# Lecture 26 - UM 102 (Spring 2021) 

Vamsi Pritham Pingali

IISc

## Recap

## Recap

- With counterexamples,


## Recap

- With counterexamples, demonstrated that
- With counterexamples, demonstrated that directional derivatives
- With counterexamples, demonstrated that directional derivatives are not good enough.
- With counterexamples, demonstrated that directional derivatives are not good enough.
- Defined differentiability
- With counterexamples, demonstrated that directional derivatives are not good enough.
- Defined differentiability as the linear approximation.
- With counterexamples, demonstrated that directional derivatives are not good enough.
- Defined differentiability as the linear approximation.
- Proved that differentiability
- With counterexamples, demonstrated that directional derivatives are not good enough.
- Defined differentiability as the linear approximation.
- Proved that differentiability implies continuity.
- With counterexamples, demonstrated that directional derivatives are not good enough.
- Defined differentiability as the linear approximation.
- Proved that differentiability implies continuity.
- Gave a geometric meaning
- With counterexamples, demonstrated that directional derivatives are not good enough.
- Defined differentiability as the linear approximation.
- Proved that differentiability implies continuity.
- Gave a geometric meaning to the gradient.


## A digression into limits

## A digression into limits

- To prove that $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2}}{x^{2}+y^{4}}$


## A digression into limits

- To prove that $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2}}{x^{2}+y^{4}}$ does not exist


## A digression into limits

- To prove that $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2}}{x^{2}+y^{4}}$ does not exist we informally said


## A digression into limits

- To prove that $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2}}{x^{2}+y^{4}}$ does not exist we informally said that along $y=0$ and $x=y^{2}$


## A digression into limits

- To prove that $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2}}{x^{2}+y^{4}}$ does not exist we informally said that along $y=0$ and $x=y^{2}$ we get different limits.


## A digression into limits

- To prove that $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2}}{x^{2}+y^{4}}$ does not exist we informally said that along $y=0$ and $x=y^{2}$ we get different limits. Rigorously, we proved


## A digression into limits

- To prove that $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2}}{x^{2}+y^{4}}$ does not exist we informally said that along $y=0$ and $x=y^{2}$ we get different limits. Rigorously, we proved by contradiction.


## A digression into limits

- To prove that $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2}}{x^{2}+y^{4}}$ does not exist we informally said that along $y=0$ and $x=y^{2}$ we get different limits. Rigorously, we proved by contradiction.
- The following theorem


## A digression into limits

- To prove that $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2}}{x^{2}+y^{4}}$ does not exist we informally said that along $y=0$ and $x=y^{2}$ we get different limits. Rigorously, we proved by contradiction.
- The following theorem allows us to


## A digression into limits

- To prove that $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2}}{x^{2}+y^{4}}$ does not exist we informally said that along $y=0$ and $x=y^{2}$ we get different limits. Rigorously, we proved by contradiction.
- The following theorem allows us to almost directly


## A digression into limits

- To prove that $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2}}{x^{2}+y^{4}}$ does not exist we informally said that along $y=0$ and $x=y^{2}$ we get different limits. Rigorously, we proved by contradiction.
- The following theorem allows us to almost directly argue non-existence


## A digression into limits

- To prove that $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2}}{x^{2}+y^{4}}$ does not exist we informally said that along $y=0$ and $x=y^{2}$ we get different limits. Rigorously, we proved by contradiction.
- The following theorem allows us to almost directly argue non-existence using different paths.


## A digression into limits

- To prove that $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2}}{x^{2}+y^{4}}$ does not exist we informally said that along $y=0$ and $x=y^{2}$ we get different limits. Rigorously, we proved by contradiction.
- The following theorem allows us to almost directly argue non-existence using different paths.
- Theorem: Suppose $\lim _{(x, y) \rightarrow(a, b)} f(x, y)$ exists and equals $L$.


## A digression into limits

- To prove that $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2}}{x^{2}+y^{4}}$ does not exist we informally said that along $y=0$ and $x=y^{2}$ we get different limits. Rigorously, we proved by contradiction.
- The following theorem allows us to almost directly argue non-existence using different paths.
- Theorem: Suppose $\lim _{(x, y) \rightarrow(a, b)} f(x, y)$ exists and equals $L$. If $x_{n} \rightarrow a, y_{n} \rightarrow b$ where


## A digression into limits

- To prove that $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2}}{x^{2}+y^{4}}$ does not exist we informally said that along $y=0$ and $x=y^{2}$ we get different limits. Rigorously, we proved by contradiction.
- The following theorem allows us to almost directly argue non-existence using different paths.
- Theorem: Suppose $\lim _{(x, y) \rightarrow(a, b)} f(x, y)$ exists and equals $L$. If $x_{n} \rightarrow a, y_{n} \rightarrow b$ where $\left(x_{n}, y_{n}\right)$ lie in the domain of $f$ for all $n$,


## A digression into limits

- To prove that $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2}}{x^{2}+y^{4}}$ does not exist we informally said that along $y=0$ and $x=y^{2}$ we get different limits. Rigorously, we proved by contradiction.
- The following theorem allows us to almost directly argue non-existence using different paths.
- Theorem: Suppose $\lim _{(x, y) \rightarrow(a, b)} f(x, y)$ exists and equals $L$. If $x_{n} \rightarrow a, y_{n} \rightarrow b$ where $\left(x_{n}, y_{n}\right)$ lie in the domain of $f$ for all $n$, then $\lim _{n \rightarrow \infty} f\left(x_{n}, y_{n}\right)$ exists and equals $L$.


## A digression into limits

- To prove that $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2}}{x^{2}+y^{4}}$ does not exist we informally said that along $y=0$ and $x=y^{2}$ we get different limits. Rigorously, we proved by contradiction.
- The following theorem allows us to almost directly argue non-existence using different paths.
- Theorem: Suppose $\lim _{(x, y) \rightarrow(a, b)} f(x, y)$ exists and equals $L$. If $x_{n} \rightarrow a, y_{n} \rightarrow b$ where $\left(x_{n}, y_{n}\right)$ lie in the domain of $f$ for all $n$, then $\lim _{n \rightarrow \infty} f\left(x_{n}, y_{n}\right)$ exists and equals $L$.
- Proof:


## A digression into limits

- To prove that $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2}}{x^{2}+y^{4}}$ does not exist we informally said that along $y=0$ and $x=y^{2}$ we get different limits. Rigorously, we proved by contradiction.
- The following theorem allows us to almost directly argue non-existence using different paths.
- Theorem: Suppose $\lim _{(x, y) \rightarrow(a, b)} f(x, y)$ exists and equals $L$. If $x_{n} \rightarrow a, y_{n} \rightarrow b$ where $\left(x_{n}, y_{n}\right)$ lie in the domain of $f$ for all $n$, then $\lim _{n \rightarrow \infty} f\left(x_{n}, y_{n}\right)$ exists and equals $L$.
- Proof: Given $\epsilon>0$ choose $\delta>0$ such that


## A digression into limits

- To prove that $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2}}{x^{2}+y^{4}}$ does not exist we informally said that along $y=0$ and $x=y^{2}$ we get different limits. Rigorously, we proved by contradiction.
- The following theorem allows us to almost directly argue non-existence using different paths.
- Theorem: Suppose $\lim _{(x, y) \rightarrow(a, b)} f(x, y)$ exists and equals $L$. If $x_{n} \rightarrow a, y_{n} \rightarrow b$ where $\left(x_{n}, y_{n}\right)$ lie in the domain of $f$ for all $n$, then $\lim _{n \rightarrow \infty} f\left(x_{n}, y_{n}\right)$ exists and equals $L$.
- Proof: Given $\epsilon>0$ choose $\delta>0$ such that whenever $0<\|(x, y)-(a, b)\|<\delta$ and


## A digression into limits

- To prove that $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2}}{x^{2}+y^{4}}$ does not exist we informally said that along $y=0$ and $x=y^{2}$ we get different limits. Rigorously, we proved by contradiction.
- The following theorem allows us to almost directly argue non-existence using different paths.
- Theorem: Suppose $\lim _{(x, y) \rightarrow(a, b)} f(x, y)$ exists and equals $L$. If $x_{n} \rightarrow a, y_{n} \rightarrow b$ where $\left(x_{n}, y_{n}\right)$ lie in the domain of $f$ for all $n$, then $\lim _{n \rightarrow \infty} f\left(x_{n}, y_{n}\right)$ exists and equals $L$.
- Proof: Given $\epsilon>0$ choose $\delta>0$ such that whenever $0<\|(x, y)-(a, b)\|<\delta$ and $(x, y)$ lie in the domain of $f$,


## A digression into limits

- To prove that $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2}}{x^{2}+y^{4}}$ does not exist we informally said that along $y=0$ and $x=y^{2}$ we get different limits. Rigorously, we proved by contradiction.
- The following theorem allows us to almost directly argue non-existence using different paths.
- Theorem: Suppose $\lim _{(x, y) \rightarrow(a, b)} f(x, y)$ exists and equals $L$. If $x_{n} \rightarrow a, y_{n} \rightarrow b$ where $\left(x_{n}, y_{n}\right)$ lie in the domain of $f$ for all $n$, then $\lim _{n \rightarrow \infty} f\left(x_{n}, y_{n}\right)$ exists and equals $L$.
- Proof: Given $\epsilon>0$ choose $\delta>0$ such that whenever $0<\|(x, y)-(a, b)\|<\delta$ and $(x, y)$ lie in the domain of $f$, $|f(x, y)-L|<\epsilon$.


## A digression into limits

- To prove that $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2}}{x^{2}+y^{4}}$ does not exist we informally said that along $y=0$ and $x=y^{2}$ we get different limits. Rigorously, we proved by contradiction.
- The following theorem allows us to almost directly argue non-existence using different paths.
- Theorem: Suppose $\lim _{(x, y) \rightarrow(a, b)} f(x, y)$ exists and equals $L$. If $x_{n} \rightarrow a, y_{n} \rightarrow b$ where $\left(x_{n}, y_{n}\right)$ lie in the domain of $f$ for all $n$, then $\lim _{n \rightarrow \infty} f\left(x_{n}, y_{n}\right)$ exists and equals $L$.
- Proof: Given $\epsilon>0$ choose $\delta>0$ such that whenever $0<\|(x, y)-(a, b)\|<\delta$ and $(x, y)$ lie in the domain of $f$, $|f(x, y)-L|<\epsilon$. Now choose $N$ large enough


## A digression into limits

- To prove that $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2}}{x^{2}+y^{4}}$ does not exist we informally said that along $y=0$ and $x=y^{2}$ we get different limits. Rigorously, we proved by contradiction.
- The following theorem allows us to almost directly argue non-existence using different paths.
- Theorem: Suppose $\lim _{(x, y) \rightarrow(a, b)} f(x, y)$ exists and equals $L$. If $x_{n} \rightarrow a, y_{n} \rightarrow b$ where $\left(x_{n}, y_{n}\right)$ lie in the domain of $f$ for all $n$, then $\lim _{n \rightarrow \infty} f\left(x_{n}, y_{n}\right)$ exists and equals $L$.
- Proof: Given $\epsilon>0$ choose $\delta>0$ such that whenever $0<\|(x, y)-(a, b)\|<\delta$ and $(x, y)$ lie in the domain of $f$, $|f(x, y)-L|<\epsilon$. Now choose $N$ large enough so that whenever $n>N$,


## A digression into limits

- To prove that $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2}}{x^{2}+y^{4}}$ does not exist we informally said that along $y=0$ and $x=y^{2}$ we get different limits. Rigorously, we proved by contradiction.
- The following theorem allows us to almost directly argue non-existence using different paths.
- Theorem: Suppose $\lim _{(x, y) \rightarrow(a, b)} f(x, y)$ exists and equals $L$. If $x_{n} \rightarrow a, y_{n} \rightarrow b$ where $\left(x_{n}, y_{n}\right)$ lie in the domain of $f$ for all $n$, then $\lim _{n \rightarrow \infty} f\left(x_{n}, y_{n}\right)$ exists and equals $L$.
- Proof: Given $\epsilon>0$ choose $\delta>0$ such that whenever $0<\|(x, y)-(a, b)\|<\delta$ and $(x, y)$ lie in the domain of $f$, $|f(x, y)-L|<\epsilon$. Now choose $N$ large enough so that whenever $n>N,\left|x_{n}-a\right|<\frac{\delta}{2}$ and $\left|y_{n}-b\right|<\frac{\delta}{2}$.


## A digression into limits

- To prove that $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2}}{x^{2}+y^{4}}$ does not exist we informally said that along $y=0$ and $x=y^{2}$ we get different limits. Rigorously, we proved by contradiction.
- The following theorem allows us to almost directly argue non-existence using different paths.
- Theorem: Suppose $\lim _{(x, y) \rightarrow(a, b)} f(x, y)$ exists and equals $L$. If $x_{n} \rightarrow a, y_{n} \rightarrow b$ where $\left(x_{n}, y_{n}\right)$ lie in the domain of $f$ for all $n$, then $\lim _{n \rightarrow \infty} f\left(x_{n}, y_{n}\right)$ exists and equals $L$.
- Proof: Given $\epsilon>0$ choose $\delta>0$ such that whenever $0<\|(x, y)-(a, b)\|<\delta$ and $(x, y)$ lie in the domain of $f$, $|f(x, y)-L|<\epsilon$. Now choose $N$ large enough so that whenever $n>N,\left|x_{n}-a\right|<\frac{\delta}{2}$ and $\left|y_{n}-b\right|<\frac{\delta}{2}$. Then $\left\|\left(x_{n}, y_{n}\right)-(a, b)\right\|<\delta$ and hence


## A digression into limits

- To prove that $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2}}{x^{2}+y^{4}}$ does not exist we informally said that along $y=0$ and $x=y^{2}$ we get different limits. Rigorously, we proved by contradiction.
- The following theorem allows us to almost directly argue non-existence using different paths.
- Theorem: Suppose $\lim _{(x, y) \rightarrow(a, b)} f(x, y)$ exists and equals $L$. If $x_{n} \rightarrow a, y_{n} \rightarrow b$ where $\left(x_{n}, y_{n}\right)$ lie in the domain of $f$ for all $n$, then $\lim _{n \rightarrow \infty} f\left(x_{n}, y_{n}\right)$ exists and equals $L$.
- Proof: Given $\epsilon>0$ choose $\delta>0$ such that whenever $0<\|(x, y)-(a, b)\|<\delta$ and $(x, y)$ lie in the domain of $f$, $|f(x, y)-L|<\epsilon$. Now choose $N$ large enough so that whenever $n>N,\left|x_{n}-a\right|<\frac{\delta}{2}$ and $\left|y_{n}-b\right|<\frac{\delta}{2}$. Then $\left\|\left(x_{n}, y_{n}\right)-(a, b)\right\|<\delta$ and hence for all $n>N$,


## A digression into limits

- To prove that $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{2}}{x^{2}+y^{4}}$ does not exist we informally said that along $y=0$ and $x=y^{2}$ we get different limits. Rigorously, we proved by contradiction.
- The following theorem allows us to almost directly argue non-existence using different paths.
- Theorem: Suppose $\lim _{(x, y) \rightarrow(a, b)} f(x, y)$ exists and equals $L$. If $x_{n} \rightarrow a, y_{n} \rightarrow b$ where $\left(x_{n}, y_{n}\right)$ lie in the domain of $f$ for all $n$, then $\lim _{n \rightarrow \infty} f\left(x_{n}, y_{n}\right)$ exists and equals $L$.
- Proof: Given $\epsilon>0$ choose $\delta>0$ such that whenever $0<\|(x, y)-(a, b)\|<\delta$ and $(x, y)$ lie in the domain of $f$, $|f(x, y)-L|<\epsilon$. Now choose $N$ large enough so that whenever $n>N,\left|x_{n}-a\right|<\frac{\delta}{2}$ and $\left|y_{n}-b\right|<\frac{\delta}{2}$. Then $\left\|\left(x_{n}, y_{n}\right)-(a, b)\right\|<\delta$ and hence for all $n>N$, $\left|f\left(x_{n}, y_{n}\right)-L\right|<\epsilon$.


## A digression into limits

## A digression into limits

- The above theorem


## A digression into limits

- The above theorem makes the proof of


## A digression into limits

- The above theorem makes the proof of non-existence much easier.


## A digression into limits

- The above theorem makes the proof of non-existence much easier. For instance in


## A digression into limits

- The above theorem makes the proof of non-existence much easier. For instance in the above example,


## A digression into limits

- The above theorem makes the proof of non-existence much easier. For instance in the above example, we can simply choose sequences


## A digression into limits

- The above theorem makes the proof of non-existence much easier. For instance in the above example, we can simply choose sequences $y_{n}=0, x_{n}=\frac{1}{n}$ and


## A digression into limits

- The above theorem makes the proof of non-existence much easier. For instance in the above example, we can simply choose sequences $y_{n}=0, x_{n}=\frac{1}{n}$ and $y_{n}=\frac{1}{n}, x_{n}=y_{n}^{2}=\frac{1}{n^{2}}$


## A digression into limits

- The above theorem makes the proof of non-existence much easier. For instance in the above example, we can simply choose sequences $y_{n}=0, x_{n}=\frac{1}{n}$ and $y_{n}=\frac{1}{n}, x_{n}=y_{n}^{2}=\frac{1}{n^{2}}$ and calculate the limits to


## A digression into limits

- The above theorem makes the proof of non-existence much easier. For instance in the above example, we can simply choose sequences $y_{n}=0, x_{n}=\frac{1}{n}$ and $y_{n}=\frac{1}{n}, x_{n}=y_{n}^{2}=\frac{1}{n^{2}}$ and calculate the limits to get the desired result.


## A digression into limits

- The above theorem makes the proof of non-existence much easier. For instance in the above example, we can simply choose sequences $y_{n}=0, x_{n}=\frac{1}{n}$ and $y_{n}=\frac{1}{n}, x_{n}=y_{n}^{2}=\frac{1}{n^{2}}$ and calculate the limits to get the desired result.
- The same theorem


## A digression into limits

- The above theorem makes the proof of non-existence much easier. For instance in the above example, we can simply choose sequences $y_{n}=0, x_{n}=\frac{1}{n}$ and $y_{n}=\frac{1}{n}, x_{n}=y_{n}^{2}=\frac{1}{n^{2}}$ and calculate the limits to get the desired result.
- The same theorem can be stated for


## A digression into limits

- The above theorem makes the proof of non-existence much easier. For instance in the above example, we can simply choose sequences $y_{n}=0, x_{n}=\frac{1}{n}$ and $y_{n}=\frac{1}{n}, x_{n}=y_{n}^{2}=\frac{1}{n^{2}}$ and calculate the limits to get the desired result.
- The same theorem can be stated for more than two variables too.


## A digression into limits

- The above theorem makes the proof of non-existence much easier. For instance in the above example, we can simply choose sequences $y_{n}=0, x_{n}=\frac{1}{n}$ and $y_{n}=\frac{1}{n}, x_{n}=y_{n}^{2}=\frac{1}{n^{2}}$ and calculate the limits to get the desired result.
- The same theorem can be stated for more than two variables too.
- In fact,


## A digression into limits

- The above theorem makes the proof of non-existence much easier. For instance in the above example, we can simply choose sequences $y_{n}=0, x_{n}=\frac{1}{n}$ and $y_{n}=\frac{1}{n}, x_{n}=y_{n}^{2}=\frac{1}{n^{2}}$ and calculate the limits to get the desired result.
- The same theorem can be stated for more than two variables too.
- In fact, if the limits of $f\left(x_{n}, y_{n}\right)$ exist


## A digression into limits

- The above theorem makes the proof of non-existence much easier. For instance in the above example, we can simply choose sequences $y_{n}=0, x_{n}=\frac{1}{n}$ and $y_{n}=\frac{1}{n}, x_{n}=y_{n}^{2}=\frac{1}{n^{2}}$ and calculate the limits to get the desired result.
- The same theorem can be stated for more than two variables too.
- In fact, if the limits of $f\left(x_{n}, y_{n}\right)$ exist and are equal for


## A digression into limits

- The above theorem makes the proof of non-existence much easier. For instance in the above example, we can simply choose sequences $y_{n}=0, x_{n}=\frac{1}{n}$ and $y_{n}=\frac{1}{n}, x_{n}=y_{n}^{2}=\frac{1}{n^{2}}$ and calculate the limits to get the desired result.
- The same theorem can be stated for more than two variables too.
- In fact, if the limits of $f\left(x_{n}, y_{n}\right)$ exist and are equal for all such convegent sequences $x_{n} \rightarrow a, y_{n} \rightarrow b$,


## A digression into limits

- The above theorem makes the proof of non-existence much easier. For instance in the above example, we can simply choose sequences $y_{n}=0, x_{n}=\frac{1}{n}$ and $y_{n}=\frac{1}{n}, x_{n}=y_{n}^{2}=\frac{1}{n^{2}}$ and calculate the limits to get the desired result.
- The same theorem can be stated for more than two variables too.
- In fact, if the limits of $f\left(x_{n}, y_{n}\right)$ exist and are equal for all such convegent sequences $x_{n} \rightarrow a, y_{n} \rightarrow b$, then by contradiction,


## A digression into limits

- The above theorem makes the proof of non-existence much easier. For instance in the above example, we can simply choose sequences $y_{n}=0, x_{n}=\frac{1}{n}$ and $y_{n}=\frac{1}{n}, x_{n}=y_{n}^{2}=\frac{1}{n^{2}}$ and calculate the limits to get the desired result.
- The same theorem can be stated for more than two variables too.
- In fact, if the limits of $f\left(x_{n}, y_{n}\right)$ exist and are equal for all such convegent sequences $x_{n} \rightarrow a, y_{n} \rightarrow b$, then by contradiction, we can conclude that


## A digression into limits

- The above theorem makes the proof of non-existence much easier. For instance in the above example, we can simply choose sequences $y_{n}=0, x_{n}=\frac{1}{n}$ and $y_{n}=\frac{1}{n}, x_{n}=y_{n}^{2}=\frac{1}{n^{2}}$ and calculate the limits to get the desired result.
- The same theorem can be stated for more than two variables too.
- In fact, if the limits of $f\left(x_{n}, y_{n}\right)$ exist and are equal for all such convegent sequences $x_{n} \rightarrow a, y_{n} \rightarrow b$, then by contradiction, we can conclude that the limit of $f(x, y)$ exists in


## A digression into limits

- The above theorem makes the proof of non-existence much easier. For instance in the above example, we can simply choose sequences $y_{n}=0, x_{n}=\frac{1}{n}$ and $y_{n}=\frac{1}{n}, x_{n}=y_{n}^{2}=\frac{1}{n^{2}}$ and calculate the limits to get the desired result.
- The same theorem can be stated for more than two variables too.
- In fact, if the limits of $f\left(x_{n}, y_{n}\right)$ exist and are equal for all such convegent sequences $x_{n} \rightarrow a, y_{n} \rightarrow b$, then by contradiction, we can conclude that the limit of $f(x, y)$ exists in the multivariable sense (HW).


## A sufficient condition for differentiability

## A sufficient condition for differentiability

- Differentiability seems


## A sufficient condition for differentiability

- Differentiability seems like a pain


## A sufficient condition for differentiability

- Differentiability seems like a pain in the neck (


## A sufficient condition for differentiability

- Differentiability seems like a pain in the neck (if not elsewhere)


## A sufficient condition for differentiability

- Differentiability seems like a pain in the neck (if not elsewhere) to check.


## A sufficient condition for differentiability

- Differentiability seems like a pain in the neck (if not elsewhere) to check.
- Fortunately,


## A sufficient condition for differentiability

- Differentiability seems like a pain in the neck (if not elsewhere) to check.
- Fortunately, we have a sufficient (


## A sufficient condition for differentiability

- Differentiability seems like a pain in the neck (if not elsewhere) to check.
- Fortunately, we have a sufficient (but not necessary) condition


## A sufficient condition for differentiability

- Differentiability seems like a pain in the neck (if not elsewhere) to check.
- Fortunately, we have a sufficient (but not necessary) condition that helps us.


## A sufficient condition for differentiability

- Differentiability seems like a pain in the neck (if not elsewhere) to check.
- Fortunately, we have a sufficient (but not necessary) condition that helps us.
- Theorem:


## A sufficient condition for differentiability

- Differentiability seems like a pain in the neck (if not elsewhere) to check.
- Fortunately, we have a sufficient (but not necessary) condition that helps us.
- Theorem: Suppose $f: S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a scalar field


## A sufficient condition for differentiability

- Differentiability seems like a pain in the neck (if not elsewhere) to check.
- Fortunately, we have a sufficient (but not necessary) condition that helps us.
- Theorem: Suppose $f: S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a scalar field and $\vec{a} \in S$ is an interior point.


## A sufficient condition for differentiability

- Differentiability seems like a pain in the neck (if not elsewhere) to check.
- Fortunately, we have a sufficient (but not necessary) condition that helps us.
- Theorem: Suppose $f: S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a scalar field and $\vec{a} \in S$ is an interior point. Suppose the partials $f_{x_{1}}, f_{x_{2}}, \ldots, f_{x_{n}}$


## A sufficient condition for differentiability

- Differentiability seems like a pain in the neck (if not elsewhere) to check.
- Fortunately, we have a sufficient (but not necessary) condition that helps us.
- Theorem: Suppose $f: S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a scalar field and $\vec{a} \in S$ is an interior point. Suppose the partials $f_{x_{1}}, f_{x_{2}}, \ldots, f_{x_{n}}$ exist in an open ball $B(\vec{a}, r) \subset S$ and


## A sufficient condition for differentiability

- Differentiability seems like a pain in the neck (if not elsewhere) to check.
- Fortunately, we have a sufficient (but not necessary) condition that helps us.
- Theorem: Suppose $f: S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a scalar field and $\vec{a} \in S$ is an interior point. Suppose the partials $f_{x_{1}}, f_{x_{2}}, \ldots, f_{x_{n}}$ exist in an open ball $B(\vec{a}, r) \subset S$ and they are continuous at $\vec{a}$.


## A sufficient condition for differentiability

- Differentiability seems like a pain in the neck (if not elsewhere) to check.
- Fortunately, we have a sufficient (but not necessary) condition that helps us.
- Theorem: Suppose $f: S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a scalar field and $\vec{a} \in S$ is an interior point. Suppose the partials $f_{x_{1}}, f_{x_{2}}, \ldots, f_{x_{n}}$ exist in an open ball $B(\vec{a}, r) \subset S$ and they are continuous at $\vec{a}$. Then $f$ is


## A sufficient condition for differentiability

- Differentiability seems like a pain in the neck (if not elsewhere) to check.
- Fortunately, we have a sufficient (but not necessary) condition that helps us.
- Theorem: Suppose $f: S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a scalar field and $\vec{a} \in S$ is an interior point. Suppose the partials $f_{x_{1}}, f_{x_{2}}, \ldots, f_{x_{n}}$ exist in an open ball $B(\vec{a}, r) \subset S$ and they are continuous at $\vec{a}$. Then $f$ is differentiable in the multivariable sense


## A sufficient condition for differentiability

- Differentiability seems like a pain in the neck (if not elsewhere) to check.
- Fortunately, we have a sufficient (but not necessary) condition that helps us.
- Theorem: Suppose $f: S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a scalar field and $\vec{a} \in S$ is an interior point. Suppose the partials $f_{x_{1}}, f_{x_{2}}, \ldots, f_{x_{n}}$ exist in an open ball $B(\vec{a}, r) \subset S$ and they are continuous at $\vec{a}$. Then $f$ is differentiable in the multivariable sense at $\vec{a}$.


## A sufficient condition for differentiability

- Differentiability seems like a pain in the neck (if not elsewhere) to check.
- Fortunately, we have a sufficient (but not necessary) condition that helps us.
- Theorem: Suppose $f: S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a scalar field and $\vec{a} \in S$ is an interior point. Suppose the partials $f_{x_{1}}, f_{x_{2}}, \ldots, f_{x_{n}}$ exist in an open ball $B(\vec{a}, r) \subset S$ and they are continuous at $\vec{a}$. Then $f$ is differentiable in the multivariable sense at $\vec{a}$.
- Such functions


## A sufficient condition for differentiability

- Differentiability seems like a pain in the neck (if not elsewhere) to check.
- Fortunately, we have a sufficient (but not necessary) condition that helps us.
- Theorem: Suppose $f: S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a scalar field and $\vec{a} \in S$ is an interior point. Suppose the partials $f_{x_{1}}, f_{x_{2}}, \ldots, f_{x_{n}}$ exist in an open ball $B(\vec{a}, r) \subset S$ and they are continuous at $\vec{a}$. Then $f$ is differentiable in the multivariable sense at $\vec{a}$.
- Such functions are said to be


## A sufficient condition for differentiability

- Differentiability seems like a pain in the neck (if not elsewhere) to check.
- Fortunately, we have a sufficient (but not necessary) condition that helps us.
- Theorem: Suppose $f: S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a scalar field and $\vec{a} \in S$ is an interior point. Suppose the partials $f_{x_{1}}, f_{x_{2}}, \ldots, f_{x_{n}}$ exist in an open ball $B(\vec{a}, r) \subset S$ and they are continuous at $\vec{a}$. Then $f$ is differentiable in the multivariable sense at $\vec{a}$.
- Such functions are said to be continuously differentiable


## A sufficient condition for differentiability

- Differentiability seems like a pain in the neck (if not elsewhere) to check.
- Fortunately, we have a sufficient (but not necessary) condition that helps us.
- Theorem: Suppose $f: S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a scalar field and $\vec{a} \in S$ is an interior point. Suppose the partials $f_{x_{1}}, f_{x_{2}}, \ldots, f_{x_{n}}$ exist in an open ball $B(\vec{a}, r) \subset S$ and they are continuous at $\vec{a}$. Then $f$ is differentiable in the multivariable sense at $\vec{a}$.
- Such functions are said to be continuously differentiable or $\mathcal{C}^{1}$.


## Examples

## Examples

- If $f(x), g(y)$ are


## Examples

- If $f(x), g(y)$ are differentiable functions on $\mathbb{R}$


## Examples

- If $f(x), g(y)$ are differentiable functions on $\mathbb{R}$ with continuous derivatives


## Examples

- If $f(x), g(y)$ are differentiable functions on $\mathbb{R}$ with continuous derivatives then $h(x, y)=f(x) g(y)$ is


## Examples

- If $f(x), g(y)$ are differentiable functions on $\mathbb{R}$ with continuous derivatives then $h(x, y)=f(x) g(y)$ is differentiable in the


## Examples

- If $f(x), g(y)$ are differentiable functions on $\mathbb{R}$ with continuous derivatives then $h(x, y)=f(x) g(y)$ is differentiable in the multivariable sense.


## Examples

- If $f(x), g(y)$ are differentiable functions on $\mathbb{R}$ with continuous derivatives then $h(x, y)=f(x) g(y)$ is differentiable in the multivariable sense. Indeed, $h_{x}, h_{y}$ exist


## Examples

- If $f(x), g(y)$ are differentiable functions on $\mathbb{R}$ with continuous derivatives then $h(x, y)=f(x) g(y)$ is differentiable in the multivariable sense. Indeed, $h_{x}, h_{y}$ exist and by continuity laws,


## Examples

- If $f(x), g(y)$ are differentiable functions on $\mathbb{R}$ with continuous derivatives then $h(x, y)=f(x) g(y)$ is differentiable in the multivariable sense. Indeed, $h_{x}, h_{y}$ exist and by continuity laws, they are continuous.


## Examples

- If $f(x), g(y)$ are differentiable functions on $\mathbb{R}$ with continuous derivatives then $h(x, y)=f(x) g(y)$ is differentiable in the multivariable sense. Indeed, $h_{x}, h_{y}$ exist and by continuity laws, they are continuous.
- By the one-variable chain rule and


## Examples

- If $f(x), g(y)$ are differentiable functions on $\mathbb{R}$ with continuous derivatives then $h(x, y)=f(x) g(y)$ is differentiable in the multivariable sense. Indeed, $h_{x}, h_{y}$ exist and by continuity laws, they are continuous.
- By the one-variable chain rule and continuity laws,


## Examples

- If $f(x), g(y)$ are differentiable functions on $\mathbb{R}$ with continuous derivatives then $h(x, y)=f(x) g(y)$ is differentiable in the multivariable sense. Indeed, $h_{x}, h_{y}$ exist and by continuity laws, they are continuous.
- By the one-variable chain rule and continuity laws, a linear combination of


## Examples

- If $f(x), g(y)$ are differentiable functions on $\mathbb{R}$ with continuous derivatives then $h(x, y)=f(x) g(y)$ is differentiable in the multivariable sense. Indeed, $h_{x}, h_{y}$ exist and by continuity laws, they are continuous.
- By the one-variable chain rule and continuity laws, a linear combination of functions like


## Examples

- If $f(x), g(y)$ are differentiable functions on $\mathbb{R}$ with continuous derivatives then $h(x, y)=f(x) g(y)$ is differentiable in the multivariable sense. Indeed, $h_{x}, h_{y}$ exist and by continuity laws, they are continuous.
- By the one-variable chain rule and continuity laws, a linear combination of functions like $f(x)^{k} g(y)^{l}$ is also


## Examples

- If $f(x), g(y)$ are differentiable functions on $\mathbb{R}$ with continuous derivatives then $h(x, y)=f(x) g(y)$ is differentiable in the multivariable sense. Indeed, $h_{x}, h_{y}$ exist and by continuity laws, they are continuous.
- By the one-variable chain rule and continuity laws, a linear combination of functions like $f(x)^{k} g(y)^{l}$ is also differentiable.


## Examples

- If $f(x), g(y)$ are differentiable functions on $\mathbb{R}$ with continuous derivatives then $h(x, y)=f(x) g(y)$ is differentiable in the multivariable sense. Indeed, $h_{x}, h_{y}$ exist and by continuity laws, they are continuous.
- By the one-variable chain rule and continuity laws, a linear combination of functions like $f(x)^{k} g(y)^{l}$ is also differentiable.
- As a consequence,


## Examples

- If $f(x), g(y)$ are differentiable functions on $\mathbb{R}$ with continuous derivatives then $h(x, y)=f(x) g(y)$ is differentiable in the multivariable sense. Indeed, $h_{x}, h_{y}$ exist and by continuity laws, they are continuous.
- By the one-variable chain rule and continuity laws, a linear combination of functions like $f(x)^{k} g(y)^{l}$ is also differentiable.
- As a consequence, polynomials are differentiable


## Examples

- If $f(x), g(y)$ are differentiable functions on $\mathbb{R}$ with continuous derivatives then $h(x, y)=f(x) g(y)$ is differentiable in the multivariable sense. Indeed, $h_{x}, h_{y}$ exist and by continuity laws, they are continuous.
- By the one-variable chain rule and continuity laws, a linear combination of functions like $f(x)^{k} g(y)^{l}$ is also differentiable.
- As a consequence, polynomials are differentiable on all of $\mathbb{R}^{n}$.


## Examples

- If $f(x), g(y)$ are differentiable functions on $\mathbb{R}$ with continuous derivatives then $h(x, y)=f(x) g(y)$ is differentiable in the multivariable sense. Indeed, $h_{x}, h_{y}$ exist and by continuity laws, they are continuous.
- By the one-variable chain rule and continuity laws, a linear combination of functions like $f(x)^{k} g(y)^{l}$ is also differentiable.
- As a consequence, polynomials are differentiable on all of $\mathbb{R}^{n}$.
- Rational functions are


## Examples

- If $f(x), g(y)$ are differentiable functions on $\mathbb{R}$ with continuous derivatives then $h(x, y)=f(x) g(y)$ is differentiable in the multivariable sense. Indeed, $h_{x}$, $h_{y}$ exist and by continuity laws, they are continuous.
- By the one-variable chain rule and continuity laws, a linear combination of functions like $f(x)^{k} g(y)^{l}$ is also differentiable.
- As a consequence, polynomials are differentiable on all of $\mathbb{R}^{n}$.
- Rational functions are differentiable wherever


## Examples

- If $f(x), g(y)$ are differentiable functions on $\mathbb{R}$ with continuous derivatives then $h(x, y)=f(x) g(y)$ is differentiable in the multivariable sense. Indeed, $h_{x}$, $h_{y}$ exist and by continuity laws, they are continuous.
- By the one-variable chain rule and continuity laws, a linear combination of functions like $f(x)^{k} g(y)^{l}$ is also differentiable.
- As a consequence, polynomials are differentiable on all of $\mathbb{R}^{n}$.
- Rational functions are differentiable wherever their denominator is non-zero.


## Proof

- The only candidate


## Proof

- The only candidate for the total derivative


## Proof

- The only candidate for the total derivative at $\vec{a}$ is
- The only candidate for the total derivative at $\vec{a}$ is surely the linear map
- The only candidate for the total derivative at $\vec{a}$ is surely the linear map $\vec{v} \rightarrow\langle\nabla f(\vec{a}), \vec{v}\rangle$.
- The only candidate for the total derivative at $\vec{a}$ is surely the linear map $\vec{v} \rightarrow\langle\nabla f(\vec{a}), \vec{v}\rangle$.
- Let us prove
- The only candidate for the total derivative at $\vec{a}$ is surely the linear map $\vec{v} \rightarrow\langle\nabla f(\vec{a}), \vec{v}\rangle$.
- Let us prove for the special case of
- The only candidate for the total derivative at $\vec{a}$ is surely the linear map $\vec{v} \rightarrow\langle\nabla f(\vec{a}), \vec{v}\rangle$.
- Let us prove for the special case of $f(x, y)$ first.
- The only candidate for the total derivative at $\vec{a}$ is surely the linear map $\vec{v} \rightarrow\langle\nabla f(\vec{a}), \vec{v}\rangle$.
- Let us prove for the special case of $f(x, y)$ first.
- $f(a+h, b+k)-f(a, b)$ must be proved to be
- The only candidate for the total derivative at $\vec{a}$ is surely the linear map $\vec{v} \rightarrow\langle\nabla f(\vec{a}), \vec{v}\rangle$.
- Let us prove for the special case of $f(x, y)$ first.
- $f(a+h, b+k)-f(a, b)$ must be proved to be $\nabla_{\vec{v}} f(a, b)+\|(h, k)\| E$ where
- The only candidate for the total derivative at $\vec{a}$ is surely the linear map $\vec{v} \rightarrow\langle\nabla f(\vec{a}), \vec{v}\rangle$.
- Let us prove for the special case of $f(x, y)$ first.
- $f(a+h, b+k)-f(a, b)$ must be proved to be $\nabla_{\vec{v}} f(a, b)+\|(h, k)\| E$ where $E \rightarrow 0$ as $(h, k) \rightarrow(0,0)$.
- The only candidate for the total derivative at $\vec{a}$ is surely the linear map $\vec{v} \rightarrow\langle\nabla f(\vec{a}), \vec{v}\rangle$.
- Let us prove for the special case of $f(x, y)$ first.
- $f(a+h, b+k)-f(a, b)$ must be proved to be $\nabla_{\vec{v}} f(a, b)+\|(h, k)\| E$ where $E \rightarrow 0$ as $(h, k) \rightarrow(0,0)$.
- $f(a+h, b+k)-f(a, b)=$

$$
f(a+h, b+k)-f(a, b+k)+f(a, b+k)-f(a, b)=I+I I .
$$

- The only candidate for the total derivative at $\vec{a}$ is surely the linear map $\vec{v} \rightarrow\langle\nabla f(\vec{a}), \vec{v}\rangle$.
- Let us prove for the special case of $f(x, y)$ first.
- $f(a+h, b+k)-f(a, b)$ must be proved to be $\nabla_{\vec{v}} f(a, b)+\|(h, k)\| E$ where $E \rightarrow 0$ as $(h, k) \rightarrow(0,0)$.
- $f(a+h, b+k)-f(a, b)=$ $f(a+h, b+k)-f(a, b+k)+f(a, b+k)-f(a, b)=I+I I$.
- I:
- The only candidate for the total derivative at $\vec{a}$ is surely the linear map $\vec{v} \rightarrow\langle\nabla f(\vec{a}), \vec{v}\rangle$.
- Let us prove for the special case of $f(x, y)$ first.
- $f(a+h, b+k)-f(a, b)$ must be proved to be $\nabla_{\vec{v}} f(a, b)+\|(h, k)\| E$ where $E \rightarrow 0$ as $(h, k) \rightarrow(0,0)$.
- $f(a+h, b+k)-f(a, b)=$ $f(a+h, b+k)-f(a, b+k)+f(a, b+k)-f(a, b)=I+I I$.
- I: By the Lagrange MVT
- The only candidate for the total derivative at $\vec{a}$ is surely the linear map $\vec{v} \rightarrow\langle\nabla f(\vec{a}), \vec{v}\rangle$.
- Let us prove for the special case of $f(x, y)$ first.
- $f(a+h, b+k)-f(a, b)$ must be proved to be $\nabla_{\vec{v}} f(a, b)+\|(h, k)\| E$ where $E \rightarrow 0$ as $(h, k) \rightarrow(0,0)$.
- $f(a+h, b+k)-f(a, b)=$ $f(a+h, b+k)-f(a, b+k)+f(a, b+k)-f(a, b)=I+I I$.
- I: By the Lagrange MVT $I=\frac{\partial f}{\partial x}\left(a+\theta_{1}, b+k\right) h$ and
- The only candidate for the total derivative at $\vec{a}$ is surely the linear map $\vec{v} \rightarrow\langle\nabla f(\vec{a}), \vec{v}\rangle$.
- Let us prove for the special case of $f(x, y)$ first.
- $f(a+h, b+k)-f(a, b)$ must be proved to be $\nabla_{\vec{v}} f(a, b)+\|(h, k)\| E$ where $E \rightarrow 0$ as $(h, k) \rightarrow(0,0)$.
- $f(a+h, b+k)-f(a, b)=$ $f(a+h, b+k)-f(a, b+k)+f(a, b+k)-f(a, b)=I+I I$.
- I: By the Lagrange MVT $I=\frac{\partial f}{\partial x}\left(a+\theta_{1}, b+k\right) h$ and $I I=\frac{\partial f}{\partial y}\left(a, b+\theta_{2}\right) k$, where
- The only candidate for the total derivative at $\vec{a}$ is surely the linear map $\vec{v} \rightarrow\langle\nabla f(\vec{a}), \vec{v}\rangle$.
- Let us prove for the special case of $f(x, y)$ first.
- $f(a+h, b+k)-f(a, b)$ must be proved to be $\nabla_{\vec{v}} f(a, b)+\|(h, k)\| E$ where $E \rightarrow 0$ as $(h, k) \rightarrow(0,0)$.
- $f(a+h, b+k)-f(a, b)=$ $f(a+h, b+k)-f(a, b+k)+f(a, b+k)-f(a, b)=I+I I$.
- I: By the Lagrange MVT $I=\frac{\partial f}{\partial x}\left(a+\theta_{1}, b+k\right) h$ and $I I=\frac{\partial f}{\partial y}\left(a, b+\theta_{2}\right) k$, where $\theta_{1} \in(a, a+h)$ and $\theta_{2} \in(b, b+k)$.


## Proof

- Roughly speaking,


## Proof

- Roughly speaking, when $h, k$ are small,


## Proof

- Roughly speaking, when $h, k$ are small, $I$ is almost


## Proof

- Roughly speaking, when $h, k$ are small, $I$ is almost $f_{x}(a, b) h$ and
- Roughly speaking, when $h, k$ are small, $I$ is almost $f_{x}(a, b) h$ and $/ /$ is almost
- Roughly speaking, when $h, k$ are small, I is almost $f_{x}(a, b) h$ and $I /$ is almost $f_{y}(a, b) k$ by the assumption of
- Roughly speaking, when $h, k$ are small, $I$ is almost $f_{x}(a, b) h$ and $I /$ is almost $f_{y}(a, b) k$ by the assumption of continuity of the partial derivatives.
- Roughly speaking, when $h, k$ are small, $I$ is almost $f_{x}(a, b) h$ and $I /$ is almost $f_{y}(a, b) k$ by the assumption of continuity of the partial derivatives.
- More rigorously,
- Roughly speaking, when $h, k$ are small, $I$ is almost $f_{x}(a, b) h$ and $I /$ is almost $f_{y}(a, b) k$ by the assumption of continuity of the partial derivatives.
- More rigorously,

$$
\begin{aligned}
& f(a+h, b+k)-f(a, b)-f_{x}(a, b) h-f_{y}(a, b) k= \\
& \left(I-f_{x}(a, b) h\right)+\left(I I-f_{y}(a, b) k\right)
\end{aligned}
$$

- Roughly speaking, when $h, k$ are small, $I$ is almost $f_{x}(a, b) h$ and $I /$ is almost $f_{y}(a, b) k$ by the assumption of continuity of the partial derivatives.
- More rigorously,

$$
\begin{aligned}
& f(a+h, b+k)-f(a, b)-f_{x}(a, b) h-f_{y}(a, b) k= \\
& \left(I-f_{x}(a, b) h\right)+\left(I I-f_{y}(a, b) k\right) . \text { Hence, when }\|(h, k)\|<\delta
\end{aligned}
$$

- Roughly speaking, when $h, k$ are small, $I$ is almost $f_{x}(a, b) h$ and $I /$ is almost $f_{y}(a, b) k$ by the assumption of continuity of the partial derivatives.
- More rigorously, $f(a+h, b+k)-f(a, b)-f_{x}(a, b) h-f_{y}(a, b) k=$ $\left(I-f_{x}(a, b) h\right)+\left(I I-f_{y}(a, b) k\right)$. Hence, when $\|(h, k)\|<\delta$ (which immediately implies that $|h|<\delta,|k|<\delta$ ),
- Roughly speaking, when $h, k$ are small, $I$ is almost $f_{x}(a, b) h$ and $I /$ is almost $f_{y}(a, b) k$ by the assumption of continuity of the partial derivatives.
- More rigorously, $f(a+h, b+k)-f(a, b)-f_{x}(a, b) h-f_{y}(a, b) k=$ $\left(I-f_{x}(a, b) h\right)+\left(I I-f_{y}(a, b) k\right)$. Hence, when $\|(h, k)\|<\delta$ (which immediately implies that $|h|<\delta,|k|<\delta$ ), then by continuity of $f_{x}, f_{y}$,
- Roughly speaking, when $h, k$ are small, $I$ is almost $f_{x}(a, b) h$ and $I /$ is almost $f_{y}(a, b) k$ by the assumption of continuity of the partial derivatives.
- More rigorously, $f(a+h, b+k)-f(a, b)-f_{x}(a, b) h-f_{y}(a, b) k=$ $\left(I-f_{x}(a, b) h\right)+\left(I I-f_{y}(a, b) k\right)$. Hence, when $\|(h, k)\|<\delta$ (which immediately implies that $|h|<\delta,|k|<\delta$ ), then by continuity of $f_{x}, f_{y},\left|f_{x}\left(a+\theta_{1}, b+k\right)-f_{x}(a, b)\right|<\frac{\epsilon}{2}$ and
- Roughly speaking, when $h, k$ are small, $I$ is almost $f_{x}(a, b) h$ and $I I$ is almost $f_{y}(a, b) k$ by the assumption of continuity of the partial derivatives.
- More rigorously, $f(a+h, b+k)-f(a, b)-f_{x}(a, b) h-f_{y}(a, b) k=$ $\left(I-f_{x}(a, b) h\right)+\left(I I-f_{y}(a, b) k\right)$. Hence, when $\|(h, k)\|<\delta$ (which immediately implies that $|h|<\delta,|k|<\delta$ ), then by continuity of $f_{x}, f_{y},\left|f_{x}\left(a+\theta_{1}, b+k\right)-f_{x}(a, b)\right|<\frac{\epsilon}{2}$ and $\left|f_{y}\left(a, b+\theta_{2}\right)-f_{y}(a, b)\right|<\frac{\epsilon}{2}$.
- Roughly speaking, when $h, k$ are small, $I$ is almost $f_{x}(a, b) h$ and $I I$ is almost $f_{y}(a, b) k$ by the assumption of continuity of the partial derivatives.
- More rigorously, $f(a+h, b+k)-f(a, b)-f_{x}(a, b) h-f_{y}(a, b) k=$ $\left(I-f_{x}(a, b) h\right)+\left(I I-f_{y}(a, b) k\right)$. Hence, when $\|(h, k)\|<\delta$ (which immediately implies that $|h|<\delta,|k|<\delta$ ), then by continuity of $f_{x}, f_{y},\left|f_{x}\left(a+\theta_{1}, b+k\right)-f_{x}(a, b)\right|<\frac{\epsilon}{2}$ and $\left|f_{y}\left(a, b+\theta_{2}\right)-f_{y}(a, b)\right|<\frac{\epsilon}{2}$. Thus $\left|\left(I-f_{x}(a, b) h\right)\right|<|h| \frac{\epsilon}{2}$ and
- Roughly speaking, when $h, k$ are small, $I$ is almost $f_{x}(a, b) h$ and $I I$ is almost $f_{y}(a, b) k$ by the assumption of continuity of the partial derivatives.
- More rigorously,
$f(a+h, b+k)-f(a, b)-f_{x}(a, b) h-f_{y}(a, b) k=$ $\left(I-f_{x}(a, b) h\right)+\left(I I-f_{y}(a, b) k\right)$. Hence, when $\|(h, k)\|<\delta$ (which immediately implies that $|h|<\delta,|k|<\delta$ ), then by continuity of $f_{x}, f_{y},\left|f_{x}\left(a+\theta_{1}, b+k\right)-f_{x}(a, b)\right|<\frac{\epsilon}{2}$ and $\left|f_{y}\left(a, b+\theta_{2}\right)-f_{y}(a, b)\right|<\frac{\epsilon}{2}$. Thus $\left|\left(I-f_{x}(a, b) h\right)\right|<|h| \frac{\epsilon}{2}$ and $\left|I I-f_{y}(a, b) k\right|<|k| \frac{\epsilon}{2}$.
- Roughly speaking, when $h, k$ are small, $I$ is almost $f_{x}(a, b) h$ and $I I$ is almost $f_{y}(a, b) k$ by the assumption of continuity of the partial derivatives.
- More rigorously,
$f(a+h, b+k)-f(a, b)-f_{x}(a, b) h-f_{y}(a, b) k=$ $\left(I-f_{x}(a, b) h\right)+\left(I I-f_{y}(a, b) k\right)$. Hence, when $\|(h, k)\|<\delta$ (which immediately implies that $|h|<\delta,|k|<\delta$ ), then by continuity of $f_{x}, f_{y},\left|f_{x}\left(a+\theta_{1}, b+k\right)-f_{x}(a, b)\right|<\frac{\epsilon}{2}$ and $\left|f_{y}\left(a, b+\theta_{2}\right)-f_{y}(a, b)\right|<\frac{\epsilon}{2}$. Thus $\left|\left(I-f_{x}(a, b) h\right)\right|<|h| \frac{\epsilon}{2}$
and $\left|I I-f_{y}(a, b) k\right|<|k| \frac{\epsilon}{2}$.
- Thus, $\frac{\left|f(a+h, b+k)-f(a, b)-f_{x}(a, b) h-f_{y}(a, b) k\right|}{\|(h, k)\|}<\epsilon$.
- Roughly speaking, when $h, k$ are small, $I$ is almost $f_{x}(a, b) h$ and $I /$ is almost $f_{y}(a, b) k$ by the assumption of continuity of the partial derivatives.
- More rigorously,
$f(a+h, b+k)-f(a, b)-f_{x}(a, b) h-f_{y}(a, b) k=$ $\left(I-f_{x}(a, b) h\right)+\left(I I-f_{y}(a, b) k\right)$. Hence, when $\|(h, k)\|<\delta$ (which immediately implies that $|h|<\delta,|k|<\delta$ ), then by continuity of $f_{x}, f_{y},\left|f_{x}\left(a+\theta_{1}, b+k\right)-f_{x}(a, b)\right|<\frac{\epsilon}{2}$ and $\left|f_{y}\left(a, b+\theta_{2}\right)-f_{y}(a, b)\right|<\frac{\epsilon}{2}$. Thus $\left|\left(I-f_{x}(a, b) h\right)\right|<|h| \frac{\epsilon}{2}$ and $\left|I I-f_{y}(a, b) k\right|<|k| \frac{\epsilon}{2}$.
- Thus, $\frac{\left|f(a+h, b+k)-f(a, b)-f_{x}(a, b) h-f_{y}(a, b) k\right|}{\|(h, k)\|}<\epsilon$. This implies the result
- Roughly speaking, when $h, k$ are small, $I$ is almost $f_{x}(a, b) h$ and $I /$ is almost $f_{y}(a, b) k$ by the assumption of continuity of the partial derivatives.
- More rigorously,
$f(a+h, b+k)-f(a, b)-f_{x}(a, b) h-f_{y}(a, b) k=$ $\left(I-f_{x}(a, b) h\right)+\left(I I-f_{y}(a, b) k\right)$. Hence, when $\|(h, k)\|<\delta$ (which immediately implies that $|h|<\delta,|k|<\delta$ ), then by continuity of $f_{x}, f_{y},\left|f_{x}\left(a+\theta_{1}, b+k\right)-f_{x}(a, b)\right|<\frac{\epsilon}{2}$ and $\left|f_{y}\left(a, b+\theta_{2}\right)-f_{y}(a, b)\right|<\frac{\epsilon}{2}$. Thus $\left|\left(I-f_{x}(a, b) h\right)\right|<|h| \frac{\epsilon}{2}$ and $\left|I I-f_{y}(a, b) k\right|<|k| \frac{\epsilon}{2}$.
- Thus, $\frac{\left|f(a+h, b+k)-f(a, b)-f_{x}(a, b) h-f_{y}(a, b) k\right|}{\|(h, k)\|}<\epsilon$. This implies the result in this case.


## Proof

- When we have


## Proof

- When we have $n$ variables $x_{1}, \ldots, x_{n}$,


## Proof

- When we have $n$ variables $x_{1}, \ldots, x_{n}$, the proof is similar.


## Proof

- When we have $n$ variables $x_{1}, \ldots, x_{n}$, the proof is similar.
- Indeed,


## Proof

- When we have $n$ variables $x_{1}, \ldots, x_{n}$, the proof is similar.
- Indeed, write $f\left(a_{1}+h_{1}, \ldots\right)-f(a, b)$ as a sum
- When we have $n$ variables $x_{1}, \ldots, x_{n}$, the proof is similar.
- Indeed, write $f\left(a_{1}+h_{1}, \ldots\right)-f(a, b)$ as a sum $I+I I+\ldots$ where $I=f\left(a_{1}+h_{1}, \ldots\right)-f\left(a_{1}, \ldots\right)$, etc.
- When we have $n$ variables $x_{1}, \ldots, x_{n}$, the proof is similar.
- Indeed, write $f\left(a_{1}+h_{1}, \ldots\right)-f(a, b)$ as a sum $I+I I+\ldots$ where $I=f\left(a_{1}+h_{1}, \ldots\right)-f\left(a_{1}, \ldots\right)$, etc.
- For each of the
- When we have $n$ variables $x_{1}, \ldots, x_{n}$, the proof is similar.
- Indeed, write $f\left(a_{1}+h_{1}, \ldots\right)-f(a, b)$ as a sum $I+I I+\ldots$ where $I=f\left(a_{1}+h_{1}, \ldots\right)-f\left(a_{1}, \ldots\right)$, etc.
- For each of the $n$ summands,
- When we have $n$ variables $x_{1}, \ldots, x_{n}$, the proof is similar.
- Indeed, write $f\left(a_{1}+h_{1}, \ldots\right)-f(a, b)$ as a sum $I+I I+\ldots$ where $I=f\left(a_{1}+h_{1}, \ldots\right)-f\left(a_{1}, \ldots\right)$, etc.
- For each of the $n$ summands, use Lagrange's MVT to get
- When we have $n$ variables $x_{1}, \ldots, x_{n}$, the proof is similar.
- Indeed, write $f\left(a_{1}+h_{1}, \ldots\right)-f(a, b)$ as a sum $I+I I+\ldots$ where $I=f\left(a_{1}+h_{1}, \ldots\right)-f\left(a_{1}, \ldots\right)$, etc.
- For each of the $n$ summands, use Lagrange's MVT to get partials into the picture.
- When we have $n$ variables $x_{1}, \ldots, x_{n}$, the proof is similar.
- Indeed, write $f\left(a_{1}+h_{1}, \ldots\right)-f(a, b)$ as a sum $I+I I+\ldots$ where $I=f\left(a_{1}+h_{1}, \ldots\right)-f\left(a_{1}, \ldots\right)$, etc.
- For each of the $n$ summands, use Lagrange's MVT to get partials into the picture.
- For each of the partials,
- When we have $n$ variables $x_{1}, \ldots, x_{n}$, the proof is similar.
- Indeed, write $f\left(a_{1}+h_{1}, \ldots\right)-f(a, b)$ as a sum $I+I I+\ldots$ where $I=f\left(a_{1}+h_{1}, \ldots\right)-f\left(a_{1}, \ldots\right)$, etc.
- For each of the $n$ summands, use Lagrange's MVT to get partials into the picture.
- For each of the partials, we can replace them by
- When we have $n$ variables $x_{1}, \ldots, x_{n}$, the proof is similar.
- Indeed, write $f\left(a_{1}+h_{1}, \ldots\right)-f(a, b)$ as a sum $I+I I+\ldots$ where $I=f\left(a_{1}+h_{1}, \ldots\right)-f\left(a_{1}, \ldots\right)$, etc.
- For each of the $n$ summands, use Lagrange's MVT to get partials into the picture.
- For each of the partials, we can replace them by their values at $\vec{a}$ at
- When we have $n$ variables $x_{1}, \ldots, x_{n}$, the proof is similar.
- Indeed, write $f\left(a_{1}+h_{1}, \ldots\right)-f(a, b)$ as a sum $I+I I+\ldots$ where $I=f\left(a_{1}+h_{1}, \ldots\right)-f\left(a_{1}, \ldots\right)$, etc.
- For each of the $n$ summands, use Lagrange's MVT to get partials into the picture.
- For each of the partials, we can replace them by their values at $\vec{a}$ at the cost of an error $\frac{\epsilon}{n}$
- When we have $n$ variables $x_{1}, \ldots, x_{n}$, the proof is similar.
- Indeed, write $f\left(a_{1}+h_{1}, \ldots\right)-f(a, b)$ as a sum $I+I I+\ldots$ where $I=f\left(a_{1}+h_{1}, \ldots\right)-f\left(a_{1}, \ldots\right)$, etc.
- For each of the $n$ summands, use Lagrange's MVT to get partials into the picture.
- For each of the partials, we can replace them by their values at $\vec{a}$ at the cost of an error $\frac{\epsilon}{n}$ provided $\vec{h}$ is small enough.
- When we have $n$ variables $x_{1}, \ldots, x_{n}$, the proof is similar.
- Indeed, write $f\left(a_{1}+h_{1}, \ldots\right)-f(a, b)$ as a sum $I+I I+\ldots$ where $I=f\left(a_{1}+h_{1}, \ldots\right)-f\left(a_{1}, \ldots\right)$, etc.
- For each of the $n$ summands, use Lagrange's MVT to get partials into the picture.
- For each of the partials, we can replace them by their values at $\vec{a}$ at the cost of an error $\frac{\epsilon}{n}$ provided $\vec{h}$ is small enough. The same manipulations
- When we have $n$ variables $x_{1}, \ldots, x_{n}$, the proof is similar.
- Indeed, write $f\left(a_{1}+h_{1}, \ldots\right)-f(a, b)$ as a sum $I+I I+\ldots$ where $I=f\left(a_{1}+h_{1}, \ldots\right)-f\left(a_{1}, \ldots\right)$, etc.
- For each of the $n$ summands, use Lagrange's MVT to get partials into the picture.
- For each of the partials, we can replace them by their values at $\vec{a}$ at the cost of an error $\frac{\epsilon}{n}$ provided $\vec{h}$ is small enough. The same manipulations as before show what we need.

