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@ All such equations rely on similar manipulations. So going by
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theorems about such objects.

@ While that was the original reason to invent linear algebra,
today, it goes much further. Google uses Linear Algebra for

instance !
Vamsi Pritham Pingali Lecture 1 3/10



Vector spaces

Vamsi Pritham Pingali Lecture 1 4/10



Vector spaces

@ Solving linear equations (like the word-problem equations)

Vamsi Pritham Pingali Lecture 1 4/10



Vector spaces

@ Solving linear equations (like the word-problem equations)
requires “cross-multiplication” by “numbers” and
adding/subtracting equations.

Vamsi Pritham Pingali Lecture 1 4/10



Vector spaces

@ Solving linear equations (like the word-problem equations)
requires “cross-multiplication” by “numbers” and
adding/subtracting equations.

@ So any set that allows scalar-multiplication (with real or

complex numbers or more general “numbers” belonging to a
“field"),

Vamsi Pritham Pingali Lecture 1 4/10



Vector spaces

@ Solving linear equations (like the word-problem equations)
requires “cross-multiplication” by “numbers” and
adding/subtracting equations.

@ So any set that allows scalar-multiplication (with real or
complex numbers or more general “numbers” belonging to a
“field"), and addition and subtraction (that behave “well”
with scalar-multiplication) should allow linear equations and
their solutions by the same high-school algorithm.

Vamsi Pritham Pingali Lecture 1 4/10



Vector spaces

@ Solving linear equations (like the word-problem equations)
requires “cross-multiplication” by “numbers” and
adding/subtracting equations.

@ So any set that allows scalar-multiplication (with real or
complex numbers or more general “numbers” belonging to a
“field"), and addition and subtraction (that behave “well”
with scalar-multiplication) should allow linear equations and
their solutions by the same high-school algorithm.

@ To this end, recall that a vector space V over a field IF (

Vamsi Pritham Pingali Lecture 1 4/10



Vector spaces

@ Solving linear equations (like the word-problem equations)
requires “cross-multiplication” by “numbers” and
adding/subtracting equations.

@ So any set that allows scalar-multiplication (with real or
complex numbers or more general “numbers” belonging to a
“field"), and addition and subtraction (that behave “well”
with scalar-multiplication) should allow linear equations and
their solutions by the same high-school algorithm.

@ To this end, recall that a vector space V over a field IF (if you
find fields confusing, whenever | say F, replace it with R or C
in your minds)

Vamsi Pritham Pingali Lecture 1 4/10



Vector spaces

@ Solving linear equations (like the word-problem equations)
requires “cross-multiplication” by “numbers” and
adding/subtracting equations.

@ So any set that allows scalar-multiplication (with real or
complex numbers or more general “numbers” belonging to a
“field"), and addition and subtraction (that behave “well”
with scalar-multiplication) should allow linear equations and
their solutions by the same high-school algorithm.

@ To this end, recall that a vector space V over a field IF (if you
find fields confusing, whenever | say F, replace it with R or C
in your minds) is a set V equipped with binary operations

Vamsi Pritham Pingali Lecture 1 4/10



Vector spaces

@ Solving linear equations (like the word-problem equations)
requires “cross-multiplication” by “numbers” and
adding/subtracting equations.

@ So any set that allows scalar-multiplication (with real or
complex numbers or more general “numbers” belonging to a
“field"), and addition and subtraction (that behave “well”
with scalar-multiplication) should allow linear equations and
their solutions by the same high-school algorithm.

@ To this end, recall that a vector space V over a field IF (if you
find fields confusing, whenever | say F, replace it with R or C
in your minds) is a set V equipped with binary operations
+:VxV—=Vand.:FxV — V satisfying a bunch of
axioms (in the next slide).
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Existence of a zero vector : v + 0 = v. (There is only one
zero vector : 0o =0, +0; =07 + 0, = 01.)

Associativity of addition : v+ (w+y) = (v+w) +y.
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inverses are unique :
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vt (v +(=v)2) = v+ ((=v)2 + (=v)) =
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Associativity of scalar multiplication : a.(b.v) = (ab).v.
Distributivity : (a+ b).v = a.v + b.v and
a(v+w)=av+aw. (So0.v=(0+0).v=0.v+0.v. By
additive inverses, 0.v = 0. Moreover,
0=(1-1).v=1v+(-1).v=v+(-1).v. Hence

—v =(—1).v. Also, a.0 =0 (why ?).) Many others can be
proved similarly.
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Examples and non-examples

e R", C".
@ The set of continuous functions from [0,1] to R (or C) under
the usual addition and scalar multiplication operations.

@ Polynomials of degree < n with F-coefficients. (Polynomials
of degree exactly n do NOT form a vector space.)

@ Polynomials with integer coefficients do NOT form a vector
space.

@ m X n matrices with complex/real entries.

@ The set of all differentiable functions x,y : R — R satisfying
x' =2x+3y,y’ = 4x + by form a vector space over R.
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@ Subspaces are subsets that form vector spaces in their own
right with the same operations.

@ One can prove that is enough for just closure to hold to be a
subspace.

@ For instance, the set of all diff functions satisfying the ODE
above forms a subspace of the set of all differentiable
functions. On the other hand, the set of non-zero reals is
NOT a subspace of reals.

e Given a set S, the subspace generated/spanned by it is the
space L(S) (also called the linear span of S) consisting of
finite linear combinations ZLVZI cisk of elements of S. If

S=¢, L(S):={0}.
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Linear independence

A set S C V is called linearly dependent if there is a finite
subset xi, x2, ..., xk (distinct) and scalars ¢, ..., ¢k not all
zero such that ), ¢cexx = 0.

It is independent if it is not dependent, i.e., whenever

Zk Ci Xk — 0, all Ck = 0.

For instance, if 0 € S, it is dependent and the empty set is
independent.

The set t" is independent. So is ™ (We shall see an
alternate proof using more machinery later).

If S ={x1,...,xx} C V is independent,
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Linear independence

A set S C V is called linearly dependent if there is a finite
subset xi, x2, ..., xk (distinct) and scalars ¢, ..., ¢k not all
zero such that ), ¢cexx = 0.

It is independent if it is not dependent, i.e., whenever

Zk Ci Xk — 0, all Ck = 0.

For instance, if 0 € S, it is dependent and the empty set is
independent.

The set t" is independent. So is ™ (We shall see an
alternate proof using more machinery later).

If S ={x1,...,x¢} C V is independent, then any set of k + 1
vectors in L(S) is dependent.
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A set S C V is called a basis if it is independent and spans V.
It turns out (not easy !) that every vector space V has a basis.

The catch is that it need not be a finite basis ! (For instance,
the set of continuous functions has infinitely many linearly
independent elements (like t” for instance). So it cannot have
a finite basis.)

Those vector spaces that admit a finite basis are called
finite-dimensional vector spaces. We shall study only such
spaces in this class. Infinite-dimensional ones are also useful in
mathematics (and in physics, engineering, etc for that matter)
but require more complicated tools.
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Basis

o

A set S C V is called a basis if it is independent and spans V.
It turns out (not easy !) that every vector space V has a basis.

The catch is that it need not be a finite basis ! (For instance,
the set of continuous functions has infinitely many linearly
independent elements (like t” for instance). So it cannot have
a finite basis.)

Those vector spaces that admit a finite basis are called
finite-dimensional vector spaces. We shall study only such
spaces in this class. Infinite-dimensional ones are also useful in
mathematics (and in physics, engineering, etc for that matter)
but require more complicated tools. The study of certain
infinite-dimensional vector spaces is called Functional Analysis.
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Dimension

e If V is finite-dimensional, then any finite basis has the same
number of elements.

@ This number is called the dimension of V. (Warning ! C” can
also be thought of as an R-vector space but with a dimension
of 2n instead of n!) {0} has dimension 0.

@ Any linearly independent set of k < dim(V/) elements can be
extended to a basis of V. Moreover, any set of dim(V)
linearly independent elements forms a basis of V.

@ Often, one considers an ordered basis, i.e., a basis written in a
specified order. In that case, every vector v =, ckex. The
(uniquely determined) numbers ¢ are called components of v
relative to the ordered basis {ey, ..., e}
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