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Recap

Defined derivatives along vectors and partial derivatives w.r.t
xi .

Saw that ∇s~v f (~a) = s∇~v f (~a).

Proved the MVT and a consequence.

Stopped short of giving a counterexample to the expectation
that the existence of directional derivatives implies continuity.
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Example

Let f (x , y) = xy2

x2+y4 if x 6= 0 and f (0, y) = 0.

By what we discussed, f is certainly continuous when x 6= 0.
Moreover, all of its directional derivatives exist when x 6= 0.

At x = 0, f (0, y) = 0 and hence all its directional derivatives
do exist.

When x = 0 but y = b 6= 0, |f (x , y)− f (0, b)| = 0 if x = 0

and if x 6= 0, it is less than |x |
y2 <

4|x |
b2

if |y | > |b|
2 . Thus if

δ < |b|
2 , such is the case. Moreover, if δ < εb2

4 , then
|f (x , y)− f (0, b)| < ε. Thus f is continuous away from the
origin.
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Example

At the origin unfortunately f (x , y) is NOT continuous.

Indeed, along x = y2 and y 6= 0, f (x , y) = 1
2 , whereas

f (0, 0) = 0 by definition. More rigorously, suppose the limit
f (x , y) goes to 0 as (x , y)→ 0. Then surely |f (x , y)| < ε
whenever |(x , y)| < δ and x 6= 0. In particular, this is true if
x = y2. If we choose ε = 1

4 and |y | < min(1, δ√
2

) we get a

contradiction.

So it is NOT good enough for all directional derivatives to
exist. A much stronger definition of differentiability is
necessary.

We observe that fx = y6−x2y2

(x2+y4)2
, fy = 2x3y−2xy5

(x2+y4)2
when x 6= 0 and

fx = fy = 0 when x = 0. However, when (x , y)→ (0, 0), we
see that fx is not continuous.
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Failure of the tangent-plane approximation

The reason differentiable 1-variable functions are continuous is
the linear/tangent-line approximation
f (x + h) ≈ f (x) + hf ′(x). Note that h→ hf ′(x) is a linear
map.

Here is another example: Consider
f (x , y) = ||x | − |y || − |x | − |y |. We can see that
∇f ((0, 0)) = 0 exists. f is also continuous at (0, 0). Yet, if we
sketch z = f (x , y) we see that in no sense does a tangent
plane exist at the origin. (If y = x > 0, z = −2x 6= 0. The
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Definition of differentiability

We want to define differentiability to mean that the linear
approximation holds, i.e., f (~a + ~h) ≈ f (~a) + Df~a~h where Df~a is
a linear map. How should the ≈ be made rigorous? In
one-variable calculus, for twice-differentiable functions one has
the Taylor theorem: f (x + h) = f (x) + hf ′(x) + h2

2! f
′′(θ). In

other words, the “Error term” is of second-order. Thus,
f (x+h)−f (x)−hf ′(x)

h → 0. (Even if f is merely differentiable, this
limit still holds.)

Def: Let f : S ⊂ Rn → R be a scalar field and let ~a ∈ S be an
interior point, i.e., there is an open ball B(~a, r) ⊂ S . f is said
to be differentiable at ~a if there exists a linear map
Df~a : Rn → R such that for every ‖~h‖ < r ,

lim~h→~0
f (~a+~h)−f (~a)−Df~a(~h)

‖~h‖
= 0. Alternatively, the error term is

of the form |~h|E (~a, ~h) = f (~a + ~h)− f (~a)− Df~a(~h), where
E (~a, ~h)→ 0 as ~h→ ~0. The linear map Df~a is called the total
derivative of f at ~a or simply, the derivative map of f at ~a.
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Computing the total derivative

Theorem: Let f be differentiable at the interior point ~a with
total derivative Df~a. Then ∇~v f (~a) exists for all ~v and
Df~a(~h) = ∇~hf (~a). Moreover, ∇~v f (~a) = 〈∇f (~a), ~h〉, where ∇f
is the gradient of f . As a consequence, Df~a is unique if it
exists.

In other words, for a differentiable function, ∇~v f (~a) is linear
in ~v , and hence one simply needs to know the finitely many
numbers ∂f

∂xi
(~a) to compute all (infinitely many) directional

derivatives at the interior point ~a.
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Proof

Since f is differentiable,
f (~a+~h) = f (~a) +Df~a(~h) +‖~h‖E (~a, ~h) where E → 0 as ~h→ ~0.

Take ~h = h~v for a small enough h. Then
f (~a+h~v)−f (~a)

h − Df~a(~v) = ‖|h|‖~v‖‖E(~a,h~v)
h . By the Sandwich law,

the RHS goes to 0. Hence the limit of the LHS exists and
equals 0.
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Differentiability implies continuity

Theorem: If a scalar field f is differentiable at an interior
point ~a it is continuous at ~a.

Proof: |f (~a + ~h)− f (~a)| = |〈∇f , ~h〉+ ‖~h‖E (~a, ~h)| which by
the triange inequality is less than |〈∇f , ~h〉|+ ‖~h‖|E (~a, ~h)|.
Now the Cauchy-Schwarz inequality implies that the first term
is less than ‖∇f ‖‖~h‖. Therefore by limit laws, the RHS goes
to 0. Hence by the Sandwich law so does the LHS.
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The meaning of the gradient

Let ‖~v‖ = 1. The directional derivative ∇~v f is 〈∇f , ~v〉.
Hence by Cauchy-Schwarz, |∇~v f | ≤ ‖∇f ‖ with equality if and
only if ~v = λ∇f . In other words, the direction of steepest
ascent is ∇f and that of steepest descent is −∇f .

For instance, if z = 25− (x2 + y2) is the height of a
mountain, and if we are located at (3, 4) then ∇f = (−6,−8)
is the direction of steepest ascent.

This property leads to a nice algorithm in machine learning
called “gradient descent” to minimise a function.
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