
Lecture 26 - UM 102 (Spring 2021)

Vamsi Pritham Pingali

IISc

Vamsi Pritham Pingali Lecture 26 1/9



Recap

With counterexamples, demonstrated that directional
derivatives are not good enough.

Defined differentiability as the linear approximation.

Proved that differentiability implies continuity.

Gave a geometric meaning to the gradient.
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A digression into limits

To prove that lim(x ,y)→(0,0)
xy2

x2+y4 does not exist we informally

said that along y = 0 and x = y2 we get different limits.
Rigorously, we proved by contradiction.

The following theorem allows us to almost directly argue
non-existence using different paths.

Theorem: Suppose lim(x ,y)→(a,b) f (x , y) exists and equals L.
If xn → a, yn → b where (xn, yn) lie in the domain of f for all
n, then limn→∞ f (xn, yn) exists and equals L.

Proof: Given ε > 0 choose δ > 0 such that whenever
0 < ‖(x , y)− (a, b)‖ < δ and (x , y) lie in the domain of f ,
|f (x , y)− L| < ε. Now choose N large enough so that
whenever n > N, |xn − a| < δ

2 and |yn − b| < δ
2 . Then

‖(xn, yn)− (a, b)‖ < δ and hence for all n > N,
|f (xn, yn)− L| < ε.
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If xn → a, yn → b where (xn, yn) lie in the domain of f for all
n, then limn→∞ f (xn, yn) exists and equals L.

Proof: Given ε > 0 choose δ > 0 such that whenever
0 < ‖(x , y)− (a, b)‖ < δ and (x , y) lie in the domain of f ,
|f (x , y)− L| < ε. Now choose N large enough

so that
whenever n > N, |xn − a| < δ
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A digression into limits

The above theorem makes the proof of non-existence much
easier. For instance in the above example, we can simply
choose sequences yn = 0, xn = 1

n and yn = 1
n , xn = y2n = 1

n2

and calculate the limits to get the desired result.

The same theorem can be stated for more than two variables
too.

In fact, if the limits of f (xn, yn) exist and are equal for all such
convegent sequences xn → a, yn → b, then by contradiction,
we can conclude that the limit of f (x , y) exists in the
multivariable sense (HW).
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A sufficient condition for differentiability

Differentiability seems like a pain in the neck (if not
elsewhere) to check.

Fortunately, we have a sufficient (but not necessary) condition
that helps us.

Theorem: Suppose f : S ⊂ Rn → R is a scalar field and ~a ∈ S
is an interior point. Suppose the partials fx1 , fx2 , . . . , fxn exist
in an open ball B(~a, r) ⊂ S and they are continuous at ~a.
Then f is differentiable in the multivariable sense at ~a.

Such functions are said to be continuously differentiable or C1.
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Examples

If f (x), g(y) are differentiable functions on R with continuous
derivatives then h(x , y) = f (x)g(y) is differentiable in the
multivariable sense. Indeed, hx , hy exist and by continuity
laws, they are continuous.

By the one-variable chain rule and continuity laws, a linear
combination of functions like f (x)kg(y)l is also differentiable.

As a consequence, polynomials are differentiable on all of Rn.

Rational functions are differentiable wherever their
denominator is non-zero.
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Proof

The only candidate for the total derivative at ~a is surely the
linear map ~v → 〈∇f (~a), ~v〉.
Let us prove for the special case of f (x , y) first.

f (a + h, b + k)− f (a, b) must be proved to be
∇~v f (a, b) + ‖(h, k)‖E where E → 0 as (h, k)→ (0, 0).

f (a + h, b + k)− f (a, b) =
f (a + h, b + k)− f (a, b + k) + f (a, b + k)− f (a, b) = I + II .

I : By the Lagrange MVT I = ∂f
∂x (a + θ1, b + k)h and

II = ∂f
∂y (a, b + θ2)k , where θ1 ∈ (a, a + h) and θ2 ∈ (b, b + k).
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Proof

Roughly speaking, when h, k are small, I is almost fx(a, b)h
and II is almost fy (a, b)k by the assumption of continuity of
the partial derivatives.

More rigorously,
f (a + h, b + k)− f (a, b)− fx(a, b)h − fy (a, b)k =
(I − fx(a, b)h) + (II − fy (a, b)k). Hence, when ‖(h, k)‖ < δ
(which immediately implies that |h| < δ, |k | < δ), then by
continuity of fx , fy , |fx(a + θ1, b + k)− fx(a, b)| < ε

2 and
|fy (a, b + θ2)− fy (a, b)| < ε

2 . Thus |(I − fx(a, b)h)| < |h| ε2
and |II − fy (a, b)k | < |k| ε2 .

Thus,
|f (a+h,b+k)−f (a,b)−fx (a,b)h−fy (a,b)k|

‖(h,k)‖ < ε. This implies the
result in this case.
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Proof

When we have n variables x1, . . . , xn, the proof is similar.

Indeed, write f (a1 + h1, . . .)− f (a, b) as a sum I + II + . . .
where I = f (a1 + h1, . . .)− f (a1, . . .), etc.

For each of the n summands, use Lagrange’s MVT to get
partials into the picture.

For each of the partials, we can replace them by their values
at ~a at the cost of an error ε

n provided ~h is small enough. The
same manipulations as before show what we need.
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