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@ Defined derivatives along vectors and partial derivatives w.r.t
Xj.

e Saw that V;f(3) = sVyf(a).

@ Proved the MVT and a consequence.

@ Stopped short of giving a counterexample to the expectation
that the existence of directional derivatives implies continuity.
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@ By what we discussed, f is certainly continuous when x # 0.
Moreover, all of its directional derivatives exist when x # 0.

e At x =0, f(0,y) = 0 and hence all its directional derivatives
do exist.

@ When x=0buty=b#0, |f(x,y) — f(0,b)] =0if x=0
and if x # 0, it is less than I < 251 if |y| > Bl Thus if
0 < %, such is the case. Moreover, if d < € T' then

|f(x,y) — (0, b)| < €. Thus f is continuous away from the
origin.
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6 2 2 3 ) 5
@ We observe that £, = (yX2 2’)2 f, = % when x # 0 and
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Failure of the tangent-plane approximation

@ The reason differentiable 1-variable functions are continuous is
the linear/tangent-line approximation
f(x+ h) ~ f(x) + hf’(x). Note that h — hf’(x) is a linear
map.

@ Here is another example: Consider

f(x,y) =||x| = |yll = |x] = |y|. We can see that
V£((0,0)) = 0 exists.

Vamsi Pritham Pingali Lecture 24 5/10



Failure of the tangent-plane approximation

@ The reason differentiable 1-variable functions are continuous is
the linear/tangent-line approximation
f(x+ h) ~ f(x) + hf’(x). Note that h — hf’(x) is a linear
map.

@ Here is another example: Consider
f(x,y) =||x| = |yll = |x] = |y|. We can see that
V£((0,0)) = 0 exists. f is also continuous

Vamsi Pritham Pingali Lecture 24 5/10



Failure of the tangent-plane approximation

@ The reason differentiable 1-variable functions are continuous is
the linear/tangent-line approximation
f(x+ h) ~ f(x) + hf’(x). Note that h — hf’(x) is a linear
map.

@ Here is another example: Consider
f(x,y) =||x| = |yll = |x] = |y|. We can see that
V£((0,0)) = 0 exists. f is also continuous at (0, 0).

Vamsi Pritham Pingali Lecture 24 5/10



Failure of the tangent-plane approximation

@ The reason differentiable 1-variable functions are continuous is
the linear/tangent-line approximation
f(x+ h) ~ f(x) + hf’(x). Note that h — hf’(x) is a linear
map.

@ Here is another example: Consider
f(x,y) =||x| = |yll = |x] = |y|. We can see that
V£((0,0)) = 0 exists. f is also continuous at (0,0). Yet, if we
sketch z = f(x, y)

Vamsi Pritham Pingali Lecture 24 5/10



Failure of the tangent-plane approximation

@ The reason differentiable 1-variable functions are continuous is
the linear/tangent-line approximation
f(x+ h) ~ f(x) + hf’(x). Note that h — hf’(x) is a linear
map.

@ Here is another example: Consider
f(x,y) =||x| = |yll = |x] = |y|. We can see that
V£((0,0)) = 0 exists. f is also continuous at (0,0). Yet, if we
sketch z = f(x, y) we see that

Vamsi Pritham Pingali Lecture 24 5/10



Failure of the tangent-plane approximation

@ The reason differentiable 1-variable functions are continuous is
the linear/tangent-line approximation
f(x+ h) ~ f(x) + hf’(x). Note that h — hf’(x) is a linear
map.

@ Here is another example: Consider
f(x,y) =||x| = |yll = |x] = |y|. We can see that
V£((0,0)) = 0 exists. f is also continuous at (0,0). Yet, if we
sketch z = f(x, y) we see that in no sense

Vamsi Pritham Pingali Lecture 24 5/10



Failure of the tangent-plane approximation

@ The reason differentiable 1-variable functions are continuous is
the linear/tangent-line approximation
f(x+ h) ~ f(x) + hf’(x). Note that h — hf’(x) is a linear
map.

@ Here is another example: Consider
f(x,y) =||x| = |yll = |x] = |y|. We can see that
V£((0,0)) = 0 exists. f is also continuous at (0,0). Yet, if we
sketch z = f(x, y) we see that in no sense does a tangent
plane

Vamsi Pritham Pingali Lecture 24 5/10



Failure of the tangent-plane approximation

@ The reason differentiable 1-variable functions are continuous is
the linear/tangent-line approximation
f(x+ h) ~ f(x) + hf’(x). Note that h — hf’(x) is a linear
map.

@ Here is another example: Consider
f(x,y) =||x| = |yll = |x] = |y|. We can see that
V£((0,0)) = 0 exists. f is also continuous at (0,0). Yet, if we
sketch z = f(x, y) we see that in no sense does a tangent
plane exist at the origin. (

Vamsi Pritham Pingali Lecture 24 5/10



Failure of the tangent-plane approximation

@ The reason differentiable 1-variable functions are continuous is
the linear/tangent-line approximation
f(x+ h) ~ f(x) + hf’(x). Note that h — hf’(x) is a linear
map.

@ Here is another example: Consider
f(x,y) =||x| = |yll = |x] = |y|. We can see that
V£((0,0)) = 0 exists. f is also continuous at (0,0). Yet, if we
sketch z = f(x, y) we see that in no sense does a tangent
plane exist at the origin. (If y = x >0, z= —2x # 0.

Vamsi Pritham Pingali Lecture 24 5/10



Failure of the tangent-plane approximation

@ The reason differentiable 1-variable functions are continuous is
the linear/tangent-line approximation
f(x+ h) ~ f(x) + hf’(x). Note that h — hf’(x) is a linear
map.

@ Here is another example: Consider
f(x,y) =||x| = |yll = |x] = |y|. We can see that
V£((0,0)) = 0 exists. f is also continuous at (0,0). Yet, if we
sketch z = f(x, y) we see that in no sense does a tangent
plane exist at the origin. (If y =x >0, z= —2x #0. The
“tangent vector” (1,1,—2) is

Vamsi Pritham Pingali Lecture 24 5/10



Failure of the tangent-plane approximation

@ The reason differentiable 1-variable functions are continuous is
the linear/tangent-line approximation
f(x+ h) ~ f(x) + hf’(x). Note that h — hf’(x) is a linear
map.

@ Here is another example: Consider
f(x,y) =||x| = |yll = |x] = |y|. We can see that
V£((0,0)) = 0 exists. f is also continuous at (0,0). Yet, if we
sketch z = f(x, y) we see that in no sense does a tangent
plane exist at the origin. (If y =x >0, z= —2x #0. The
“tangent vector” (1,1, —2) is not in the same plane as

Vamsi Pritham Pingali Lecture 24 5/10



Failure of the tangent-plane approximation

@ The reason differentiable 1-variable functions are continuous is
the linear/tangent-line approximation
f(x+ h) ~ f(x) + hf’(x). Note that h — hf’(x) is a linear
map.

@ Here is another example: Consider
f(x,y) =||x| = |yll = |x] = |y|. We can see that
V£((0,0)) = 0 exists. f is also continuous at (0,0). Yet, if we
sketch z = f(x, y) we see that in no sense does a tangent
plane exist at the origin. (If y =x >0, z= —2x #0. The
“tangent vector” (1,1, —2) is not in the same plane as
(1,0,0) and (0,1,0).)

Vamsi Pritham Pingali Lecture 24 5/10



Failure of the tangent-plane approximation

@ The reason differentiable 1-variable functions are continuous is
the linear/tangent-line approximation
f(x+ h) ~ f(x) + hf’(x). Note that h — hf’(x) is a linear
map.

@ Here is another example: Consider
f(x,y) =||x| = |yll = |x] = |y|. We can see that
V£((0,0)) = 0 exists. f is also continuous at (0,0). Yet, if we
sketch z = f(x, y) we see that in no sense does a tangent
plane exist at the origin. (If y =x >0, z= —2x #0. The
“tangent vector” (1,1, —2) is not in the same plane as
(1,0,0) and (0,1,0).)

o Even if we

Vamsi Pritham Pingali Lecture 24 5/10



Failure of the tangent-plane approximation

@ The reason differentiable 1-variable functions are continuous is
the linear/tangent-line approximation
f(x+ h) ~ f(x) + hf’(x). Note that h — hf’(x) is a linear
map.

@ Here is another example: Consider
f(x,y) =||x| = |yll = |x] = |y|. We can see that
V£((0,0)) = 0 exists. f is also continuous at (0,0). Yet, if we
sketch z = f(x, y) we see that in no sense does a tangent
plane exist at the origin. (If y =x >0, z= —2x #0. The
“tangent vector” (1,1, —2) is not in the same plane as
(1,0,0) and (0,1,0).)

@ Even if we have all V f

Vamsi Pritham Pingali Lecture 24 5/10



Failure of the tangent-plane approximation

@ The reason differentiable 1-variable functions are continuous is
the linear/tangent-line approximation
f(x+ h) ~ f(x) + hf’(x). Note that h — hf’(x) is a linear
map.

@ Here is another example: Consider
f(x,y) =||x| = |yll = |x] = |y|. We can see that
V£((0,0)) = 0 exists. f is also continuous at (0,0). Yet, if we
sketch z = f(x, y) we see that in no sense does a tangent
plane exist at the origin. (If y =x >0, z= —2x #0. The
“tangent vector” (1,1, —2) is not in the same plane as
(1,0,0) and (0,1,0).)

@ Even if we have all V;f and Vf is linear in V,

Vamsi Pritham Pingali Lecture 24 5/10



Failure of the tangent-plane approximation

@ The reason differentiable 1-variable functions are continuous is
the linear/tangent-line approximation
f(x+ h) ~ f(x) + hf’(x). Note that h — hf’(x) is a linear
map.

@ Here is another example: Consider
f(x,y) =||x| = |yll = |x] = |y|. We can see that
V£((0,0)) = 0 exists. f is also continuous at (0,0). Yet, if we
sketch z = f(x, y) we see that in no sense does a tangent
plane exist at the origin. (If y =x >0, z= —2x #0. The
“tangent vector” (1,1, —2) is not in the same plane as
(1,0,0) and (0,1,0).)

@ Even if we have all Vf and Vf is linear in V, this can still
fail:

Vamsi Pritham Pingali Lecture 24 5/10



Failure of the tangent-plane approximation

@ The reason differentiable 1-variable functions are continuous is
the linear/tangent-line approximation
f(x+ h) ~ f(x) + hf’(x). Note that h — hf’(x) is a linear
map.

@ Here is another example: Consider
f(x,y) =||x| = |yll = |x] = |y|. We can see that
V£((0,0)) = 0 exists. f is also continuous at (0,0). Yet, if we
sketch z = f(x, y) we see that in no sense does a tangent
plane exist at the origin. (If y =x >0, z= —2x #0. The
“tangent vector” (1,1, —2) is not in the same plane as
(1,0,0) and (0,1,0).)

@ Even if we have all V;f and V;f is linear in V, this can still

fail: (x,y) = 252 for (x,y) # (0,0) and

Vamsi Pritham Pingali Lecture 24 5/10



Failure of the tangent-plane approximation

@ The reason differentiable 1-variable functions are continuous is
the linear/tangent-line approximation
f(x+ h) ~ f(x) + hf’(x). Note that h — hf’(x) is a linear
map.

@ Here is another example: Consider
f(x,y) =||x| = |yll = |x] = |y|. We can see that
V£((0,0)) = 0 exists. f is also continuous at (0,0). Yet, if we
sketch z = f(x, y) we see that in no sense does a tangent
plane exist at the origin. (If y =x >0, z= —2x #0. The
“tangent vector” (1,1, —2) is not in the same plane as
(1,0,0) and (0,1,0).)

@ Even if we have all V;f and V;f is linear in V, this can still

fail: (x,y) = Z5% for (x,y) # (0,0) and £(0,0) =0

Vamsi Pritham Pingali Lecture 24 5/10



Failure of the tangent-plane approximation

@ The reason differentiable 1-variable functions are continuous is

the linear/tangent-line approximation

f(x+ h) ~ f(x) + hf’(x). Note that h — hf’(x) is a linear
map.

Here is another example: Consider

f(x,y) =||x| = |yll = |x] = |y|. We can see that

V£((0,0)) = 0 exists. f is also continuous at (0,0). Yet, if we
sketch z = f(x, y) we see that in no sense does a tangent
plane exist at the origin. (If y =x >0, z= —2x #0. The
“tangent vector” (1,1, —2) is not in the same plane as
(1,0,0) and (0,1,0).)

Even if we have all Vf and Vf is linear in v, this can still
fail: (x,y) = 22 for (x,y) # (0,0) and £(0,0) =0 is
continuous,

Vamsi Pritham Pingali Lecture 24 5/10



Failure of the tangent-plane approximation

@ The reason differentiable 1-variable functions are continuous is

the linear/tangent-line approximation

f(x+ h) ~ f(x) + hf’(x). Note that h — hf’(x) is a linear
map.

Here is another example: Consider

f(x,y) =||x| = |yll = |x] = |y|. We can see that

V£((0,0)) = 0 exists. f is also continuous at (0,0). Yet, if we
sketch z = f(x, y) we see that in no sense does a tangent
plane exist at the origin. (If y =x >0, z= —2x #0. The
“tangent vector” (1,1, —2) is not in the same plane as
(1,0,0) and (0,1,0).)

Even if we have all Vf and Vf is linear in v, this can still
fail: (x,y) = 22 for (x,y) # (0,0) and £(0,0) =0 is
continuous, has a linear V;£((0,0)),

Vamsi Pritham Pingali Lecture 24 5/10



Failure of the tangent-plane approximation

@ The reason differentiable 1-variable functions are continuous is

the linear/tangent-line approximation

f(x+ h) ~ f(x) + hf’(x). Note that h — hf’(x) is a linear
map.

Here is another example: Consider

f(x,y) =||x| = |yll = |x] = |y|. We can see that

V£((0,0)) = 0 exists. f is also continuous at (0,0). Yet, if we
sketch z = f(x, y) we see that in no sense does a tangent
plane exist at the origin. (If y =x >0, z= —2x #0. The
“tangent vector” (1,1, —2) is not in the same plane as
(1,0,0) and (0,1,0).)

Even if we have all Vf and Vf is linear in v, this can still
fail: (x,y) = 22 for (x,y) # (0,0) and £(0,0) =0 is
continuous, has a linear V;f((0,0)), and still does

Vamsi Pritham Pingali Lecture 24 5/10



Failure of the tangent-plane approximation

@ The reason differentiable 1-variable functions are continuous is
the linear/tangent-line approximation
f(x+ h) ~ f(x) + hf’(x). Note that h — hf’(x) is a linear
map.

@ Here is another example: Consider
f(x,y) =||x| = |yll = |x] = |y|. We can see that
V£((0,0)) = 0 exists. f is also continuous at (0,0). Yet, if we
sketch z = f(x, y) we see that in no sense does a tangent
plane exist at the origin. (If y =x >0, z= —2x #0. The
“tangent vector” (1,1, —2) is not in the same plane as
(1,0,0) and (0,1,0).)

@ Even if we have all V;f and V;f is linear in V, this can still
fail: (x,y) = 22 for (x,y) # (0,0) and £(0,0) =0 is
continuous, has a linear V;f((0,0)), and still does not have a
tangent-plane.

Vamsi Pritham Pingali Lecture 24 5/10



Definition of differentiability

Vamsi Pritham Pingali Lecture 24 6/10



Definition of differentiability

e We want to

Vamsi Pritham Pingali Lecture 24 6/10



Definition of differentiability

o We want to define differentiability

Vamsi Pritham Pingali Lecture 24 6/10



Definition of differentiability

o We want to define differentiability to mean that

Vamsi Pritham Pingali Lecture 24 6/10



Definition of differentiability

o We want to define differentiability to mean that the linear
approximation

Vamsi Pritham Pingali Lecture 24 6/10



Definition of differentiability

o We want to define differentiability to mean that the linear
approximation holds, i.e.,

Vamsi Pritham Pingali Lecture 24 6/10



Definition of differentiability

o We want to define differentiability to mean that the linear
approximation holds, i.e., f(3+ h) = f(&) + Df;h where Df; is
a linear map.

Vamsi Pritham Pingali Lecture 24 6/10



Definition of differentiability

o We want to define differentiability to mean that the linear
approximation holds, i.e., f(3+ h) = f(&) + Df;h where Df; is
a linear map. How should the = be

Vamsi Pritham Pingali Lecture 24 6/10



Definition of differentiability

o We want to define differentiability to mean that the linear
approximation holds, i.e., f(3+ h) = f(&) + Df;h where Df; is
a linear map. How should the ~ be made rigorous?

Vamsi Pritham Pingali Lecture 24 6/10



Definition of differentiability

o We want to define differentiability to mean that the linear
approximation holds, i.e., f(3+ h) ~ (&) + Dfsh where Dfy is
a linear map. How should the ~ be made rigorous? In
one-variable calculus,

Vamsi Pritham Pingali Lecture 24 6/10



Definition of differentiability

o We want to define differentiability to mean that the linear
approximation holds, i.e., f(3+ h) ~ (&) + Dfsh where Dfy is
a linear map. How should the ~ be made rigorous? In
one-variable calculus, for twice-differentiable functions

Vamsi Pritham Pingali Lecture 24 6/10



Definition of differentiability

o We want to define differentiability to mean that the linear
approximation holds, i.e., f(3+ h) ~ (&) + Dfsh where Dfy is
a linear map. How should the ~ be made rigorous? In
one-variable calculus, for twice-differentiable functions one has
the Taylor theorem:

Vamsi Pritham Pingali Lecture 24 6/10



Definition of differentiability

o We want to define differentiability to mean that the linear
approximation holds, i.e., f(3+ h) ~ (&) + Dfsh where Dfy is
a linear map. How should the ~ be made rigorous? In
one-variable calculus, for twice-differentiable functions one has
the Taylor theorem: f(x + h) = f(x) + hf'(x) + g—?f”(@).

Vamsi Pritham Pingali Lecture 24 6/10



Definition of differentiability

o We want to define differentiability to mean that the linear
approximation holds, i.e., f(3+ h) ~ (&) + Dfsh where Dfy is
a linear map. How should the ~ be made rigorous? In
one-variable calculus, for twice-differentiable functions one has
the Taylor theorem: f(x + h) = f(x) + hf'(x) + g—?f”(@). In
other words,

Vamsi Pritham Pingali Lecture 24 6/10



Definition of differentiability

o We want to define differentiability to mean that the linear
approximation holds, i.e., f(3+ h) ~ (&) + Dfsh where Dfy is
a linear map. How should the ~ be made rigorous? In
one-variable calculus, for twice-differentiable functions one has
the Taylor theorem: f(x + h) = f(x) + hf'(x) + g—?f”(@). In
other words, the “Error term” is

Vamsi Pritham Pingali Lecture 24 6/10



Definition of differentiability

o We want to define differentiability to mean that the linear
approximation holds, i.e., f(3+ h) ~ (&) + Dfsh where Dfy is
a linear map. How should the ~ be made rigorous? In
one-variable calculus, for twice-differentiable functions one has
the Taylor theorem: f(x + h) = f(x) + hf'(x) + g—?f”(@). In
other words, the “Error term” is of second-order.

Vamsi Pritham Pingali Lecture 24 6/10



Definition of differentiability

o We want to define differentiability to mean that the linear
approximation holds, i.e., f(3+ h) ~ (&) + Dfsh where Dfy is
a linear map. How should the ~ be made rigorous? In
one-variable calculus, for twice-differentiable functions one has
the Taylor theorem: f(x + h) = f(x) + hf'(x) + g—?f”(@). In
other words, the “Error term” is of second-order. Thus,
f(x—l—h)—fi(’x)—hf/(x) 0 (

Vamsi Pritham Pingali Lecture 24 6/10



Definition of differentiability

o We want to define differentiability to mean that the linear
approximation holds, i.e., f(3+ h) ~ (&) + Dfsh where Dfy is
a linear map. How should the ~ be made rigorous? In
one-variable calculus, for twice-differentiable functions one has
the Taylor theorem: f(x + h) = f(x) + hf'(x) + g—?f”(@). In
other words, the “Error term” is of second-order. Thus,
FeAh)FC)—hF0) _, 0 (Even if  is

Vamsi Pritham Pingali Lecture 24 6/10



Definition of differentiability

o We want to define differentiability to mean that the linear
approximation holds, i.e., f(3+ h) ~ (&) + Dfsh where Dfy is
a linear map. How should the ~ be made rigorous? In
one-variable calculus, for twice-differentiable functions one has
the Taylor theorem: f(x + h) = f(x) + hf'(x) + g—?f”(@). In
other words, the “Error term” is of second-order. Thus,
f(x+h)_fi(7x)_hf/(x) — 0. (Even if f is merely differentiable,

Vamsi Pritham Pingali Lecture 24 6/10



Definition of differentiability

o We want to define differentiability to mean that the linear
approximation holds, i.e., f(3+ h) ~ (&) + Dfsh where Dfy is
a linear map. How should the ~ be made rigorous? In
one-variable calculus, for twice-differentiable functions one has
the Taylor theorem: f(x + h) = f(x) + hf'(x) + g—?f”(@). In
other words, the “Error term” is of second-order. Thus,
f(x+h)_fi(7x)_hf/(x) — 0. (Even if f is merely differentiable, this

limit still holds.)

Vamsi Pritham Pingali Lecture 24 6/10



Definition of differentiability

o We want to define differentiability to mean that the linear
approximation holds, i.e., f(3+ h) ~ (&) + Dfsh where Dfy is
a linear map. How should the ~ be made rigorous? In
one-variable calculus, for twice-differentiable functions one has
the Taylor theorem: f(x + h) = f(x) + hf'(x) + g—?f”(@). In
other words, the “Error term” is of second-order. Thus,
f(x+h)_fi(7x)_hf/(x) — 0. (Even if f is merely differentiable, this

limit still holds.)
o Def:

Vamsi Pritham Pingali Lecture 24 6/10



Definition of differentiability

o We want to define differentiability to mean that the linear
approximation holds, i.e., f(3+ h) ~ (&) + Dfsh where Dfy is
a linear map. How should the ~ be made rigorous? In
one-variable calculus, for twice-differentiable functions one has
the Taylor theorem: f(x + h) = f(x) + hf'(x) + g—?f”(@). In
other words, the “Error term” is of second-order. Thus,
f(x+h)_fi(7x)_hf/(x) — 0. (Even if f is merely differentiable, this

limit still holds.)
@ Def: Let f: SCR" = R be

Vamsi Pritham Pingali Lecture 24 6/10



Definition of differentiability

o We want to define differentiability to mean that the linear
approximation holds, i.e., f(3+ h) ~ (&) + Dfsh where Dfy is
a linear map. How should the ~ be made rigorous? In
one-variable calculus, for twice-differentiable functions one has
the Taylor theorem: f(x + h) = f(x) + hf'(x) + g—?f”(@). In
other words, the “Error term” is of second-order. Thus,
f(x+h)_fi(7x)_hf/(x) — 0. (Even if f is merely differentiable, this

limit still holds.)
@ Def: Let f: S C R" — R be a scalar field and

Vamsi Pritham Pingali Lecture 24 6/10



Definition of differentiability

o We want to define differentiability to mean that the linear
approximation holds, i.e., f(3+ h) ~ (&) + Dfsh where Dfy is
a linear map. How should the ~ be made rigorous? In
one-variable calculus, for twice-differentiable functions one has
the Taylor theorem: f(x + h) = f(x) + hf'(x) + g—?f”(@). In
other words, the “Error term” is of second-order. Thus,
f(x+h)_fi(7x)_hf/(x) — 0. (Even if f is merely differentiable, this

limit still holds.)

@ Def: Let f: S C R" — R be a scalar field and let 3 € S be an
interior point,

Vamsi Pritham Pingali Lecture 24 6/10



Definition of differentiability

o We want to define differentiability to mean that the linear
approximation holds, i.e., f(3+ h) ~ (&) + Dfsh where Dfy is
a linear map. How should the ~ be made rigorous? In
one-variable calculus, for twice-differentiable functions one has
the Taylor theorem: f(x + h) = f(x) + hf'(x) + g—?f”(@). In
other words, the “Error term” is of second-order. Thus,
f(x+h)_fi(7x)_hf/(x) — 0. (Even if f is merely differentiable, this

limit still holds.)

@ Def: Let f: S C R" — R be a scalar field and let 3 € S be an
interior point, i.e., there is an open ball B(a,r) C S.

Vamsi Pritham Pingali Lecture 24 6/10



Definition of differentiability

o We want to define differentiability to mean that the linear
approximation holds, i.e., f(3+ h) ~ (&) + Dfsh where Dfy is
a linear map. How should the ~ be made rigorous? In
one-variable calculus, for twice-differentiable functions one has
the Taylor theorem: f(x + h) = f(x) + hf'(x) + g—?f”(@). In
other words, the “Error term” is of second-order. Thus,
f(x+h)_fi(7x)_hf/(x) — 0. (Even if f is merely differentiable, this

limit still holds.)

@ Def: Let f: S C R" — R be a scalar field and let 3 € S be an
interior point, i.e., there is an open ball B(d,r) C S. f is said
to be

Vamsi Pritham Pingali Lecture 24 6/10



Definition of differentiability

o We want to define differentiability to mean that the linear
approximation holds, i.e., f(3+ h) ~ (&) + Dfsh where Dfy is
a linear map. How should the ~ be made rigorous? In
one-variable calculus, for twice-differentiable functions one has
the Taylor theorem: f(x + h) = f(x) + hf'(x) + g—?f”(@). In
other words, the “Error term” is of second-order. Thus,
f(x+h)_fi(7x)_hf/(x) — 0. (Even if f is merely differentiable, this

limit still holds.)
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interior point, i.e., there is an open ball B(d,r) C S. f is said
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o We want to define differentiability to mean that the linear
approximation holds, i.e., f(3+ h) ~ (&) + Dfsh where Dfy is
a linear map. How should the ~ be made rigorous? In
one-variable calculus, for twice-differentiable functions one has
the Taylor theorem: f(x + h) = f(x) + hf'(x) + g—?f”(@). In
other words, the “Error term” is of second-order. Thus,
f(x+h)_fi(7x)_hf/(x) — 0. (Even if f is merely differentiable, this
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@ Def: Let f: S C R" — R be a scalar field and let 3 € S be an
interior point, i.e., there is an open ball B(d,r) C S. f is said
to be differentiable at 3 if there exists
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o We want to define differentiability to mean that the linear
approximation holds, i.e., f(3+ h) ~ (&) + Dfsh where Dfy is
a linear map. How should the ~ be made rigorous? In
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other words, the “Error term” is of second-order. Thus,
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@ Def: Let f: S CR" — R be a scalar field and let 3€ S be an
interior point, i.e., there is an open ball B(d,r) C S. f is said
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approximation holds, i.e., f(3+ h) ~ (&) + Dfsh where Dfy is
a linear map. How should the ~ be made rigorous? In
one-variable calculus, for twice-differentiable functions one has
the Taylor theorem: f(x + h) = f(x) + hf'(x) + g—?f”(@). In
other words, the “Error term” is of second-order. Thus,
f(x+h)_fi(7x)_hf/(x) — 0. (Even if f is merely differentiable, this

limit still holds.)

@ Def: Let f: S CR" — R be a scalar field and let 3€ S be an
interior point, i.e., there is an open ball B(d,r) C S. f is said
to be differentiable at 3 if there exists a linear map
Df; : R" — R such that for every ||h|| < r,

Vamsi Pritham Pingali Lecture 24 6/10
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o We want to define differentiability to mean that the linear
approximation holds, i.e., f(3+ h) ~ (&) + Dfsh where Dfy is
a linear map. How should the ~ be made rigorous? In
one-variable calculus, for twice-differentiable functions one has
the Taylor theorem: f(x + h) = f(x) + hf'(x) + g—?f”(@). In
other words, the “Error term” is of second-order. Thus,
f(x+h)_fi(7x)_hf/(x) — 0. (Even if f is merely differentiable, this

limit still holds.)

@ Def: Let f: S CR" — R be a scalar field and let 3€ S be an
interior point, i.e., there is an open ball B(d,r) C S. f is said
to be differentiable at 3 if there exists a linear map
Df; : R" — R such that for every ||h|| < r,

f(&+h)—f(3)—Dfs(h) _ 0

lim: = %
—0 [l All

>
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Definition of differentiability

o We want to define differentiability to mean that the linear
approximation holds, i.e., f(3+ h) ~ (&) + Dfsh where Dfy is
a linear map. How should the ~ be made rigorous? In
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to be differentiable at 3 if there exists a linear map
Dfz: R" — R such that for every || h|| < r,
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=

E(& h) — 0as h— 0.
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Definition of differentiability

o We want to define differentiability to mean that the linear
approximation holds, i.e., f(3+ h) ~ (&) + Dfsh where Dfy is
a linear map. How should the ~ be made rigorous? In
one-variable calculus, for twice-differentiable functions one has
the Taylor theorem: f(x + h) = f(x) + hf'(x) + g—?f”(@). In
other words, the “Error term” is of second-order. Thus,
f(x+h)_fi(7x)_hf/(x) — 0. (Even if f is merely differentiable, this

limit still holds.)

@ Def: Let f: S CR" — R be a scalar field and let 3€ S be an
interior point, i.e., there is an open ball B(d,r) C S. f is said
to be differentiable at 3 if there exists a linear map
Df; : R" — R such that for every ||h|| < r,

B f(3+5)—f(5)_of5(5)

—0 I

of the form \h\E(a h) = f(5+ h) — £(3) — Df5(h), where
E(3,h) — 0 as h — 0. The linear map Dfy is called the total

derivative of f at &

Iimﬂ

= 0. Alternatively, the error term is
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Definition of differentiability

o We want to define differentiability to mean that the linear
approximation holds, i.e., f(3+ h) ~ (&) + Dfsh where Dfy is
a linear map. How should the ~ be made rigorous? In
one-variable calculus, for twice-differentiable functions one has
the Taylor theorem: f(x + h) = f(x) + hf'(x) + g—?f”(@). In
other words, the “Error term” is of second-order. Thus,
f(x+h)_fi(7x)_hf/(x) — 0. (Even if f is merely differentiable, this

limit still holds.)

@ Def: Let f: S CR" — R be a scalar field and let 3€ S be an
interior point, i.e., there is an open ball B(d,r) C S. f is said
to be differentiable at 3 if there exists a linear map
Df; : R" — R such that for every ||h|| < r,

B f(3+5)—f(5)_of5(5)

—0 I

of the form \h\E(a h) = f(5+ h) — £(3) — Df5(h), where
E(3,h) — 0 as h — 0. The linear map Dfy is called the total

derivative of f at 3 or simply, the derivative map of f at 4.

Iimﬂ

= 0. Alternatively, the error term is
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Computing the total derivative

@ Theorem: Let f be differentiable at the interior point 3 with
total derivative Df;.
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Computing the total derivative

@ Theorem: Let f be differentiable at the interior point 3 with
total derivative Dfz. Then V;f(3) exists for all V and
Dfs(h) = V;f(3). Moreover, Vf(3) = (Vf(3), h), where Vf
is the gradient of f. As a consequence, Df; is unique if it
exists.

@ In other words, for a differentiable function, V;f(a) is linear
in v, and hence one simply needs to know the finitely many
numbers %(5’)
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Computing the total derivative

@ Theorem: Let f be differentiable at the interior point 3 with
total derivative Dfz. Then V;f(3) exists for all V and
Dfs(h) = V;f(3). Moreover, Vf(3) = (Vf(3), h), where Vf
is the gradient of f. As a consequence, Df; is unique if it
exists.

@ In other words, for a differentiable function, V;f(a) is linear
in v, and hence one simply needs to know the finitely many
numbers g—;(é') to compute all (infinitely many) directional
derivatives at the interior point &.
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@ Since f is differentiable,
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@ Since f is difFerentiabqu, . . .
f(a+ h) = f(a)+ Dfz(h) + || h|| E(&, h) where E — 0 as h — 0.
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f(a+ h) = f(a)+ Dfz(h) + || h|| E(&, h) where E — 0 as h — 0.
o Take h = hv
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@ Since f is differentiable, . . .
f(a+ h) = f(a)+ Dfz(h) + || h|| E(&, h) where E — 0 as h — 0.
o Take h = hv for a small enough h.
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@ Since f is differentiable, . . .
f(a+ h) = f(a)+ Dfz(h) + || h|| E(&, h) where E — 0 as h — 0.
o Take h = hv for a small enough h. Then

F(3+hV)—f - Rl || 71| E(3,hV
@h)=1(@) _ p (7) = IIVTIEGAD).
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@ Since f is differentiable, . . .
f(a+ h) = f(a)+ Dfz(h) + || h|| E(&, h) where E — 0 as h — 0.
o Take h = hv for a small enough h. Then

Aatha)=13) _ pry(v) = LAIVIIEERY) By the Sandwich law,
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@ Since f is differentiable, . . .
f(a+ h) = f(a)+ Dfz(h) + || h|| E(&, h) where E — 0 as h — 0.
o Take h = hv for a small enough h. Then

7'((5%‘,77)_{(5) — Df3(V) = 7|||h”|vm,|7E(‘iW). By the Sandwich law,
the RHS goes to 0.
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@ Since f is differentiable, .
f(a+ h) = f(a)+ Dfz(h) + || h|| E(&, h) where E — 0 as h — 0.
o Take h = hv for a small enough h. Then

7'((5%‘,77)_{(5) — Df3(V) = 7|||h”|vm,|7E(‘iW). By the Sandwich law,
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@ Since f is differentiable,
f(a+ h) = £(3) + Dfs(h) + || h|| E(, h) where E — 0 as h — 0.
o Take h = hv for a small enough h. Then
HEHh=18) _ pfy(v) = IAIVIIEGEY) gy the Sandwich law,
the RHS goes to 0. Hence the limit of the LHS exists and
equals 0.

@ This means that
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@ Since f is differentiable,
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@ Since f is differentiable, . . L
f(a+ h) = f(a)+ Dfz(h) + || h|| E(&, h) where E — 0 as h — 0.

o Take h = hv for a small enough h. Then
7'((5%?_{(5) — Df3(V) = 7”|h”|vm,|f(5’hv). By the Sandwich law,
the RHS goes to 0. Hence the limit of the LHS exists and
equals 0.

@ This means that V;f exists and equals Df (V).

@ Since Df is linear,
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@ Since f is differentiable, .
f(a+ h) = f(a)+ Dfz(h) + || h|| E(&, h) where E — 0 as h — 0.
o Take h = hv for a small enough h. Then

Aatha)=13) _ pry(v) = LAIVIIEERY) By the Sandwich law,

the RHS goes to 0. Hence the limit of the LHS exists and
equals 0.

@ This means that V;f exists and equals Df (V).

@ Since Df is linear,
Df(v) =, viDf(€) =), viVgf = (VF,V).
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Differentiability implies continuity
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@ Theorem: If a scalar field f is differentiable at an interior
point &' it is continuous at 4.
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Differentiability implies continuity

@ Theorem: If a scalar field f is differentiable at an interior
point &' it is continuous at 4.

o Proof: |f(3+ h) — £(3)| = |(VFf, h) + || h||E(&, h)| which by
the triange inequality is less than
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Differentiability implies continuity

@ Theorem: If a scalar field f is differentiable at an interior
point &' it is continuous at 4.

e Proof: |f(3+ h) — £(3)| = |(VFf, h) + ||h|| E(3,
the triange inequality is less than [(Vf, h)| + ||

-,

h)| which by
hII[E(a, h)l.

Vamsi Pritham Pingali Lecture 24 9/10



Differentiability implies continuity

@ Theorem: If a scalar field f is differentiable at an interior
point &' it is continuous at 4.

o Proof: |f(3+ h) — £(3)| = |(VFf, h) + || h||E(, h)| which by
the triange inequality is less than |(Vf, h)| + ||h|||E(&, h)|.
Now the Cauchy-Schwarz inequality implies that
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Differentiability implies continuity

@ Theorem: If a scalar field f is differentiable at an interior
point &' it is continuous at 4.

o Proof: |f(3+ h) — £(3)| = |(VFf, h) + || h||E(, h)| which by
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Differentiability implies continuity

@ Theorem: If a scalar field f is differentiable at an interior
point & it is continuous at 4.

o Proof: |f(3+ h) — £(3)| = |(VFf, h) + || h||E(, h)| which by
the triange inequality is less than [(Vf, h)| + || Al||E(E, h)|.
Now the Cauchy-Schwarz inequality implies that the first term
is less than ||V f||||A]|. Therefore by limit laws, the RHS goes
to 0. Hence by the Sandwich law so does the LHS.
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The meaning of the gradient

e Let ||V]| = 1. The directional derivative V;f is (Vf, V).
Hence by Cauchy-Schwarz, |V;f| < ||Vf|| with equality if and
only if V= AV7. In other words, the direction of steepest
ascent is Vf and that of steepest descent is —Vf.

o For instance, if z =25 — (x2 + y?) is the height of a
mountain, and if we are located at (3,4) then Vf = (-6, —8)
is the direction of steepest ascent.

@ This property leads to a nice algorithm in machine learning
called “gradient descent” to minimise a function.
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