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Recap

Proved a theorem about limits that implied that it is enough
to “test” a limit against sequences (just as in one-variable
calculus).

Proved a sufficient condition for differentiability, i.e.,
continuous partials implies differentiability. Saw that rational
functions are differentiable on their domain (when the
denominator is non-zero).
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One-variable chain rule

Recall that if h(x) = sin(x2) then f ′(x) = cos(x2)2x . That is,
if f : R→ R is differentiable and g : R→ R is differentiable,
then f ◦ g : R→ R is differentiable and
(f ◦ g)′(x) = f ′(g(x))g ′(x).

The rough idea of the proof is as follows.
g(x + h) ≈ g(x) + hg ′(x) when h is small.
f (y + k) ≈ f (y) + kf ′(y) when k is small. So
f (g(x + h)) ≈ f (g(x) + hg ′(x)) which is
f (g(x)) + hg ′(x)f ′(g(x)) when h is small. Thus
f (g(x+h))−f (g(x))

h ≈ g ′(x)f ′(g(x)) when h is small.

Of course, one has to make the above rigorous using δs and εs.
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Towards higher-dimensions

There is a genuine need for a higher-variable chain rule. Here
are two examples where such a rule might help.

Suppose a particle is moving along a path ~r(t) in a room.
One question is what rate of temperature rise will the particle
experience? That is, suppose T (x , y , z) is the temperature
(presumably an infinitely differentiable function) and
~r(t) = (x(t), y(t), z(t)) is the trajectory (again presumably

highly differentiable), then what is dT (x(t),y(t),z(t))
dt ?

Consider the polar coordinates x = r cos(θ), y = r sin(θ), i.e.,
r2 = x2 + y2 and tan(θ) = y

x . (By the way, they make sense
only away from the positive x-axis and the origin.) Again,
let’s assume T (x , y) is the temperature of a hot circular plate.
So T̃ (r , θ) = T (x(r , θ), y(r , θ)) is a function. We want
∂T̃
∂r ,

∂T̃
∂θ in terms of ∂T

∂x ,
∂T
∂y .
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A rough idea for the first example

What we want is limh→0
T (~r(t+h))−T (~r(t))

h . Note that
x(t + h) ≈ x(t) + hx ′(t) when h is small. Likewise for
y(t), z(t), i.e., ~r(t + h) ≈ ~r(t) + h~r ′(t).

Now
T (x+∆x , y+∆y , z+∆z) ≈ T (x , y , z)+∆xTx+∆yTy +∆zTz

(by definition of differentiability).

Taking ∆x = x ′(t)h and likewise for y , z , we see that
T (~r(t + h)) ≈ T (~r(t)) + h(x ′(t)Tx + y ′(t)Ty + z ′(t)Tz), i.e.,
T (~r(t+h))−T (~r(t))

h ≈ x ′(t)Tx + y ′(t)Ty + z ′(t)Tz =
〈∇T , ~r ′(t)〉 = ∇~r ′(t)T .
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The rigorous statement

Let f (~r) : S ⊂ Rn → R be a scalar field. Let
~r(t) : (a, b) ∈ R→ Rn be a vector-valued function. Define
the composition h(t) : (a, b)→ R as h(t) = f (~r(t)).

Suppose t0 ∈ (a, b) is a point where x1(t), x2(t), . . . are
differentiable functions and f is differentiable at ~r(t0).

Then h(t) is differentiable at t0 and
h′(t0) = 〈∇f (~r(t0)), ~r ′(t0)〉 = ∇~r ′(t0)f (~r(t)).
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Examples

If a path is a regular path, i.e., ~r ′(t) 6= 0 ∀ t, then
1

‖~r ′(t)‖〈∇f (~r(t0)), ~r ′(t0)〉 is called the directional derivative

along the curve and denoted as df
ds (the change in f per metre

of the curve). For instance, if f (x , y) = x2 − 3xy and the
path is (t, t2 − t + 2), and we want to find df

ds |t=1, then we
calculate as follows. ∇f = (fx , fy ) = (2x − 3y ,−3x) which at
t = 1 is ∇f (~r(1)) = (−4,−3) and ~r ′(t) = (1, 2t − 1) which
leads to ~r ′(1) = (1, 1). Thus
df
ds |t=1 = 1√

2
〈∇f , ~r ′(t)〉 = 1√

2
(−4,−3).(1, 1) = −7√

2
.

Suppose f (x , y) = x2 − y2 and ~r1(t) = (t, 2t) and
~r2(t) = (2t, 4t). Then ∇f = (2x ,−2y) and ~r ′1 = (1, 2),

~r ′2 = (2, 4). Thus df (x1(t),y2(t))
dt = −6t and

df (x1(t),y2(t))
dt = −24t. In other words, the choice of

parameterisation can affect the result. (Warning: At a point
say (1, 2), for ~r1, t = 1 and for ~r2, t = 1

2 . Thus the derivatives

of f are −6,−12 respectively. On the other hand, df
ds is the

same for both paths.)
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Examples

Let f : R2 → R be a differentiable scalar field such that
∇f 6= ~0 anywhere. Let c ∈ R a constant such that f (x , y) = c
describes a differentiable curve C having a well-defined unit
tangent vector at each point. Prove that the following hold.

The gradient vector ∇f is normal to C .

The directional derivative df
ds along C is 0.

The directional derivative of f at any point on C is highest in
the normal direction to C .
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Examples

Let ~v be the unit tangent vector at a point (x0, y0) on C , i.e.,
f (x0, y0) = c .

By the assumption of a well-defined unit tangent , the curve C
can be parameterised as ~r(t) = (x(t), y(t)) where the tangent
vector at (x0, y0) = (x(0), y(0)) is ~v , i.e., (x ′(t), y ′(t)) = ~v .

Thus df
ds at t = 0, i.e., at (x0, y0) is df (x(t),y(t))

dt = 0 because
f (x(t), y(t)) = c for all t. This proves the second part.

Moreover, df (x(t),y(t))
dt = 〈∇f , ~v〉 = 0 and hence ∇f (x0, y0) is

perpendicular to the tangent, i.e., it is normal to C .

Lastly, by Cauchy-Schwarz, the directional derivative at
(x0, y0) is highest along ∇f (x0, y0) which we just proved is
normal to C .
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vector at (x0, y0) = (x(0), y(0)) is ~v , i.e., (x ′(t), y ′(t)) = ~v .

Thus df
ds at t = 0, i.e., at (x0, y0) is df (x(t),y(t))

dt = 0 because
f (x(t), y(t)) = c for all t. This proves the second part.

Moreover, df (x(t),y(t))
dt = 〈∇f , ~v〉 = 0 and hence ∇f (x0, y0) is

perpendicular to the tangent, i.e., it is normal to C .

Lastly, by Cauchy-Schwarz, the directional derivative at
(x0, y0) is highest along ∇f (x0, y0) which we just proved is
normal to C .
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