Lecture 24 - UM 102 (Spring 2021)

Vamsi Pritham Pingali

IISc

Recap

▲御▶ ▲ 臣▶ ▲ 臣▶

• Defined derivatives along vectors

• Defined derivatives along vectors and partial derivatives w.r.t x_i .

э

- Defined derivatives along vectors and partial derivatives w.r.t x_i .
- Saw that

э

- Defined derivatives along vectors and partial derivatives w.r.t x_i.
- Saw that $\nabla_{s\vec{v}}f(\vec{a}) = s\nabla_{\vec{v}}f(\vec{a}).$

- Defined derivatives along vectors and partial derivatives w.r.t x_i .
- Saw that $\nabla_{s\vec{v}}f(\vec{a}) = s\nabla_{\vec{v}}f(\vec{a}).$
- Proved the MVT

2/10

- Defined derivatives along vectors and partial derivatives w.r.t x_i .
- Saw that $\nabla_{s\vec{v}}f(\vec{a}) = s\nabla_{\vec{v}}f(\vec{a}).$
- Proved the MVT and a consequence.

- Defined derivatives along vectors and partial derivatives w.r.t x_i .
- Saw that $\nabla_{s\vec{v}}f(\vec{a}) = s\nabla_{\vec{v}}f(\vec{a}).$
- Proved the MVT and a consequence.
- Stopped short

- Defined derivatives along vectors and partial derivatives w.r.t x_i .
- Saw that $\nabla_{s\vec{v}}f(\vec{a}) = s\nabla_{\vec{v}}f(\vec{a}).$
- Proved the MVT and a consequence.
- Stopped short of giving a

- Defined derivatives along vectors and partial derivatives w.r.t x_i.
- Saw that $\nabla_{s\vec{v}}f(\vec{a}) = s\nabla_{\vec{v}}f(\vec{a}).$
- Proved the MVT and a consequence.
- Stopped short of giving a counterexample to

- Defined derivatives along vectors and partial derivatives w.r.t x_i .
- Saw that $\nabla_{s\vec{v}}f(\vec{a}) = s\nabla_{\vec{v}}f(\vec{a}).$
- Proved the MVT and a consequence.
- Stopped short of giving a counterexample to the expectation that

- Defined derivatives along vectors and partial derivatives w.r.t x_i .
- Saw that $\nabla_{s\vec{v}}f(\vec{a}) = s\nabla_{\vec{v}}f(\vec{a}).$
- Proved the MVT and a consequence.
- Stopped short of giving a counterexample to the expectation that the existence of directional derivatives implies

- Defined derivatives along vectors and partial derivatives w.r.t x_i .
- Saw that $\nabla_{s\vec{v}}f(\vec{a}) = s\nabla_{\vec{v}}f(\vec{a}).$
- Proved the MVT and a consequence.
- Stopped short of giving a counterexample to the expectation that the existence of directional derivatives implies continuity.

白とくヨとく

æ

• Let
$$f(x,y) = \frac{xy^2}{x^2+y^4}$$
 if $x \neq 0$ and

(日) * * き * * き *

• Let
$$f(x,y) = \frac{xy^2}{x^2+y^4}$$
 if $x \neq 0$ and $f(0,y) = 0$.

(日) * * き * * き *

• Let
$$f(x, y) = \frac{xy^2}{x^2 + y^4}$$
 if $x \neq 0$ and $f(0, y) = 0$.

• By what we discussed,

• Let
$$f(x,y) = \frac{xy^2}{x^2 + y^4}$$
 if $x \neq 0$ and $f(0,y) = 0$.

• By what we discussed, f is certainly continuous

- Let $f(x,y) = \frac{xy^2}{x^2+y^4}$ if $x \neq 0$ and f(0,y) = 0.
- By what we discussed, f is certainly continuous when $x \neq 0$.

- Let $f(x, y) = \frac{xy^2}{x^2 + y^4}$ if $x \neq 0$ and f(0, y) = 0.
- By what we discussed, f is certainly continuous when x ≠ 0. Moreover,

- Let $f(x,y) = \frac{xy^2}{x^2+y^4}$ if $x \neq 0$ and f(0,y) = 0.
- By what we discussed, f is certainly continuous when x ≠ 0.
 Moreover, all of its directional derivatives

- Let $f(x, y) = \frac{xy^2}{x^2 + y^4}$ if $x \neq 0$ and f(0, y) = 0.
- By what we discussed, f is certainly continuous when x ≠ 0.
 Moreover, all of its directional derivatives exist when x ≠ 0.

• Let
$$f(x, y) = \frac{xy^2}{x^2 + y^4}$$
 if $x \neq 0$ and $f(0, y) = 0$.

- By what we discussed, f is certainly continuous when x ≠ 0.
 Moreover, all of its directional derivatives exist when x ≠ 0.
- At x = 0, f(0, y) = 0 and hence

- Let $f(x, y) = \frac{xy^2}{x^2 + y^4}$ if $x \neq 0$ and f(0, y) = 0.
- By what we discussed, f is certainly continuous when x ≠ 0.
 Moreover, all of its directional derivatives exist when x ≠ 0.
- At x = 0, f(0, y) = 0 and hence all its directional derivatives do exist.

- Let $f(x, y) = \frac{xy^2}{x^2 + y^4}$ if $x \neq 0$ and f(0, y) = 0.
- By what we discussed, f is certainly continuous when x ≠ 0.
 Moreover, all of its directional derivatives exist when x ≠ 0.
- At x = 0, f(0, y) = 0 and hence all its directional derivatives do exist.
- When x = 0 but $y = b \neq 0$,

- Let $f(x, y) = \frac{xy^2}{x^2 + y^4}$ if $x \neq 0$ and f(0, y) = 0.
- By what we discussed, f is certainly continuous when x ≠ 0.
 Moreover, all of its directional derivatives exist when x ≠ 0.
- At x = 0, f(0, y) = 0 and hence all its directional derivatives do exist.
- When x = 0 but $y = b \neq 0$, |f(x, y) f(0, b)| = 0 if x = 0

3/10

- Let $f(x, y) = \frac{xy^2}{x^2 + y^4}$ if $x \neq 0$ and f(0, y) = 0.
- By what we discussed, f is certainly continuous when x ≠ 0.
 Moreover, all of its directional derivatives exist when x ≠ 0.
- At x = 0, f(0, y) = 0 and hence all its directional derivatives do exist.
- When x = 0 but $y = b \neq 0$, |f(x, y) f(0, b)| = 0 if x = 0and if $x \neq 0$, it is less than

3/10

- Let $f(x, y) = \frac{xy^2}{x^2 + y^4}$ if $x \neq 0$ and f(0, y) = 0.
- By what we discussed, f is certainly continuous when x ≠ 0.
 Moreover, all of its directional derivatives exist when x ≠ 0.
- At x = 0, f(0, y) = 0 and hence all its directional derivatives do exist.
- When x = 0 but $y = b \neq 0$, |f(x, y) f(0, b)| = 0 if x = 0and if $x \neq 0$, it is less than $\frac{|x|}{y^2} < \frac{4|x|}{b^2}$ if $|y| > \frac{|b|}{2}$.

- Let $f(x, y) = \frac{xy^2}{x^2 + y^4}$ if $x \neq 0$ and f(0, y) = 0.
- By what we discussed, f is certainly continuous when x ≠ 0.
 Moreover, all of its directional derivatives exist when x ≠ 0.
- At x = 0, f(0, y) = 0 and hence all its directional derivatives do exist.
- When x = 0 but $y = b \neq 0$, |f(x, y) f(0, b)| = 0 if x = 0and if $x \neq 0$, it is less than $\frac{|x|}{y^2} < \frac{4|x|}{b^2}$ if $|y| > \frac{|b|}{2}$. Thus if $\delta < \frac{|b|}{2}$, such is the case.

- Let $f(x, y) = \frac{xy^2}{x^2 + y^4}$ if $x \neq 0$ and f(0, y) = 0.
- By what we discussed, f is certainly continuous when x ≠ 0.
 Moreover, all of its directional derivatives exist when x ≠ 0.
- At x = 0, f(0, y) = 0 and hence all its directional derivatives do exist.
- When x = 0 but $y = b \neq 0$, |f(x, y) f(0, b)| = 0 if x = 0and if $x \neq 0$, it is less than $\frac{|x|}{y^2} < \frac{4|x|}{b^2}$ if $|y| > \frac{|b|}{2}$. Thus if $\delta < \frac{|b|}{2}$, such is the case. Moreover, if $\delta < \frac{\epsilon b^2}{4}$, then

- Let $f(x, y) = \frac{xy^2}{x^2 + y^4}$ if $x \neq 0$ and f(0, y) = 0.
- By what we discussed, f is certainly continuous when x ≠ 0.
 Moreover, all of its directional derivatives exist when x ≠ 0.
- At x = 0, f(0, y) = 0 and hence all its directional derivatives do exist.
- When x = 0 but $y = b \neq 0$, |f(x, y) f(0, b)| = 0 if x = 0and if $x \neq 0$, it is less than $\frac{|x|}{y^2} < \frac{4|x|}{b^2}$ if $|y| > \frac{|b|}{2}$. Thus if $\delta < \frac{|b|}{2}$, such is the case. Moreover, if $\delta < \frac{\epsilon b^2}{4}$, then $|f(x, y) - f(0, b)| < \epsilon$.

- Let $f(x,y) = \frac{xy^2}{x^2+y^4}$ if $x \neq 0$ and f(0,y) = 0.
- By what we discussed, f is certainly continuous when x ≠ 0.
 Moreover, all of its directional derivatives exist when x ≠ 0.
- At x = 0, f(0, y) = 0 and hence all its directional derivatives do exist.
- When x = 0 but $y = b \neq 0$, |f(x, y) f(0, b)| = 0 if x = 0and if $x \neq 0$, it is less than $\frac{|x|}{y^2} < \frac{4|x|}{b^2}$ if $|y| > \frac{|b|}{2}$. Thus if $\delta < \frac{|b|}{2}$, such is the case. Moreover, if $\delta < \frac{\epsilon b^2}{4}$, then $|f(x, y) - f(0, b)| < \epsilon$. Thus f is continuous

- Let $f(x, y) = \frac{xy^2}{x^2 + y^4}$ if $x \neq 0$ and f(0, y) = 0.
- By what we discussed, f is certainly continuous when x ≠ 0.
 Moreover, all of its directional derivatives exist when x ≠ 0.
- At x = 0, f(0, y) = 0 and hence all its directional derivatives do exist.
- When x = 0 but $y = b \neq 0$, |f(x, y) f(0, b)| = 0 if x = 0and if $x \neq 0$, it is less than $\frac{|x|}{y^2} < \frac{4|x|}{b^2}$ if $|y| > \frac{|b|}{2}$. Thus if $\delta < \frac{|b|}{2}$, such is the case. Moreover, if $\delta < \frac{\epsilon b^2}{4}$, then $|f(x, y) - f(0, b)| < \epsilon$. Thus f is continuous away from the origin.

() 《 문 》 《

æ

• At the origin

æ

-≣->
• At the origin unfortunately f(x, y) is

æ

• At the origin unfortunately f(x, y) is NOT continuous.

æ

- At the origin unfortunately f(x, y) is NOT continuous.
- Indeed,

문▶ 문

- At the origin unfortunately f(x, y) is NOT continuous.
- Indeed, along $x = y^2$ and $y \neq 0$,

- At the origin unfortunately f(x, y) is NOT continuous.
- Indeed, along $x = y^2$ and $y \neq 0$, $f(x, y) = \frac{1}{2}$, whereas

- At the origin unfortunately f(x, y) is NOT continuous.
- Indeed, along $x = y^2$ and $y \neq 0$, $f(x, y) = \frac{1}{2}$, whereas f(0, 0) = 0 by definition.

- At the origin unfortunately f(x, y) is NOT continuous.
- Indeed, along $x = y^2$ and $y \neq 0$, $f(x, y) = \frac{1}{2}$, whereas f(0, 0) = 0 by definition. More rigorously,

- At the origin unfortunately f(x, y) is NOT continuous.
- Indeed, along $x = y^2$ and $y \neq 0$, $f(x, y) = \frac{1}{2}$, whereas f(0, 0) = 0 by definition. More rigorously, suppose the limit f(x, y) goes to 0

- At the origin unfortunately f(x, y) is NOT continuous.
- Indeed, along $x = y^2$ and $y \neq 0$, $f(x, y) = \frac{1}{2}$, whereas f(0, 0) = 0 by definition. More rigorously, suppose the limit f(x, y) goes to 0 as $(x, y) \rightarrow 0$.

- At the origin unfortunately f(x, y) is NOT continuous.
- Indeed, along $x = y^2$ and $y \neq 0$, $f(x, y) = \frac{1}{2}$, whereas f(0, 0) = 0 by definition. More rigorously, suppose the limit f(x, y) goes to 0 as $(x, y) \rightarrow 0$. Then surely $|f(x, y)| < \epsilon$ whenever

- At the origin unfortunately f(x, y) is NOT continuous.
- Indeed, along $x = y^2$ and $y \neq 0$, $f(x, y) = \frac{1}{2}$, whereas f(0, 0) = 0 by definition. More rigorously, suppose the limit f(x, y) goes to 0 as $(x, y) \rightarrow 0$. Then surely $|f(x, y)| < \epsilon$ whenever $|(x, y)| < \delta$ and $x \neq 0$.

- At the origin unfortunately f(x, y) is NOT continuous.
- Indeed, along $x = y^2$ and $y \neq 0$, $f(x, y) = \frac{1}{2}$, whereas f(0, 0) = 0 by definition. More rigorously, suppose the limit f(x, y) goes to 0 as $(x, y) \rightarrow 0$. Then surely $|f(x, y)| < \epsilon$ whenever $|(x, y)| < \delta$ and $x \neq 0$. In particular,

- At the origin unfortunately f(x, y) is NOT continuous.
- Indeed, along x = y² and y ≠ 0, f(x, y) = ¹/₂, whereas f(0,0) = 0 by definition. More rigorously, suppose the limit f(x, y) goes to 0 as (x, y) → 0. Then surely |f(x, y)| < ε whenever |(x, y)| < δ and x ≠ 0. In particular, this is true if

- At the origin unfortunately f(x, y) is NOT continuous.
- Indeed, along $x = y^2$ and $y \neq 0$, $f(x, y) = \frac{1}{2}$, whereas f(0, 0) = 0 by definition. More rigorously, suppose the limit f(x, y) goes to 0 as $(x, y) \rightarrow 0$. Then surely $|f(x, y)| < \epsilon$ whenever $|(x, y)| < \delta$ and $x \neq 0$. In particular, this is true if $x = y^2$.

- At the origin unfortunately f(x, y) is NOT continuous.
- Indeed, along $x = y^2$ and $y \neq 0$, $f(x, y) = \frac{1}{2}$, whereas f(0, 0) = 0 by definition. More rigorously, suppose the limit f(x, y) goes to 0 as $(x, y) \rightarrow 0$. Then surely $|f(x, y)| < \epsilon$ whenever $|(x, y)| < \delta$ and $x \neq 0$. In particular, this is true if $x = y^2$. If we choose

- At the origin unfortunately f(x, y) is NOT continuous.
- Indeed, along $x = y^2$ and $y \neq 0$, $f(x, y) = \frac{1}{2}$, whereas f(0, 0) = 0 by definition. More rigorously, suppose the limit f(x, y) goes to 0 as $(x, y) \rightarrow 0$. Then surely $|f(x, y)| < \epsilon$ whenever $|(x, y)| < \delta$ and $x \neq 0$. In particular, this is true if $x = y^2$. If we choose $\epsilon = \frac{1}{4}$ and

- At the origin unfortunately f(x, y) is NOT continuous.
- Indeed, along $x = y^2$ and $y \neq 0$, $f(x, y) = \frac{1}{2}$, whereas f(0, 0) = 0 by definition. More rigorously, suppose the limit f(x, y) goes to 0 as $(x, y) \rightarrow 0$. Then surely $|f(x, y)| < \epsilon$ whenever $|(x, y)| < \delta$ and $x \neq 0$. In particular, this is true if $x = y^2$. If we choose $\epsilon = \frac{1}{4}$ and $|y| < \min(1, \frac{\delta}{\sqrt{2}})$

- At the origin unfortunately f(x, y) is NOT continuous.
- Indeed, along $x = y^2$ and $y \neq 0$, $f(x, y) = \frac{1}{2}$, whereas f(0,0) = 0 by definition. More rigorously, suppose the limit f(x, y) goes to 0 as $(x, y) \rightarrow 0$. Then surely $|f(x, y)| < \epsilon$ whenever $|(x, y)| < \delta$ and $x \neq 0$. In particular, this is true if $x = y^2$. If we choose $\epsilon = \frac{1}{4}$ and $|y| < \min(1, \frac{\delta}{\sqrt{2}})$ we get a contradiction.

- At the origin unfortunately f(x, y) is NOT continuous.
- Indeed, along $x = y^2$ and $y \neq 0$, $f(x, y) = \frac{1}{2}$, whereas f(0,0) = 0 by definition. More rigorously, suppose the limit f(x, y) goes to 0 as $(x, y) \rightarrow 0$. Then surely $|f(x, y)| < \epsilon$ whenever $|(x, y)| < \delta$ and $x \neq 0$. In particular, this is true if $x = y^2$. If we choose $\epsilon = \frac{1}{4}$ and $|y| < \min(1, \frac{\delta}{\sqrt{2}})$ we get a contradiction.
- So it is NOT

- At the origin unfortunately f(x, y) is NOT continuous.
- Indeed, along $x = y^2$ and $y \neq 0$, $f(x, y) = \frac{1}{2}$, whereas f(0,0) = 0 by definition. More rigorously, suppose the limit f(x, y) goes to 0 as $(x, y) \rightarrow 0$. Then surely $|f(x, y)| < \epsilon$ whenever $|(x, y)| < \delta$ and $x \neq 0$. In particular, this is true if $x = y^2$. If we choose $\epsilon = \frac{1}{4}$ and $|y| < \min(1, \frac{\delta}{\sqrt{2}})$ we get a contradiction.
- So it is NOT good enough for

- At the origin unfortunately f(x, y) is NOT continuous.
- Indeed, along $x = y^2$ and $y \neq 0$, $f(x, y) = \frac{1}{2}$, whereas f(0,0) = 0 by definition. More rigorously, suppose the limit f(x, y) goes to 0 as $(x, y) \rightarrow 0$. Then surely $|f(x, y)| < \epsilon$ whenever $|(x, y)| < \delta$ and $x \neq 0$. In particular, this is true if $x = y^2$. If we choose $\epsilon = \frac{1}{4}$ and $|y| < \min(1, \frac{\delta}{\sqrt{2}})$ we get a contradiction.
- So it is NOT good enough for all directional derivatives

- At the origin unfortunately f(x, y) is NOT continuous.
- Indeed, along $x = y^2$ and $y \neq 0$, $f(x, y) = \frac{1}{2}$, whereas f(0,0) = 0 by definition. More rigorously, suppose the limit f(x, y) goes to 0 as $(x, y) \rightarrow 0$. Then surely $|f(x, y)| < \epsilon$ whenever $|(x, y)| < \delta$ and $x \neq 0$. In particular, this is true if $x = y^2$. If we choose $\epsilon = \frac{1}{4}$ and $|y| < \min(1, \frac{\delta}{\sqrt{2}})$ we get a contradiction.
- So it is NOT good enough for all directional derivatives to exist.

- At the origin unfortunately f(x, y) is NOT continuous.
- Indeed, along $x = y^2$ and $y \neq 0$, $f(x, y) = \frac{1}{2}$, whereas f(0,0) = 0 by definition. More rigorously, suppose the limit f(x, y) goes to 0 as $(x, y) \rightarrow 0$. Then surely $|f(x, y)| < \epsilon$ whenever $|(x, y)| < \delta$ and $x \neq 0$. In particular, this is true if $x = y^2$. If we choose $\epsilon = \frac{1}{4}$ and $|y| < \min(1, \frac{\delta}{\sqrt{2}})$ we get a contradiction.
- So it is NOT good enough for all directional derivatives to exist. A much stronger

- At the origin unfortunately f(x, y) is NOT continuous.
- Indeed, along $x = y^2$ and $y \neq 0$, $f(x, y) = \frac{1}{2}$, whereas f(0,0) = 0 by definition. More rigorously, suppose the limit f(x, y) goes to 0 as $(x, y) \rightarrow 0$. Then surely $|f(x, y)| < \epsilon$ whenever $|(x, y)| < \delta$ and $x \neq 0$. In particular, this is true if $x = y^2$. If we choose $\epsilon = \frac{1}{4}$ and $|y| < \min(1, \frac{\delta}{\sqrt{2}})$ we get a contradiction.
- So it is NOT good enough for all directional derivatives to exist. A much stronger definition of differentiability

- At the origin unfortunately f(x, y) is NOT continuous.
- Indeed, along $x = y^2$ and $y \neq 0$, $f(x, y) = \frac{1}{2}$, whereas f(0,0) = 0 by definition. More rigorously, suppose the limit f(x, y) goes to 0 as $(x, y) \rightarrow 0$. Then surely $|f(x, y)| < \epsilon$ whenever $|(x, y)| < \delta$ and $x \neq 0$. In particular, this is true if $x = y^2$. If we choose $\epsilon = \frac{1}{4}$ and $|y| < \min(1, \frac{\delta}{\sqrt{2}})$ we get a contradiction.
- So it is NOT good enough for all directional derivatives to exist. A much stronger definition of differentiability is necessary.

- At the origin unfortunately f(x, y) is NOT continuous.
- Indeed, along $x = y^2$ and $y \neq 0$, $f(x, y) = \frac{1}{2}$, whereas f(0,0) = 0 by definition. More rigorously, suppose the limit f(x, y) goes to 0 as $(x, y) \rightarrow 0$. Then surely $|f(x, y)| < \epsilon$ whenever $|(x, y)| < \delta$ and $x \neq 0$. In particular, this is true if $x = y^2$. If we choose $\epsilon = \frac{1}{4}$ and $|y| < \min(1, \frac{\delta}{\sqrt{2}})$ we get a contradiction.
- So it is NOT good enough for all directional derivatives to exist. A much stronger definition of differentiability is necessary.

• We observe that
$$f_x = \frac{y^6 - x^2 y^2}{(x^2 + y^4)^2}, f_y = \frac{2x^3 y - 2x y^5}{(x^2 + y^4)^2}$$
 when $x \neq 0$

- At the origin unfortunately f(x, y) is NOT continuous.
- Indeed, along $x = y^2$ and $y \neq 0$, $f(x, y) = \frac{1}{2}$, whereas f(0,0) = 0 by definition. More rigorously, suppose the limit f(x, y) goes to 0 as $(x, y) \rightarrow 0$. Then surely $|f(x, y)| < \epsilon$ whenever $|(x, y)| < \delta$ and $x \neq 0$. In particular, this is true if $x = y^2$. If we choose $\epsilon = \frac{1}{4}$ and $|y| < \min(1, \frac{\delta}{\sqrt{2}})$ we get a contradiction.
- So it is NOT good enough for all directional derivatives to exist. A much stronger definition of differentiability is necessary.
- We observe that $f_x = \frac{y^6 x^2 y^2}{(x^2 + y^4)^2}$, $f_y = \frac{2x^3 y 2xy^5}{(x^2 + y^4)^2}$ when $x \neq 0$ and $f_x = f_y = 0$ when x = 0.

- At the origin unfortunately f(x, y) is NOT continuous.
- Indeed, along $x = y^2$ and $y \neq 0$, $f(x, y) = \frac{1}{2}$, whereas f(0,0) = 0 by definition. More rigorously, suppose the limit f(x, y) goes to 0 as $(x, y) \rightarrow 0$. Then surely $|f(x, y)| < \epsilon$ whenever $|(x, y)| < \delta$ and $x \neq 0$. In particular, this is true if $x = y^2$. If we choose $\epsilon = \frac{1}{4}$ and $|y| < \min(1, \frac{\delta}{\sqrt{2}})$ we get a contradiction.
- So it is NOT good enough for all directional derivatives to exist. A much stronger definition of differentiability is necessary.
- We observe that $f_x = \frac{y^6 x^2 y^2}{(x^2 + y^4)^2}$, $f_y = \frac{2x^3 y 2xy^5}{(x^2 + y^4)^2}$ when $x \neq 0$ and $f_x = f_y = 0$ when x = 0. However, when $(x, y) \to (0, 0)$,

- At the origin unfortunately f(x, y) is NOT continuous.
- Indeed, along $x = y^2$ and $y \neq 0$, $f(x, y) = \frac{1}{2}$, whereas f(0,0) = 0 by definition. More rigorously, suppose the limit f(x, y) goes to 0 as $(x, y) \rightarrow 0$. Then surely $|f(x, y)| < \epsilon$ whenever $|(x, y)| < \delta$ and $x \neq 0$. In particular, this is true if $x = y^2$. If we choose $\epsilon = \frac{1}{4}$ and $|y| < \min(1, \frac{\delta}{\sqrt{2}})$ we get a contradiction.
- So it is NOT good enough for all directional derivatives to exist. A much stronger definition of differentiability is necessary.
- We observe that $f_x = \frac{y^6 x^2 y^2}{(x^2 + y^4)^2}$, $f_y = \frac{2x^3 y 2xy^5}{(x^2 + y^4)^2}$ when $x \neq 0$ and $f_x = f_y = 0$ when x = 0. However, when $(x, y) \rightarrow (0, 0)$, we see that

- At the origin unfortunately f(x, y) is NOT continuous.
- Indeed, along $x = y^2$ and $y \neq 0$, $f(x, y) = \frac{1}{2}$, whereas f(0,0) = 0 by definition. More rigorously, suppose the limit f(x, y) goes to 0 as $(x, y) \rightarrow 0$. Then surely $|f(x, y)| < \epsilon$ whenever $|(x, y)| < \delta$ and $x \neq 0$. In particular, this is true if $x = y^2$. If we choose $\epsilon = \frac{1}{4}$ and $|y| < \min(1, \frac{\delta}{\sqrt{2}})$ we get a contradiction.
- So it is NOT good enough for all directional derivatives to exist. A much stronger definition of differentiability is necessary.
- We observe that $f_x = \frac{y^6 x^2 y^2}{(x^2 + y^4)^2}$, $f_y = \frac{2x^3 y 2xy^5}{(x^2 + y^4)^2}$ when $x \neq 0$ and $f_x = f_y = 0$ when x = 0. However, when $(x, y) \rightarrow (0, 0)$, we see that f_x is not continuous.

æ

• The reason

• The reason differentiable 1-variable functions

• The reason differentiable 1-variable functions are continuous

• The reason differentiable 1-variable functions are continuous is the linear/tangent-line approximation

 The reason differentiable 1-variable functions are continuous is the linear/tangent-line approximation f(x + h) ≈ f(x) + hf'(x).
The reason differentiable 1-variable functions are continuous is the linear/tangent-line approximation f(x + h) ≈ f(x) + hf'(x). Note that h → hf'(x) is a

 The reason differentiable 1-variable functions are continuous is the linear/tangent-line approximation f(x + h) ≈ f(x) + hf'(x). Note that h → hf'(x) is a linear map.

- The reason differentiable 1-variable functions are continuous is the linear/tangent-line approximation f(x + h) ≈ f(x) + hf'(x). Note that h → hf'(x) is a linear map.
- Here is another example:

- The reason differentiable 1-variable functions are continuous is the linear/tangent-line approximation f(x + h) ≈ f(x) + hf'(x). Note that h → hf'(x) is a linear map.
- Here is another example: Consider

- The reason differentiable 1-variable functions are continuous is the linear/tangent-line approximation f(x + h) ≈ f(x) + hf'(x). Note that h → hf'(x) is a linear map.
- Here is another example: Consider f(x, y) = ||x| |y|| |x| |y|.

- The reason differentiable 1-variable functions are continuous is the linear/tangent-line approximation f(x + h) ≈ f(x) + hf'(x). Note that h → hf'(x) is a linear map.
- Here is another example: Consider f(x, y) = ||x| |y|| |x| |y|. We can see that

- The reason differentiable 1-variable functions are continuous is the linear/tangent-line approximation f(x + h) ≈ f(x) + hf'(x). Note that h → hf'(x) is a linear map.
- Here is another example: Consider f(x,y) = ||x| |y|| |x| |y|. We can see that $\nabla f((0,0)) = 0$ exists.

- The reason differentiable 1-variable functions are continuous is the linear/tangent-line approximation f(x + h) ≈ f(x) + hf'(x). Note that h → hf'(x) is a linear map.
- Here is another example: Consider f(x, y) = ||x| - |y|| - |x| - |y|. We can see that $\nabla f((0, 0)) = 0$ exists. f is also continuous

- The reason differentiable 1-variable functions are continuous is the linear/tangent-line approximation f(x + h) ≈ f(x) + hf'(x). Note that h → hf'(x) is a linear map.
- Here is another example: Consider f(x,y) = ||x| - |y|| - |x| - |y|. We can see that $\nabla f((0,0)) = 0$ exists. f is also continuous at (0,0).

- The reason differentiable 1-variable functions are continuous is the linear/tangent-line approximation f(x + h) ≈ f(x) + hf'(x). Note that h → hf'(x) is a linear map.
- Here is another example: Consider
 f(x, y) = ||x| - |y|| - |x| - |y|. We can see that
 ∇f((0,0)) = 0 exists. f is also continuous at (0,0). Yet, if we
 sketch z = f(x, y)

- The reason differentiable 1-variable functions are continuous is the linear/tangent-line approximation f(x + h) ≈ f(x) + hf'(x). Note that h → hf'(x) is a linear map.
- Here is another example: Consider
 f(x, y) = ||x| - |y|| - |x| - |y|. We can see that
 ∇f((0,0)) = 0 exists. f is also continuous at (0,0). Yet, if we
 sketch z = f(x, y) we see that

- The reason differentiable 1-variable functions are continuous is the linear/tangent-line approximation f(x + h) ≈ f(x) + hf'(x). Note that h → hf'(x) is a linear map.
- Here is another example: Consider
 f(x, y) = ||x| - |y|| - |x| - |y|. We can see that
 ∇f((0,0)) = 0 exists. f is also continuous at (0,0). Yet, if we
 sketch z = f(x, y) we see that in no sense

- The reason differentiable 1-variable functions are continuous is the linear/tangent-line approximation f(x + h) ≈ f(x) + hf'(x). Note that h → hf'(x) is a linear map.
- Here is another example: Consider
 f(x, y) = ||x| - |y|| - |x| - |y|. We can see that
 ∇f((0,0)) = 0 exists. f is also continuous at (0,0). Yet, if we
 sketch z = f(x, y) we see that in no sense does a tangent
 plane

- The reason differentiable 1-variable functions are continuous is the linear/tangent-line approximation f(x + h) ≈ f(x) + hf'(x). Note that h → hf'(x) is a linear map.
- Here is another example: Consider
 f(x, y) = ||x| - |y|| - |x| - |y|. We can see that
 ∇f((0,0)) = 0 exists. f is also continuous at (0,0). Yet, if we
 sketch z = f(x, y) we see that in no sense does a tangent
 plane exist at the origin. (

- The reason differentiable 1-variable functions are continuous is the linear/tangent-line approximation f(x + h) ≈ f(x) + hf'(x). Note that h → hf'(x) is a linear map.
- Here is another example: Consider
 f(x, y) = ||x| |y|| |x| |y|. We can see that
 ∇f((0,0)) = 0 exists. f is also continuous at (0,0). Yet, if we sketch z = f(x, y) we see that in no sense does a tangent plane exist at the origin. (If y = x > 0, z = -2x ≠ 0.

- The reason differentiable 1-variable functions are continuous is the linear/tangent-line approximation f(x + h) ≈ f(x) + hf'(x). Note that h → hf'(x) is a linear map.
- Here is another example: Consider f(x, y) = ||x| - |y|| - |x| - |y|. We can see that $\nabla f((0, 0)) = 0$ exists. f is also continuous at (0, 0). Yet, if we sketch z = f(x, y) we see that in no sense does a tangent plane exist at the origin. (If y = x > 0, $z = -2x \neq 0$. The "tangent vector" (1, 1, -2) is

- The reason differentiable 1-variable functions are continuous is the linear/tangent-line approximation f(x + h) ≈ f(x) + hf'(x). Note that h → hf'(x) is a linear map.
- Here is another example: Consider
 f(x, y) = ||x| |y|| |x| |y|. We can see that
 ∇f((0,0)) = 0 exists. f is also continuous at (0,0). Yet, if we sketch z = f(x, y) we see that in no sense does a tangent plane exist at the origin. (If y = x > 0, z = -2x ≠ 0. The "tangent vector" (1,1,-2) is not in the same plane as

- The reason differentiable 1-variable functions are continuous is the linear/tangent-line approximation f(x + h) ≈ f(x) + hf'(x). Note that h → hf'(x) is a linear map.
- Here is another example: Consider

 f(x, y) = ||x| |y|| |x| |y|. We can see that
 ∇f((0,0)) = 0 exists. f is also continuous at (0,0). Yet, if we sketch z = f(x, y) we see that in no sense does a tangent plane exist at the origin. (If y = x > 0, z = -2x ≠ 0. The "tangent vector" (1, 1, -2) is not in the same plane as (1,0,0) and (0,1,0).)

- The reason differentiable 1-variable functions are continuous is the linear/tangent-line approximation f(x + h) ≈ f(x) + hf'(x). Note that h → hf'(x) is a linear map.
- Here is another example: Consider
 f(x, y) = ||x| |y|| |x| |y|. We can see that
 ∇f((0,0)) = 0 exists. f is also continuous at (0,0). Yet, if we sketch z = f(x, y) we see that in no sense does a tangent plane exist at the origin. (If y = x > 0, z = -2x ≠ 0. The "tangent vector" (1, 1, -2) is not in the same plane as (1,0,0) and (0,1,0).)
- Even if we

- The reason differentiable 1-variable functions are continuous is the linear/tangent-line approximation f(x + h) ≈ f(x) + hf'(x). Note that h → hf'(x) is a linear map.
- Here is another example: Consider
 f(x, y) = ||x| |y|| |x| |y|. We can see that
 ∇f((0,0)) = 0 exists. f is also continuous at (0,0). Yet, if we sketch z = f(x, y) we see that in no sense does a tangent plane exist at the origin. (If y = x > 0, z = -2x ≠ 0. The "tangent vector" (1, 1, -2) is not in the same plane as (1,0,0) and (0,1,0).)
- Even if we have all $\nabla_{\vec{v}} f$

- The reason differentiable 1-variable functions are continuous is the linear/tangent-line approximation f(x + h) ≈ f(x) + hf'(x). Note that h → hf'(x) is a linear map.
- Here is another example: Consider f(x, y) = ||x| - |y|| - |x| - |y|. We can see that $\nabla f((0, 0)) = 0$ exists. f is also continuous at (0, 0). Yet, if we sketch z = f(x, y) we see that in no sense does a tangent plane exist at the origin. (If y = x > 0, $z = -2x \neq 0$. The "tangent vector" (1, 1, -2) is not in the same plane as (1, 0, 0) and (0, 1, 0).)
- Even if we have all $\nabla_{\vec{v}} f$ and $\nabla_{\vec{v}} f$ is *linear* in \vec{v} ,

- The reason differentiable 1-variable functions are continuous is the linear/tangent-line approximation f(x + h) ≈ f(x) + hf'(x). Note that h → hf'(x) is a linear map.
- Here is another example: Consider

 f(x, y) = ||x| |y|| |x| |y|. We can see that
 ∇f((0,0)) = 0 exists. f is also continuous at (0,0). Yet, if we sketch z = f(x, y) we see that in no sense does a tangent plane exist at the origin. (If y = x > 0, z = -2x ≠ 0. The "tangent vector" (1,1,-2) is not in the same plane as (1,0,0) and (0,1,0).)
- Even if we have all ∇_vf and ∇_vf is *linear* in v, this can still fail:

- The reason differentiable 1-variable functions are continuous is the linear/tangent-line approximation f(x + h) ≈ f(x) + hf'(x). Note that h → hf'(x) is a linear map.
- Here is another example: Consider

 f(x, y) = ||x| |y|| |x| |y|. We can see that
 ∇f((0,0)) = 0 exists. f is also continuous at (0,0). Yet, if we sketch z = f(x, y) we see that in no sense does a tangent plane exist at the origin. (If y = x > 0, z = -2x ≠ 0. The "tangent vector" (1,1,-2) is not in the same plane as (1,0,0) and (0,1,0).)
- Even if we have all $\nabla_{\vec{v}}f$ and $\nabla_{\vec{v}}f$ is *linear* in \vec{v} , this can still fail: $f(x,y) = \frac{x^3y}{x^4+y^2}$ for $(x,y) \neq (0,0)$ and

- The reason differentiable 1-variable functions are continuous is the linear/tangent-line approximation f(x + h) ≈ f(x) + hf'(x). Note that h → hf'(x) is a linear map.
- Here is another example: Consider f(x, y) = ||x| - |y|| - |x| - |y|. We can see that $\nabla f((0, 0)) = 0$ exists. f is also continuous at (0, 0). Yet, if we sketch z = f(x, y) we see that in no sense does a tangent plane exist at the origin. (If y = x > 0, $z = -2x \neq 0$. The "tangent vector" (1, 1, -2) is not in the same plane as (1, 0, 0) and (0, 1, 0).)
- Even if we have all $\nabla_{\vec{v}}f$ and $\nabla_{\vec{v}}f$ is *linear* in \vec{v} , this can still fail: $f(x,y) = \frac{x^3y}{x^4+y^2}$ for $(x,y) \neq (0,0)$ and f(0,0) = 0

- The reason differentiable 1-variable functions are continuous is the linear/tangent-line approximation f(x + h) ≈ f(x) + hf'(x). Note that h → hf'(x) is a linear map.
- Here is another example: Consider f(x, y) = ||x| - |y|| - |x| - |y|. We can see that $\nabla f((0, 0)) = 0$ exists. f is also continuous at (0, 0). Yet, if we sketch z = f(x, y) we see that in no sense does a tangent plane exist at the origin. (If y = x > 0, $z = -2x \neq 0$. The "tangent vector" (1, 1, -2) is not in the same plane as (1, 0, 0) and (0, 1, 0).)
- Even if we have all $\nabla_{\vec{v}}f$ and $\nabla_{\vec{v}}f$ is *linear* in \vec{v} , this can still fail: $f(x, y) = \frac{x^3y}{x^4+y^2}$ for $(x, y) \neq (0, 0)$ and f(0, 0) = 0 is continuous,

- The reason differentiable 1-variable functions are continuous is the linear/tangent-line approximation f(x + h) ≈ f(x) + hf'(x). Note that h → hf'(x) is a linear map.
- Here is another example: Consider f(x, y) = ||x| - |y|| - |x| - |y|. We can see that $\nabla f((0, 0)) = 0$ exists. f is also continuous at (0, 0). Yet, if we sketch z = f(x, y) we see that in no sense does a tangent plane exist at the origin. (If y = x > 0, $z = -2x \neq 0$. The "tangent vector" (1, 1, -2) is not in the same plane as (1, 0, 0) and (0, 1, 0).)
- Even if we have all $\nabla_{\vec{v}}f$ and $\nabla_{\vec{v}}f$ is *linear* in \vec{v} , this can still fail: $f(x, y) = \frac{x^3y}{x^4+y^2}$ for $(x, y) \neq (0, 0)$ and f(0, 0) = 0 is continuous, has a linear $\nabla_{\vec{v}}f((0, 0))$,

- The reason differentiable 1-variable functions are continuous is the linear/tangent-line approximation f(x + h) ≈ f(x) + hf'(x). Note that h → hf'(x) is a linear map.
- Here is another example: Consider

 f(x, y) = ||x| |y|| |x| |y|. We can see that
 ∇f((0,0)) = 0 exists. f is also continuous at (0,0). Yet, if we sketch z = f(x, y) we see that in no sense does a tangent plane exist at the origin. (If y = x > 0, z = -2x ≠ 0. The "tangent vector" (1,1,-2) is not in the same plane as (1,0,0) and (0,1,0).)
- Even if we have all ∇_v f and ∇_v f is *linear* in v, this can still fail: f(x, y) = x³y/x⁴+y² for (x, y) ≠ (0, 0) and f(0, 0) = 0 is continuous, has a linear ∇_v f((0, 0)), and still does

- The reason differentiable 1-variable functions are continuous is the linear/tangent-line approximation f(x + h) ≈ f(x) + hf'(x). Note that h → hf'(x) is a linear map.
- Here is another example: Consider

 f(x, y) = ||x| |y|| |x| |y|. We can see that
 ∇f((0,0)) = 0 exists. f is also continuous at (0,0). Yet, if we sketch z = f(x, y) we see that in no sense does a tangent plane exist at the origin. (If y = x > 0, z = -2x ≠ 0. The "tangent vector" (1,1,-2) is not in the same plane as (1,0,0) and (0,1,0).)
- Even if we have all $\nabla_{\vec{v}}f$ and $\nabla_{\vec{v}}f$ is *linear* in \vec{v} , this can still fail: $f(x,y) = \frac{x^3y}{x^4+y^2}$ for $(x,y) \neq (0,0)$ and f(0,0) = 0 is continuous, has a linear $\nabla_{\vec{v}}f((0,0))$, and still does not have a tangent-plane.

æ

• We want to

문 문 문

• We want to define differentiability

• We want to define differentiability to mean that

• We want to define differentiability to mean that the linear approximation

• We want to define differentiability to mean that the linear approximation holds, i.e.,

• We want to define differentiability to mean that the linear approximation holds, i.e., $f(\vec{a} + \vec{h}) \approx f(\vec{a}) + Df_{\vec{a}}\vec{h}$ where $Df_{\vec{a}}$ is a linear map.

• We want to define differentiability to mean that the linear approximation holds, i.e., $f(\vec{a} + \vec{h}) \approx f(\vec{a}) + Df_{\vec{a}}\vec{h}$ where $Df_{\vec{a}}$ is a linear map. How should the \approx be
• We want to define differentiability to mean that the linear approximation holds, i.e., $f(\vec{a} + \vec{h}) \approx f(\vec{a}) + Df_{\vec{a}}\vec{h}$ where $Df_{\vec{a}}$ is a linear map. How should the \approx be made rigorous?

6/10

• We want to define differentiability to mean that the linear approximation holds, i.e., $f(\vec{a} + \vec{h}) \approx f(\vec{a}) + Df_{\vec{a}}\vec{h}$ where $Df_{\vec{a}}$ is a linear map. How should the \approx be made rigorous? In one-variable calculus,

• We want to define differentiability to mean that the linear approximation holds, i.e., $f(\vec{a} + \vec{h}) \approx f(\vec{a}) + Df_{\vec{a}}\vec{h}$ where $Df_{\vec{a}}$ is a linear map. How should the \approx be made rigorous? In one-variable calculus, for twice-differentiable functions

• We want to define differentiability to mean that the linear approximation holds, i.e., $f(\vec{a} + \vec{h}) \approx f(\vec{a}) + Df_{\vec{a}}\vec{h}$ where $Df_{\vec{a}}$ is a linear map. How should the \approx be made rigorous? In one-variable calculus, for twice-differentiable functions one has the Taylor theorem:

• We want to define differentiability to mean that the linear approximation holds, i.e., $f(\vec{a} + \vec{h}) \approx f(\vec{a}) + Df_{\vec{a}}\vec{h}$ where $Df_{\vec{a}}$ is a linear map. How should the \approx be made rigorous? In one-variable calculus, for twice-differentiable functions one has the Taylor theorem: $f(x + h) = f(x) + hf'(x) + \frac{h^2}{2!}f''(\theta)$.

• We want to define differentiability to mean that the linear approximation holds, i.e., $f(\vec{a} + \vec{h}) \approx f(\vec{a}) + Df_{\vec{a}}\vec{h}$ where $Df_{\vec{a}}$ is a linear map. How should the \approx be made rigorous? In one-variable calculus, for twice-differentiable functions one has the Taylor theorem: $f(x + h) = f(x) + hf'(x) + \frac{h^2}{2!}f''(\theta)$. In other words,

• We want to define differentiability to mean that the linear approximation holds, i.e., $f(\vec{a} + \vec{h}) \approx f(\vec{a}) + Df_{\vec{a}}\vec{h}$ where $Df_{\vec{a}}$ is a linear map. How should the \approx be made rigorous? In one-variable calculus, for twice-differentiable functions one has the Taylor theorem: $f(x + h) = f(x) + hf'(x) + \frac{h^2}{2!}f''(\theta)$. In other words, the "Error term" is

• We want to define differentiability to mean that the linear approximation holds, i.e., $f(\vec{a} + \vec{h}) \approx f(\vec{a}) + Df_{\vec{a}}\vec{h}$ where $Df_{\vec{a}}$ is a linear map. How should the \approx be made rigorous? In one-variable calculus, for twice-differentiable functions one has the Taylor theorem: $f(x + h) = f(x) + hf'(x) + \frac{h^2}{2!}f''(\theta)$. In other words, the "Error term" is of second-order.

• We want to define differentiability to mean that the linear approximation holds, i.e., $f(\vec{a} + \vec{h}) \approx f(\vec{a}) + Df_{\vec{a}}\vec{h}$ where $Df_{\vec{a}}$ is a linear map. How should the \approx be made rigorous? In one-variable calculus, for twice-differentiable functions one has the Taylor theorem: $f(x + h) = f(x) + hf'(x) + \frac{h^2}{2!}f''(\theta)$. In other words, the "Error term" is of second-order. Thus, $\frac{f(x+h)-f(x)-hf'(x)}{h} \rightarrow 0$. (

• We want to define differentiability to mean that the linear approximation holds, i.e., $f(\vec{a} + \vec{h}) \approx f(\vec{a}) + Df_{\vec{a}}\vec{h}$ where $Df_{\vec{a}}$ is a linear map. How should the \approx be made rigorous? In one-variable calculus, for twice-differentiable functions one has the Taylor theorem: $f(x + h) = f(x) + hf'(x) + \frac{h^2}{2!}f''(\theta)$. In other words, the "Error term" is of second-order. Thus, $\frac{f(x+h)-f(x)-hf'(x)}{h} \rightarrow 0$. (Even if f is

• We want to define differentiability to mean that the linear approximation holds, i.e., $f(\vec{a} + \vec{h}) \approx f(\vec{a}) + Df_{\vec{a}}\vec{h}$ where $Df_{\vec{a}}$ is a linear map. How should the \approx be made rigorous? In one-variable calculus, for twice-differentiable functions one has the Taylor theorem: $f(x + h) = f(x) + hf'(x) + \frac{h^2}{2!}f''(\theta)$. In other words, the "Error term" is of second-order. Thus, $\frac{f(x+h)-f(x)-hf'(x)}{h} \rightarrow 0$. (Even if f is merely differentiable,

• We want to define differentiability to mean that the linear approximation holds, i.e., $f(\vec{a} + \vec{h}) \approx f(\vec{a}) + Df_{\vec{a}}\vec{h}$ where $Df_{\vec{a}}$ is a linear map. How should the \approx be made rigorous? In one-variable calculus, for twice-differentiable functions one has the Taylor theorem: $f(x + h) = f(x) + hf'(x) + \frac{h^2}{2!}f''(\theta)$. In other words, the "Error term" is of second-order. Thus, $\frac{f(x+h)-f(x)-hf'(x)}{h} \rightarrow 0$. (Even if f is merely differentiable, this limit still holds.)

• We want to define differentiability to mean that the linear approximation holds, i.e., $f(\vec{a} + \vec{h}) \approx f(\vec{a}) + Df_{\vec{a}}\vec{h}$ where $Df_{\vec{a}}$ is a linear map. How should the \approx be made rigorous? In one-variable calculus, for twice-differentiable functions one has the Taylor theorem: $f(x + h) = f(x) + hf'(x) + \frac{h^2}{2!}f''(\theta)$. In other words, the "Error term" is of second-order. Thus, $\frac{f(x+h)-f(x)-hf'(x)}{h} \rightarrow 0$. (Even if f is merely differentiable, this limit still holds.)

Def:

- We want to define differentiability to mean that the linear approximation holds, i.e., $f(\vec{a} + \vec{h}) \approx f(\vec{a}) + Df_{\vec{a}}\vec{h}$ where $Df_{\vec{a}}$ is a linear map. How should the \approx be made rigorous? In one-variable calculus, for twice-differentiable functions one has the Taylor theorem: $f(x + h) = f(x) + hf'(x) + \frac{h^2}{2!}f''(\theta)$. In other words, the "Error term" is of second-order. Thus, $\frac{f(x+h)-f(x)-hf'(x)}{h} \rightarrow 0$. (Even if f is merely differentiable, this limit still holds.)
- Def: Let $f: S \subset \mathbb{R}^n \to \mathbb{R}$ be

- We want to define differentiability to mean that the linear approximation holds, i.e., $f(\vec{a} + \vec{h}) \approx f(\vec{a}) + Df_{\vec{a}}\vec{h}$ where $Df_{\vec{a}}$ is a linear map. How should the \approx be made rigorous? In one-variable calculus, for twice-differentiable functions one has the Taylor theorem: $f(x + h) = f(x) + hf'(x) + \frac{h^2}{2!}f''(\theta)$. In other words, the "Error term" is of second-order. Thus, $\frac{f(x+h)-f(x)-hf'(x)}{h} \rightarrow 0$. (Even if f is merely differentiable, this limit still holds.)
- Def: Let $f: S \subset \mathbb{R}^n \to \mathbb{R}$ be a scalar field and

- We want to define differentiability to mean that the linear approximation holds, i.e., $f(\vec{a} + \vec{h}) \approx f(\vec{a}) + Df_{\vec{a}}\vec{h}$ where $Df_{\vec{a}}$ is a linear map. How should the \approx be made rigorous? In one-variable calculus, for twice-differentiable functions one has the Taylor theorem: $f(x + h) = f(x) + hf'(x) + \frac{h^2}{2!}f''(\theta)$. In other words, the "Error term" is of second-order. Thus, $\frac{f(x+h)-f(x)-hf'(x)}{h} \rightarrow 0$. (Even if f is merely differentiable, this limit still holds.)
- Def: Let $f: S \subset \mathbb{R}^n \to \mathbb{R}$ be a scalar field and let $\vec{a} \in S$ be an interior point,

6/10

- We want to define differentiability to mean that the linear approximation holds, i.e., $f(\vec{a} + \vec{h}) \approx f(\vec{a}) + Df_{\vec{a}}\vec{h}$ where $Df_{\vec{a}}$ is a linear map. How should the \approx be made rigorous? In one-variable calculus, for twice-differentiable functions one has the Taylor theorem: $f(x + h) = f(x) + hf'(x) + \frac{h^2}{2!}f''(\theta)$. In other words, the "Error term" is of second-order. Thus, $\frac{f(x+h)-f(x)-hf'(x)}{h} \rightarrow 0$. (Even if f is merely differentiable, this limit still holds.)
- Def: Let $f : S \subset \mathbb{R}^n \to \mathbb{R}$ be a scalar field and let $\vec{a} \in S$ be an interior point, i.e., there is an open ball $B(\vec{a}, r) \subset S$.

6/10

- We want to define differentiability to mean that the linear approximation holds, i.e., $f(\vec{a} + \vec{h}) \approx f(\vec{a}) + Df_{\vec{a}}\vec{h}$ where $Df_{\vec{a}}$ is a linear map. How should the \approx be made rigorous? In one-variable calculus, for twice-differentiable functions one has the Taylor theorem: $f(x + h) = f(x) + hf'(x) + \frac{h^2}{2!}f''(\theta)$. In other words, the "Error term" is of second-order. Thus, $\frac{f(x+h)-f(x)-hf'(x)}{h} \rightarrow 0$. (Even if f is merely differentiable, this limit still holds.)
- Def: Let f : S ⊂ ℝⁿ → ℝ be a scalar field and let a ∈ S be an interior point, i.e., there is an open ball B(a, r) ⊂ S. f is said to be

- We want to define differentiability to mean that the linear approximation holds, i.e., $f(\vec{a} + \vec{h}) \approx f(\vec{a}) + Df_{\vec{a}}\vec{h}$ where $Df_{\vec{a}}$ is a linear map. How should the \approx be made rigorous? In one-variable calculus, for twice-differentiable functions one has the Taylor theorem: $f(x + h) = f(x) + hf'(x) + \frac{h^2}{2!}f''(\theta)$. In other words, the "Error term" is of second-order. Thus, $\frac{f(x+h)-f(x)-hf'(x)}{h} \rightarrow 0$. (Even if f is merely differentiable, this limit still holds.)
- Def: Let f : S ⊂ ℝⁿ → ℝ be a scalar field and let a ∈ S be an interior point, i.e., there is an open ball B(a, r) ⊂ S. f is said to be differentiable at a

- We want to define differentiability to mean that the linear approximation holds, i.e., $f(\vec{a} + \vec{h}) \approx f(\vec{a}) + Df_{\vec{a}}\vec{h}$ where $Df_{\vec{a}}$ is a linear map. How should the \approx be made rigorous? In one-variable calculus, for twice-differentiable functions one has the Taylor theorem: $f(x + h) = f(x) + hf'(x) + \frac{h^2}{2!}f''(\theta)$. In other words, the "Error term" is of second-order. Thus, $\frac{f(x+h)-f(x)-hf'(x)}{h} \rightarrow 0$. (Even if f is merely differentiable, this limit still holds.)
- Def: Let f : S ⊂ ℝⁿ → ℝ be a scalar field and let a ∈ S be an interior point, i.e., there is an open ball B(a, r) ⊂ S. f is said to be differentiable at a if there exists

6/10

- We want to define differentiability to mean that the linear approximation holds, i.e., $f(\vec{a} + \vec{h}) \approx f(\vec{a}) + Df_{\vec{a}}\vec{h}$ where $Df_{\vec{a}}$ is a linear map. How should the \approx be made rigorous? In one-variable calculus, for twice-differentiable functions one has the Taylor theorem: $f(x + h) = f(x) + hf'(x) + \frac{h^2}{2!}f''(\theta)$. In other words, the "Error term" is of second-order. Thus, $\frac{f(x+h)-f(x)-hf'(x)}{h} \rightarrow 0$. (Even if f is merely differentiable, this limit still holds.)
- Def: Let f : S ⊂ ℝⁿ → ℝ be a scalar field and let a ∈ S be an interior point, i.e., there is an open ball B(a, r) ⊂ S. f is said to be differentiable at a if there exists a linear map Df_a : ℝⁿ → ℝ

- We want to define differentiability to mean that the linear approximation holds, i.e., $f(\vec{a} + \vec{h}) \approx f(\vec{a}) + Df_{\vec{a}}\vec{h}$ where $Df_{\vec{a}}$ is a linear map. How should the \approx be made rigorous? In one-variable calculus, for twice-differentiable functions one has the Taylor theorem: $f(x + h) = f(x) + hf'(x) + \frac{h^2}{2!}f''(\theta)$. In other words, the "Error term" is of second-order. Thus, $\frac{f(x+h)-f(x)-hf'(x)}{h} \rightarrow 0$. (Even if f is merely differentiable, this limit still holds.)
- Def: Let f : S ⊂ ℝⁿ → ℝ be a scalar field and let a ∈ S be an interior point, i.e., there is an open ball B(a, r) ⊂ S. f is said to be differentiable at a if there exists a linear map Df_a : ℝⁿ → ℝ such that for every || h || < r,

- We want to define differentiability to mean that the linear approximation holds, i.e., $f(\vec{a} + \vec{h}) \approx f(\vec{a}) + Df_{\vec{a}}\vec{h}$ where $Df_{\vec{a}}$ is a linear map. How should the \approx be made rigorous? In one-variable calculus, for twice-differentiable functions one has the Taylor theorem: $f(x + h) = f(x) + hf'(x) + \frac{h^2}{2!}f''(\theta)$. In other words, the "Error term" is of second-order. Thus, $\frac{f(x+h)-f(x)-hf'(x)}{h} \rightarrow 0$. (Even if f is merely differentiable, this limit still holds.)
- Def: Let f: S ⊂ ℝⁿ → ℝ be a scalar field and let a ∈ S be an interior point, i.e., there is an open ball B(a, r) ⊂ S. f is said to be differentiable at a if there exists a linear map Df_a : ℝⁿ → ℝ such that for every || h || < r, lim_{h→0} f(a+h)-f(a)-Df_a(h)/|| = 0.

- We want to define differentiability to mean that the linear approximation holds, i.e., $f(\vec{a} + \vec{h}) \approx f(\vec{a}) + Df_{\vec{a}}\vec{h}$ where $Df_{\vec{a}}$ is a linear map. How should the \approx be made rigorous? In one-variable calculus, for twice-differentiable functions one has the Taylor theorem: $f(x + h) = f(x) + hf'(x) + \frac{h^2}{2!}f''(\theta)$. In other words, the "Error term" is of second-order. Thus, $\frac{f(x+h)-f(x)-hf'(x)}{h} \rightarrow 0$. (Even if f is merely differentiable, this limit still holds.)
- Def: Let f : S ⊂ ℝⁿ → ℝ be a scalar field and let a ∈ S be an interior point, i.e., there is an open ball B(a, r) ⊂ S. f is said to be differentiable at a if there exists a linear map Df_a : ℝⁿ → ℝ such that for every || h || < r, lim_{h→0} f(a+h)-f(a)-Df_a(h)/|| h || = 0. Alternatively, the error term is of the form

- We want to define differentiability to mean that the linear approximation holds, i.e., $f(\vec{a} + \vec{h}) \approx f(\vec{a}) + Df_{\vec{a}}\vec{h}$ where $Df_{\vec{a}}$ is a linear map. How should the \approx be made rigorous? In one-variable calculus, for twice-differentiable functions one has the Taylor theorem: $f(x + h) = f(x) + hf'(x) + \frac{h^2}{2!}f''(\theta)$. In other words, the "Error term" is of second-order. Thus, $\frac{f(x+h)-f(x)-hf'(x)}{h} \rightarrow 0$. (Even if f is merely differentiable, this limit still holds.)
- Def: Let $f: S \subset \mathbb{R}^n \to \mathbb{R}$ be a scalar field and let $\vec{a} \in S$ be an interior point, i.e., there is an open ball $B(\vec{a}, r) \subset S$. f is said to be *differentiable* at \vec{a} if there exists a linear map $Df_{\vec{a}}: \mathbb{R}^n \to \mathbb{R}$ such that for every $\|\vec{h}\| < r$, $\lim_{\vec{h} \to \vec{0}} \frac{f(\vec{a}+\vec{h})-f(\vec{a})-Df_{\vec{a}}(\vec{h})}{\|\vec{h}\|} = 0$. Alternatively, the error term is of the form $|\vec{h}|E(\vec{a},\vec{h}) = f(\vec{a}+\vec{h}) f(\vec{a}) Df_{\vec{a}}(\vec{h})$, where

- We want to define differentiability to mean that the linear approximation holds, i.e., $f(\vec{a} + \vec{h}) \approx f(\vec{a}) + Df_{\vec{a}}\vec{h}$ where $Df_{\vec{a}}$ is a linear map. How should the \approx be made rigorous? In one-variable calculus, for twice-differentiable functions one has the Taylor theorem: $f(x + h) = f(x) + hf'(x) + \frac{h^2}{2!}f''(\theta)$. In other words, the "Error term" is of second-order. Thus, $\frac{f(x+h)-f(x)-hf'(x)}{h} \rightarrow 0$. (Even if f is merely differentiable, this limit still holds.)
- Def: Let $f: S \subset \mathbb{R}^n \to \mathbb{R}$ be a scalar field and let $\vec{a} \in S$ be an interior point, i.e., there is an open ball $B(\vec{a}, r) \subset S$. f is said to be differentiable at \vec{a} if there exists a linear map $Df_{\vec{a}}: \mathbb{R}^n \to \mathbb{R}$ such that for every $\|\vec{h}\| < r$, $\lim_{\vec{h}\to\vec{0}} \frac{f(\vec{a}+\vec{h})-f(\vec{a})-Df_{\vec{a}}(\vec{h})}{\|\vec{h}\|} = 0$. Alternatively, the error term is of the form $|\vec{h}|E(\vec{a},\vec{h}) = f(\vec{a}+\vec{h}) f(\vec{a}) Df_{\vec{a}}(\vec{h})$, where $E(\vec{a},\vec{h}) \to 0$ as $\vec{h} \to \vec{0}$.

Lecture 24

- We want to define differentiability to mean that the linear approximation holds, i.e., $f(\vec{a} + \vec{h}) \approx f(\vec{a}) + Df_{\vec{a}}\vec{h}$ where $Df_{\vec{a}}$ is a linear map. How should the \approx be made rigorous? In one-variable calculus, for twice-differentiable functions one has the Taylor theorem: $f(x + h) = f(x) + hf'(x) + \frac{h^2}{2!}f''(\theta)$. In other words, the "Error term" is of second-order. Thus, $\frac{f(x+h)-f(x)-hf'(x)}{h} \rightarrow 0$. (Even if f is merely differentiable, this limit still holds.)
- Def: Let $f: S \subset \mathbb{R}^n \to \mathbb{R}$ be a scalar field and let $\vec{a} \in S$ be an interior point, i.e., there is an open ball $B(\vec{a}, r) \subset S$. f is said to be differentiable at \vec{a} if there exists a linear map $Df_{\vec{a}}: \mathbb{R}^n \to \mathbb{R}$ such that for every $\|\vec{h}\| < r$, $\lim_{\vec{h}\to\vec{0}} \frac{f(\vec{a}+\vec{h})-f(\vec{a})-Df_{\vec{a}}(\vec{h})}{\|\vec{h}\|} = 0$. Alternatively, the error term is of the form $|\vec{h}|E(\vec{a},\vec{h}) = f(\vec{a}+\vec{h}) f(\vec{a}) Df_{\vec{a}}(\vec{h})$, where $E(\vec{a},\vec{h}) \to 0$ as $\vec{h} \to \vec{0}$. The linear map

- We want to define differentiability to mean that the linear approximation holds, i.e., $f(\vec{a} + \vec{h}) \approx f(\vec{a}) + Df_{\vec{a}}\vec{h}$ where $Df_{\vec{a}}$ is a linear map. How should the \approx be made rigorous? In one-variable calculus, for twice-differentiable functions one has the Taylor theorem: $f(x + h) = f(x) + hf'(x) + \frac{h^2}{2!}f''(\theta)$. In other words, the "Error term" is of second-order. Thus, $\frac{f(x+h)-f(x)-hf'(x)}{h} \rightarrow 0$. (Even if f is merely differentiable, this limit still holds.)
- Def: Let $f: S \subset \mathbb{R}^n \to \mathbb{R}$ be a scalar field and let $\vec{a} \in S$ be an interior point, i.e., there is an open ball $B(\vec{a}, r) \subset S$. f is said to be differentiable at \vec{a} if there exists a linear map $Df_{\vec{a}}: \mathbb{R}^n \to \mathbb{R}$ such that for every $\|\vec{h}\| < r$, $\lim_{\vec{h}\to \vec{0}} \frac{f(\vec{a}+\vec{h})-f(\vec{a})-Df_{\vec{a}}(\vec{h})}{\|\vec{h}\|} = 0$. Alternatively, the error term is of the form $|\vec{h}|E(\vec{a},\vec{h}) = f(\vec{a}+\vec{h}) f(\vec{a}) Df_{\vec{a}}(\vec{h})$, where $E(\vec{a},\vec{h}) \to 0$ as $\vec{h} \to \vec{0}$. The linear map $Df_{\vec{a}}$ is called

- We want to define differentiability to mean that the linear approximation holds, i.e., $f(\vec{a} + \vec{h}) \approx f(\vec{a}) + Df_{\vec{a}}\vec{h}$ where $Df_{\vec{a}}$ is a linear map. How should the \approx be made rigorous? In one-variable calculus, for twice-differentiable functions one has the Taylor theorem: $f(x + h) = f(x) + hf'(x) + \frac{h^2}{2!}f''(\theta)$. In other words, the "Error term" is of second-order. Thus, $\frac{f(x+h)-f(x)-hf'(x)}{h} \rightarrow 0$. (Even if f is merely differentiable, this limit still holds.)
- Def: Let f: S ⊂ ℝⁿ → ℝ be a scalar field and let a ∈ S be an interior point, i.e., there is an open ball B(a, r) ⊂ S. f is said to be differentiable at a if there exists a linear map Df_a: ℝⁿ → ℝ such that for every || h || < r, lim_{h→0} f(a+h)-f(a)-Df_a(h)/|| = 0. Alternatively, the error term is of the form |h|E(a, h) = f(a + h) f(a) Df_a(h), where E(a, h) → 0 as h → 0. The linear map Df_a is called the total derivative of f at a

- We want to define differentiability to mean that the linear approximation holds, i.e., $f(\vec{a} + \vec{h}) \approx f(\vec{a}) + Df_{\vec{a}}\vec{h}$ where $Df_{\vec{a}}$ is a linear map. How should the \approx be made rigorous? In one-variable calculus, for twice-differentiable functions one has the Taylor theorem: $f(x + h) = f(x) + hf'(x) + \frac{h^2}{2!}f''(\theta)$. In other words, the "Error term" is of second-order. Thus, $\frac{f(x+h)-f(x)-hf'(x)}{h} \to 0$. (Even if f is merely differentiable, this limit still holds.)
- Def: Let $f: S \subset \mathbb{R}^n \to \mathbb{R}$ be a scalar field and let $\vec{a} \in S$ be an interior point, i.e., there is an open ball $B(\vec{a}, r) \subset S$. f is said to be *differentiable* at \vec{a} if there exists a linear map $Df_{\vec{a}} : \mathbb{R}^n \to \mathbb{R}$ such that for every $\|\vec{h}\| < r$, $\lim_{\vec{h}\to\vec{0}} \frac{f(\vec{a}+\vec{h})-f(\vec{a})-Df_{\vec{a}}(\vec{h})}{\|\vec{b}\|} = 0.$ Alternatively, the error term is of the form $|\vec{h}|E(\vec{a},\vec{h}) = f(\vec{a}+\vec{h}) - f(\vec{a}) - Df_{\vec{a}}(\vec{h})$, where $E(\vec{a}, \vec{h}) \rightarrow 0$ as $\vec{h} \rightarrow \vec{0}$. The linear map $Df_{\vec{a}}$ is called the *total derivative* of f at \vec{a} or simply, the derivative map of f at \vec{a} .

Computing the total derivative

æ

• Theorem:

æ

• Theorem: Let f be differentiable

• Theorem: Let f be differentiable at the interior point \vec{a}

• Theorem: Let f be differentiable at the interior point \vec{a} with total derivative $Df_{\vec{a}}$.

• Theorem: Let f be differentiable at the interior point \vec{a} with total derivative $Df_{\vec{a}}$. Then $\nabla_{\vec{v}}f(\vec{a})$ exists for all \vec{v}
• Theorem: Let f be differentiable at the interior point \vec{a} with total derivative $Df_{\vec{a}}$. Then $\nabla_{\vec{v}}f(\vec{a})$ exists for all \vec{v} and $Df_{\vec{a}}(\vec{h}) = \nabla_{\vec{h}}f(\vec{a})$.

• Theorem: Let f be differentiable at the interior point \vec{a} with total derivative $Df_{\vec{a}}$. Then $\nabla_{\vec{v}}f(\vec{a})$ exists for all \vec{v} and $Df_{\vec{a}}(\vec{h}) = \nabla_{\vec{h}}f(\vec{a})$. Moreover, $\nabla_{\vec{v}}f(\vec{a}) = \langle \nabla f(\vec{a}), \vec{h} \rangle$, where

• Theorem: Let f be differentiable at the interior point \vec{a} with total derivative $Df_{\vec{a}}$. Then $\nabla_{\vec{v}}f(\vec{a})$ exists for all \vec{v} and $Df_{\vec{a}}(\vec{h}) = \nabla_{\vec{h}}f(\vec{a})$. Moreover, $\nabla_{\vec{v}}f(\vec{a}) = \langle \nabla f(\vec{a}), \vec{h} \rangle$, where ∇f is the gradient of f.

• Theorem: Let f be differentiable at the interior point \vec{a} with total derivative $Df_{\vec{a}}$. Then $\nabla_{\vec{v}}f(\vec{a})$ exists for all \vec{v} and $Df_{\vec{a}}(\vec{h}) = \nabla_{\vec{h}}f(\vec{a})$. Moreover, $\nabla_{\vec{v}}f(\vec{a}) = \langle \nabla f(\vec{a}), \vec{h} \rangle$, where ∇f is the gradient of f. As a consequence,

• Theorem: Let f be differentiable at the interior point \vec{a} with total derivative $Df_{\vec{a}}$. Then $\nabla_{\vec{v}}f(\vec{a})$ exists for all \vec{v} and $Df_{\vec{a}}(\vec{h}) = \nabla_{\vec{h}}f(\vec{a})$. Moreover, $\nabla_{\vec{v}}f(\vec{a}) = \langle \nabla f(\vec{a}), \vec{h} \rangle$, where ∇f is the gradient of f. As a consequence, $Df_{\vec{a}}$ is unique

• Theorem: Let f be differentiable at the interior point \vec{a} with total derivative $Df_{\vec{a}}$. Then $\nabla_{\vec{v}}f(\vec{a})$ exists for all \vec{v} and $Df_{\vec{a}}(\vec{h}) = \nabla_{\vec{h}}f(\vec{a})$. Moreover, $\nabla_{\vec{v}}f(\vec{a}) = \langle \nabla f(\vec{a}), \vec{h} \rangle$, where ∇f is the gradient of f. As a consequence, $Df_{\vec{a}}$ is unique if it exists.

- Theorem: Let f be differentiable at the interior point \vec{a} with total derivative $Df_{\vec{a}}$. Then $\nabla_{\vec{v}}f(\vec{a})$ exists for all \vec{v} and $Df_{\vec{a}}(\vec{h}) = \nabla_{\vec{h}}f(\vec{a})$. Moreover, $\nabla_{\vec{v}}f(\vec{a}) = \langle \nabla f(\vec{a}), \vec{h} \rangle$, where ∇f is the gradient of f. As a consequence, $Df_{\vec{a}}$ is unique if it exists.
- In other words,

- Theorem: Let f be differentiable at the interior point \vec{a} with total derivative $Df_{\vec{a}}$. Then $\nabla_{\vec{v}}f(\vec{a})$ exists for all \vec{v} and $Df_{\vec{a}}(\vec{h}) = \nabla_{\vec{h}}f(\vec{a})$. Moreover, $\nabla_{\vec{v}}f(\vec{a}) = \langle \nabla f(\vec{a}), \vec{h} \rangle$, where ∇f is the gradient of f. As a consequence, $Df_{\vec{a}}$ is unique if it exists.
- In other words, for a differentiable function,

- Theorem: Let f be differentiable at the interior point \vec{a} with total derivative $Df_{\vec{a}}$. Then $\nabla_{\vec{v}}f(\vec{a})$ exists for all \vec{v} and $Df_{\vec{a}}(\vec{h}) = \nabla_{\vec{h}}f(\vec{a})$. Moreover, $\nabla_{\vec{v}}f(\vec{a}) = \langle \nabla f(\vec{a}), \vec{h} \rangle$, where ∇f is the gradient of f. As a consequence, $Df_{\vec{a}}$ is unique if it exists.
- In other words, for a differentiable function, ∇_vf(a) is linear in v,

- Theorem: Let f be differentiable at the interior point \vec{a} with total derivative $Df_{\vec{a}}$. Then $\nabla_{\vec{v}}f(\vec{a})$ exists for all \vec{v} and $Df_{\vec{a}}(\vec{h}) = \nabla_{\vec{h}}f(\vec{a})$. Moreover, $\nabla_{\vec{v}}f(\vec{a}) = \langle \nabla f(\vec{a}), \vec{h} \rangle$, where ∇f is the gradient of f. As a consequence, $Df_{\vec{a}}$ is unique if it exists.
- In other words, for a differentiable function, ∇_vf(a) is linear in v, and hence one simply

- Theorem: Let f be differentiable at the interior point \vec{a} with total derivative $Df_{\vec{a}}$. Then $\nabla_{\vec{v}}f(\vec{a})$ exists for all \vec{v} and $Df_{\vec{a}}(\vec{h}) = \nabla_{\vec{h}}f(\vec{a})$. Moreover, $\nabla_{\vec{v}}f(\vec{a}) = \langle \nabla f(\vec{a}), \vec{h} \rangle$, where ∇f is the gradient of f. As a consequence, $Df_{\vec{a}}$ is unique if it exists.
- In other words, for a differentiable function, ∇_vf(a) is linear in v, and hence one simply needs to know

- Theorem: Let f be differentiable at the interior point \vec{a} with total derivative $Df_{\vec{a}}$. Then $\nabla_{\vec{v}}f(\vec{a})$ exists for all \vec{v} and $Df_{\vec{a}}(\vec{h}) = \nabla_{\vec{h}}f(\vec{a})$. Moreover, $\nabla_{\vec{v}}f(\vec{a}) = \langle \nabla f(\vec{a}), \vec{h} \rangle$, where ∇f is the gradient of f. As a consequence, $Df_{\vec{a}}$ is unique if it exists.
- In other words, for a differentiable function, $\nabla_{\vec{v}} f(\vec{a})$ is *linear* in \vec{v} , and hence one simply needs to know the finitely many numbers $\frac{\partial f}{\partial x_i}(\vec{a})$

- Theorem: Let f be differentiable at the interior point \vec{a} with total derivative $Df_{\vec{a}}$. Then $\nabla_{\vec{v}}f(\vec{a})$ exists for all \vec{v} and $Df_{\vec{a}}(\vec{h}) = \nabla_{\vec{h}}f(\vec{a})$. Moreover, $\nabla_{\vec{v}}f(\vec{a}) = \langle \nabla f(\vec{a}), \vec{h} \rangle$, where ∇f is the gradient of f. As a consequence, $Df_{\vec{a}}$ is unique if it exists.
- In other words, for a differentiable function, $\nabla_{\vec{v}} f(\vec{a})$ is *linear* in \vec{v} , and hence one simply needs to know the finitely many numbers $\frac{\partial f}{\partial x_i}(\vec{a})$ to compute all (infinitely many)

- Theorem: Let f be differentiable at the interior point \vec{a} with total derivative $Df_{\vec{a}}$. Then $\nabla_{\vec{v}}f(\vec{a})$ exists for all \vec{v} and $Df_{\vec{a}}(\vec{h}) = \nabla_{\vec{h}}f(\vec{a})$. Moreover, $\nabla_{\vec{v}}f(\vec{a}) = \langle \nabla f(\vec{a}), \vec{h} \rangle$, where ∇f is the gradient of f. As a consequence, $Df_{\vec{a}}$ is unique if it exists.
- In other words, for a differentiable function, $\nabla_{\vec{v}} f(\vec{a})$ is *linear* in \vec{v} , and hence one simply needs to know the finitely many numbers $\frac{\partial f}{\partial x_i}(\vec{a})$ to compute all (infinitely many) directional derivatives at the interior point \vec{a} .

æ

• Since *f* is differentiable,

æ

• Since f is differentiable, $f(\vec{a} + \vec{h}) = f(\vec{a}) + Df_{\vec{a}}(\vec{h}) + ||\vec{h}||E(\vec{a},\vec{h})$ where $E \to 0$ as $\vec{h} \to \vec{0}$.

• Since f is differentiable, $f(\vec{a} + \vec{h}) = f(\vec{a}) + Df_{\vec{a}}(\vec{h}) + ||\vec{h}||E(\vec{a}, \vec{h})$ where $E \to 0$ as $\vec{h} \to \vec{0}$. • Take $\vec{h} = h\vec{v}$

Since f is differentiable, f(a+h) = f(a) + Df_a(h) + ||h||E(a,h) where E → 0 as h→ 0. Take h = hv for a small enough h.

• Since f is differentiable, $f(\vec{a} + \vec{h}) = f(\vec{a}) + Df_{\vec{a}}(\vec{h}) + ||\vec{h}|| E(\vec{a}, \vec{h})$ where $E \to 0$ as $\vec{h} \to \vec{0}$. • Take $\vec{h} = h\vec{v}$ for a small enough h. Then $\frac{f(\vec{a} + h\vec{v}) - f(\vec{a})}{h} - Df_{\vec{a}}(\vec{v}) = \frac{|||h|||\vec{v}||||E(\vec{a}, h\vec{v})}{h}$.

• Since f is differentiable, $f(\vec{a} + \vec{h}) = f(\vec{a}) + Df_{\vec{a}}(\vec{h}) + ||\vec{h}|| E(\vec{a}, \vec{h})$ where $E \to 0$ as $\vec{h} \to \vec{0}$. • Take $\vec{h} = h\vec{v}$ for a small enough h. Then $\frac{f(\vec{a} + h\vec{v}) - f(\vec{a})}{h} - Df_{\vec{a}}(\vec{v}) = \frac{|||h|||\vec{v}||||E(\vec{a}, h\vec{v})}{h}$. By the Sandwich law,

• Since f is differentiable, $f(\vec{a} + \vec{h}) = f(\vec{a}) + Df_{\vec{a}}(\vec{h}) + ||\vec{h}||E(\vec{a},\vec{h})$ where $E \to 0$ as $\vec{h} \to \vec{0}$. • Take $\vec{h} = h\vec{v}$ for a small enough h. Then $\frac{f(\vec{a}+h\vec{v})-f(\vec{a})}{h} - Df_{\vec{a}}(\vec{v}) = \frac{|||h|||\vec{v}||||E(\vec{a},h\vec{v})}{h}$. By the Sandwich law, the RHS goes to 0.

Since f is differentiable, f(a+h) = f(a) + Df_a(h) + ||h||E(a,h) where E → 0 as h→ 0. Take h = hv for a small enough h. Then <u>f(a+hv)-f(a)</u> - Df_a(v) = <u>||h||v|||E(a,hv)</u>. By the Sandwich law, the RHS goes to 0. Hence the limit of

Since f is differentiable, f(a+h) = f(a) + Df_a(h) + ||h||E(a,h) where E → 0 as h→ 0. Take h = hv for a small enough h. Then f(a+hv)-f(a)/h - Df_a(v) = |||h|||v|||E(a,hv)/h. By the Sandwich law, the RHS goes to 0. Hence the limit of the LHS exists and

Since f is differentiable, f(a+h) = f(a) + Df_a(h) + ||h||E(a,h) where E → 0 as h→ 0. Take h = hv for a small enough h. Then f(a+hv)-f(a)/h - Df_a(v) = |||h|||v|||E(a,hv)/h. By the Sandwich law, the RHS goes to 0. Hence the limit of the LHS exists and equals 0.

Since f is differentiable, f(a+h) = f(a) + Df_a(h) + ||h||E(a,h) where E → 0 as h→ 0. Take h = hv for a small enough h. Then <u>f(a+hv)-f(a)</u> - Df_a(v) = <u>|||h|||v|||E(a,hv)</u>. By the Sandwich law, the RHS goes to 0. Hence the limit of the LHS exists and equals 0.

This means that

Since f is differentiable, f(a+h) = f(a) + Df_a(h) + ||h||E(a,h) where E → 0 as h→ 0. Take h = hv for a small enough h. Then <u>f(a+hv)-f(a)</u> - Df_a(v) = <u>|||h|||v|||E(a,hv)</u>. By the Sandwich law, the RHS goes to 0. Hence the limit of the LHS exists and equals 0.

• This means that $\nabla_{\vec{v}} f$ exists and

• Since f is differentiable, $f(\vec{a} + \vec{h}) = f(\vec{a}) + Df_{\vec{a}}(\vec{h}) + ||\vec{h}|| E(\vec{a}, \vec{h})$ where $E \to 0$ as $\vec{h} \to \vec{0}$. • Take $\vec{h} = h\vec{v}$ for a small enough h. Then $\frac{f(\vec{a}+h\vec{v})-f(\vec{a})}{h} - Df_{\vec{a}}(\vec{v}) = \frac{|||h|||\vec{v}|||E(\vec{a},h\vec{v})}{h}$. By the Sandwich law, the RHS goes to 0. Hence the limit of the LHS exists and equals 0.

• This means that $\nabla_{\vec{v}} f$ exists and equals $Df(\vec{v})$.

Since f is differentiable, f(a+h) = f(a) + Df_a(h) + ||h||E(a, h) where E → 0 as h → 0. Take h = hv for a small enough h. Then <u>f(a+hv)-f(a)</u> - Df_a(v) = <u>|||h|||v|||E(a,hv)</u>. By the Sandwich law, the RHS goes to 0. Hence the limit of the LHS exists and equals 0.

- This means that $\nabla_{\vec{v}} f$ exists and equals $Df(\vec{v})$.
- Since Df is linear,

Since f is differentiable, f(a+h) = f(a) + Df_a(h) + ||h||E(a, h) where E → 0 as h→ 0.
Take h = hv for a small enough h. Then <u>f(a+hv)-f(a)</u> - Df_a(v) = <u>|||h|||v|||E(a,hv)</u>. By the Sandwich law, the RHS goes to 0. Hence the limit of the LHS exists and equals 0.

• This means that $\nabla_{\vec{v}} f$ exists and equals $Df(\vec{v})$.

• Since
$$Df$$
 is linear,
 $Df(\vec{v}) = \sum_{i} v_i Df(\vec{e_i}) = \sum_{i} v_i \nabla_{\vec{e_i}} f = \langle \nabla f, \vec{v} \rangle.$

Differentiability implies continuity

9/10

æ

• Theorem: If a scalar field

• Theorem: If a scalar field f is differentiable at an interior point \vec{a}

• Theorem: If a scalar field *f* is differentiable at an interior point *a* it is continuous at *a*.

Differentiability implies continuity

- Theorem: If a scalar field *f* is differentiable at an interior point *a* it is continuous at *a*.
- Proof:
- Theorem: If a scalar field *f* is differentiable at an interior point *a* it is continuous at *a*.
- Proof: $|f(\vec{a} + \vec{h}) f(\vec{a})| = |\langle \nabla f, \vec{h} \rangle + ||\vec{h}||E(\vec{a}, \vec{h})|$ which

- Theorem: If a scalar field *f* is differentiable at an interior point *a* it is continuous at *a*.
- Proof: $|f(\vec{a} + \vec{h}) f(\vec{a})| = |\langle \nabla f, \vec{h} \rangle + ||\vec{h}||E(\vec{a}, \vec{h})|$ which by the triange inequality is less than

- Theorem: If a scalar field *f* is differentiable at an interior point *a* it is continuous at *a*.
- Proof: $|f(\vec{a} + \vec{h}) f(\vec{a})| = |\langle \nabla f, \vec{h} \rangle + ||\vec{h}||E(\vec{a}, \vec{h})|$ which by the triange inequality is less than $|\langle \nabla f, \vec{h} \rangle| + ||\vec{h}||E(\vec{a}, \vec{h})|$.

- Theorem: If a scalar field *f* is differentiable at an interior point *a* it is continuous at *a*.
- Proof: $|f(\vec{a} + \vec{h}) f(\vec{a})| = |\langle \nabla f, \vec{h} \rangle + ||\vec{h}||E(\vec{a}, \vec{h})|$ which by the triange inequality is less than $|\langle \nabla f, \vec{h} \rangle| + ||\vec{h}||E(\vec{a}, \vec{h})|$. Now the Cauchy-Schwarz inequality implies that

- Theorem: If a scalar field *f* is differentiable at an interior point *a* it is continuous at *a*.
- Proof: |f(*a* + *h*) f(*a*)| = |⟨∇f, *h*⟩ + ||*h*||E(*a*, *h*)| which by the triange inequality is less than |⟨∇f, *h*⟩| + ||*h*|||E(*a*, *h*)|. Now the Cauchy-Schwarz inequality implies that the first term is less than

- Theorem: If a scalar field *f* is differentiable at an interior point *a* it is continuous at *a*.
- Proof: |f(*a* + *h*) f(*a*)| = |⟨∇f, *h*⟩ + ||*h*||E(*a*, *h*)| which by the triange inequality is less than |⟨∇f, *h*⟩| + ||*h*|||E(*a*, *h*)|. Now the Cauchy-Schwarz inequality implies that the first term is less than ||∇f|||*h*||.

- Theorem: If a scalar field *f* is differentiable at an interior point *a* it is continuous at *a*.
- Proof: |f(*a* + *h*) f(*a*)| = |⟨∇f, *h*⟩ + ||*h*||E(*a*, *h*)| which by the triange inequality is less than |⟨∇f, *h*⟩| + ||*h*|||E(*a*, *h*)|. Now the Cauchy-Schwarz inequality implies that the first term is less than ||∇f|||*h*||. Therefore by limit laws,

- Theorem: If a scalar field *f* is differentiable at an interior point *a* it is continuous at *a*.
- Proof: |f(*a* + *h*) f(*a*)| = |⟨∇f, *h*⟩ + ||*h*||E(*a*, *h*)| which by the triange inequality is less than |⟨∇f, *h*⟩| + ||*h*|||E(*a*, *h*)|. Now the Cauchy-Schwarz inequality implies that the first term is less than ||∇f|||*h*||. Therefore by limit laws, the RHS goes to 0.

- Theorem: If a scalar field *f* is differentiable at an interior point *a* it is continuous at *a*.
- Proof: |f(*a* + *h*) f(*a*)| = |⟨∇f, *h*⟩ + ||*h*||E(*a*, *h*)| which by the triange inequality is less than |⟨∇f, *h*⟩| + ||*h*|||E(*a*, *h*)|. Now the Cauchy-Schwarz inequality implies that the first term is less than ||∇f|||*h*||. Therefore by limit laws, the RHS goes to 0. Hence by the Sandwich law

- Theorem: If a scalar field *f* is differentiable at an interior point *a* it is continuous at *a*.
- Proof: |f(*a* + *h*) f(*a*)| = |⟨∇f, *h*⟩ + ||*h*||E(*a*, *h*)| which by the triange inequality is less than |⟨∇f, *h*⟩| + ||*h*||E(*a*, *h*)|. Now the Cauchy-Schwarz inequality implies that the first term is less than ||∇f|||*h*||. Therefore by limit laws, the RHS goes to 0. Hence by the Sandwich law so does the LHS.

æ

• Let
$$\|\vec{v}\| = 1$$
.

æ

• Let $\|ec{v}\| = 1$. The directional derivative $abla_{ec{v}} f$ is

→ < ∃→

• Let $\|\vec{v}\| = 1$. The directional derivative $\nabla_{\vec{v}} f$ is $\langle \nabla f, \vec{v} \rangle$.

3 N K 3 N

• Let $\|\vec{v}\| = 1$. The directional derivative $\nabla_{\vec{v}} f$ is $\langle \nabla f, \vec{v} \rangle$. Hence by Cauchy-Schwarz, Let ||v|| = 1. The directional derivative ∇vf is ⟨∇f, v⟩. Hence by Cauchy-Schwarz, |∇vf| ≤ ||∇f|| with equality • Let $\|\vec{v}\| = 1$. The directional derivative $\nabla_{\vec{v}} f$ is $\langle \nabla f, \vec{v} \rangle$. Hence by Cauchy-Schwarz, $|\nabla_{\vec{v}} f| \leq \|\nabla f\|$ with equality if and only if $\vec{v} = \lambda \nabla f$. • Let $\|\vec{v}\| = 1$. The directional derivative $\nabla_{\vec{v}} f$ is $\langle \nabla f, \vec{v} \rangle$. Hence by Cauchy-Schwarz, $|\nabla_{\vec{v}} f| \leq \|\nabla f\|$ with equality if and only if $\vec{v} = \lambda \nabla f$. In other words,

• Let $\|\vec{v}\| = 1$. The directional derivative $\nabla_{\vec{v}} f$ is $\langle \nabla f, \vec{v} \rangle$. Hence by Cauchy-Schwarz, $|\nabla_{\vec{v}} f| \leq \|\nabla f\|$ with equality if and only if $\vec{v} = \lambda \nabla f$. In other words, the direction of steepest *ascent*

• Let $\|\vec{v}\| = 1$. The directional derivative $\nabla_{\vec{v}} f$ is $\langle \nabla f, \vec{v} \rangle$. Hence by Cauchy-Schwarz, $|\nabla_{\vec{v}} f| \leq \|\nabla f\|$ with equality if and only if $\vec{v} = \lambda \nabla f$. In other words, the direction of steepest *ascent* is ∇f and

 Let ||v|| = 1. The directional derivative ∇v f is ⟨∇f, v⟩. Hence by Cauchy-Schwarz, |∇v f| ≤ ||∇f|| with equality if and only if v = λ∇f. In other words, the direction of steepest *ascent* is ∇f and that of steepest *descent*

 Let ||v|| = 1. The directional derivative ∇v f is (∇f, v). Hence by Cauchy-Schwarz, |∇v f| ≤ ||∇f|| with equality if and only if v = λ∇f. In other words, the direction of steepest *ascent* is ∇f and that of steepest *descent* is -∇f.

- Let $\|\vec{v}\| = 1$. The directional derivative $\nabla_{\vec{v}} f$ is $\langle \nabla f, \vec{v} \rangle$. Hence by Cauchy-Schwarz, $|\nabla_{\vec{v}} f| \leq \|\nabla f\|$ with equality if and only if $\vec{v} = \lambda \nabla f$. In other words, the direction of steepest *ascent* is ∇f and that of steepest *descent* is $-\nabla f$.
- For instance,

- Let ||v|| = 1. The directional derivative ∇v f is ⟨∇f, v⟩. Hence by Cauchy-Schwarz, |∇v f| ≤ ||∇f|| with equality if and only if v = λ∇f. In other words, the direction of steepest *ascent* is ∇f and that of steepest *descent* is −∇f.
- For instance, if $z = 25 (x^2 + y^2)$ is the height

- Let ||v|| = 1. The directional derivative ∇v f is ⟨∇f, v⟩. Hence by Cauchy-Schwarz, |∇v f| ≤ ||∇f|| with equality if and only if v = λ∇f. In other words, the direction of steepest *ascent* is ∇f and that of steepest *descent* is −∇f.
- For instance, if $z = 25 (x^2 + y^2)$ is the height of a mountain,

- Let ||v|| = 1. The directional derivative ∇v f is ⟨∇f, v⟩. Hence by Cauchy-Schwarz, |∇v f| ≤ ||∇f|| with equality if and only if v = λ∇f. In other words, the direction of steepest *ascent* is ∇f and that of steepest *descent* is −∇f.
- For instance, if $z = 25 (x^2 + y^2)$ is the height of a mountain, and if we are

- Let ||v|| = 1. The directional derivative ∇v f is ⟨∇f, v⟩. Hence by Cauchy-Schwarz, |∇v f| ≤ ||∇f|| with equality if and only if v = λ∇f. In other words, the direction of steepest *ascent* is ∇f and that of steepest *descent* is −∇f.
- For instance, if $z = 25 (x^2 + y^2)$ is the height of a mountain, and if we are located at (3,4) then

- Let ||v|| = 1. The directional derivative ∇v f is ⟨∇f, v⟩. Hence by Cauchy-Schwarz, |∇v f| ≤ ||∇f|| with equality if and only if v = λ∇f. In other words, the direction of steepest *ascent* is ∇f and that of steepest *descent* is −∇f.
- For instance, if z = 25 (x² + y²) is the height of a mountain, and if we are located at (3, 4) then ∇f = (-6, -8) is the direction of

- Let ||v|| = 1. The directional derivative ∇v f is ⟨∇f, v⟩. Hence by Cauchy-Schwarz, |∇v f| ≤ ||∇f|| with equality if and only if v = λ∇f. In other words, the direction of steepest *ascent* is ∇f and that of steepest *descent* is −∇f.
- For instance, if z = 25 (x² + y²) is the height of a mountain, and if we are located at (3, 4) then ∇f = (-6, -8) is the direction of steepest ascent.

- Let ||v|| = 1. The directional derivative ∇v f is ⟨∇f, v⟩. Hence by Cauchy-Schwarz, |∇v f| ≤ ||∇f|| with equality if and only if v = λ∇f. In other words, the direction of steepest *ascent* is ∇f and that of steepest *descent* is −∇f.
- For instance, if z = 25 (x² + y²) is the height of a mountain, and if we are located at (3, 4) then ∇f = (-6, -8) is the direction of steepest ascent.
- This property

- Let ||v|| = 1. The directional derivative ∇v f is ⟨∇f, v⟩. Hence by Cauchy-Schwarz, |∇v f| ≤ ||∇f|| with equality if and only if v = λ∇f. In other words, the direction of steepest *ascent* is ∇f and that of steepest *descent* is −∇f.
- For instance, if z = 25 (x² + y²) is the height of a mountain, and if we are located at (3, 4) then ∇f = (-6, -8) is the direction of steepest ascent.
- This property leads to a nice algorithm

- Let ||v|| = 1. The directional derivative ∇v f is ⟨∇f, v⟩. Hence by Cauchy-Schwarz, |∇v f| ≤ ||∇f|| with equality if and only if v = λ∇f. In other words, the direction of steepest *ascent* is ∇f and that of steepest *descent* is −∇f.
- For instance, if z = 25 (x² + y²) is the height of a mountain, and if we are located at (3, 4) then ∇f = (-6, -8) is the direction of steepest ascent.
- This property leads to a nice algorithm in machine learning

- Let $\|\vec{v}\| = 1$. The directional derivative $\nabla_{\vec{v}} f$ is $\langle \nabla f, \vec{v} \rangle$. Hence by Cauchy-Schwarz, $|\nabla_{\vec{v}} f| \leq \|\nabla f\|$ with equality if and only if $\vec{v} = \lambda \nabla f$. In other words, the direction of steepest *ascent* is ∇f and that of steepest *descent* is $-\nabla f$.
- For instance, if z = 25 (x² + y²) is the height of a mountain, and if we are located at (3, 4) then ∇f = (-6, -8) is the direction of steepest ascent.
- This property leads to a nice algorithm in machine learning called "gradient descent"

- Let $\|\vec{v}\| = 1$. The directional derivative $\nabla_{\vec{v}} f$ is $\langle \nabla f, \vec{v} \rangle$. Hence by Cauchy-Schwarz, $|\nabla_{\vec{v}} f| \leq \|\nabla f\|$ with equality if and only if $\vec{v} = \lambda \nabla f$. In other words, the direction of steepest *ascent* is ∇f and that of steepest *descent* is $-\nabla f$.
- For instance, if z = 25 (x² + y²) is the height of a mountain, and if we are located at (3, 4) then ∇f = (-6, -8) is the direction of steepest ascent.
- This property leads to a nice algorithm in machine learning called "gradient descent" to minimise a function.