Lecture 11 - UM 102 (Spring 2021)
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upper-triangular matrices.

@ Proved the expansion-along-the-first-column property
assuming existence. Hence expansion-along-any-column.
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@ Computed determinants of 2 x 2 matrices and
upper-triangular matrices.

@ Proved the expansion-along-the-first-column property
assuming existence. Hence expansion-along-any-column.

@ Proved existence and by construction, the
expansion-along-any-row-property.
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Determinant of a transpose
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@ For any n x n matrix A
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Determinant of a transpose

@ For any n x n matrix A det(A) = det(AT).

@ As a consequence, row operations of the form R; — R; + cR;
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Determinant of a transpose

@ For any n x n matrix A det(A) = det(AT).

@ As a consequence, row operations of the form R; — R; + cR;
keep the determinant invariant!
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Determinant of a transpose

@ For any n x n matrix A det(A) = det(AT).

@ As a consequence, row operations of the form R; — R; + cR;
keep the determinant invariant! scaling a row
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Determinant of a transpose

@ For any n x n matrix A det(A) = det(AT).

@ As a consequence, row operations of the form R; — R; + cR;
keep the determinant invariant! scaling a row scales the
determinant and if two rows are equal
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Determinant of a transpose

@ For any n x n matrix A det(A) = det(AT).

@ As a consequence, row operations of the form R; — R; + cR;
keep the determinant invariant! scaling a row scales the
determinant and if two rows are equal the determinant
vanishes.
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Determinant of a transpose

@ For any n x n matrix A det(A) = det(AT).

@ As a consequence, row operations of the form R; — R; + cR;
keep the determinant invariant! scaling a row scales the
determinant and if two rows are equal the determinant
vanishes.

@ Proof: We prove by induction on n.
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Determinant of a transpose

@ For any n x n matrix A det(A) = det(AT).

@ As a consequence, row operations of the form R; — R; + cR;
keep the determinant invariant! scaling a row scales the
determinant and if two rows are equal the determinant
vanishes.

@ Proof: We prove by induction on n. n =1 is trivial.
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Determinant of a transpose

@ For any n x n matrix A det(A) = det(AT).

@ As a consequence, row operations of the form R; — R; + cR;
keep the determinant invariant! scaling a row scales the
determinant and if two rows are equal the determinant
vanishes.

@ Proof: We prove by induction on n. n =1 is trivial. Assume
truth for n — 1.
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Determinant of a transpose

@ For any n x n matrix A det(A) = det(AT).

@ As a consequence, row operations of the form R; — R; + cR;
keep the determinant invariant! scaling a row scales the
determinant and if two rows are equal the determinant
vanishes.

@ Proof: We prove by induction on n. n =1 is trivial. Assume
truth for n — 1. For n,
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Determinant of a transpose

@ For any n x n matrix A det(A) = det(AT).

@ As a consequence, row operations of the form R; — R; + cR;
keep the determinant invariant! scaling a row scales the
determinant and if two rows are equal the determinant
vanishes.

@ Proof: We prove by induction on n. n =1 is trivial. Assume
truth for n — 1. For n, expand A along
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Determinant of a transpose

@ For any n x n matrix A det(A) = det(AT).

@ As a consequence, row operations of the form R; — R; + cR;
keep the determinant invariant! scaling a row scales the
determinant and if two rows are equal the determinant
vanishes.

@ Proof: We prove by induction on n. n =1 is trivial. Assume
truth for n — 1. For n, expand A along its first row:
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Determinant of a transpose

@ For any n x n matrix A det(A) = det(AT).

@ As a consequence, row operations of the form R; — R; + cR;
keep the determinant invariant! scaling a row scales the
determinant and if two rows are equal the determinant
vanishes.

@ Proof: We prove by induction on n. n =1 is trivial. Assume
truth for n — 1. For n, expand A along its first row:

L
det(A) = Zj Alj(*]-) +JM1j.
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Determinant of a transpose

@ For any n x n matrix A det(A) = det(AT).

@ As a consequence, row operations of the form R; — R; + cR;
keep the determinant invariant! scaling a row scales the
determinant and if two rows are equal the determinant
vanishes.

@ Proof: We prove by induction on n. n =1 is trivial. Assume
truth for n — 1. For n, expand A along its first row:
det(A) = 3=, A1j(—1)""/My;. Expand AT along
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Determinant of a transpose

@ For any n x n matrix A det(A) = det(AT).

@ As a consequence, row operations of the form R; — R; + cR;
keep the determinant invariant! scaling a row scales the
determinant and if two rows are equal the determinant
vanishes.

@ Proof: We prove by induction on n. n =1 is trivial. Assume
truth for n — 1. For n, expand A along its first row:
det(A) = 3=, A1j(—1)""/My;. Expand AT along its first

column:
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Determinant of a transpose

@ For any n x n matrix A det(A) = det(AT).

@ As a consequence, row operations of the form R; — R; + cR;
keep the determinant invariant! scaling a row scales the
determinant and if two rows are equal the determinant
vanishes.

@ Proof: We prove by induction on n. n =1 is trivial. Assume
truth for n — 1. For n, expand A along its first row:
det(A) = 3=, A1j(—1)""/My;. Expand AT along its first
column: det(AT) = 3 ,(AT)ju(=1)" Mj;.
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Determinant of a transpose

@ For any n x n matrix A det(A) = det(AT).

@ As a consequence, row operations of the form R; — R; + cR;
keep the determinant invariant! scaling a row scales the
determinant and if two rows are equal the determinant
vanishes.

@ Proof: We prove by induction on n. n =1 is trivial. Assume
truth for n — 1. For n, expand A along its first row:
det(A) = 3=, A1j(—1)""/My;. Expand AT along its first
column: det(AT) = ZJ(AT)J'l(—l)1+jMJ{1. But (AT)jl = A1J'
and

Vamsi Pritham Pingali Lecture 11 3/11



Determinant of a transpose

@ For any n x n matrix A det(A) = det(AT).

@ As a consequence, row operations of the form R; — R; + cR;
keep the determinant invariant! scaling a row scales the
determinant and if two rows are equal the determinant
vanishes.

@ Proof: We prove by induction on n. n =1 is trivial. Assume
truth for n — 1. For n, expand A along its first row:
det(A) = 3=, A1j(—1)""/My;. Expand AT along its first
column: det(AT) = ZJ(AT)J'l(—l)1+jMJ{1. But (AT)jl = A1J'
and Mj; = Ms; by the induction hypothesis.
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Computing determinants using the Gauss-Jordan technique

@ Since the RREF U of a square matrix A is upper-triangular
(why?), and we can use Gauss-Jordan row operations to bring

it to such a form, we can compute the determinant of the
matrix easily.

Vamsi Pritham Pingali Lecture 11 4/11



Computing determinants using the Gauss-Jordan technique

@ Since the RREF U of a square matrix A is upper-triangular
(why?), and we can use Gauss-Jordan row operations to bring
it to such a form, we can compute the determinant of the
matrix easily.

o Each time
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Computing determinants using the Gauss-Jordan technique

@ Since the RREF U of a square matrix A is upper-triangular
(why?), and we can use Gauss-Jordan row operations to bring
it to such a form, we can compute the determinant of the
matrix easily.

@ Each time we scale a row by a constant ¢;
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Computing determinants using the Gauss-Jordan technique

@ Since the RREF U of a square matrix A is upper-triangular
(why?), and we can use Gauss-Jordan row operations to bring

it to such a form, we can compute the determinant of the
matrix easily.

@ Each time we scale a row by a constant ¢; the determinant
scales
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Computing determinants using the Gauss-Jordan technique

@ Since the RREF U of a square matrix A is upper-triangular
(why?), and we can use Gauss-Jordan row operations to bring

it to such a form, we can compute the determinant of the
matrix easily.

@ Each time we scale a row by a constant ¢; the determinant
scales and each row-exchange leads to a —1.

Vamsi Pritham Pingali Lecture 11 4/11



Computing determinants using the Gauss-Jordan technique

@ Since the RREF U of a square matrix A is upper-triangular
(why?), and we can use Gauss-Jordan row operations to bring

it to such a form, we can compute the determinant of the
matrix easily.

@ Each time we scale a row by a constant ¢; the determinant
scales and each row-exchange leads to a —1.

e So det(A) = (1P det(V),

C1C...
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An example

1 X
e Compute | 1 y? | (a Vandermonde determinant)
1 72

N < X
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An example

1 x x?
e Compute | 1 y y? | (a Vandermonde determinant)
1 z 22

o R2—>R2—R1,R3—>R3—R1
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An example

1 x x?
e Compute | 1 y y? | (a Vandermonde determinant)
1 z 22

@ Ro - R — Ry, R3 — R3 — Ry do not change the determinant

and yield
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An example

1 x x
e Compute | 1 y y* | (a Vandermonde determinant)
1 z 22
@ R = R — R1, R3 = R3 — Ry do not change the determinant
1 X x?
andyield [ 0 y—x y?—x?

0 z—x z2—x?
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An example

1 x x
e Compute | 1 y y* | (a Vandermonde determinant)
1 z 22
@ R = R — R1, R3 = R3 — Ry do not change the determinant
1 X x?
andyield [ 0 y—x y?—x?

0 z—x z2—x?

@ Scaling gives
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An example

(a Vandermonde determinant)

N < X
N < X
NN N

1
e Compute | 1
1

@ Ry - R — Ry, R3 — R3 — Ry do not change the determinant

1 X x?
andyield [ 0 y—x y?—x?
0 z—x z2-x?
1 x x?
@ Scaling gives (y —x)(z—x)| 0 1 x+y
0 1 x4z
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An example

(a Vandermonde determinant)

N < X
N < X
NN N

1
e Compute | 1
1

@ Ry - R — Ry, R3 — R3 — Ry do not change the determinant

1 X x?
andyield [ 0 y—x y?—x?
0 z—x z2-x?
1 x x?
@ Scaling gives (y —x)(z—x)| 0 1 x+y | which is (after
0 1 x4z

R3—> R3—R2)
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An example

(a Vandermonde determinant)

N < X
N < X
NN N

1
e Compute | 1
1

@ Ry - R — Ry, R3 — R3 — Ry do not change the determinant

1 X x?
andyield [ 0 y—x y?—x?
0 z—x z2-x?
1 x x?
@ Scaling gives (y —x)(z—x)| 0 1 x+y | which is (after
0 1 x4z

x2

1 x
Rz >R3—R) (y—x)(z—x)| 0 1 x+y
0 0 z—vy

Vamsi Pritham Pingali Lecture 11 5/11



An example

(a Vandermonde determinant)

N < X
N < X
NN N

1
e Compute | 1
1

@ Ry - R — Ry, R3 — R3 — Ry do not change the determinant

1 X x?
andyield [ 0 y—x y?—x?
0 z—x z2—x°
1 x x°
@ Scaling gives (y —x)(z—x)| 0 1 x+y | which is (after
0 1 x+=z
1 x x?
Rz > R3—R) (y —x)(z—x)| 0 1 x+y | whichis
0 0 z—vy
upper-triangular and hence equal to
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An example

(a Vandermonde determinant)

N < X
N < X
NN N

1
e Compute | 1
1

@ Ry - R — Ry, R3 — R3 — Ry do not change the determinant

1 X x?
andyield [ 0 y—x y?—x?
0 z—x z2-x?
1 x x?
@ Scaling gives (y —x)(z—x)| 0 1 x+y | which is (after
0 1 x4z
1 x x?
Rz > R3—R) (y —x)(z—x)| 0 1 x+y | whichis
0 0 z—vy
upper-triangular and hence equal to (y — x)(z — x)(z — y).
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The product formula
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The product formula

o If A, B are two n X n matrices,
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The product formula

e If A, B are two n x n matrices, then det(AB) = det(A) det(B).
This formula is extremely important.

e Denote the it" column of of B by B;. Recall that the it
column of (AB), i.e.,
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e If A, B are two n x n matrices, then det(AB) = det(A) det(B).
This formula is extremely important.

e Denote the it" column of of B by B;. Recall that the it
column of (AB), i.e., (AB); is AB:;.
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The product formula

e If A, B are two n x n matrices, then det(AB) = det(A) det(B).
This formula is extremely important.

e Denote the it" column of of B by B;. Recall that the it
column of (AB), i.e., (AB); is AB:;.

o Thus det((AB)1, (AB),, (AB)s, ...) = det(ABy, AB,, ....).
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The product formula

e If A, B are two n x n matrices, then det(AB) = det(A) det(B).
This formula is extremely important.

e Denote the it" column of of B by B;. Recall that the it
column of (AB), i.e., (AB); is AB:;.

@ Thus det((AB)1,(AB)2,(AB)3,...) = det(AB1,ABy, .. .).
o Fix A and define
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The product formula

e If A, B are two n x n matrices, then det(AB) = det(A) det(B).
This formula is extremely important.

e Denote the it" column of of B by B;. Recall that the it
column of (AB), i.e., (AB); is AB:;.

o Thus det((AB)1, (AB)2, (AB)s,...) = det(ABy, ABy, ...).
e Fix A and define F(Bi,...,B,) = det(ABy, ABy,...).
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The product formula

e If A, B are two n x n matrices, then det(AB) = det(A) det(B).
This formula is extremely important.

e Denote the it" column of of B by B;. Recall that the it
column of (AB), i.e., (AB); is AB:;.
o Thus det((AB)1, (AB)a, (AB)s, ...) = det(ABi, AB,, ...).

e Fix A and define F(Bx,...,B,) = det(ABj, ABy,...). Note
that F is
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The product formula

e If A, B are two n x n matrices, then det(AB) = det(A) det(B).
This formula is extremely important.

e Denote the it" column of of B by B;. Recall that the it
column of (AB), i.e., (AB); is AB:;.
o Thus det((AB)1, (AB)a, (AB)s, ...) = det(ABi, AB,, ...).

e Fix A and define F(Bx,...,B,) = det(ABj, ABy,...). Note
that F is
@ multilinear:

Vamsi Pritham Pingali Lecture 11 6/11



The product formula

e If A, B are two n x n matrices, then det(AB) = det(A) det(B).
This formula is extremely important.

e Denote the it" column of of B by B;. Recall that the it
column of (AB), i.e., (AB); is AB;.

o Thus det((AB)1, (AB)2, (AB)s,...) = det(ABy, ABy, ...).

e Fix A and define F(Bx,...,B,) = det(ABj, ABy,...). Note
that F is
© multilinear: F(...,tB; +sv,...) =det(...,A(tB; + sv),...) =
det(...,tAB; + sAv,...)
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The product formula

e If A, B are two n x n matrices, then det(AB) = det(A) det(B).
This formula is extremely important.
e Denote the it" column of of B by B;. Recall that the it
column of (AB), i.e., (AB); is AB;.
o Thus det((AB)1, (AB)2, (AB)s,...) = det(ABy, ABy, ...).
e Fix A and define F(Bx,...,B,) = det(ABj, ABy,...). Note
that F is
© multilinear: F(...,tB; +sv,...) =det(...,A(tB; + sv),...) =
det(...,tAB; + sAv,...) which is
tdet(...,AB;,...) +sdet(...,Av,...)
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The product formula

e If A, B are two n x n matrices, then det(AB) = det(A) det(B).
This formula is extremely important.

e Denote the it" column of of B by B;. Recall that the it
column of (AB), i.e., (AB); is AB;.
o Thus det((AB)1, (AB)2, (AB)s,...) = det(ABy, AB, ...).
e Fix A and define F(Bx,...,B,) = det(ABj, ABy,...). Note
that F is
© multilinear: F(...,tB; +sv,...) =det(...,A(tB; + sv),...) =
det(...,tAB; + sAv,...) which is
tdet(...,ABj,...) + sdet(...,Av,...) and hence
F(...,tBi+sv,..)=tF(...,Bi,..)+sF(...,v,...).
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The product formula

e If A, B are two n x n matrices, then det(AB) = det(A) det(B).
This formula is extremely important.

e Denote the it" column of of B by B;. Recall that the it
column of (AB), i.e., (AB); is AB;.
@ Thus det((AB)1,(AB)2,(AB)3,...) = det(AB1,ABy, .. .).
e Fix A and define F(Bx,...,B,) = det(ABj, ABy,...). Note
that F is
© multilinear: F(...,tB; +sv,...) =det(...,A(tB; + sv),...) =
det(...,tAB; + sAv,...) which is
tdet(...,ABj,...) + sdet(...,Av,...) and hence
F(...,tBi+sv,...)=tF(...,Bi,...)+sF(...,v,...).
@ alternating:

Vamsi Pritham Pingali Lecture 11 6/11



The product formula

e If A, B are two n x n matrices, then det(AB) = det(A) det(B).
This formula is extremely important.

e Denote the it" column of of B by B;. Recall that the it
column of (AB), i.e., (AB); is AB;.
@ Thus det((AB)1,(AB)2,(AB)3,...) = det(AB1,ABy, .. .).
e Fix A and define F(Bx,...,B,) = det(ABj, ABy,...). Note
that F is
© multilinear: F(...,tB; +sv,...) =det(...,A(tB; + sv),...) =
det(...,tAB; + sAv,...) which is
tdet(...,AB;,...) + sdet( ,Av,...) and hence
F(...,tBi+sv,...)=tF(.. B ) sF(...,v,...).
@ alternating: F(...,Bi=v,. B v, )
det(...,Av,..., Av,...) —0
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The product formula

If A, B are two n x n matrices, then det(AB) = det(A) det(B).
This formula is extremely important.

Denote the it" column of of B by B;. Recall that the it
column of (AB), i.e., (AB); is AB:;.

o Thus det((AB)1, (AB)2, (AB)s,...) = det(ABy, ABy, ...).
e Fix A and define F(Bx,...,B,) = det(ABj, ABy,...). Note

that F is
© multilinear: F(...,tB; +sv,...) =det(...,A(tB; + sv),...) =
det(...,tAB; + sAv,...) which is
tdet(...,AB;,...) + sdet( ,Av,...) and hence
F(...,tBi+sv,...)=tF(.. B ) sF(...,v,...).
@ alternating: F(...,Bi=v,. B v, )
det(...,Av,..., Av,...) —0

Hence by uniqueness,
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The product formula

If A, B are two n x n matrices, then det(AB) = det(A) det(B).
This formula is extremely important.

Denote the it" column of of B by B;. Recall that the it
column of (AB), i.e., (AB); is AB:;.

o Thus det((AB)1, (AB)2, (AB)s,...) = det(ABy, ABy, ...).
e Fix A and define F(Bx,...,B,) = det(ABj, ABy,...). Note

that F is
© multilinear: F(...,tB; +sv,...) =det(...,A(tB; + sv),...) =
det(...,tAB; + sAv,...) which is
tdet(...,AB;,...) + sdet( ,Av,...) and hence
F(...,tBi+sv,...)=tF(.. B ) sF(...,v,...).
@ alternating: F(...,Bi=v,. B v, )
det(...,Av,..., Av,...) —0

Hence by uniqueness,
F(Bl, RN Bn) = det(Bl, RN B,,)F(el, e e,,).
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The product formula

e If A, B are two n x n matrices, then det(AB) = det(A) det(B).
This formula is extremely important.

e Denote the it" column of of B by B;. Recall that the it
column of (AB), i.e., (AB); is AB;.
@ Thus det((AB)1,(AB)2,(AB)3,...) = det(AB1,ABy, .. .).
e Fix A and define F(Bx,...,B,) = det(ABj, ABy,...). Note
that F is
© multilinear: F(...,tB; +sv,...) =det(...,A(tB; + sv),...) =
det(...,tAB; + sAv,...) which is
tdet(...,AB;,...) + sdet( ,Av,...) and hence
F(...,tBi+sv,...)=tF(.. B ) sF(...,v,...).
@ alternating: F(...,Bi=v,. B v, )
det(...,Av,..., Av,...) —0
@ Hence by uniqueness,
F(Bi,...,B,) =det(B1,...,By)F(e1,...,en). Thus
det(AB) = det(B) det(A).
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det(A) det(A~1) = 1 and hence det(A) # 0.
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Invertibility and determinants

e If an n x n matrix A is invertible then AA~1 = /. Thus
det(A) det(A~1) = 1 and hence det(A) # 0.

@ Recall that if a set of n vectors vy, ..., v, from F" is linearly
dependent,
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Invertibility and determinants

e If an n x n matrix A is invertible then AA~1 = /. Thus
det(A) det(A~1) = 1 and hence det(A) # 0.

@ Recall that if a set of n vectors vy, ..., v, from F" is linearly
dependent, then det(vy,...,v,) =0.
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e If an n x n matrix A is invertible then AA~1 = /. Thus
det(A) det(A~1) = 1 and hence det(A) # 0.

@ Recall that if a set of n vectors vy, ..., v, from F" is linearly
dependent, then det(vy,...,v,) =0.
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e If an n x n matrix A is invertible then AA~1 = /. Thus
det(A) det(A~1) = 1 and hence det(A) # 0.

@ Recall that if a set of n vectors vy, ..., v, from F" is linearly
dependent, then det(vy,...,v,) =0.

@ Thus, if det(A) # 0, its columns are linearly independent and
hence its column rank is full.
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Invertibility and determinants

e If an n x n matrix A is invertible then AA~1 = /. Thus
det(A) det(A~1) = 1 and hence det(A) # 0.

@ Recall that if a set of n vectors vy, ..., v, from F" is linearly
dependent, then det(vy,...,v,) =0.

@ Thus, if det(A) # 0, its columns are linearly independent and
hence its column rank is full. Thus A is invertible.
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Invertibility and determinants

If an n x n matrix A is invertible then AA~! = /. Thus
det(A) det(A~1) = 1 and hence det(A) # 0.

Recall that if a set of n vectors vy, ..., v, from F” is linearly
dependent, then det(vy,...,v,) =0.

Thus, if det(A) # 0, its columns are linearly independent and
hence its column rank is full. Thus A is invertible.

Therefore,
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If an n x n matrix A is invertible then AA~! = /. Thus
det(A) det(A~1) = 1 and hence det(A) # 0.

Recall that if a set of n vectors vy, ..., v, from F” is linearly
dependent, then det(vy,...,v,) =0.

Thus, if det(A) # 0, its columns are linearly independent and
hence its column rank is full. Thus A is invertible.

Therefore, A is invertible if and only if det(A) # 0.
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Recall that if a set of n vectors vy, ..., v, from F” is linearly
dependent, then det(vy,...,v,) =0.

Thus, if det(A) # 0, its columns are linearly independent and
hence its column rank is full. Thus A is invertible.

Therefore, A is invertible if and only if det(A) # 0.
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Invertibility and determinants

If an n x n matrix A is invertible then AA~! = /. Thus
det(A) det(A~1) = 1 and hence det(A) # 0.

Recall that if a set of n vectors vy, ..., v, from F” is linearly
dependent, then det(vy,...,v,) =0.

Thus, if det(A) # 0, its columns are linearly independent and
hence its column rank is full. Thus A is invertible.

Therefore, A is invertible if and only if det(A) # 0.

Equivalently, the set vq, ..., v, is independent if and only if
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Invertibility and determinants

e If an n x n matrix A is invertible then AA~1 = /. Thus
det(A) det(A~1) = 1 and hence det(A) # 0.

@ Recall that if a set of n vectors vy, ..., v, from F" is linearly
dependent, then det(vy,...,v,) =0.

@ Thus, if det(A) # 0, its columns are linearly independent and
hence its column rank is full. Thus A is invertible.

@ Therefore, A is invertible if and only if det(A) # 0.

o Equivalently, the set vy, ..., v, is independent if and only if
det(vl, ceey Vn) #0.
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@ Let A be an n x n matrix and D be an m x m matrix.
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Block-diagonal matrices

@ Let A be an n x n matrix and D be an m x m matrix.
A 0 ]

@ Then the matrix M = [ 0 D
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Block-diagonal matrices

@ Let A be an n x n matrix and D be an m x m matrix.

A0 ] isan (n+ m) x (n+ m)

@ Then the matrix M = [ 0 D

“block diagonal” matrix.
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Block-diagonal matrices

@ Let A be an n x n matrix and D be an m x m matrix.

A0 ] isan (n+ m) x (n+ m)

@ Then the matrix M = [ 0 D

“block diagonal” matrix.

oNotethatM:[é\ ?][I 0}
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Block-diagonal matrices

@ Let A be an n x n matrix and D be an m x m matrix.

A0 ] isan (n+ m) x (n+ m)

@ Then the matrix M = [ 0 D

“block diagonal” matrix.

A0 I 0 .
oNotethatl\/I—[O I][O D}Sodet(M)ls
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Block-diagonal matrices

@ Let A be an n x n matrix and D be an m x m matrix.

@ Then the matrix M = [ /3 g ] isan (n+ m) x (n+ m)
“block diagonal” matrix.
A0 I 0 :
e Note that M = [ 0 | ] [ 0 D } So det(M) is a product

of two other determinants.
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Block-diagonal matrices

@ Let A be an n x n matrix and D be an m x m matrix.

A0 ] isan (n+ m) x (n+ m)

@ Then the matrix M = [ 0 D

“block diagonal” matrix.

0 |/ 0
of two other determinants.

o The function F(Ay,...,A,) = det { /g (l) ]

e Note that M = [ A0 ] [ / g } So det(M) is a product
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Block-diagonal matrices

@ Let A be an n x n matrix and D be an m x m matrix.

A0 ] isan (n+ m) x (n+ m)

@ Then the matrix M = [ 0 D

“block diagonal” matrix.

0 |/ 0
of two other determinants.

@ The function F(A1,...,A,) = det { A0 ] satisfies all the

e Note that M = [ A0 ] [ / g } So det(M) is a product

0o 1/
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Block-diagonal matrices

@ Let A be an n x n matrix and D be an m x m matrix.

A0 ] isan (n+ m) x (n+ m)

@ Then the matrix M = [ 0 D

“block diagonal” matrix.

A0 /I 0 )

e Note that M = [ 0 | ] [ 0 D } So det(M) is a product
of two other determinants.

@ The function F(A1,...,A,) = det { ’3 (l) ] satisfies all the

axioms of multilinear
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Block-diagonal matrices

@ Let A be an n x n matrix and D be an m x m matrix.

A0 ] isan (n+ m) x (n+ m)

@ Then the matrix M = [ 0 D

“block diagonal” matrix.

A0 /I 0
0 |/ 0 D
of two other determinants.

@ The function F(A1,...,A,) = det { ’3 (l) ] satisfies all the

e Note that M = [ } So det(M) is a product

axioms of multilinear alternating functions and
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Block-diagonal matrices

@ Let A be an n x n matrix and D be an m x m matrix.

A0 ] isan (n+ m) x (n+ m)

@ Then the matrix M = [ 0 D

“block diagonal” matrix.

A0 I 0 .
oNotethatl\/I—[O I][O D}Sodet(l\/l) is a product

of two other determinants.

0o |/
axioms of multilinear alternating functions and hence by
uniqueness,

@ The function F(A1,...,A,) = det { A0 ] satisfies all the
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Block-diagonal matrices

@ Let A be an n x n matrix and D be an m x m matrix.

A0 ] isan (n+ m) x (n+ m)

@ Then the matrix M = [ 0 D

“block diagonal” matrix.

A0 I 0 .
oNotethatl\/I—[O I][O D}Sodet(l\/l) is a product

of two other determinants.

0 |/
axioms of multilinear alternating functions and hence by
uniqueness, F(Az,...) = det(A)F(eq,...) = det(A).

@ The function F(A1,...,A,) = det { A0 ] satisfies all the

Vamsi Pritham Pingali Lecture 11 8/11



Block-diagonal matrices

@ Let A be an n x n matrix and D be an m x m matrix.

A0 ] isan (n+ m) x (n+ m)

@ Then the matrix M = [ 0 D

“block diagonal” matrix.

A0 I 0 .
oNotethatl\/I—[O I][O D}Sodet(l\/l) is a product

of two other determinants.

0o |/
axioms of multilinear alternating functions and hence by
uniqueness, F(Az,...) = det(A)F(eq,...) = det(A). Likewise
for D.

@ The function F(A1,...,A,) = det { A0 ] satisfies all the
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Block-diagonal matrices

@ Let A be an n x n matrix and D be an m x m matrix.

A0 ] isan (n+ m) x (n+ m)

@ Then the matrix M = [ 0 D

“block diagonal” matrix.

A0 I 0 .
oNotethatl\/I—[O I][O D}Sodet(l\/l) is a product

of two other determinants.

0 |/
axioms of multilinear alternating functions and hence by
uniqueness, F(Az,...) = det(A)F(eq,...) = det(A). Likewise
for D. Thus det(M) = det(A) det(D).

@ The function F(A1,...,A,) = det { A0 ] satisfies all the
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@ Given a linear map T : V — V where as always, V is a f.d
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Change of basis

@ Given a linear map T : V — V where as always, V is a f.d
vector space, how can we define its determinant?

@ One naive thing to do is to consider an ordered basis
€1,...,€n
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@ One naive thing to do is to consider an ordered basis
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vector space, how can we define its determinant?

@ One naive thing to do is to consider an ordered basis
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@ One naive thing to do is to consider an ordered basis
e1,...,ep for both, the domain and the target. Then T is
represented by
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@ Given a linear map T : V — V where as always, V is a f.d
vector space, how can we define its determinant?

@ One naive thing to do is to consider an ordered basis

e1,...,ep for both, the domain and the target. Then T is
represented by a matrix [T]. We can attempt to define
det(T) as
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@ Given a linear map T : V — V where as always, V is a f.d
vector space, how can we define its determinant?

@ One naive thing to do is to consider an ordered basis
e1,...,ep for both, the domain and the target. Then T is
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@ Given a linear map T : V — V where as always, V is a f.d
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Change of basis

@ Given a linear map T : V — V where as always, V is a f.d
vector space, how can we define its determinant?

@ One naive thing to do is to consider an ordered basis
e1,...,ep for both, the domain and the target. Then T is
represented by a matrix [T]. We can attempt to define
det(T) as det([T]). However, what happens when we change
the ordered basis?

o Let e, €),... be a new ordered basis. Recall that
e; =) _; Pjiej for some Pj; € F. Also recall that in an ordered
basis the first column of the matrix associated to T is simply
the component vector of T(e;) and likewise for the other
columns.
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Change of basis

o Now T(ej) =>_; P;i T(ej) which is
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Change of basis

o Now T(e,f) = Zj PJ-,-T(ej) which is Z Pj,-[T]kjek.
J,k
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Change of basis

@ Now T(ef) = Zj PJ-,-T(ej) which is Z Pj,-[T]kjek.
J-k

o We wish to express T (e!) in terms of the €’s (as opposed to
es).

@ So we want to “solve” for the es in terms of the €’s using
e; =) _; Pjiej. These are simply linear equations!

@ Formally treating the es and ¢€’s as variables we can form “row
vectors’ e = [e; e2 e3 ...] and
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@ So we want to “solve” for the es in terms of the €’s using
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@ So we want to “solve” for the es in terms of the €’s using
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@ So we want to “solve” for the es in terms of the €’s using
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@ Formally treating the es and ¢€’s as variables we can form “row
vectors” e =[e; e e3 ...] and & = [e] € € ...].

e Now €’ = ¢[P] as matrix multiplication! If [P] is not invertible
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Vamsi Pritham Pingali Lecture 11 10/11



Change of basis

@ Now T(ef) = Zj PJ-,-T(ej) which is Z Pj,-[T]kjek.
J-k

o We wish to express T (e!) in terms of the €’s (as opposed to
es).

@ So we want to “solve” for the es in terms of the €’s using
e; =) _; Pjiej. These are simply linear equations!

@ Formally treating the es and ¢€’s as variables we can form “row
vectors” e =[e; e e3 ...] and & = [e] € € ...].

e Now €’ = ¢[P] as matrix multiplication! If [P] is not invertible
then its rows must be linearly dependent. That would mean a
non-trivial linear relationship between the basis vectors e;.
Therefore, [P] is invertible.

e Thus €'[P]7! = e. In terms of matrices,
T(e')=[T(ey) T(&) ...]] = e[T][P]. Thus
T(e") = ¢[PITHTIP].
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are said to be similar if there is an invertible matrix P such
that B = P"1AP. We just proved that if we change ordered
bases using an invertible matrix P (whose columns represent
the new basis) then [T] and [T]  are similar.

@ One can prove the converse too (HW).
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e In other words, [T] = [P]7}[T][P]. Two n x n matrices A, B
are said to be similar if there is an invertible matrix P such
that B = P"1AP. We just proved that if we change ordered
bases using an invertible matrix P (whose columns represent
the new basis) then [T] and [T]  are similar.

@ One can prove the converse too (HW).

@ Now one can see that
det([T]) = det([P]’l) det([T]) det([P]) = det([T]).
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Similar matrices

e In other words, [T] = [P]7}[T][P]. Two n x n matrices A, B
are said to be similar if there is an invertible matrix P such
that B = P"1AP. We just proved that if we change ordered
bases using an invertible matrix P (whose columns represent
the new basis) then [T] and [T]  are similar.

@ One can prove the converse too (HW).

@ Now one can see that
det([T]') = det([P]~1) det([T]) det([P]) = det([T]). Hence
the determinant of a linear map can be defined by choosing
any ordered basis.
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