other words, $[T]^{\prime}=[P]^{-1}[T][P]$. Two $n \times n$ matrices A, B are said to be similar if there is an invertible matrix P such that $B=P^{-1} A P$. We just proved that if we change ordered bases using an invertible matrix P (whose columns represent the new basis) then $[T]$ and $[T]^{\prime}$ are similar.
- One can prove the converse too (HW).
- Now one can see that $\operatorname{det}\left([T]^{\prime}\right)=\operatorname{det}\left([P]^{-1}\right) \operatorname{det}([T]) \operatorname{det}([P])=\operatorname{det}([T])$. Hence the determinant of
- In other words, $[T]^{\prime}=[P]^{-1}[T][P]$. Two $n \times n$ matrices A, B are said to be similar if there is an invertible matrix P such that $B=P^{-1} A P$. We just proved that if we change ordered bases using an invertible matrix P (whose columns represent the new basis) then $[T]$ and $[T]^{\prime}$ are similar.
- One can prove the converse too (HW).
- Now one can see that $\operatorname{det}\left([T]^{\prime}\right)=\operatorname{det}\left([P]^{-1}\right) \operatorname{det}([T]) \operatorname{det}([P])=\operatorname{det}([T])$. Hence the determinant of a linear map can be defined
- In other words, $[T]^{\prime}=[P]^{-1}[T][P]$. Two $n \times n$ matrices A, B are said to be similar if there is an invertible matrix P such that $B=P^{-1} A P$. We just proved that if we change ordered bases using an invertible matrix P (whose columns represent the new basis) then $[T]$ and $[T]^{\prime}$ are similar.
- One can prove the converse too (HW).
- Now one can see that $\operatorname{det}\left([T]^{\prime}\right)=\operatorname{det}\left([P]^{-1}\right) \operatorname{det}([T]) \operatorname{det}([P])=\operatorname{det}([T])$. Hence the determinant of a linear map can be defined by choosing any ordered basis.

