UM 102 - Lecture 1

Vamsi Pritham Pingali

IISc

Logistics

Logistics

- Office: N23 (Office hours during the period of online classes : Tue : 10:30-11:30 on MS Teams), Email : vamsipingali@iisc.ac.in

Logistics

- Office: N23 (Office hours during the period of online classes : Tue : 10:30-11:30 on MS Teams), Email : vamsipingali@iisc.ac.in
- Course webpage :
http://math.iisc.ac.in/~vamsipingali/teaching/ um102anallinealg2021spring/um1022021.html

Logistics

- Office: N23 (Office hours during the period of online classes : Tue : 10:30-11:30 on MS Teams), Email : vamsipingali@iisc.ac.in
- Course webpage :
http://math.iisc.ac.in/~vamsipingali/teaching/ um102anallinealg2021spring/um1022021.html
- Tests/Quizzes based on HW : 20\% (

Logistics

- Office: N23 (Office hours during the period of online classes : Tue : 10:30-11:30 on MS Teams), Email : vamsipingali@iisc.ac.in
- Course webpage : http://math.iisc.ac.in/~vamsipingali/teaching/ um102anallinealg2021spring/um1022021.html
- Tests/Quizzes based on HW : 20\% (Roughly one problem per quiz. Closed book.),

Logistics

- Office: N23 (Office hours during the period of online classes : Tue : 10:30-11:30 on MS Teams), Email : vamsipingali@iisc.ac.in
- Course webpage : http://math.iisc.ac.in/~vamsipingali/teaching/ um102anallinealg2021spring/um1022021.html
- Tests/Quizzes based on HW : 20\% (Roughly one problem per quiz. Closed book.), Midterm - 30\%, and

Logistics

- Office: N23 (Office hours during the period of online classes : Tue : 10:30-11:30 on MS Teams), Email : vamsipingali@iisc.ac.in
- Course webpage : http://math.iisc.ac.in/~vamsipingali/teaching/ um102anallinealg2021spring/um1022021.html
- Tests/Quizzes based on HW : 20\% (Roughly one problem per quiz. Closed book.), Midterm - 30\%, and Final - 50\%.

Logistics

- Office: N23 (Office hours during the period of online classes : Tue : 10:30-11:30 on MS Teams), Email : vamsipingali@iisc.ac.in
- Course webpage :
http://math.iisc.ac.in/~vamsipingali/teaching/ um102anallinealg2021spring/um1022021.html
- Tests/Quizzes based on HW : 20\% (Roughly one problem per quiz. Closed book.), Midterm - 30\%, and Final - 50\%.
- TAs : You are assigned to TAs based on the remainder when your SR no is divided by 5 .

Logistics

- Office: N23 (Office hours during the period of online classes : Tue : 10:30-11:30 on MS Teams), Email : vamsipingali@iisc.ac.in
- Course webpage :
http://math.iisc.ac.in/~vamsipingali/teaching/ um102anallinealg2021spring/um1022021.html
- Tests/Quizzes based on HW : 20\% (Roughly one problem per quiz. Closed book.), Midterm - 30\%, and Final - 50\%.
- TAs : You are assigned to TAs based on the remainder when your SR no is divided by 5. For 0 : Deb, 1: Gouranga, 2: Mihir, 3 : Sumana, 4: Vijay.

Logistics

- Office: N23 (Office hours during the period of online classes : Tue : 10:30-11:30 on MS Teams), Email : vamsipingali@iisc.ac.in
- Course webpage :
http://math.iisc.ac.in/~vamsipingali/teaching/ um102anallinealg2021spring/um1022021.html
- Tests/Quizzes based on HW : 20\% (Roughly one problem per quiz. Closed book.), Midterm - 30\%, and Final - 50\%.
- TAs : You are assigned to TAs based on the remainder when your SR no is divided by 5 . For 0 : Deb, 1: Gouranga, 2: Mihir, 3 : Sumana, 4: Vijay. Please coordinate online meetings/tutorials with them.

Logistics

- Office: N23 (Office hours during the period of online classes : Tue : 10:30-11:30 on MS Teams), Email : vamsipingali@iisc.ac.in
- Course webpage :
http://math.iisc.ac.in/~vamsipingali/teaching/ um102anallinealg2021spring/um1022021.html
- Tests/Quizzes based on HW : 20\% (Roughly one problem per quiz. Closed book.), Midterm - 30\%, and Final - 50\%.
- TAs : You are assigned to TAs based on the remainder when your SR no is divided by 5. For 0 : Deb, 1: Gouranga, 2: Mihir, 3 : Sumana, 4: Vijay. Please coordinate online meetings/tutorials with them.
- Text book : Apostol, Calculus (Vol 2).

Why care about Linear Algebra?

Why care about Linear Algebra ?

- Linear algebra originated from "word-problems" in high-school, i.e.,

Why care about Linear Algebra ?

- Linear algebra originated from "word-problems" in high-school, i.e., things that lead to equations like $5 x+3 y=1, x-y=7$.

Why care about Linear Algebra?

- Linear algebra originated from "word-problems" in high-school, i.e., things that lead to equations like $5 x+3 y=1, x-y=7$.
- To solve them systematically,

Why care about Linear Algebra?

- Linear algebra originated from "word-problems" in high-school, i.e., things that lead to equations like $5 x+3 y=1, x-y=7$.
- To solve them systematically, matrices were invented.

Why care about Linear Algebra ?

- Linear algebra originated from "word-problems" in high-school, i.e., things that lead to equations like $5 x+3 y=1, x-y=7$.
- To solve them systematically, matrices were invented. On paper, everything in (finite-dimensional) linear algebra can be done using matrices.

Why care about Linear Algebra ?

- Linear algebra originated from "word-problems" in high-school, i.e., things that lead to equations like $5 x+3 y=1, x-y=7$.
- To solve them systematically, matrices were invented. On paper, everything in (finite-dimensional) linear algebra can be done using matrices.
- So why define "abstract" things such as vector spaces ? The point is that linear equations come in several guises

Why care about Linear Algebra ?

- Linear algebra originated from "word-problems" in high-school, i.e., things that lead to equations like $5 x+3 y=1, x-y=7$.
- To solve them systematically, matrices were invented. On paper, everything in (finite-dimensional) linear algebra can be done using matrices.
- So why define "abstract" things such as vector spaces ? The point is that linear equations come in several guises (Numerical equations, Polynomial equations, Differential Equations, etc).

Why care about Linear Algebra ?

- Linear algebra originated from "word-problems" in high-school, i.e., things that lead to equations like $5 x+3 y=1, x-y=7$.
- To solve them systematically, matrices were invented. On paper, everything in (finite-dimensional) linear algebra can be done using matrices.
- So why define "abstract" things such as vector spaces ? The point is that linear equations come in several guises (Numerical equations, Polynomial equations, Differential Equations, etc).
- All such equations rely on similar manipulations.

Why care about Linear Algebra ?

- Linear algebra originated from "word-problems" in high-school, i.e., things that lead to equations like $5 x+3 y=1, x-y=7$.
- To solve them systematically, matrices were invented. On paper, everything in (finite-dimensional) linear algebra can be done using matrices.
- So why define "abstract" things such as vector spaces ? The point is that linear equations come in several guises (Numerical equations, Polynomial equations, Differential Equations, etc).
- All such equations rely on similar manipulations. So going by the spirit of algebra,

Why care about Linear Algebra?

- Linear algebra originated from "word-problems" in high-school, i.e., things that lead to equations like $5 x+3 y=1, x-y=7$.
- To solve them systematically, matrices were invented. On paper, everything in (finite-dimensional) linear algebra can be done using matrices.
- So why define "abstract" things such as vector spaces ? The point is that linear equations come in several guises (Numerical equations, Polynomial equations, Differential Equations, etc).
- All such equations rely on similar manipulations. So going by the spirit of algebra, we abstract out the essential features of such manipulations into a definition and prove general theorems about such objects.

Why care about Linear Algebra?

- Linear algebra originated from "word-problems" in high-school, i.e., things that lead to equations like $5 x+3 y=1, x-y=7$.
- To solve them systematically, matrices were invented. On paper, everything in (finite-dimensional) linear algebra can be done using matrices.
- So why define "abstract" things such as vector spaces ? The point is that linear equations come in several guises (Numerical equations, Polynomial equations, Differential Equations, etc).
- All such equations rely on similar manipulations. So going by the spirit of algebra, we abstract out the essential features of such manipulations into a definition and prove general theorems about such objects.
- While that was the original reason to invent linear algebra,

Why care about Linear Algebra?

- Linear algebra originated from "word-problems" in high-school, i.e., things that lead to equations like $5 x+3 y=1, x-y=7$.
- To solve them systematically, matrices were invented. On paper, everything in (finite-dimensional) linear algebra can be done using matrices.
- So why define "abstract" things such as vector spaces ? The point is that linear equations come in several guises (Numerical equations, Polynomial equations, Differential Equations, etc).
- All such equations rely on similar manipulations. So going by the spirit of algebra, we abstract out the essential features of such manipulations into a definition and prove general theorems about such objects.
- While that was the original reason to invent linear algebra, today, it goes much further.

Why care about Linear Algebra?

- Linear algebra originated from "word-problems" in high-school, i.e., things that lead to equations like $5 x+3 y=1, x-y=7$.
- To solve them systematically, matrices were invented. On paper, everything in (finite-dimensional) linear algebra can be done using matrices.
- So why define "abstract" things such as vector spaces ? The point is that linear equations come in several guises (Numerical equations, Polynomial equations, Differential Equations, etc).
- All such equations rely on similar manipulations. So going by the spirit of algebra, we abstract out the essential features of such manipulations into a definition and prove general theorems about such objects.
- While that was the original reason to invent linear algebra, today, it goes much further. Google uses Linear Algebra for instance!

Vector spaces

Vector spaces

- Solving linear equations (like the word-problem equations)

Vector spaces

- Solving linear equations (like the word-problem equations) requires "cross-multiplication" by "numbers" and adding/subtracting equations.

Vector spaces

- Solving linear equations (like the word-problem equations) requires "cross-multiplication" by "numbers" and adding/subtracting equations.
- So any set that allows scalar-multiplication (with real or complex numbers or more general "numbers" belonging to a "field"),

Vector spaces

- Solving linear equations (like the word-problem equations) requires "cross-multiplication" by "numbers" and adding/subtracting equations.
- So any set that allows scalar-multiplication (with real or complex numbers or more general "numbers" belonging to a "field"), and addition and subtraction (that behave "well" with scalar-multiplication) should allow linear equations and their solutions by the same high-school algorithm.

Vector spaces

- Solving linear equations (like the word-problem equations) requires "cross-multiplication" by "numbers" and adding/subtracting equations.
- So any set that allows scalar-multiplication (with real or complex numbers or more general "numbers" belonging to a "field"), and addition and subtraction (that behave "well" with scalar-multiplication) should allow linear equations and their solutions by the same high-school algorithm.
- To this end, recall that a vector space V over a field \mathbb{F} (
- Solving linear equations (like the word-problem equations) requires "cross-multiplication" by "numbers" and adding/subtracting equations.
- So any set that allows scalar-multiplication (with real or complex numbers or more general "numbers" belonging to a "field"), and addition and subtraction (that behave "well" with scalar-multiplication) should allow linear equations and their solutions by the same high-school algorithm.
- To this end, recall that a vector space V over a field \mathbb{F} (if you find fields confusing, whenever I say \mathbb{F}, replace it with \mathbb{R} or \mathbb{C} in your minds)
- Solving linear equations (like the word-problem equations) requires "cross-multiplication" by "numbers" and adding/subtracting equations.
- So any set that allows scalar-multiplication (with real or complex numbers or more general "numbers" belonging to a "field"), and addition and subtraction (that behave "well" with scalar-multiplication) should allow linear equations and their solutions by the same high-school algorithm.
- To this end, recall that a vector space V over a field \mathbb{F} (if you find fields confusing, whenever I say \mathbb{F}, replace it with \mathbb{R} or \mathbb{C} in your minds) is a set V equipped with binary operations

Vector spaces

- Solving linear equations (like the word-problem equations) requires "cross-multiplication" by "numbers" and adding/subtracting equations.
- So any set that allows scalar-multiplication (with real or complex numbers or more general "numbers" belonging to a "field"), and addition and subtraction (that behave "well" with scalar-multiplication) should allow linear equations and their solutions by the same high-school algorithm.
- To this end, recall that a vector space V over a field \mathbb{F} (if you find fields confusing, whenever I say \mathbb{F}, replace it with \mathbb{R} or \mathbb{C} in your minds) is a set V equipped with binary operations $+: V \times V \rightarrow V$ and.$: \mathbb{F} \times V \rightarrow V$ satisfying a bunch of axioms (in the next slide).

Vector spaces

Vector spaces

- Commutativity of addition: $v+w=w+v$.

Vector spaces

- Commutativity of addition: $v+w=w+v$.
- Existence of a zero vector : $v+0=v$. (

Vector spaces

- Commutativity of addition: $v+w=w+v$.
- Existence of a zero vector: $v+0=v$. (There is only one zero vector

Vector spaces

- Commutativity of addition: $v+w=w+v$.
- Existence of a zero vector: $v+0=v$. (There is only one zero vector: $0_{2}=0_{2}+0_{1}=0_{1}+0_{2}=0_{1}$.)

Vector spaces

- Commutativity of addition: $v+w=w+v$.
- Existence of a zero vector: $v+0=v$. (There is only one zero vector: $0_{2}=0_{2}+0_{1}=0_{1}+0_{2}=0_{1}$.)
- Associativity of addition : $v+(w+y)=(v+w)+y$.

Vector spaces

- Commutativity of addition: $v+w=w+v$.
- Existence of a zero vector: $v+0=v$. (There is only one zero vector: $0_{2}=0_{2}+0_{1}=0_{1}+0_{2}=0_{1}$.)
- Associativity of addition : $v+(w+y)=(v+w)+y$.
- Existence of additive inverses : $v+(-v)=0$. (

Vector spaces

- Commutativity of addition: $v+w=w+v$.
- Existence of a zero vector: $v+0=v$. (There is only one zero vector: $0_{2}=0_{2}+0_{1}=0_{1}+0_{2}=0_{1}$.)
- Associativity of addition : $v+(w+y)=(v+w)+y$.
- Existence of additive inverses : $v+(-v)=0$. (Additive inverses are unique

Vector spaces

- Commutativity of addition: $v+w=w+v$.
- Existence of a zero vector: $v+0=v$. (There is only one zero vector: $0_{2}=0_{2}+0_{1}=0_{1}+0_{2}=0_{1}$.)
- Associativity of addition : $v+(w+y)=(v+w)+y$.
- Existence of additive inverses : $v+(-v)=0$. (Additive inverses are unique :

$$
\begin{aligned}
& (-v)_{2}=0+(-v)_{2}=\left(v+(-v)_{1}\right)+(-v)_{2}= \\
& v+\left((-v)_{1}+(-v)_{2}\right)=v+\left((-v)_{2}+(-v)_{1}\right)= \\
& \left.\left(v+(-v)_{2}\right)+(-v)_{1}=0+(-v)_{1}=(-v)_{1} .\right)
\end{aligned}
$$

Vector spaces

- Commutativity of addition: $v+w=w+v$.
- Existence of a zero vector: $v+0=v$. (There is only one zero vector: $0_{2}=0_{2}+0_{1}=0_{1}+0_{2}=0_{1}$.)
- Associativity of addition : $v+(w+y)=(v+w)+y$.
- Existence of additive inverses : $v+(-v)=0$. (Additive inverses are unique :

$$
\begin{aligned}
& (-v)_{2}=0+(-v)_{2}=\left(v+(-v)_{1}\right)+(-v)_{2}= \\
& v+\left((-v)_{1}+(-v)_{2}\right)=v+\left((-v)_{2}+(-v)_{1}\right)= \\
& \left.\left(v+(-v)_{2}\right)+(-v)_{1}=0+(-v)_{1}=(-v)_{1} .\right)
\end{aligned}
$$

- Identity multiplication :1.v $=v$.

Vector spaces

- Commutativity of addition: $v+w=w+v$.
- Existence of a zero vector: $v+0=v$. (There is only one zero vector: $0_{2}=0_{2}+0_{1}=0_{1}+0_{2}=0_{1}$.)
- Associativity of addition : $v+(w+y)=(v+w)+y$.
- Existence of additive inverses : $v+(-v)=0$. (Additive inverses are unique :

$$
\begin{aligned}
& (-v)_{2}=0+(-v)_{2}=\left(v+(-v)_{1}\right)+(-v)_{2}= \\
& v+\left((-v)_{1}+(-v)_{2}\right)=v+\left((-v)_{2}+(-v)_{1}\right)= \\
& \left.\left(v+(-v)_{2}\right)+(-v)_{1}=0+(-v)_{1}=(-v)_{1} .\right)
\end{aligned}
$$

- Identity multiplication $: 1 . v=v$.
- Associativity of scalar multiplication : a. $(b . v)=(a b) . v$.

Vector spaces

- Commutativity of addition: $v+w=w+v$.
- Existence of a zero vector: $v+0=v$. (There is only one zero vector: $0_{2}=0_{2}+0_{1}=0_{1}+0_{2}=0_{1}$.)
- Associativity of addition : $v+(w+y)=(v+w)+y$.
- Existence of additive inverses : $v+(-v)=0$. (Additive inverses are unique :

$$
\begin{aligned}
& (-v)_{2}=0+(-v)_{2}=\left(v+(-v)_{1}\right)+(-v)_{2}= \\
& v+\left((-v)_{1}+(-v)_{2}\right)=v+\left((-v)_{2}+(-v)_{1}\right)= \\
& \left.\left(v+(-v)_{2}\right)+(-v)_{1}=0+(-v)_{1}=(-v)_{1} .\right)
\end{aligned}
$$

- Identity multiplication :1.v $=v$.
- Associativity of scalar multiplication : a. $(b . v)=(a b) . v$.
- Distributivity : $(a+b) . v=a . v+b . v$ and $a .(v+w)=a . v+a . w .($

Vector spaces

- Commutativity of addition: $v+w=w+v$.
- Existence of a zero vector: $v+0=v$. (There is only one zero vector: $0_{2}=0_{2}+0_{1}=0_{1}+0_{2}=0_{1}$.)
- Associativity of addition : $v+(w+y)=(v+w)+y$.
- Existence of additive inverses : $v+(-v)=0$. (Additive inverses are unique :

$$
\begin{aligned}
& (-v)_{2}=0+(-v)_{2}=\left(v+(-v)_{1}\right)+(-v)_{2}= \\
& v+\left((-v)_{1}+(-v)_{2}\right)=v+\left((-v)_{2}+(-v)_{1}\right)= \\
& \left.\left(v+(-v)_{2}\right)+(-v)_{1}=0+(-v)_{1}=(-v)_{1} .\right)
\end{aligned}
$$

- Identity multiplication $: 1 . v=v$.
- Associativity of scalar multiplication : a. $(b . v)=(a b) . v$.
- Distributivity : $(a+b) . v=a . v+b . v$ and $a .(v+w)=a \cdot v+a . w$. (So $0 . v=(0+0) \cdot v=0 . v+0 . v$. By additive inverses, $0 . v=0$. Moreover,

Vector spaces

- Commutativity of addition: $v+w=w+v$.
- Existence of a zero vector: $v+0=v$. (There is only one zero vector: $0_{2}=0_{2}+0_{1}=0_{1}+0_{2}=0_{1}$.)
- Associativity of addition : $v+(w+y)=(v+w)+y$.
- Existence of additive inverses : $v+(-v)=0$. (Additive inverses are unique :

$$
\begin{aligned}
& (-v)_{2}=0+(-v)_{2}=\left(v+(-v)_{1}\right)+(-v)_{2}= \\
& v+\left((-v)_{1}+(-v)_{2}\right)=v+\left((-v)_{2}+(-v)_{1}\right)= \\
& \left.\left(v+(-v)_{2}\right)+(-v)_{1}=0+(-v)_{1}=(-v)_{1} .\right)
\end{aligned}
$$

- Identity multiplication :1.v=v.
- Associativity of scalar multiplication : a. $(b . v)=(a b) . v$.
- Distributivity : $(a+b) . v=a . v+b . v$ and
$a .(v+w)=a \cdot v+a . w$. (So $0 . v=(0+0) \cdot v=0 . v+0 . v$. By
additive inverses, $0 . v=0$. Moreover,
$0=(1-1) \cdot v=1 . v+(-1) \cdot v=v+(-1) \cdot v$. Hence
$-v=(-1) \cdot v$. Also,

Vector spaces

- Commutativity of addition: $v+w=w+v$.
- Existence of a zero vector: $v+0=v$. (There is only one zero vector: $0_{2}=0_{2}+0_{1}=0_{1}+0_{2}=0_{1}$.)
- Associativity of addition : $v+(w+y)=(v+w)+y$.
- Existence of additive inverses : $v+(-v)=0$. (Additive inverses are unique :

$$
\begin{aligned}
& (-v)_{2}=0+(-v)_{2}=\left(v+(-v)_{1}\right)+(-v)_{2}= \\
& v+\left((-v)_{1}+(-v)_{2}\right)=v+\left((-v)_{2}+(-v)_{1}\right)= \\
& \left.\left(v+(-v)_{2}\right)+(-v)_{1}=0+(-v)_{1}=(-v)_{1} .\right)
\end{aligned}
$$

- Identity multiplication :1.v=v.
- Associativity of scalar multiplication : a. $(b . v)=(a b) . v$.
- Distributivity : $(a+b) . v=a . v+b . v$ and $a .(v+w)=a \cdot v+a . w$. (So $0 . v=(0+0) \cdot v=0 . v+0 . v$. By additive inverses, $0 . v=0$. Moreover,
$0=(1-1) \cdot v=1 \cdot v+(-1) \cdot v=v+(-1) \cdot v$. Hence $-v=(-1) . v$. Also, a. $0=0$ (why ?).) Many others can be proved similarly.

Examples and non-examples

Examples and non-examples

- $\mathbb{R}^{n}, \mathbb{C}^{n}$.

Examples and non-examples

- $\mathbb{R}^{n}, \mathbb{C}^{n}$.
- The set of continuous functions from $[0,1]$ to $\mathbb{R}($ or $\mathbb{C})$ under the usual addition and scalar multiplication operations.

Examples and non-examples

- $\mathbb{R}^{n}, \mathbb{C}^{n}$.
- The set of continuous functions from $[0,1]$ to \mathbb{R} (or \mathbb{C}) under the usual addition and scalar multiplication operations.
- Polynomials of degree $\leq n$ with \mathbb{F}-coefficients. (

Examples and non-examples

- $\mathbb{R}^{n}, \mathbb{C}^{n}$.
- The set of continuous functions from $[0,1]$ to \mathbb{R} (or \mathbb{C}) under the usual addition and scalar multiplication operations.
- Polynomials of degree $\leq n$ with \mathbb{F}-coefficients. (Polynomials of degree exactly n do NOT form a vector space.)

Examples and non-examples

- $\mathbb{R}^{n}, \mathbb{C}^{n}$.
- The set of continuous functions from $[0,1]$ to $\mathbb{R}($ or $\mathbb{C})$ under the usual addition and scalar multiplication operations.
- Polynomials of degree $\leq n$ with \mathbb{F}-coefficients. (Polynomials of degree exactly n do NOT form a vector space.)
- Polynomials with integer coefficients do NOT form a vector space.

Examples and non-examples

- $\mathbb{R}^{n}, \mathbb{C}^{n}$.
- The set of continuous functions from $[0,1]$ to \mathbb{R} (or \mathbb{C}) under the usual addition and scalar multiplication operations.
- Polynomials of degree $\leq n$ with \mathbb{F}-coefficients. (Polynomials of degree exactly n do NOT form a vector space.)
- Polynomials with integer coefficients do NOT form a vector space.
- $m \times n$ matrices with complex/real entries.

Examples and non-examples

- $\mathbb{R}^{n}, \mathbb{C}^{n}$.
- The set of continuous functions from $[0,1]$ to $\mathbb{R}($ or $\mathbb{C})$ under the usual addition and scalar multiplication operations.
- Polynomials of degree $\leq n$ with \mathbb{F}-coefficients. (Polynomials of degree exactly n do NOT form a vector space.)
- Polynomials with integer coefficients do NOT form a vector space.
- $m \times n$ matrices with complex/real entries.
- The set of all differentiable functions $x, y: \mathbb{R} \rightarrow \mathbb{R}$ satisfying $x^{\prime}=2 x+3 y, y^{\prime}=4 x+5 y$ form a vector space over \mathbb{R}.

Subspaces

Subspaces

- Subspaces are subsets that form vector spaces in their own right with the same operations.

Subspaces

- Subspaces are subsets that form vector spaces in their own right with the same operations.
- One can prove that is enough for just closure to hold to be a subspace.

Subspaces

- Subspaces are subsets that form vector spaces in their own right with the same operations.
- One can prove that is enough for just closure to hold to be a subspace.
- For instance, the set of all diff functions satisfying the ODE above forms a subspace of the set of all differentiable functions.

Subspaces

- Subspaces are subsets that form vector spaces in their own right with the same operations.
- One can prove that is enough for just closure to hold to be a subspace.
- For instance, the set of all diff functions satisfying the ODE above forms a subspace of the set of all differentiable functions. On the other hand, the set of non-zero reals is NOT a subspace of reals.

Subspaces

- Subspaces are subsets that form vector spaces in their own right with the same operations.
- One can prove that is enough for just closure to hold to be a subspace.
- For instance, the set of all diff functions satisfying the ODE above forms a subspace of the set of all differentiable functions. On the other hand, the set of non-zero reals is NOT a subspace of reals.
- Given a set S,

Subspaces

- Subspaces are subsets that form vector spaces in their own right with the same operations.
- One can prove that is enough for just closure to hold to be a subspace.
- For instance, the set of all diff functions satisfying the ODE above forms a subspace of the set of all differentiable functions. On the other hand, the set of non-zero reals is NOT a subspace of reals.
- Given a set S, the subspace generated/spanned by it is the space $L(S)$ (

Subspaces

- Subspaces are subsets that form vector spaces in their own right with the same operations.
- One can prove that is enough for just closure to hold to be a subspace.
- For instance, the set of all diff functions satisfying the ODE above forms a subspace of the set of all differentiable functions. On the other hand, the set of non-zero reals is NOT a subspace of reals.
- Given a set S, the subspace generated/spanned by it is the space $L(S)$ (also called the linear span of S) consisting of

Subspaces

- Subspaces are subsets that form vector spaces in their own right with the same operations.
- One can prove that is enough for just closure to hold to be a subspace.
- For instance, the set of all diff functions satisfying the ODE above forms a subspace of the set of all differentiable functions. On the other hand, the set of non-zero reals is NOT a subspace of reals.
- Given a set S, the subspace generated/spanned by it is the space $L(S)$ (also called the linear span of S) consisting of finite linear combinations $\sum_{k=1}^{N} c_{k} s_{k}$ of elements of S.

Subspaces

- Subspaces are subsets that form vector spaces in their own right with the same operations.
- One can prove that is enough for just closure to hold to be a subspace.
- For instance, the set of all diff functions satisfying the ODE above forms a subspace of the set of all differentiable functions. On the other hand, the set of non-zero reals is NOT a subspace of reals.
- Given a set S, the subspace generated/spanned by it is the space $L(S)$ (also called the linear span of S) consisting of finite linear combinations $\sum_{k=1}^{N} c_{k} s_{k}$ of elements of S. If $S=\phi, L(S):=\{0\}$.

Linear independence

Linear independence

- A set $S \subset V$ is called linearly dependent if

Linear independence

- A set $S \subset V$ is called linearly dependent if there is a finite subset $x_{1}, x_{2}, \ldots, x_{k}$ (distinct) and scalars c_{1}, \ldots, c_{k} not all zero such that

Linear independence

- A set $S \subset V$ is called linearly dependent if there is a finite subset $x_{1}, x_{2}, \ldots, x_{k}$ (distinct) and scalars c_{1}, \ldots, c_{k} not all zero such that $\sum_{k} c_{k} x_{k}=0$.

Linear independence

- A set $S \subset V$ is called linearly dependent if there is a finite subset $x_{1}, x_{2}, \ldots, x_{k}$ (distinct) and scalars c_{1}, \ldots, c_{k} not all zero such that $\sum_{k} c_{k} x_{k}=0$.
- It is independent if it is not dependent, i.e.,

Linear independence

- A set $S \subset V$ is called linearly dependent if there is a finite subset $x_{1}, x_{2}, \ldots, x_{k}$ (distinct) and scalars c_{1}, \ldots, c_{k} not all zero such that $\sum_{k} c_{k} x_{k}=0$.
- It is independent if it is not dependent, i.e., whenever $\sum_{k} c_{k} x_{k}=0$, all $c_{k}=0$.

Linear independence

- A set $S \subset V$ is called linearly dependent if there is a finite subset $x_{1}, x_{2}, \ldots, x_{k}$ (distinct) and scalars c_{1}, \ldots, c_{k} not all zero such that $\sum_{k} c_{k} x_{k}=0$.
- It is independent if it is not dependent, i.e., whenever $\sum_{k} c_{k} x_{k}=0$, all $c_{k}=0$.
- For instance, if $0 \in S$, it is dependent and

Linear independence

- A set $S \subset V$ is called linearly dependent if there is a finite subset $x_{1}, x_{2}, \ldots, x_{k}$ (distinct) and scalars c_{1}, \ldots, c_{k} not all zero such that $\sum_{k} c_{k} x_{k}=0$.
- It is independent if it is not dependent, i.e., whenever $\sum_{k} c_{k} x_{k}=0$, all $c_{k}=0$.
- For instance, if $0 \in S$, it is dependent and the empty set is independent.

Linear independence

- A set $S \subset V$ is called linearly dependent if there is a finite subset $x_{1}, x_{2}, \ldots, x_{k}$ (distinct) and scalars c_{1}, \ldots, c_{k} not all zero such that $\sum_{k} c_{k} x_{k}=0$.
- It is independent if it is not dependent, i.e., whenever $\sum_{k} c_{k} x_{k}=0$, all $c_{k}=0$.
- For instance, if $0 \in S$, it is dependent and the empty set is independent.
- The set t^{n} is independent.

Linear independence

- A set $S \subset V$ is called linearly dependent if there is a finite subset $x_{1}, x_{2}, \ldots, x_{k}$ (distinct) and scalars c_{1}, \ldots, c_{k} not all zero such that $\sum_{k} c_{k} x_{k}=0$.
- It is independent if it is not dependent, i.e., whenever $\sum_{k} c_{k} x_{k}=0$, all $c_{k}=0$.
- For instance, if $0 \in S$, it is dependent and the empty set is independent.
- The set t^{n} is independent. So is $e^{i n x}$ (We shall see an alternate proof using more machinery later).

Linear independence

- A set $S \subset V$ is called linearly dependent if there is a finite subset $x_{1}, x_{2}, \ldots, x_{k}$ (distinct) and scalars c_{1}, \ldots, c_{k} not all zero such that $\sum_{k} c_{k} x_{k}=0$.
- It is independent if it is not dependent, i.e., whenever $\sum_{k} c_{k} x_{k}=0$, all $c_{k}=0$.
- For instance, if $0 \in S$, it is dependent and the empty set is independent.
- The set t^{n} is independent. So is $e^{i n x}$ (We shall see an alternate proof using more machinery later).
- If $S=\left\{x_{1}, \ldots, x_{k}\right\} \subset V$ is independent,

Linear independence

- A set $S \subset V$ is called linearly dependent if there is a finite subset $x_{1}, x_{2}, \ldots, x_{k}$ (distinct) and scalars c_{1}, \ldots, c_{k} not all zero such that $\sum_{k} c_{k} x_{k}=0$.
- It is independent if it is not dependent, i.e., whenever $\sum_{k} c_{k} x_{k}=0$, all $c_{k}=0$.
- For instance, if $0 \in S$, it is dependent and the empty set is independent.
- The set t^{n} is independent. So is $e^{i n x}$ (We shall see an alternate proof using more machinery later).
- If $S=\left\{x_{1}, \ldots, x_{k}\right\} \subset V$ is independent, then any set of $k+1$ vectors in $L(S)$ is dependent.

Basis

- A set $S \subset V$ is called a basis if it is independent and spans V.

Basis

- A set $S \subset V$ is called a basis if it is independent and spans V.
- It turns out (not easy!) that every vector space V has a basis.

Basis

- A set $S \subset V$ is called a basis if it is independent and spans V.
- It turns out (not easy!) that every vector space V has a basis.
- The catch is that

Basis

- A set $S \subset V$ is called a basis if it is independent and spans V.
- It turns out (not easy!) that every vector space V has a basis.
- The catch is that it need not be a finite basis ! (

Basis

- A set $S \subset V$ is called a basis if it is independent and spans V.
- It turns out (not easy!) that every vector space V has a basis.
- The catch is that it need not be a finite basis! (For instance, the set of continuous functions has infinitely many linearly independent elements (like t^{n} for instance).

Basis

- A set $S \subset V$ is called a basis if it is independent and spans V.
- It turns out (not easy!) that every vector space V has a basis.
- The catch is that it need not be a finite basis! (For instance, the set of continuous functions has infinitely many linearly independent elements (like t^{n} for instance). So it cannot have a finite basis.)

Basis

- A set $S \subset V$ is called a basis if it is independent and spans V.
- It turns out (not easy!) that every vector space V has a basis.
- The catch is that it need not be a finite basis! (For instance, the set of continuous functions has infinitely many linearly independent elements (like t^{n} for instance). So it cannot have a finite basis.)
- Those vector spaces that admit a finite basis are called finite-dimensional vector spaces.

Basis

- A set $S \subset V$ is called a basis if it is independent and spans V.
- It turns out (not easy !) that every vector space V has a basis.
- The catch is that it need not be a finite basis! (For instance, the set of continuous functions has infinitely many linearly independent elements (like t^{n} for instance). So it cannot have a finite basis.)
- Those vector spaces that admit a finite basis are called finite-dimensional vector spaces. We shall study only such spaces in this class.
- A set $S \subset V$ is called a basis if it is independent and spans V.
- It turns out (not easy!) that every vector space V has a basis.
- The catch is that it need not be a finite basis! (For instance, the set of continuous functions has infinitely many linearly independent elements (like t^{n} for instance). So it cannot have a finite basis.)
- Those vector spaces that admit a finite basis are called finite-dimensional vector spaces. We shall study only such spaces in this class. Infinite-dimensional ones are also useful in mathematics (and in physics, engineering, etc for that matter) but require more complicated tools.
- A set $S \subset V$ is called a basis if it is independent and spans V.
- It turns out (not easy!) that every vector space V has a basis.
- The catch is that it need not be a finite basis! (For instance, the set of continuous functions has infinitely many linearly independent elements (like t^{n} for instance). So it cannot have a finite basis.)
- Those vector spaces that admit a finite basis are called finite-dimensional vector spaces. We shall study only such spaces in this class. Infinite-dimensional ones are also useful in mathematics (and in physics, engineering, etc for that matter) but require more complicated tools. The study of certain infinite-dimensional vector spaces is called Functional Analysis.

Dimension

Dimension

- If V is finite-dimensional, then any finite basis has the same number of elements.

Dimension

- If V is finite-dimensional, then any finite basis has the same number of elements.
- This number is called the dimension of V. (

Dimension

- If V is finite-dimensional, then any finite basis has the same number of elements.
- This number is called the dimension of V. (Warning! \mathbb{C}^{n} can also be thought of as an \mathbb{R}-vector space but with a dimension of $2 n$ instead of $n!$)

Dimension

- If V is finite-dimensional, then any finite basis has the same number of elements.
- This number is called the dimension of V. (Warning! \mathbb{C}^{n} can also be thought of as an \mathbb{R}-vector space but with a dimension of $2 n$ instead of $n!$) $\{0\}$ has dimension 0 .

Dimension

- If V is finite-dimensional, then any finite basis has the same number of elements.
- This number is called the dimension of V. (Warning! \mathbb{C}^{n} can also be thought of as an \mathbb{R}-vector space but with a dimension of $2 n$ instead of $n!$) $\{0\}$ has dimension 0 .
- Any linearly independent set of $k<\operatorname{dim}(V)$ elements can be extended to a basis of V.

Dimension

- If V is finite-dimensional, then any finite basis has the same number of elements.
- This number is called the dimension of V. (Warning! \mathbb{C}^{n} can also be thought of as an \mathbb{R}-vector space but with a dimension of $2 n$ instead of $n!$) $\{0\}$ has dimension 0 .
- Any linearly independent set of $k<\operatorname{dim}(V)$ elements can be extended to a basis of V. Moreover, any set of $\operatorname{dim}(V)$ linearly independent elements forms a basis of V.

Dimension

- If V is finite-dimensional, then any finite basis has the same number of elements.
- This number is called the dimension of V. (Warning! \mathbb{C}^{n} can also be thought of as an \mathbb{R}-vector space but with a dimension of $2 n$ instead of $n!$) $\{0\}$ has dimension 0 .
- Any linearly independent set of $k<\operatorname{dim}(V)$ elements can be extended to a basis of V. Moreover, any set of $\operatorname{dim}(V)$ linearly independent elements forms a basis of V.
- Often, one considers an ordered basis, i.e., a basis written in a specified order.

Dimension

- If V is finite-dimensional, then any finite basis has the same number of elements.
- This number is called the dimension of V. (Warning! \mathbb{C}^{n} can also be thought of as an \mathbb{R}-vector space but with a dimension of $2 n$ instead of $n!$) $\{0\}$ has dimension 0 .
- Any linearly independent set of $k<\operatorname{dim}(V)$ elements can be extended to a basis of V. Moreover, any set of $\operatorname{dim}(V)$ linearly independent elements forms a basis of V.
- Often, one considers an ordered basis, i.e., a basis written in a specified order. In that case, every vector $v=\sum_{k} c_{k} e_{k}$.

Dimension

- If V is finite-dimensional, then any finite basis has the same number of elements.
- This number is called the dimension of V. (Warning! \mathbb{C}^{n} can also be thought of as an \mathbb{R}-vector space but with a dimension of $2 n$ instead of $n!$) $\{0\}$ has dimension 0 .
- Any linearly independent set of $k<\operatorname{dim}(V)$ elements can be extended to a basis of V. Moreover, any set of $\operatorname{dim}(V)$ linearly independent elements forms a basis of V.
- Often, one considers an ordered basis, i.e., a basis written in a specified order. In that case, every vector $v=\sum_{k} c_{k} e_{k}$. The (uniquely determined) numbers c_{k} are called components of v relative to the ordered basis $\left\{e_{1}, \ldots, e_{n}\right\}$.

