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@ With counterexamples, demonstrated that directional
derivatives are not good enough.

@ Defined differentiability as the linear approximation.
@ Proved that differentiability implies continuity.

o Gave a geometric meaning to the gradient.
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— _ 1 _1 2 _ 1

choose sequences y, = 0,x, = ;- and y, = 2, xp = ¥y = 5

and calculate the limits to get the desired result.

Vamsi Pritham Pingali Lecture 26 4/9



A digression into limits

@ The above theorem makes the proof of non-existence much
easier. For instance in the above example, we can simply
choose sequences y, = 0, x, = % and y, = %,x,, =y2= %
and calculate the limits to get the desired result.

@ The same theorem

Vamsi Pritham Pingali Lecture 26 4/9



A digression into limits

@ The above theorem makes the proof of non-existence much
easier. For instance in the above example, we can simply
choose sequences y, = 0, x, = % and y, = %,x,, =y2= %
and calculate the limits to get the desired result.

@ The same theorem can be stated for

Vamsi Pritham Pingali Lecture 26 4/9



A digression into limits

@ The above theorem makes the proof of non-existence much
easier. For instance in the above example, we can simply
choose sequences y, = 0, x, = % and y, = %,x,, =y2= %
and calculate the limits to get the desired result.

@ The same theorem can be stated for more than two variables

too.

Vamsi Pritham Pingali Lecture 26 4/9



A digression into limits

@ The above theorem makes the proof of non-existence much
easier. For instance in the above example, we can simply
choose sequences y, = 0, x, = % and y, = %,x,, =y2= %
and calculate the limits to get the desired result.

@ The same theorem can be stated for more than two variables

too.

@ In fact,

Vamsi Pritham Pingali Lecture 26 4/9



A digression into limits

@ The above theorem makes the proof of non-existence much
easier. For instance in the above example, we can simply
choose sequences y, = 0, x, = % and y, = %,x,, =y2= %
and calculate the limits to get the desired result.

@ The same theorem can be stated for more than two variables

too.
@ In fact, if the limits of f(x,, yn) exist

Vamsi Pritham Pingali Lecture 26 4/9



A digression into limits

@ The above theorem makes the proof of non-existence much
easier. For instance in the above example, we can simply
choose sequences y, = 0, x, = % and y, = %,x,, =y2= %
and calculate the limits to get the desired result.

@ The same theorem can be stated for more than two variables

too.
e In fact, if the limits of f(x,, yn) exist and are equal for

Vamsi Pritham Pingali Lecture 26 4/9



A digression into limits

@ The above theorem makes the proof of non-existence much
easier. For instance in the above example, we can simply
choose sequences y, = 0, x, = % and y, = %,x,, =y2= %
and calculate the limits to get the desired result.

@ The same theorem can be stated for more than two variables

too.

e In fact, if the limits of f(x,, yn) exist and are equal for all such
convegent sequences x, — a, Y, — b,

Vamsi Pritham Pingali Lecture 26 4/9



A digression into limits

@ The above theorem makes the proof of non-existence much
easier. For instance in the above example, we can simply
choose sequences y, = 0, x, = % and y, = %,x,, =y2= %
and calculate the limits to get the desired result.

@ The same theorem can be stated for more than two variables

too.

e In fact, if the limits of f(x,, yn) exist and are equal for all such
convegent sequences x, — a, ¥, — b, then by contradiction,

Vamsi Pritham Pingali Lecture 26 4/9



A digression into limits

@ The above theorem makes the proof of non-existence much
easier. For instance in the above example, we can simply
choose sequences y, = 0, x, = % and y, = %,x,, =y2= %
and calculate the limits to get the desired result.

@ The same theorem can be stated for more than two variables

too.

e In fact, if the limits of f(x,, yn) exist and are equal for all such
convegent sequences x, — a, ¥, — b, then by contradiction,
we can conclude that

Vamsi Pritham Pingali Lecture 26 4/9



A digression into limits

@ The above theorem makes the proof of non-existence much
easier. For instance in the above example, we can simply
choose sequences y, = 0, x, = % and y, = %,x,, =y2= %
and calculate the limits to get the desired result.

@ The same theorem can be stated for more than two variables

too.

e In fact, if the limits of f(x,, yn) exist and are equal for all such
convegent sequences x, — a, ¥, — b, then by contradiction,
we can conclude that the limit of f(x,y) exists in

Vamsi Pritham Pingali Lecture 26 4/9



A digression into limits

@ The above theorem makes the proof of non-existence much
easier. For instance in the above example, we can simply
choose sequences y, = 0, x, = % and y, = %,x,, = y,% = %
and calculate the limits to get the desired result.

@ The same theorem can be stated for more than two variables

too.

o In fact, if the limits of f(xp, y,) exist and are equal for all such
convegent sequences x, — a, ¥, — b, then by contradiction,
we can conclude that the limit of f(x,y) exists in the
multivariable sense (HW).
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o If f(x), g(y) are differentiable functions on R with continuous
derivatives then h(x,y) = f(x)g(y) is differentiable in the
multivariable sense. Indeed, hy, h, exist and by continuity
laws, they are continuous.

@ By the one-variable chain rule and continuity laws, a linear
combination of functions like f(x)*g(y)’ is also differentiable.

@ As a consequence, polynomials are differentiable on all of R”.

@ Rational functions are differentiable wherever their
denominator is non-zero.
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partials into the picture.
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where | = f(a; + hy,...) — f(a1,...), etc.

@ For each of the n summands, use Lagrange's MVT to get
partials into the picture.

@ For each of the partials, we can replace them by their values
at 4 at the cost of an error + provided h is small enough.
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When we have n variables xi, ..., x,, the proof is similar.
Indeed, write f(ay + h1,...) —f(a,b) asasum [ + /1 + ...
where | = f(a; + hy,...) — f(a1,...), etc.

For each of the n summands, use Lagrange's MVT to get
partials into the picture.

For each of the partials, we can replace them by their values
at & at the cost of an error + provided h is small enough. The
same manipulations
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When we have n variables xi, ..., x,, the proof is similar.
Indeed, write f(ay + h1,...) —f(a,b) asasum [ + /1 + ...
where | = f(a; + hy,...) — f(a1,...), etc.

For each of the n summands, use Lagrange's MVT to get
partials into the picture.

For each of the partials, we can replace them by their values

at 4 at the cost of an error -+ provided h is small enough. The
same manipulations as before show what we need.
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