Lecture 27 - UM 102 (Spring 2021)

Vamsi Pritham Pingali

IISc

Recap

Recap

- Proved a theorem

Recap

- Proved a theorem about limits

Recap

- Proved a theorem about limits that implied that
- Proved a theorem about limits that implied that it is enough to
- Proved a theorem about limits that implied that it is enough to "test" a limit
- Proved a theorem about limits that implied that it is enough to "test" a limit against sequences (
- Proved a theorem about limits that implied that it is enough to "test" a limit against sequences (just as in one-variable calculus).
- Proved a theorem about limits that implied that it is enough to "test" a limit against sequences (just as in one-variable calculus).
- Proved a
- Proved a theorem about limits that implied that it is enough to "test" a limit against sequences (just as in one-variable calculus).
- Proved a sufficient condition
- Proved a theorem about limits that implied that it is enough to "test" a limit against sequences (just as in one-variable calculus).
- Proved a sufficient condition for differentiability,
- Proved a theorem about limits that implied that it is enough to "test" a limit against sequences (just as in one-variable calculus).
- Proved a sufficient condition for differentiability, i.e., continuous partials
- Proved a theorem about limits that implied that it is enough to "test" a limit against sequences (just as in one-variable calculus).
- Proved a sufficient condition for differentiability, i.e., continuous partials implies differentiability.
- Proved a theorem about limits that implied that it is enough to "test" a limit against sequences (just as in one-variable calculus).
- Proved a sufficient condition for differentiability, i.e., continuous partials implies differentiability. Saw that rational functions
- Proved a theorem about limits that implied that it is enough to "test" a limit against sequences (just as in one-variable calculus).
- Proved a sufficient condition for differentiability, i.e., continuous partials implies differentiability. Saw that rational functions are differentiable
- Proved a theorem about limits that implied that it is enough to "test" a limit against sequences (just as in one-variable calculus).
- Proved a sufficient condition for differentiability, i.e., continuous partials implies differentiability. Saw that rational functions are differentiable on their domain (
- Proved a theorem about limits that implied that it is enough to "test" a limit against sequences (just as in one-variable calculus).
- Proved a sufficient condition for differentiability, i.e., continuous partials implies differentiability. Saw that rational functions are differentiable on their domain (when the
- Proved a theorem about limits that implied that it is enough to "test" a limit against sequences (just as in one-variable calculus).
- Proved a sufficient condition for differentiability, i.e., continuous partials implies differentiability. Saw that rational functions are differentiable on their domain (when the denominator is non-zero).

One-variable chain rule

One-variable chain rule

- Recall that

One-variable chain rule

- Recall that if $h(x)=\sin \left(x^{2}\right)$ then $f^{\prime}(x)=\cos \left(x^{2}\right) 2 x$.

One-variable chain rule

- Recall that if $h(x)=\sin \left(x^{2}\right)$ then $f^{\prime}(x)=\cos \left(x^{2}\right) 2 x$. That is,

One-variable chain rule

- Recall that if $h(x)=\sin \left(x^{2}\right)$ then $f^{\prime}(x)=\cos \left(x^{2}\right) 2 x$. That is, if $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and

One-variable chain rule

- Recall that if $h(x)=\sin \left(x^{2}\right)$ then $f^{\prime}(x)=\cos \left(x^{2}\right) 2 x$. That is, if $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and $g: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable, then

One-variable chain rule

- Recall that if $h(x)=\sin \left(x^{2}\right)$ then $f^{\prime}(x)=\cos \left(x^{2}\right) 2 x$. That is, if $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and $g: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable, then $f \circ g: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and

One-variable chain rule

- Recall that if $h(x)=\sin \left(x^{2}\right)$ then $f^{\prime}(x)=\cos \left(x^{2}\right) 2 x$. That is, if $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and $g: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable, then $f \circ g: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and $(f \circ g)^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)$.

One-variable chain rule

- Recall that if $h(x)=\sin \left(x^{2}\right)$ then $f^{\prime}(x)=\cos \left(x^{2}\right) 2 x$. That is, if $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and $g: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable, then $f \circ g: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and $(f \circ g)^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)$.
- The rough idea

One-variable chain rule

- Recall that if $h(x)=\sin \left(x^{2}\right)$ then $f^{\prime}(x)=\cos \left(x^{2}\right) 2 x$. That is, if $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and $g: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable, then $f \circ g: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and $(f \circ g)^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)$.
- The rough idea of the proof is as follows.

One-variable chain rule

- Recall that if $h(x)=\sin \left(x^{2}\right)$ then $f^{\prime}(x)=\cos \left(x^{2}\right) 2 x$. That is, if $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and $g: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable, then $f \circ g: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and $(f \circ g)^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)$.
- The rough idea of the proof is as follows. $g(x+h) \approx g(x)+h g^{\prime}(x)$ when h is small.

One-variable chain rule

- Recall that if $h(x)=\sin \left(x^{2}\right)$ then $f^{\prime}(x)=\cos \left(x^{2}\right) 2 x$. That is, if $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and $g: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable, then $f \circ g: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and $(f \circ g)^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)$.
- The rough idea of the proof is as follows. $g(x+h) \approx g(x)+h g^{\prime}(x)$ when h is small. $f(y+k) \approx f(y)+k f^{\prime}(y)$ when k is small.

One-variable chain rule

- Recall that if $h(x)=\sin \left(x^{2}\right)$ then $f^{\prime}(x)=\cos \left(x^{2}\right) 2 x$. That is, if $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and $g: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable, then $f \circ g: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and $(f \circ g)^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)$.
- The rough idea of the proof is as follows.
$g(x+h) \approx g(x)+h g^{\prime}(x)$ when h is small. $f(y+k) \approx f(y)+k f^{\prime}(y)$ when k is small. So $f(g(x+h)) \approx f\left(g(x)+h g^{\prime}(x)\right)$ which is

One-variable chain rule

- Recall that if $h(x)=\sin \left(x^{2}\right)$ then $f^{\prime}(x)=\cos \left(x^{2}\right) 2 x$. That is, if $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and $g: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable, then $f \circ g: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and $(f \circ g)^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)$.
- The rough idea of the proof is as follows.
$g(x+h) \approx g(x)+h g^{\prime}(x)$ when h is small. $f(y+k) \approx f(y)+k f^{\prime}(y)$ when k is small. So $f(g(x+h)) \approx f\left(g(x)+h g^{\prime}(x)\right)$ which is $f(g(x))+h g^{\prime}(x) f^{\prime}(g(x))$ when h is small.

One-variable chain rule

- Recall that if $h(x)=\sin \left(x^{2}\right)$ then $f^{\prime}(x)=\cos \left(x^{2}\right) 2 x$. That is, if $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and $g: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable, then $f \circ g: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and $(f \circ g)^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)$.
- The rough idea of the proof is as follows.
$g(x+h) \approx g(x)+h g^{\prime}(x)$ when h is small. $f(y+k) \approx f(y)+k f^{\prime}(y)$ when k is small. So $f(g(x+h)) \approx f\left(g(x)+h g^{\prime}(x)\right)$ which is $f(g(x))+h g^{\prime}(x) f^{\prime}(g(x))$ when h is small. Thus $\frac{f(g(x+h))-f(g(x))}{h} \approx g^{\prime}(x) f^{\prime}(g(x))$ when h is small.

One-variable chain rule

- Recall that if $h(x)=\sin \left(x^{2}\right)$ then $f^{\prime}(x)=\cos \left(x^{2}\right) 2 x$. That is, if $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and $g: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable, then $f \circ g: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and $(f \circ g)^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)$.
- The rough idea of the proof is as follows.
$g(x+h) \approx g(x)+h g^{\prime}(x)$ when h is small.
$f(y+k) \approx f(y)+k f^{\prime}(y)$ when k is small. So
$f(g(x+h)) \approx f\left(g(x)+h g^{\prime}(x)\right)$ which is $f(g(x))+h g^{\prime}(x) f^{\prime}(g(x))$ when h is small. Thus $\frac{f(g(x+h))-f(g(x))}{h} \approx g^{\prime}(x) f^{\prime}(g(x))$ when h is small.
- Of course,

One-variable chain rule

- Recall that if $h(x)=\sin \left(x^{2}\right)$ then $f^{\prime}(x)=\cos \left(x^{2}\right) 2 x$. That is, if $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and $g: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable, then $f \circ g: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and $(f \circ g)^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)$.
- The rough idea of the proof is as follows.
$g(x+h) \approx g(x)+h g^{\prime}(x)$ when h is small.
$f(y+k) \approx f(y)+k f^{\prime}(y)$ when k is small. So
$f(g(x+h)) \approx f\left(g(x)+h g^{\prime}(x)\right)$ which is $f(g(x))+h g^{\prime}(x) f^{\prime}(g(x))$ when h is small. Thus $\frac{f(g(x+h))-f(g(x))}{h} \approx g^{\prime}(x) f^{\prime}(g(x))$ when h is small.
- Of course, one has to make

One-variable chain rule

- Recall that if $h(x)=\sin \left(x^{2}\right)$ then $f^{\prime}(x)=\cos \left(x^{2}\right) 2 x$. That is, if $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and $g: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable, then $f \circ g: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and $(f \circ g)^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)$.
- The rough idea of the proof is as follows.
$g(x+h) \approx g(x)+h g^{\prime}(x)$ when h is small.
$f(y+k) \approx f(y)+k f^{\prime}(y)$ when k is small. So
$f(g(x+h)) \approx f\left(g(x)+h g^{\prime}(x)\right)$ which is $f(g(x))+h g^{\prime}(x) f^{\prime}(g(x))$ when h is small. Thus $\frac{f(g(x+h))-f(g(x))}{h} \approx g^{\prime}(x) f^{\prime}(g(x))$ when h is small.
- Of course, one has to make the above rigorous

One-variable chain rule

- Recall that if $h(x)=\sin \left(x^{2}\right)$ then $f^{\prime}(x)=\cos \left(x^{2}\right) 2 x$. That is, if $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and $g: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable, then $f \circ g: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and $(f \circ g)^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)$.
- The rough idea of the proof is as follows.
$g(x+h) \approx g(x)+h g^{\prime}(x)$ when h is small.
$f(y+k) \approx f(y)+k f^{\prime}(y)$ when k is small. So
$f(g(x+h)) \approx f\left(g(x)+h g^{\prime}(x)\right)$ which is $f(g(x))+h g^{\prime}(x) f^{\prime}(g(x))$ when h is small. Thus $\frac{f(g(x+h))-f(g(x))}{h} \approx g^{\prime}(x) f^{\prime}(g(x))$ when h is small.
- Of course, one has to make the above rigorous using $\delta \mathrm{s}$ and $\epsilon \mathrm{s}$.

Towards higher-dimensions

Towards higher-dimensions

- There is a

Towards higher-dimensions

- There is a genuine need

Towards higher-dimensions

- There is a genuine need for a higher-variable

Towards higher-dimensions

- There is a genuine need for a higher-variable chain rule.

Towards higher-dimensions

- There is a genuine need for a higher-variable chain rule. Here are two examples

Towards higher-dimensions

- There is a genuine need for a higher-variable chain rule. Here are two examples where such a rule

Towards higher-dimensions

- There is a genuine need for a higher-variable chain rule. Here are two examples where such a rule might help.

Towards higher-dimensions

- There is a genuine need for a higher-variable chain rule. Here are two examples where such a rule might help.
- Suppose a particle

Towards higher-dimensions

- There is a genuine need for a higher-variable chain rule. Here are two examples where such a rule might help.
- Suppose a particle is moving along a path $\vec{r}(t)$

Towards higher-dimensions

- There is a genuine need for a higher-variable chain rule. Here are two examples where such a rule might help.
- Suppose a particle is moving along a path $\vec{r}(t)$ in a room.

Towards higher-dimensions

- There is a genuine need for a higher-variable chain rule. Here are two examples where such a rule might help.
- Suppose a particle is moving along a path $\vec{r}(t)$ in a room. One question is

Towards higher-dimensions

- There is a genuine need for a higher-variable chain rule. Here are two examples where such a rule might help.
- Suppose a particle is moving along a path $\vec{r}(t)$ in a room. One question is what rate of

Towards higher-dimensions

- There is a genuine need for a higher-variable chain rule. Here are two examples where such a rule might help.
- Suppose a particle is moving along a path $\vec{r}(t)$ in a room. One question is what rate of temperature rise

Towards higher-dimensions

- There is a genuine need for a higher-variable chain rule. Here are two examples where such a rule might help.
- Suppose a particle is moving along a path $\vec{r}(t)$ in a room. One question is what rate of temperature rise will the particle experience?

Towards higher-dimensions

- There is a genuine need for a higher-variable chain rule. Here are two examples where such a rule might help.
- Suppose a particle is moving along a path $\vec{r}(t)$ in a room. One question is what rate of temperature rise will the particle experience? That is,

Towards higher-dimensions

- There is a genuine need for a higher-variable chain rule. Here are two examples where such a rule might help.
- Suppose a particle is moving along a path $\vec{r}(t)$ in a room. One question is what rate of temperature rise will the particle experience? That is, suppose $T(x, y, z)$ is the temperature (

Towards higher-dimensions

- There is a genuine need for a higher-variable chain rule. Here are two examples where such a rule might help.
- Suppose a particle is moving along a path $\vec{r}(t)$ in a room. One question is what rate of temperature rise will the particle experience? That is, suppose $T(x, y, z)$ is the temperature (presumably an infinitely differentiable function)

Towards higher-dimensions

- There is a genuine need for a higher-variable chain rule. Here are two examples where such a rule might help.
- Suppose a particle is moving along a path $\vec{r}(t)$ in a room. One question is what rate of temperature rise will the particle experience? That is, suppose $T(x, y, z)$ is the temperature (presumably an infinitely differentiable function) and $\vec{r}(t)=(x(t), y(t), z(t))$ is the trajectory $($

Towards higher-dimensions

- There is a genuine need for a higher-variable chain rule. Here are two examples where such a rule might help.
- Suppose a particle is moving along a path $\vec{r}(t)$ in a room. One question is what rate of temperature rise will the particle experience? That is, suppose $T(x, y, z)$ is the temperature (presumably an infinitely differentiable function) and $\vec{r}(t)=(x(t), y(t), z(t))$ is the trajectory (again presumably highly differentiable),

Towards higher-dimensions

- There is a genuine need for a higher-variable chain rule. Here are two examples where such a rule might help.
- Suppose a particle is moving along a path $\vec{r}(t)$ in a room. One question is what rate of temperature rise will the particle experience? That is, suppose $T(x, y, z)$ is the temperature (presumably an infinitely differentiable function) and $\vec{r}(t)=(x(t), y(t), z(t))$ is the trajectory (again presumably highly differentiable), then what is $\frac{d T(x(t), y(t), z(t))}{d t}$?

Towards higher-dimensions

- There is a genuine need for a higher-variable chain rule. Here are two examples where such a rule might help.
- Suppose a particle is moving along a path $\vec{r}(t)$ in a room. One question is what rate of temperature rise will the particle experience? That is, suppose $T(x, y, z)$ is the temperature (presumably an infinitely differentiable function) and $\vec{r}(t)=(x(t), y(t), z(t))$ is the trajectory (again presumably highly differentiable), then what is $\frac{d T(x(t), y(t), z(t))}{d t}$?
- Consider the polar coordinates

Towards higher-dimensions

- There is a genuine need for a higher-variable chain rule. Here are two examples where such a rule might help.
- Suppose a particle is moving along a path $\vec{r}(t)$ in a room. One question is what rate of temperature rise will the particle experience? That is, suppose $T(x, y, z)$ is the temperature (presumably an infinitely differentiable function) and $\vec{r}(t)=(x(t), y(t), z(t))$ is the trajectory (again presumably highly differentiable), then what is $\frac{d T(x(t), y(t), z(t))}{d t}$?
- Consider the polar coordinates $x=r \cos (\theta), y=r \sin (\theta)$, i.e.,

Towards higher-dimensions

- There is a genuine need for a higher-variable chain rule. Here are two examples where such a rule might help.
- Suppose a particle is moving along a path $\vec{r}(t)$ in a room. One question is what rate of temperature rise will the particle experience? That is, suppose $T(x, y, z)$ is the temperature (presumably an infinitely differentiable function) and $\vec{r}(t)=(x(t), y(t), z(t))$ is the trajectory (again presumably highly differentiable), then what is $\frac{d T(x(t), y(t), z(t))}{d t}$?
- Consider the polar coordinates $x=r \cos (\theta), y=r \sin (\theta)$, i.e., $r^{2}=x^{2}+y^{2}$ and $\tan (\theta)=\frac{y}{x}$. $($

Towards higher-dimensions

- There is a genuine need for a higher-variable chain rule. Here are two examples where such a rule might help.
- Suppose a particle is moving along a path $\vec{r}(t)$ in a room. One question is what rate of temperature rise will the particle experience? That is, suppose $T(x, y, z)$ is the temperature (presumably an infinitely differentiable function) and $\vec{r}(t)=(x(t), y(t), z(t))$ is the trajectory (again presumably highly differentiable), then what is $\frac{d T(x(t), y(t), z(t))}{d t}$?
- Consider the polar coordinates $x=r \cos (\theta), y=r \sin (\theta)$, i.e., $r^{2}=x^{2}+y^{2}$ and $\tan (\theta)=\frac{y}{x}$. (By the way,

Towards higher-dimensions

- There is a genuine need for a higher-variable chain rule. Here are two examples where such a rule might help.
- Suppose a particle is moving along a path $\vec{r}(t)$ in a room. One question is what rate of temperature rise will the particle experience? That is, suppose $T(x, y, z)$ is the temperature (presumably an infinitely differentiable function) and $\vec{r}(t)=(x(t), y(t), z(t))$ is the trajectory (again presumably highly differentiable), then what is $\frac{d T(x(t), y(t), z(t))}{d t}$?
- Consider the polar coordinates $x=r \cos (\theta), y=r \sin (\theta)$, i.e., $r^{2}=x^{2}+y^{2}$ and $\tan (\theta)=\frac{y}{x}$. (By the way, they make sense only

Towards higher-dimensions

- There is a genuine need for a higher-variable chain rule. Here are two examples where such a rule might help.
- Suppose a particle is moving along a path $\vec{r}(t)$ in a room. One question is what rate of temperature rise will the particle experience? That is, suppose $T(x, y, z)$ is the temperature (presumably an infinitely differentiable function) and $\vec{r}(t)=(x(t), y(t), z(t))$ is the trajectory (again presumably highly differentiable), then what is $\frac{d T(x(t), y(t), z(t))}{d t}$?
- Consider the polar coordinates $x=r \cos (\theta), y=r \sin (\theta)$, i.e., $r^{2}=x^{2}+y^{2}$ and $\tan (\theta)=\frac{y}{x}$. (By the way, they make sense only away from the positive x-axis and the origin.)

Towards higher-dimensions

- There is a genuine need for a higher-variable chain rule. Here are two examples where such a rule might help.
- Suppose a particle is moving along a path $\vec{r}(t)$ in a room. One question is what rate of temperature rise will the particle experience? That is, suppose $T(x, y, z)$ is the temperature (presumably an infinitely differentiable function) and $\vec{r}(t)=(x(t), y(t), z(t))$ is the trajectory (again presumably highly differentiable), then what is $\frac{d T(x(t), y(t), z(t))}{d t}$?
- Consider the polar coordinates $x=r \cos (\theta), y=r \sin (\theta)$, i.e., $r^{2}=x^{2}+y^{2}$ and $\tan (\theta)=\frac{y}{x}$. (By the way, they make sense only away from the positive x-axis and the origin.) Again, let's assume

Towards higher-dimensions

- There is a genuine need for a higher-variable chain rule. Here are two examples where such a rule might help.
- Suppose a particle is moving along a path $\vec{r}(t)$ in a room. One question is what rate of temperature rise will the particle experience? That is, suppose $T(x, y, z)$ is the temperature (presumably an infinitely differentiable function) and $\vec{r}(t)=(x(t), y(t), z(t))$ is the trajectory (again presumably highly differentiable), then what is $\frac{d T(x(t), y(t), z(t))}{d t}$?
- Consider the polar coordinates $x=r \cos (\theta), y=r \sin (\theta)$, i.e., $r^{2}=x^{2}+y^{2}$ and $\tan (\theta)=\frac{y}{x}$. (By the way, they make sense only away from the positive x-axis and the origin.) Again, let's assume $T(x, y)$ is the temperature

Towards higher-dimensions

- There is a genuine need for a higher-variable chain rule. Here are two examples where such a rule might help.
- Suppose a particle is moving along a path $\vec{r}(t)$ in a room. One question is what rate of temperature rise will the particle experience? That is, suppose $T(x, y, z)$ is the temperature (presumably an infinitely differentiable function) and $\vec{r}(t)=(x(t), y(t), z(t))$ is the trajectory (again presumably highly differentiable), then what is $\frac{d T(x(t), y(t), z(t))}{d t}$?
- Consider the polar coordinates $x=r \cos (\theta), y=r \sin (\theta)$, i.e., $r^{2}=x^{2}+y^{2}$ and $\tan (\theta)=\frac{y}{x}$. (By the way, they make sense only away from the positive x-axis and the origin.) Again, let's assume $T(x, y)$ is the temperature of a hot circular plate.

Towards higher-dimensions

- There is a genuine need for a higher-variable chain rule. Here are two examples where such a rule might help.
- Suppose a particle is moving along a path $\vec{r}(t)$ in a room. One question is what rate of temperature rise will the particle experience? That is, suppose $T(x, y, z)$ is the temperature (presumably an infinitely differentiable function) and $\vec{r}(t)=(x(t), y(t), z(t))$ is the trajectory (again presumably highly differentiable), then what is $\frac{d T(x(t), y(t), z(t))}{d t}$?
- Consider the polar coordinates $x=r \cos (\theta), y=r \sin (\theta)$, i.e., $r^{2}=x^{2}+y^{2}$ and $\tan (\theta)=\frac{y}{x}$. (By the way, they make sense only away from the positive x-axis and the origin.) Again, let's assume $T(x, y)$ is the temperature of a hot circular plate. So $\tilde{T}(r, \theta)=T(x(r, \theta), y(r, \theta))$ is a function.

Towards higher-dimensions

- There is a genuine need for a higher-variable chain rule. Here are two examples where such a rule might help.
- Suppose a particle is moving along a path $\vec{r}(t)$ in a room. One question is what rate of temperature rise will the particle experience? That is, suppose $T(x, y, z)$ is the temperature (presumably an infinitely differentiable function) and $\vec{r}(t)=(x(t), y(t), z(t))$ is the trajectory (again presumably highly differentiable), then what is $\frac{d T(x(t), y(t), z(t))}{d t}$?
- Consider the polar coordinates $x=r \cos (\theta), y=r \sin (\theta)$, i.e., $r^{2}=x^{2}+y^{2}$ and $\tan (\theta)=\frac{y}{x}$. (By the way, they make sense only away from the positive x-axis and the origin.) Again, let's assume $T(x, y)$ is the temperature of a hot circular plate. So $\tilde{T}(r, \theta)=T(x(r, \theta), y(r, \theta))$ is a function. We want $\frac{\partial \tilde{T}}{\partial r}, \frac{\partial \tilde{T}}{\partial \theta}$ in terms of

Towards higher-dimensions

- There is a genuine need for a higher-variable chain rule. Here are two examples where such a rule might help.
- Suppose a particle is moving along a path $\vec{r}(t)$ in a room.

One question is what rate of temperature rise will the particle experience? That is, suppose $T(x, y, z)$ is the temperature (presumably an infinitely differentiable function) and $\vec{r}(t)=(x(t), y(t), z(t))$ is the trajectory (again presumably highly differentiable), then what is $\frac{d T(x(t), y(t), z(t))}{d t}$?

- Consider the polar coordinates $x=r \cos (\theta), y=r \sin (\theta)$, i.e., $r^{2}=x^{2}+y^{2}$ and $\tan (\theta)=\frac{y}{x}$. (By the way, they make sense only away from the positive x-axis and the origin.) Again, let's assume $T(x, y)$ is the temperature of a hot circular plate. So $\tilde{T}(r, \theta)=T(x(r, \theta), y(r, \theta))$ is a function. We want $\frac{\partial \tilde{T}}{\partial r}, \frac{\partial \tilde{T}}{\partial \theta}$ in terms of $\frac{\partial T}{\partial x}, \frac{\partial T}{\partial y}$.

A rough idea for the first example

A rough idea for the first example

- What we want is

A rough idea for the first example

- What we want is $\lim _{h \rightarrow 0} \frac{T(\vec{r}(t+h))-T(\vec{r}(t))}{h}$. Note that

A rough idea for the first example

- What we want is $\lim _{h \rightarrow 0} \frac{T(\vec{r}(t+h))-T(\vec{r}(t))}{h}$. Note that $x(t+h) \approx x(t)+h x^{\prime}(t)$ when h is small.

A rough idea for the first example

- What we want is $\lim _{h \rightarrow 0} \frac{T(\vec{r}(t+h))-T(\vec{r}(t))}{h}$. Note that $x(t+h) \approx x(t)+h x^{\prime}(t)$ when h is small. Likewise for $y(t), z(t)$, i.e.,

A rough idea for the first example

- What we want is $\lim _{h \rightarrow 0} \frac{T(\vec{r}(t+h))-T(\vec{r}(t))}{h}$. Note that $x(t+h) \approx x(t)+h x^{\prime}(t)$ when h is small. Likewise for $y(t), z(t)$, i.e., $\vec{r}(t+h) \approx \vec{r}(t)+h \vec{r}^{\prime}(t)$.

A rough idea for the first example

- What we want is $\lim _{h \rightarrow 0} \frac{T(\vec{r}(t+h))-T(\vec{r}(t))}{h}$. Note that $x(t+h) \approx x(t)+h x^{\prime}(t)$ when h is small. Likewise for $y(t), z(t)$, i.e., $\vec{r}(t+h) \approx \vec{r}(t)+h \vec{r}^{\prime}(t)$.
- Now

$$
\begin{aligned}
& T(x+\Delta x, y+\Delta y, z+\Delta z) \approx T(x, y, z)+\Delta x T_{x}+\Delta y T_{y}+\Delta z T_{z} \quad \\
& (
\end{aligned}
$$

A rough idea for the first example

- What we want is $\lim _{h \rightarrow 0} \frac{T(\vec{r}(t+h))-T(\vec{r}(t))}{h}$. Note that $x(t+h) \approx x(t)+h x^{\prime}(t)$ when h is small. Likewise for $y(t), z(t)$, i.e., $\vec{r}(t+h) \approx \vec{r}(t)+h \vec{r}^{\prime}(t)$.
- Now
$T(x+\Delta x, y+\Delta y, z+\Delta z) \approx T(x, y, z)+\Delta x T_{x}+\Delta y T_{y}+\Delta z T_{z}$ (by definition of differentiability).

A rough idea for the first example

- What we want is $\lim _{h \rightarrow 0} \frac{T(\vec{r}(t+h))-T(\vec{r}(t))}{h}$. Note that $x(t+h) \approx x(t)+h x^{\prime}(t)$ when h is small. Likewise for $y(t), z(t)$, i.e., $\vec{r}(t+h) \approx \vec{r}(t)+h \vec{r}^{\prime}(t)$.
- Now $T(x+\Delta x, y+\Delta y, z+\Delta z) \approx T(x, y, z)+\Delta x T_{x}+\Delta y T_{y}+\Delta z T_{z}$ (by definition of differentiability).
- Taking $\Delta x=x^{\prime}(t) h$ and

A rough idea for the first example

- What we want is $\lim _{h \rightarrow 0} \frac{T(\vec{r}(t+h))-T(\vec{r}(t))}{h}$. Note that $x(t+h) \approx x(t)+h x^{\prime}(t)$ when h is small. Likewise for $y(t), z(t)$, i.e., $\vec{r}(t+h) \approx \vec{r}(t)+h \vec{r}^{\prime}(t)$.
- Now $T(x+\Delta x, y+\Delta y, z+\Delta z) \approx T(x, y, z)+\Delta x T_{x}+\Delta y T_{y}+\Delta z T_{z}$ (by definition of differentiability).
- Taking $\Delta x=x^{\prime}(t) h$ and likewise for y, z, we see that

A rough idea for the first example

- What we want is $\lim _{h \rightarrow 0} \frac{T(\vec{r}(t+h))-T(\vec{r}(t))}{h}$. Note that $x(t+h) \approx x(t)+h x^{\prime}(t)$ when h is small. Likewise for $y(t), z(t)$, i.e., $\vec{r}(t+h) \approx \vec{r}(t)+h \vec{r}^{\prime}(t)$.
- Now
$T(x+\Delta x, y+\Delta y, z+\Delta z) \approx T(x, y, z)+\Delta x T_{x}+\Delta y T_{y}+\Delta z T_{z}$ (by definition of differentiability).
- Taking $\Delta x=x^{\prime}(t) h$ and likewise for y, z, we see that $T(\vec{r}(t+h)) \approx T(\vec{r}(t))+h\left(x^{\prime}(t) T_{x}+y^{\prime}(t) T_{y}+z^{\prime}(t) T_{z}\right)$, i.e.,

A rough idea for the first example

- What we want is $\lim _{h \rightarrow 0} \frac{T(\vec{r}(t+h))-T(\vec{r}(t))}{h}$. Note that $x(t+h) \approx x(t)+h x^{\prime}(t)$ when h is small. Likewise for $y(t), z(t)$, i.e., $\vec{r}(t+h) \approx \vec{r}(t)+h \vec{r}^{\prime}(t)$.
- Now
$T(x+\Delta x, y+\Delta y, z+\Delta z) \approx T(x, y, z)+\Delta x T_{x}+\Delta y T_{y}+\Delta z T_{z}$ (by definition of differentiability).
- Taking $\Delta x=x^{\prime}(t) h$ and likewise for y, z, we see that $T(\vec{r}(t+h)) \approx T(\vec{r}(t))+h\left(x^{\prime}(t) T_{x}+y^{\prime}(t) T_{y}+z^{\prime}(t) T_{z}\right)$, i.e., $\frac{T(\vec{r}(t+h))-T(\vec{r}(t))}{h} \approx x^{\prime}(t) T_{x}+y^{\prime}(t) T_{y}+z^{\prime}(t) T_{z}=$ $\left\langle\nabla T, \vec{r}^{\prime}(t)\right\rangle=\nabla_{\vec{r}(t)} T$.

The rigorous statement

The rigorous statement

- Let $f(\vec{r}): S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a

The rigorous statement

- Let $f(\vec{r}): S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a scalar field.

The rigorous statement

- Let $f(\vec{r}): S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a scalar field. Let $\vec{r}(t):(a, b) \in \mathbb{R} \rightarrow \mathbb{R}^{n}$ be a vector-valued function.

The rigorous statement

- Let $f(\vec{r}): S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a scalar field. Let $\vec{r}(t):(a, b) \in \mathbb{R} \rightarrow \mathbb{R}^{n}$ be a vector-valued function. Define the composition $h(t):(a, b) \rightarrow \mathbb{R}$ as

The rigorous statement

- Let $f(\vec{r}): S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a scalar field. Let $\vec{r}(t):(a, b) \in \mathbb{R} \rightarrow \mathbb{R}^{n}$ be a vector-valued function. Define the composition $h(t):(a, b) \rightarrow \mathbb{R}$ as $h(t)=f(\vec{r}(t))$.

The rigorous statement

- Let $f(\vec{r}): S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a scalar field. Let $\vec{r}(t):(a, b) \in \mathbb{R} \rightarrow \mathbb{R}^{n}$ be a vector-valued function. Define the composition $h(t):(a, b) \rightarrow \mathbb{R}$ as $h(t)=f(\vec{r}(t))$.
- Suppose $t_{0} \in(a, b)$ is a point
- Let $f(\vec{r}): S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a scalar field. Let $\vec{r}(t):(a, b) \in \mathbb{R} \rightarrow \mathbb{R}^{n}$ be a vector-valued function. Define the composition $h(t):(a, b) \rightarrow \mathbb{R}$ as $h(t)=f(\vec{r}(t))$.
- Suppose $t_{0} \in(a, b)$ is a point where $x_{1}(t), x_{2}(t), \ldots$ are differentiable functions
- Let $f(\vec{r}): S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a scalar field. Let $\vec{r}(t):(a, b) \in \mathbb{R} \rightarrow \mathbb{R}^{n}$ be a vector-valued function. Define the composition $h(t):(a, b) \rightarrow \mathbb{R}$ as $h(t)=f(\vec{r}(t))$.
- Suppose $t_{0} \in(a, b)$ is a point where $x_{1}(t), x_{2}(t), \ldots$ are differentiable functions and f is differentiable at $\vec{r}\left(t_{0}\right)$.
- Let $f(\vec{r}): S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a scalar field. Let $\vec{r}(t):(a, b) \in \mathbb{R} \rightarrow \mathbb{R}^{n}$ be a vector-valued function. Define the composition $h(t):(a, b) \rightarrow \mathbb{R}$ as $h(t)=f(\vec{r}(t))$.
- Suppose $t_{0} \in(a, b)$ is a point where $x_{1}(t), x_{2}(t), \ldots$ are differentiable functions and f is differentiable at $\vec{r}\left(t_{0}\right)$.
- Then $h(t)$ is differentiable at t_{0}
- Let $f(\vec{r}): S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a scalar field. Let $\vec{r}(t):(a, b) \in \mathbb{R} \rightarrow \mathbb{R}^{n}$ be a vector-valued function. Define the composition $h(t):(a, b) \rightarrow \mathbb{R}$ as $h(t)=f(\vec{r}(t))$.
- Suppose $t_{0} \in(a, b)$ is a point where $x_{1}(t), x_{2}(t), \ldots$ are differentiable functions and f is differentiable at $\vec{r}\left(t_{0}\right)$.
- Then $h(t)$ is differentiable at t_{0} and $h^{\prime}\left(t_{0}\right)=\left\langle\nabla f\left(\vec{r}\left(t_{0}\right)\right), \vec{r}^{\prime}\left(t_{0}\right)\right\rangle=\nabla_{\vec{r}^{\prime}\left(t_{0}\right)} f(\vec{r}(t))$.

Examples

Examples

- If a path

Examples

- If a path is a regular path, i.e.,

Examples

- If a path is a regular path, i.e., $\vec{r}^{\prime}(t) \neq 0 \forall t$,

Examples

- If a path is a regular path, i.e., $\vec{r}^{\prime}(t) \neq 0 \forall t$, then $\frac{1}{\left\|r^{\prime}(t)\right\|}\left\langle\nabla f\left(\vec{r}\left(t_{0}\right)\right), \vec{r}^{\prime}\left(t_{0}\right)\right\rangle$ is called

Examples

- If a path is a regular path, i.e., $\vec{r}^{\prime}(t) \neq 0 \forall t$, then $\frac{1}{\left\|r^{\prime}(t)\right\|}\left\langle\nabla f\left(\vec{r}\left(t_{0}\right)\right), \vec{r}^{\prime}\left(t_{0}\right)\right\rangle$ is called the directional derivative along the curve
- If a path is a regular path, i.e., $\vec{r}^{\prime}(t) \neq 0 \forall t$, then $\frac{1}{\left\|\vec{r}^{\prime}(t)\right\|}\left\langle\nabla f\left(\vec{r}\left(t_{0}\right)\right), \vec{r}^{\prime}\left(t_{0}\right)\right\rangle$ is called the directional derivative along the curve and denoted as $\frac{d f}{d s}$ (the change in f per metre of the curve).
- If a path is a regular path, i.e., $\vec{r}^{\prime}(t) \neq 0 \forall t$, then $\frac{1}{\left\|\vec{r}^{\prime}(t)\right\|}\left\langle\nabla f\left(\vec{r}\left(t_{0}\right)\right), \vec{r}^{\prime}\left(t_{0}\right)\right\rangle$ is called the directional derivative along the curve and denoted as $\frac{d f}{d s}$ (the change in f per metre of the curve). For instance, if
- If a path is a regular path, i.e., $\vec{r}^{\prime}(t) \neq 0 \forall t$, then $\frac{1}{\left\|\vec{r}^{\prime}(t)\right\|}\left\langle\nabla f\left(\vec{r}\left(t_{0}\right)\right), \vec{r}^{\prime}\left(t_{0}\right)\right\rangle$ is called the directional derivative along the curve and denoted as $\frac{d f}{d s}$ (the change in f per metre of the curve). For instance, if $f(x, y)=x^{2}-3 x y$ and the path is $\left(t, t^{2}-t+2\right)$,
- If a path is a regular path, i.e., $\vec{r}^{\prime}(t) \neq 0 \forall t$, then $\frac{1}{\left\|\vec{r}^{\prime}(t)\right\|}\left\langle\nabla f\left(\vec{r}\left(t_{0}\right)\right), \vec{r}^{\prime}\left(t_{0}\right)\right\rangle$ is called the directional derivative along the curve and denoted as $\frac{d f}{d s}$ (the change in f per metre of the curve). For instance, if $f(x, y)=x^{2}-3 x y$ and the path is $\left(t, t^{2}-t+2\right)$, and we want to find
- If a path is a regular path, i.e., $\vec{r}^{\prime}(t) \neq 0 \forall t$, then $\frac{1}{\left\|\vec{r}^{\prime}(t)\right\|}\left\langle\nabla f\left(\vec{r}\left(t_{0}\right)\right), \vec{r}^{\prime}\left(t_{0}\right)\right\rangle$ is called the directional derivative along the curve and denoted as $\frac{d f}{d s}$ (the change in f per metre of the curve). For instance, if $f(x, y)=x^{2}-3 x y$ and the path is $\left(t, t^{2}-t+2\right)$, and we want to find $\left.\frac{d f}{d s}\right|_{t=1}$,
- If a path is a regular path, i.e., $\vec{r}^{\prime}(t) \neq 0 \forall t$, then $\frac{1}{\left\|\vec{r}^{\prime}(t)\right\|}\left\langle\nabla f\left(\vec{r}\left(t_{0}\right)\right), \vec{r}^{\prime}\left(t_{0}\right)\right\rangle$ is called the directional derivative along the curve and denoted as $\frac{d f}{d s}$ (the change in f per metre of the curve). For instance, if $f(x, y)=x^{2}-3 x y$ and the path is $\left(t, t^{2}-t+2\right)$, and we want to find $\left.\frac{d f}{d s}\right|_{t=1}$, then we calculate as follows.
- If a path is a regular path, i.e., $\vec{r}^{\prime}(t) \neq 0 \forall t$, then $\frac{1}{\left\|\vec{r}^{\prime}(t)\right\|}\left\langle\nabla f\left(\vec{r}\left(t_{0}\right)\right), \vec{r}^{\prime}\left(t_{0}\right)\right\rangle$ is called the directional derivative along the curve and denoted as $\frac{d f}{d s}$ (the change in f per metre of the curve). For instance, if $f(x, y)=x^{2}-3 x y$ and the path is $\left(t, t^{2}-t+2\right)$, and we want to find $\left.\frac{d f}{d s}\right|_{t=1}$, then we calculate as follows. $\nabla f=\left(f_{x}, f_{y}\right)=(2 x-3 y,-3 x)$ which at $t=1$ is
- If a path is a regular path, i.e., $\vec{r}^{\prime}(t) \neq 0 \forall t$, then $\frac{1}{\left\|\vec{r}^{\prime}(t)\right\|}\left\langle\nabla f\left(\vec{r}\left(t_{0}\right)\right), \vec{r}^{\prime}\left(t_{0}\right)\right\rangle$ is called the directional derivative along the curve and denoted as $\frac{d f}{d s}$ (the change in f per metre of the curve). For instance, if $f(x, y)=x^{2}-3 x y$ and the path is $\left(t, t^{2}-t+2\right)$, and we want to find $\left.\frac{d f}{d s}\right|_{t=1}$, then we calculate as follows. $\nabla f=\left(f_{x}, f_{y}\right)=(2 x-3 y,-3 x)$ which at $t=1$ is $\nabla f(\vec{r}(1))=(-4,-3)$ and
- If a path is a regular path, i.e., $\vec{r}^{\prime}(t) \neq 0 \forall t$, then $\frac{1}{\left\|\vec{r}^{\prime}(t)\right\|}\left\langle\nabla f\left(\vec{r}\left(t_{0}\right)\right), \vec{r}^{\prime}\left(t_{0}\right)\right\rangle$ is called the directional derivative along the curve and denoted as $\frac{d f}{d s}$ (the change in f per metre of the curve). For instance, if $f(x, y)=x^{2}-3 x y$ and the path is $\left(t, t^{2}-t+2\right)$, and we want to find $\left.\frac{d f}{d s}\right|_{t=1}$, then we calculate as follows. $\nabla f=\left(f_{x}, f_{y}\right)=(2 x-3 y,-3 x)$ which at $t=1$ is $\nabla f(\vec{r}(1))=(-4,-3)$ and $\vec{r}^{\prime}(t)=(1,2 t-1)$ which leads to $\vec{r}^{\prime}(1)=(1,1)$. Thus
- If a path is a regular path, i.e., $\vec{r}^{\prime}(t) \neq 0 \forall t$, then $\frac{1}{\left\|\vec{r}^{\prime}(t)\right\|}\left\langle\nabla f\left(\vec{r}\left(t_{0}\right)\right), \vec{r}^{\prime}\left(t_{0}\right)\right\rangle$ is called the directional derivative along the curve and denoted as $\frac{d f}{d s}$ (the change in f per metre of the curve). For instance, if $f(x, y)=x^{2}-3 x y$ and the path is $\left(t, t^{2}-t+2\right)$, and we want to find $\left.\frac{d f}{d s}\right|_{t=1}$, then we calculate as follows. $\nabla f=\left(f_{x}, f_{y}\right)=(2 x-3 y,-3 x)$ which at $t=1$ is $\nabla f(\vec{r}(1))=(-4,-3)$ and $\vec{r}^{\prime}(t)=(1,2 t-1)$ which leads to $\vec{r}^{\prime}(1)=(1,1)$. Thus

$$
\left.\frac{d f}{d s}\right|_{t=1}=\frac{1}{\sqrt{2}}\left\langle\nabla f, \vec{r}^{\prime}(t)\right\rangle=\frac{1}{\sqrt{2}}(-4,-3) \cdot(1,1)=\frac{-7}{\sqrt{2}} .
$$

- If a path is a regular path, i.e., $\vec{r}^{\prime}(t) \neq 0 \forall t$, then $\frac{1}{\left\|\vec{r}^{\prime}(t)\right\|}\left\langle\nabla f\left(\vec{r}\left(t_{0}\right)\right), \vec{r}^{\prime}\left(t_{0}\right)\right\rangle$ is called the directional derivative along the curve and denoted as $\frac{d f}{d s}$ (the change in f per metre of the curve). For instance, if $f(x, y)=x^{2}-3 x y$ and the path is $\left(t, t^{2}-t+2\right)$, and we want to find $\left.\frac{d f}{d s}\right|_{t=1}$, then we calculate as follows. $\nabla f=\left(f_{x}, f_{y}\right)=(2 x-3 y,-3 x)$ which at $t=1$ is $\nabla f(\vec{r}(1))=(-4,-3)$ and $\vec{r}^{\prime}(t)=(1,2 t-1)$ which leads to $\vec{r}^{\prime}(1)=(1,1)$. Thus

$$
\left.\frac{d f}{d s}\right|_{t=1}=\frac{1}{\sqrt{2}}\left\langle\nabla f, r^{\prime}(t)\right\rangle=\frac{1}{\sqrt{2}}(-4,-3) \cdot(1,1)=\frac{-7}{\sqrt{2}} .
$$

- Suppose $f(x, y)=x^{2}-y^{2}$ and $\vec{r}_{1}(t)=(t, 2 t)$ and $\vec{r}_{2}(t)=(2 t, 4 t)$.
- If a path is a regular path, i.e., $\vec{r}^{\prime}(t) \neq 0 \forall t$, then $\frac{1}{\left\|\vec{r}^{\prime}(t)\right\|}\left\langle\nabla f\left(\vec{r}\left(t_{0}\right)\right), \vec{r}^{\prime}\left(t_{0}\right)\right\rangle$ is called the directional derivative along the curve and denoted as $\frac{d f}{d s}$ (the change in f per metre of the curve). For instance, if $f(x, y)=x^{2}-3 x y$ and the path is $\left(t, t^{2}-t+2\right)$, and we want to find $\left.\frac{d f}{d s}\right|_{t=1}$, then we calculate as follows. $\nabla f=\left(f_{x}, f_{y}\right)=(2 x-3 y,-3 x)$ which at $t=1$ is $\nabla f(\vec{r}(1))=(-4,-3)$ and $\vec{r}^{\prime}(t)=(1,2 t-1)$ which leads to $\vec{r}^{\prime}(1)=(1,1)$. Thus

$$
\left.\frac{d f}{d s}\right|_{t=1}=\frac{1}{\sqrt{2}}\left\langle\nabla f, r^{\prime}(t)\right\rangle=\frac{1}{\sqrt{2}}(-4,-3) \cdot(1,1)=\frac{-7}{\sqrt{2}} .
$$

- Suppose $f(x, y)=x^{2}-y^{2}$ and $\vec{r}_{1}(t)=(t, 2 t)$ and $\vec{r}_{2}(t)=(2 t, 4 t)$. Then $\nabla f=(2 x,-2 y)$ and $\vec{r}_{1}^{\prime}=(1,2)$, $\vec{r}_{2}^{\prime}=(2,4)$.
- If a path is a regular path, i.e., $\vec{r}^{\prime}(t) \neq 0 \forall t$, then $\frac{1}{\left\|\vec{r}^{\prime}(t)\right\|}\left\langle\nabla f\left(\vec{r}\left(t_{0}\right)\right), \vec{r}^{\prime}\left(t_{0}\right)\right\rangle$ is called the directional derivative along the curve and denoted as $\frac{d f}{d s}$ (the change in f per metre of the curve). For instance, if $f(x, y)=x^{2}-3 x y$ and the path is $\left(t, t^{2}-t+2\right)$, and we want to find $\left.\frac{d f}{d s}\right|_{t=1}$, then we calculate as follows. $\nabla f=\left(f_{x}, f_{y}\right)=(2 x-3 y,-3 x)$ which at $t=1$ is $\nabla f(\vec{r}(1))=(-4,-3)$ and $\vec{r}^{\prime}(t)=(1,2 t-1)$ which leads to $\vec{r}^{\prime}(1)=(1,1)$. Thus

$$
\left.\frac{d f}{d s}\right|_{t=1}=\frac{1}{\sqrt{2}}\left\langle\nabla f, r^{\prime}(t)\right\rangle=\frac{1}{\sqrt{2}}(-4,-3) \cdot(1,1)=\frac{-7}{\sqrt{2}} .
$$

- Suppose $f(x, y)=x^{2}-y^{2}$ and $\vec{r}_{1}(t)=(t, 2 t)$ and $\vec{r}_{2}(t)=(2 t, 4 t)$. Then $\nabla f=(2 x,-2 y)$ and $\vec{r}_{1}^{\prime}=(1,2)$, $\vec{r}_{2}^{\prime}=(2,4)$. Thus $\frac{d f\left(x_{1}(t), y_{2}(t)\right)}{d t}=-6 t$ and $\frac{d f\left(x_{1}(t), y_{2}(t)\right)}{d t}=-24 t$.
- If a path is a regular path, i.e., $\vec{r}^{\prime}(t) \neq 0 \forall t$, then $\frac{1}{\left\|\vec{r}^{\prime}(t)\right\|}\left\langle\nabla f\left(\vec{r}\left(t_{0}\right)\right), \vec{r}^{\prime}\left(t_{0}\right)\right\rangle$ is called the directional derivative along the curve and denoted as $\frac{d f}{d s}$ (the change in f per metre of the curve). For instance, if $f(x, y)=x^{2}-3 x y$ and the path is $\left(t, t^{2}-t+2\right)$, and we want to find $\left.\frac{d f}{d s}\right|_{t=1}$, then we calculate as follows. $\nabla f=\left(f_{x}, f_{y}\right)=(2 x-3 y,-3 x)$ which at $t=1$ is $\nabla f(\vec{r}(1))=(-4,-3)$ and $\vec{r}^{\prime}(t)=(1,2 t-1)$ which leads to $\vec{r}^{\prime}(1)=(1,1)$. Thus $\left.\frac{d f}{d s}\right|_{t=1}=\frac{1}{\sqrt{2}}\left\langle\nabla f, r^{\prime}(t)\right\rangle=\frac{1}{\sqrt{2}}(-4,-3) \cdot(1,1)=\frac{-7}{\sqrt{2}}$.
- Suppose $f(x, y)=x^{2}-y^{2}$ and $\vec{r}_{1}(t)=(t, 2 t)$ and $\vec{r}_{2}(t)=(2 t, 4 t)$. Then $\nabla f=(2 x,-2 y)$ and $\vec{r}_{1}^{\prime}=(1,2)$, $\vec{r}_{2}=(2,4)$. Thus $\frac{d f\left(x_{1}(t), y_{2}(t)\right)}{d t}=-6 t$ and $\frac{d f\left(x_{1}(t), y_{2}(t)\right)}{d t}=-24 t$. In other words,
- If a path is a regular path, i.e., $\vec{r}^{\prime}(t) \neq 0 \forall t$, then $\frac{1}{\left\|\vec{r}^{\prime}(t)\right\|}\left\langle\nabla f\left(\vec{r}\left(t_{0}\right)\right), \vec{r}^{\prime}\left(t_{0}\right)\right\rangle$ is called the directional derivative along the curve and denoted as $\frac{d f}{d s}$ (the change in f per metre of the curve). For instance, if $f(x, y)=x^{2}-3 x y$ and the path is $\left(t, t^{2}-t+2\right)$, and we want to find $\left.\frac{d f}{d s}\right|_{t=1}$, then we calculate as follows. $\nabla f=\left(f_{x}, f_{y}\right)=(2 x-3 y,-3 x)$ which at $t=1$ is $\nabla f(\vec{r}(1))=(-4,-3)$ and $\vec{r}^{\prime}(t)=(1,2 t-1)$ which leads to $\vec{r}^{\prime}(1)=(1,1)$. Thus

$$
\left.\frac{d f}{d s}\right|_{t=1}=\frac{1}{\sqrt{2}}\left\langle\nabla f, r^{\prime}(t)\right\rangle=\frac{1}{\sqrt{2}}(-4,-3) \cdot(1,1)=\frac{-7}{\sqrt{2}} .
$$

- Suppose $f(x, y)=x^{2}-y^{2}$ and $\vec{r}_{1}(t)=(t, 2 t)$ and $\vec{r}_{2}(t)=(2 t, 4 t)$. Then $\nabla f=(2 x,-2 y)$ and $\vec{r}_{1}^{\prime}=(1,2)$, $\vec{r}_{2}=(2,4)$. Thus $\frac{d f\left(x_{1}(t), y_{2}(t)\right)}{d t}=-6 t$ and $\frac{d f\left(x_{1}(t), y_{2}(t)\right)}{d t}=-24 t$. In other words, the choice of parameterisation
- If a path is a regular path, i.e., $\vec{r}^{\prime}(t) \neq 0 \forall t$, then $\frac{1}{\left\|\vec{r}^{\prime}(t)\right\|}\left\langle\nabla f\left(\vec{r}\left(t_{0}\right)\right), \vec{r}^{\prime}\left(t_{0}\right)\right\rangle$ is called the directional derivative along the curve and denoted as $\frac{d f}{d s}$ (the change in f per metre of the curve). For instance, if $f(x, y)=x^{2}-3 x y$ and the path is $\left(t, t^{2}-t+2\right)$, and we want to find $\left.\frac{d f}{d s}\right|_{t=1}$, then we calculate as follows. $\nabla f=\left(f_{x}, f_{y}\right)=(2 x-3 y,-3 x)$ which at $t=1$ is $\nabla f(\vec{r}(1))=(-4,-3)$ and $\vec{r}^{\prime}(t)=(1,2 t-1)$ which leads to $\vec{r}^{\prime}(1)=(1,1)$. Thus $\left.\frac{d f}{d s}\right|_{t=1}=\frac{1}{\sqrt{2}}\left\langle\nabla f, \vec{r}^{\prime}(t)\right\rangle=\frac{1}{\sqrt{2}}(-4,-3) \cdot(1,1)=\frac{-7}{\sqrt{2}}$.
- Suppose $f(x, y)=x^{2}-y^{2}$ and $\vec{r}_{1}(t)=(t, 2 t)$ and $\vec{r}_{2}(t)=(2 t, 4 t)$. Then $\nabla f=(2 x,-2 y)$ and $\vec{r}_{1}^{\prime}=(1,2)$, $\vec{r}_{2}^{\prime}=(2,4)$. Thus $\frac{d f\left(x_{1}(t), y_{2}(t)\right)}{d t}=-6 t$ and $\frac{d f\left(x_{1}(t), y_{2}(t)\right)}{d t}=-24 t$. In other words, the choice of parameterisation can affect the result. (
- If a path is a regular path, i.e., $\vec{r}^{\prime}(t) \neq 0 \forall t$, then $\frac{1}{\left\|\vec{r}^{\prime}(t)\right\|}\left\langle\nabla f\left(\vec{r}\left(t_{0}\right)\right), \vec{r}^{\prime}\left(t_{0}\right)\right\rangle$ is called the directional derivative along the curve and denoted as $\frac{d f}{d s}$ (the change in f per metre of the curve). For instance, if $f(x, y)=x^{2}-3 x y$ and the path is $\left(t, t^{2}-t+2\right)$, and we want to find $\left.\frac{d f}{d s}\right|_{t=1}$, then we calculate as follows. $\nabla f=\left(f_{x}, f_{y}\right)=(2 x-3 y,-3 x)$ which at $t=1$ is $\nabla f(\vec{r}(1))=(-4,-3)$ and $\vec{r}^{\prime}(t)=(1,2 t-1)$ which leads to $\vec{r}^{\prime}(1)=(1,1)$. Thus

$$
\left.\frac{d f}{d s}\right|_{t=1}=\frac{1}{\sqrt{2}}\left\langle\nabla f, r^{\prime}(t)\right\rangle=\frac{1}{\sqrt{2}}(-4,-3) \cdot(1,1)=\frac{-7}{\sqrt{2}} .
$$

- Suppose $f(x, y)=x^{2}-y^{2}$ and $\vec{r}_{1}(t)=(t, 2 t)$ and $\vec{r}_{2}(t)=(2 t, 4 t)$. Then $\nabla f=(2 x,-2 y)$ and $\vec{r}_{1}^{\prime}=(1,2)$, $\vec{r}_{2}^{\prime}=(2,4)$. Thus $\frac{d f\left(x_{1}(t), y_{2}(t)\right)}{d t}=-6 t$ and $\frac{d f\left(x_{1}(t), y_{2}(t)\right)}{d t}=-24 t$. In other words, the choice of parameterisation can affect the result. (Warning: At a point say $(1,2)$, for $\vec{r}_{1}, t=1$ and for $\vec{r}_{2}, t=\frac{1}{2}$. Thus the derivatives of f are $-6,-12$ respectively. On the other hand, $\frac{d f}{d s}$ is the same for both naths)

Examples

Examples

- Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a

Examples

- Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a differentiable scalar field

Examples

- Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a differentiable scalar field such that $\nabla f \neq \overrightarrow{0}$ anywhere.

Examples

- Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a differentiable scalar field such that $\nabla f \neq \overrightarrow{0}$ anywhere. Let $c \in \mathbb{R}$ a constant

Examples

- Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a differentiable scalar field such that $\nabla f \neq \overrightarrow{0}$ anywhere. Let $c \in \mathbb{R}$ a constant such that $f(x, y)=c$ describes

Examples

- Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a differentiable scalar field such that $\nabla f \neq \overrightarrow{0}$ anywhere. Let $c \in \mathbb{R}$ a constant such that $f(x, y)=c$ describes a differentiable curve C having a

Examples

- Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a differentiable scalar field such that $\nabla f \neq \overrightarrow{0}$ anywhere. Let $c \in \mathbb{R}$ a constant such that $f(x, y)=c$ describes a differentiable curve C having a well-defined unit tangent vector

Examples

- Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a differentiable scalar field such that $\nabla f \neq \overrightarrow{0}$ anywhere. Let $c \in \mathbb{R}$ a constant such that $f(x, y)=c$ describes a differentiable curve C having a well-defined unit tangent vector at each point.

Examples

- Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a differentiable scalar field such that $\nabla f \neq \overrightarrow{0}$ anywhere. Let $c \in \mathbb{R}$ a constant such that $f(x, y)=c$ describes a differentiable curve C having a well-defined unit tangent vector at each point. Prove that the following hold.

Examples

- Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a differentiable scalar field such that $\nabla f \neq \overrightarrow{0}$ anywhere. Let $c \in \mathbb{R}$ a constant such that $f(x, y)=c$ describes a differentiable curve C having a well-defined unit tangent vector at each point. Prove that the following hold.
- The gradient vector ∇f

Examples

- Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a differentiable scalar field such that $\nabla f \neq \overrightarrow{0}$ anywhere. Let $c \in \mathbb{R}$ a constant such that $f(x, y)=c$ describes a differentiable curve C having a well-defined unit tangent vector at each point. Prove that the following hold.
- The gradient vector ∇f is normal to C.

Examples

- Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a differentiable scalar field such that $\nabla f \neq \overrightarrow{0}$ anywhere. Let $c \in \mathbb{R}$ a constant such that $f(x, y)=c$ describes a differentiable curve C having a well-defined unit tangent vector at each point. Prove that the following hold.
- The gradient vector ∇f is normal to C.
- The directional derivative $\frac{d f}{d s}$ along C

Examples

- Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a differentiable scalar field such that $\nabla f \neq \overrightarrow{0}$ anywhere. Let $c \in \mathbb{R}$ a constant such that $f(x, y)=c$ describes a differentiable curve C having a well-defined unit tangent vector at each point. Prove that the following hold.
- The gradient vector ∇f is normal to C.
- The directional derivative $\frac{d f}{d s}$ along C is 0 .

Examples

- Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a differentiable scalar field such that $\nabla f \neq \overrightarrow{0}$ anywhere. Let $c \in \mathbb{R}$ a constant such that $f(x, y)=c$ describes a differentiable curve C having a well-defined unit tangent vector at each point. Prove that the following hold.
- The gradient vector ∇f is normal to C.
- The directional derivative $\frac{d f}{d s}$ along C is 0 .
- The directional derivative of f

Examples

- Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a differentiable scalar field such that $\nabla f \neq \overrightarrow{0}$ anywhere. Let $c \in \mathbb{R}$ a constant such that $f(x, y)=c$ describes a differentiable curve C having a well-defined unit tangent vector at each point. Prove that the following hold.
- The gradient vector ∇f is normal to C.
- The directional derivative $\frac{d f}{d s}$ along C is 0 .
- The directional derivative of f at any point on C

Examples

- Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a differentiable scalar field such that $\nabla f \neq \overrightarrow{0}$ anywhere. Let $c \in \mathbb{R}$ a constant such that $f(x, y)=c$ describes a differentiable curve C having a well-defined unit tangent vector at each point. Prove that the following hold.
- The gradient vector ∇f is normal to C.
- The directional derivative $\frac{d f}{d s}$ along C is 0 .
- The directional derivative of f at any point on C is highest in the

Examples

- Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a differentiable scalar field such that $\nabla f \neq \overrightarrow{0}$ anywhere. Let $c \in \mathbb{R}$ a constant such that $f(x, y)=c$ describes a differentiable curve C having a well-defined unit tangent vector at each point. Prove that the following hold.
- The gradient vector ∇f is normal to C.
- The directional derivative $\frac{d f}{d s}$ along C is 0 .
- The directional derivative of f at any point on C is highest in the normal direction to C.

Examples

Examples

- Let \vec{v} be

Examples

- Let \vec{v} be the unit tangent vector

Examples

- Let \vec{v} be the unit tangent vector at a point $\left(x_{0}, y_{0}\right)$ on C,

Examples

- Let \vec{v} be the unit tangent vector at a point $\left(x_{0}, y_{0}\right)$ on C, i.e., $f\left(x_{0}, y_{0}\right)=c$.

Examples

- Let \vec{v} be the unit tangent vector at a point $\left(x_{0}, y_{0}\right)$ on C, i.e., $f\left(x_{0}, y_{0}\right)=c$.
- By the assumption of

Examples

- Let \vec{v} be the unit tangent vector at a point $\left(x_{0}, y_{0}\right)$ on C, i.e., $f\left(x_{0}, y_{0}\right)=c$.
- By the assumption of a well-defined unit tangent

Examples

- Let \vec{v} be the unit tangent vector at a point $\left(x_{0}, y_{0}\right)$ on C, i.e., $f\left(x_{0}, y_{0}\right)=c$.
- By the assumption of a well-defined unit tangent, the curve C can be parameterised

Examples

- Let \vec{v} be the unit tangent vector at a point $\left(x_{0}, y_{0}\right)$ on C, i.e., $f\left(x_{0}, y_{0}\right)=c$.
- By the assumption of a well-defined unit tangent, the curve C can be parameterised as $\vec{r}(t)=(x(t), y(t))$ where

Examples

- Let \vec{v} be the unit tangent vector at a point $\left(x_{0}, y_{0}\right)$ on C, i.e., $f\left(x_{0}, y_{0}\right)=c$.
- By the assumption of a well-defined unit tangent, the curve C can be parameterised as $\vec{r}(t)=(x(t), y(t))$ where the tangent vector at $\left(x_{0}, y_{0}\right)=(x(0), y(0))$ is

Examples

- Let \vec{v} be the unit tangent vector at a point $\left(x_{0}, y_{0}\right)$ on C, i.e., $f\left(x_{0}, y_{0}\right)=c$.
- By the assumption of a well-defined unit tangent, the curve C can be parameterised as $\vec{r}(t)=(x(t), y(t))$ where the tangent vector at $\left(x_{0}, y_{0}\right)=(x(0), y(0))$ is \vec{v}, i.e., $\left(x^{\prime}(t), y^{\prime}(t)\right)=\vec{v}$.

Examples

- Let \vec{v} be the unit tangent vector at a point $\left(x_{0}, y_{0}\right)$ on C, i.e., $f\left(x_{0}, y_{0}\right)=c$.
- By the assumption of a well-defined unit tangent, the curve C can be parameterised as $\vec{r}(t)=(x(t), y(t))$ where the tangent vector at $\left(x_{0}, y_{0}\right)=(x(0), y(0))$ is \vec{v}, i.e., $\left(x^{\prime}(t), y^{\prime}(t)\right)=\vec{v}$. Thus $\frac{d f}{d s}$ at $t=0$, i.e.,

Examples

- Let \vec{v} be the unit tangent vector at a point $\left(x_{0}, y_{0}\right)$ on C, i.e., $f\left(x_{0}, y_{0}\right)=c$.
- By the assumption of a well-defined unit tangent, the curve C can be parameterised as $\vec{r}(t)=(x(t), y(t))$ where the tangent vector at $\left(x_{0}, y_{0}\right)=(x(0), y(0))$ is \vec{v}, i.e., $\left(x^{\prime}(t), y^{\prime}(t)\right)=\vec{v}$. Thus $\frac{d f}{d s}$ at $t=0$, i.e., at $\left(x_{0}, y_{0}\right)$ is

Examples

- Let \vec{v} be the unit tangent vector at a point $\left(x_{0}, y_{0}\right)$ on C, i.e., $f\left(x_{0}, y_{0}\right)=c$.
- By the assumption of a well-defined unit tangent, the curve C can be parameterised as $\vec{r}(t)=(x(t), y(t))$ where the tangent vector at $\left(x_{0}, y_{0}\right)=(x(0), y(0))$ is \vec{v}, i.e., $\left(x^{\prime}(t), y^{\prime}(t)\right)=\vec{v}$. Thus $\frac{d f}{d s}$ at $t=0$, i.e., at $\left(x_{0}, y_{0}\right)$ is $\frac{d f(x(t), y(t))}{d t}=0$ because

Examples

- Let \vec{v} be the unit tangent vector at a point $\left(x_{0}, y_{0}\right)$ on C, i.e., $f\left(x_{0}, y_{0}\right)=c$.
- By the assumption of a well-defined unit tangent, the curve C can be parameterised as $\vec{r}(t)=(x(t), y(t))$ where the tangent vector at $\left(x_{0}, y_{0}\right)=(x(0), y(0))$ is \vec{v}, i.e., $\left(x^{\prime}(t), y^{\prime}(t)\right)=\vec{v}$. Thus $\frac{d f}{d s}$ at $t=0$, i.e., at $\left(x_{0}, y_{0}\right)$ is $\frac{d f(x(t), y(t))}{d t}=0$ because $f(x(t), y(t))=c$ for all t.

Examples

- Let \vec{v} be the unit tangent vector at a point $\left(x_{0}, y_{0}\right)$ on C, i.e., $f\left(x_{0}, y_{0}\right)=c$.
- By the assumption of a well-defined unit tangent, the curve C can be parameterised as $\vec{r}(t)=(x(t), y(t))$ where the tangent vector at $\left(x_{0}, y_{0}\right)=(x(0), y(0))$ is \vec{v}, i.e., $\left(x^{\prime}(t), y^{\prime}(t)\right)=\vec{v}$. Thus $\frac{d f}{d s}$ at $t=0$, i.e., at $\left(x_{0}, y_{0}\right)$ is $\frac{d f(x(t), y(t))}{d t}=0$ because $f(x(t), y(t))=c$ for all t. This proves the

Examples

- Let \vec{v} be the unit tangent vector at a point $\left(x_{0}, y_{0}\right)$ on C, i.e., $f\left(x_{0}, y_{0}\right)=c$.
- By the assumption of a well-defined unit tangent, the curve C can be parameterised as $\vec{r}(t)=(x(t), y(t))$ where the tangent vector at $\left(x_{0}, y_{0}\right)=(x(0), y(0))$ is \vec{v}, i.e., $\left(x^{\prime}(t), y^{\prime}(t)\right)=\vec{v}$. Thus $\frac{d f}{d s}$ at $t=0$, i.e., at $\left(x_{0}, y_{0}\right)$ is $\frac{d f(x(t), y(t))}{d t}=0$ because $f(x(t), y(t))=c$ for all t. This proves the second part.

Examples

- Let \vec{v} be the unit tangent vector at a point $\left(x_{0}, y_{0}\right)$ on C, i.e., $f\left(x_{0}, y_{0}\right)=c$.
- By the assumption of a well-defined unit tangent, the curve C can be parameterised as $\vec{r}(t)=(x(t), y(t))$ where the tangent vector at $\left(x_{0}, y_{0}\right)=(x(0), y(0))$ is \vec{v}, i.e., $\left(x^{\prime}(t), y^{\prime}(t)\right)=\vec{v}$. Thus $\frac{d f}{d s}$ at $t=0$, i.e., at $\left(x_{0}, y_{0}\right)$ is $\frac{d f(x(t), y(t))}{d t}=0$ because $f(x(t), y(t))=c$ for all t. This proves the second part.
- Moreover,

Examples

- Let \vec{v} be the unit tangent vector at a point $\left(x_{0}, y_{0}\right)$ on C, i.e., $f\left(x_{0}, y_{0}\right)=c$.
- By the assumption of a well-defined unit tangent, the curve C can be parameterised as $\vec{r}(t)=(x(t), y(t))$ where the tangent vector at $\left(x_{0}, y_{0}\right)=(x(0), y(0))$ is \vec{v}, i.e., $\left(x^{\prime}(t), y^{\prime}(t)\right)=\vec{v}$. Thus $\frac{d f}{d s}$ at $t=0$, i.e., at $\left(x_{0}, y_{0}\right)$ is $\frac{d f(x(t), y(t))}{d t}=0$ because $f(x(t), y(t))=c$ for all t. This proves the second part.
- Moreover, $\frac{d f(x(t), y(t))}{d t}=\langle\nabla f, \vec{v}\rangle=0$ and hence

Examples

- Let \vec{v} be the unit tangent vector at a point $\left(x_{0}, y_{0}\right)$ on C, i.e., $f\left(x_{0}, y_{0}\right)=c$.
- By the assumption of a well-defined unit tangent, the curve C can be parameterised as $\vec{r}(t)=(x(t), y(t))$ where the tangent vector at $\left(x_{0}, y_{0}\right)=(x(0), y(0))$ is \vec{v}, i.e., $\left(x^{\prime}(t), y^{\prime}(t)\right)=\vec{v}$. Thus $\frac{d f}{d s}$ at $t=0$, i.e., at $\left(x_{0}, y_{0}\right)$ is $\frac{d f(x(t), y(t))}{d t}=0$ because $f(x(t), y(t))=c$ for all t. This proves the second part.
- Moreover, $\frac{d f(x(t), y(t))}{d t}=\langle\nabla f, \vec{v}\rangle=0$ and hence $\nabla f\left(x_{0}, y_{0}\right)$ is perpendicular to the tangent, i.e.,

Examples

- Let \vec{v} be the unit tangent vector at a point $\left(x_{0}, y_{0}\right)$ on C, i.e., $f\left(x_{0}, y_{0}\right)=c$.
- By the assumption of a well-defined unit tangent, the curve C can be parameterised as $\vec{r}(t)=(x(t), y(t))$ where the tangent vector at $\left(x_{0}, y_{0}\right)=(x(0), y(0))$ is \vec{v}, i.e., $\left(x^{\prime}(t), y^{\prime}(t)\right)=\vec{v}$. Thus $\frac{d f}{d s}$ at $t=0$, i.e., at $\left(x_{0}, y_{0}\right)$ is $\frac{d f(x(t), y(t))}{d t}=0$ because $f(x(t), y(t))=c$ for all t. This proves the second part.
- Moreover, $\frac{d f(x(t), y(t))}{d t}=\langle\nabla f, \vec{v}\rangle=0$ and hence $\nabla f\left(x_{0}, y_{0}\right)$ is perpendicular to the tangent, i.e., it is normal to C.

Examples

- Let \vec{v} be the unit tangent vector at a point $\left(x_{0}, y_{0}\right)$ on C, i.e., $f\left(x_{0}, y_{0}\right)=c$.
- By the assumption of a well-defined unit tangent, the curve C can be parameterised as $\vec{r}(t)=(x(t), y(t))$ where the tangent vector at $\left(x_{0}, y_{0}\right)=(x(0), y(0))$ is \vec{v}, i.e., $\left(x^{\prime}(t), y^{\prime}(t)\right)=\vec{v}$. Thus $\frac{d f}{d s}$ at $t=0$, i.e., at $\left(x_{0}, y_{0}\right)$ is $\frac{d f(x(t), y(t))}{d t}=0$ because $f(x(t), y(t))=c$ for all t. This proves the second part.
- Moreover, $\frac{d f(x(t), y(t))}{d t}=\langle\nabla f, \vec{v}\rangle=0$ and hence $\nabla f\left(x_{0}, y_{0}\right)$ is perpendicular to the tangent, i.e., it is normal to C.
- Lastly, by Cauchy-Schwarz,

Examples

- Let \vec{v} be the unit tangent vector at a point $\left(x_{0}, y_{0}\right)$ on C, i.e., $f\left(x_{0}, y_{0}\right)=c$.
- By the assumption of a well-defined unit tangent, the curve C can be parameterised as $\vec{r}(t)=(x(t), y(t))$ where the tangent vector at $\left(x_{0}, y_{0}\right)=(x(0), y(0))$ is \vec{v}, i.e., $\left(x^{\prime}(t), y^{\prime}(t)\right)=\vec{v}$. Thus $\frac{d f}{d s}$ at $t=0$, i.e., at $\left(x_{0}, y_{0}\right)$ is $\frac{d f(x(t), y(t))}{d t}=0$ because $f(x(t), y(t))=c$ for all t. This proves the second part.
- Moreover, $\frac{d f(x(t), y(t))}{d t}=\langle\nabla f, \vec{v}\rangle=0$ and hence $\nabla f\left(x_{0}, y_{0}\right)$ is perpendicular to the tangent, i.e., it is normal to C.
- Lastly, by Cauchy-Schwarz, the directional derivative at $\left(x_{0}, y_{0}\right)$ is highest

Examples

- Let \vec{v} be the unit tangent vector at a point $\left(x_{0}, y_{0}\right)$ on C, i.e., $f\left(x_{0}, y_{0}\right)=c$.
- By the assumption of a well-defined unit tangent, the curve C can be parameterised as $\vec{r}(t)=(x(t), y(t))$ where the tangent vector at $\left(x_{0}, y_{0}\right)=(x(0), y(0))$ is \vec{v}, i.e., $\left(x^{\prime}(t), y^{\prime}(t)\right)=\vec{v}$. Thus $\frac{d f}{d s}$ at $t=0$, i.e., at $\left(x_{0}, y_{0}\right)$ is $\frac{d f(x(t), y(t))}{d t}=0$ because $f(x(t), y(t))=c$ for all t. This proves the second part.
- Moreover, $\frac{d f(x(t), y(t))}{d t}=\langle\nabla f, \vec{v}\rangle=0$ and hence $\nabla f\left(x_{0}, y_{0}\right)$ is perpendicular to the tangent, i.e., it is normal to C.
- Lastly, by Cauchy-Schwarz, the directional derivative at $\left(x_{0}, y_{0}\right)$ is highest along $\nabla f\left(x_{0}, y_{0}\right)$ which
- Let \vec{v} be the unit tangent vector at a point $\left(x_{0}, y_{0}\right)$ on C, i.e., $f\left(x_{0}, y_{0}\right)=c$.
- By the assumption of a well-defined unit tangent, the curve C can be parameterised as $\vec{r}(t)=(x(t), y(t))$ where the tangent vector at $\left(x_{0}, y_{0}\right)=(x(0), y(0))$ is \vec{v}, i.e., $\left(x^{\prime}(t), y^{\prime}(t)\right)=\vec{v}$. Thus $\frac{d f}{d s}$ at $t=0$, i.e., at $\left(x_{0}, y_{0}\right)$ is $\frac{d f(x(t), y(t))}{d t}=0$ because $f(x(t), y(t))=c$ for all t. This proves the second part.
- Moreover, $\frac{d f(x(t), y(t))}{d t}=\langle\nabla f, \vec{v}\rangle=0$ and hence $\nabla f\left(x_{0}, y_{0}\right)$ is perpendicular to the tangent, i.e., it is normal to C.
- Lastly, by Cauchy-Schwarz, the directional derivative at $\left(x_{0}, y_{0}\right)$ is highest along $\nabla f\left(x_{0}, y_{0}\right)$ which we just proved is normal to C.

