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Logistics

Office : N23 (Office hours during the period of online classes :
Tue : 10:30-11:30 on MS Teams), Email :
vamsipingali@iisc.ac.in

Course webpage :
http://math.iisc.ac.in/~vamsipingali/teaching/

um102anallinealg2021spring/um1022021.html

Tests/Quizzes based on HW : 20% (Roughly one problem per
quiz. Closed book.), Midterm - 30%, and Final - 50%.

TAs : You are assigned to TAs based on the remainder when
your SR no is divided by 5. For 0 : Deb, 1: Gouranga, 2:
Mihir, 3 : Sumana, 4: Vijay. Please coordinate online
meetings/tutorials with them.

Text book : Apostol, Calculus (Vol 2).
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Why care about Linear Algebra ?

Linear algebra originated from “word-problems” in
high-school, i.e., things that lead to equations like
5x + 3y = 1, x − y = 7.
To solve them systematically, matrices were invented. On
paper, everything in (finite-dimensional) linear algebra can be
done using matrices.
So why define “abstract” things such as vector spaces ? The
point is that linear equations come in several guises
(Numerical equations, Polynomial equations, Differential
Equations, etc).
All such equations rely on similar manipulations. So going by
the spirit of algebra, we abstract out the essential features of
such manipulations into a definition and prove general
theorems about such objects.
While that was the original reason to invent linear algebra,
today, it goes much further. Google uses Linear Algebra for
instance !
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Vector spaces

Solving linear equations (like the word-problem equations)
requires “cross-multiplication” by “numbers” and
adding/subtracting equations.

So any set that allows scalar-multiplication (with real or
complex numbers or more general “numbers” belonging to a
“field”), and addition and subtraction (that behave “well”
with scalar-multiplication) should allow linear equations and
their solutions by the same high-school algorithm.

To this end, recall that a vector space V over a field F (if you
find fields confusing, whenever I say F, replace it with R or C
in your minds) is a set V equipped with binary operations
+ : V × V → V and . : F× V → V satisfying a bunch of
axioms (in the next slide).
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Vector spaces

Commutativity of addition : v + w = w + v .
Existence of a zero vector : v + 0 = v . (There is only one
zero vector : 02 = 02 + 01 = 01 + 02 = 01.)
Associativity of addition : v + (w + y) = (v + w) + y .
Existence of additive inverses : v + (−v) = 0. (Additive
inverses are unique :
(−v)2 = 0 + (−v)2 = (v + (−v)1) + (−v)2 =
v + ((−v)1 + (−v)2) = v + ((−v)2 + (−v)1) =
(v + (−v)2) + (−v)1 = 0 + (−v)1 = (−v)1.)
Identity multiplication :1.v = v .
Associativity of scalar multiplication : a.(b.v) = (ab).v .
Distributivity : (a + b).v = a.v + b.v and
a.(v + w) = a.v + a.w . (So 0.v = (0 + 0).v = 0.v + 0.v . By
additive inverses, 0.v = 0. Moreover,
0 = (1− 1).v = 1.v + (−1).v = v + (−1).v . Hence
−v = (−1).v . Also, a.0 = 0 (why ?).) Many others can be
proved similarly.
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Examples and non-examples

Rn,Cn.

The set of continuous functions from [0, 1] to R (or C) under
the usual addition and scalar multiplication operations.

Polynomials of degree ≤ n with F-coefficients. (Polynomials
of degree exactly n do NOT form a vector space.)

Polynomials with integer coefficients do NOT form a vector
space.

m × n matrices with complex/real entries.

The set of all differentiable functions x , y : R→ R satisfying
x ′ = 2x + 3y , y ′ = 4x + 5y form a vector space over R.
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Subspaces

Subspaces are subsets that form vector spaces in their own
right with the same operations.

One can prove that is enough for just closure to hold to be a
subspace.

For instance, the set of all diff functions satisfying the ODE
above forms a subspace of the set of all differentiable
functions. On the other hand, the set of non-zero reals is
NOT a subspace of reals.

Given a set S , the subspace generated/spanned by it is the
space L(S) (also called the linear span of S) consisting of
finite linear combinations

∑N
k=1 cksk of elements of S . If

S = φ, L(S) := {0}.
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Linear independence

A set S ⊂ V is called linearly dependent if there is a finite
subset x1, x2, . . . , xk (distinct) and scalars c1, . . . , ck not all
zero such that

∑
k ckxk = 0.

It is independent if it is not dependent, i.e., whenever∑
k ckxk = 0, all ck = 0.

For instance, if 0 ∈ S , it is dependent and the empty set is
independent.

The set tn is independent. So is e inx (We shall see an
alternate proof using more machinery later).

If S = {x1, . . . , xk} ⊂ V is independent, then any set of k + 1
vectors in L(S) is dependent.
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Basis

A set S ⊂ V is called a basis if it is independent and spans V .

It turns out (not easy !) that every vector space V has a basis.

The catch is that it need not be a finite basis ! (For instance,
the set of continuous functions has infinitely many linearly
independent elements (like tn for instance). So it cannot have
a finite basis.)

Those vector spaces that admit a finite basis are called
finite-dimensional vector spaces. We shall study only such
spaces in this class. Infinite-dimensional ones are also useful in
mathematics (and in physics, engineering, etc for that matter)
but require more complicated tools. The study of certain
infinite-dimensional vector spaces is called Functional Analysis.
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Dimension

If V is finite-dimensional, then any finite basis has the same
number of elements.

This number is called the dimension of V . (Warning ! Cn can
also be thought of as an R-vector space but with a dimension
of 2n instead of n!) {0} has dimension 0.

Any linearly independent set of k < dim(V ) elements can be
extended to a basis of V . Moreover, any set of dim(V )
linearly independent elements forms a basis of V .

Often, one considers an ordered basis, i.e., a basis written in a
specified order. In that case, every vector v =

∑
k ckek . The

(uniquely determined) numbers ck are called components of v
relative to the ordered basis {e1, . . . , en}.
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