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@ Proved a theorem about limits that implied that it is enough
to “test” a limit against sequences (just as in one-variable
calculus).

@ Proved a sufficient condition for differentiability, i.e.,
continuous partials implies differentiability. Saw that rational
functions are differentiable on their domain (when the
denominator is non-zero).
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One-variable chain rule

@ Recall that if h(x) = sin(x?) then f’(x) = cos(x?)2x. That is,
if f: R — R is differentiable and g : R — R is differentiable,
then f o g : R — R is differentiable and
(fog)(x) = f'(g(x))g'(x).

@ The rough idea of the proof is as follows.

g(x + h) = g(x) + hg’(x) when h is small.

f(y + k) = f(y) + kf'(y) when k is small. So

(g(x + h)) =~ f(g(x) + hg'(x)) which is

(g(x)) + hg'(x)f'(g(x)) when h is small. Thus

& (X+h)) fe®) ~ g/(x)f'(g(x)) when h is small.
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are two examples where such a rule might help.

@ Suppose a particle is moving along a path {t) in a room.
One question is what rate of temperature rise will the particle
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e Consider the polar coordinates x = rcos(),y = rsin(6), i.e.,
r> = x?> + y? and tan(d) = £. (By the way, they make sense
only away from the positive x-axis and the origin.) Again,
let's assume T (x, y) is the temperature of a hot circular plate.
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Towards higher-dimensions

@ There is a genuine need for a higher-variable chain rule. Here
are two examples where such a rule might help.

@ Suppose a particle is moving along a path {t) in a room.
One question is what rate of temperature rise will the particle
experience? That is, suppose T(x,y,z) is the temperature
(presumably an infinitely differentiable function) and
r(t) = (x(t), y(t), z(t)) is the trajectory (again presumably

. . . . dT(x(t),y(t),z(t
highly differentiable), then what is W?

e Consider the polar coordinates x = rcos(),y = rsin(6), i.e.,
r> = x?> + y? and tan(d) = £. (By the way, they make sense
only away from the positive x-axis and the origin.) Again,
let's assume T (x, y) is the temperature of a hot circular plate.
So T(r,0) = T(x(r,0),y(r,0)) is a function.
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experience? That is, suppose T(x,y,z) is the temperature
(presumably an infinitely differentiable function) and
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r> = x?> + y? and tan(d) = £. (By the way, they make sense

only away from the positive x-axis and the origin.) Again,

let's assume T (x, y) is the temperature of a hot circular plate.

So 'f'(r 0) = T(x(r,0),y(r,0)) is a function. We want

T oT oT 0T
57> gg in terms of G-, By
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@ Now
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(by definition of differentiability).

e Taking Ax = x'(t)h and likewise for y, z, we see that
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A rough idea for the first example

@ What we want is limp_sq T(mth)g_T(F(t)). Note that
x(t+ h) = x(t) + hx'(t) when h is small. Likewise for
y(t),z(t), i.e., F(t+ h) = F(t) + h7'(t).

@ Now
T(x+Ax,y+Ay,z+Az) = T(x,y,z)+AxT+AyT,+AzT,
(by definition of differentiability).

e Taking Ax = x'(t)h and likewise for y, z, we see that
T(r(t+ h)) = T(r(t)) + h(X'(t) T+ y' (t) T, + Z/(t) T,), i.e.,
TAEM) =T o X (£) Ty + y'(8) Ty + 2(8) T, =
(VT,F(t)) = Ve T.
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o Let f(r): S CR"” — R be a scalar field. Let
r(t) : (a, b) € R — R" be a vector-valued function. Define
the composition h(t) : (a, b) — R as h(t) = f(r(t)).

@ Suppose ty € (a, b) is a point where x1(t), x2(t), ... are
differentiable functions and f is differentiable at {(tp).

@ Then h(t) is differentiable at ty and
W (to) = (V((t0)), 7' (t0)) = V() F (F(1))-
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o If a path is a regular path, i.e., 7(t) # 0V t, then
||"’(t 0 (VF(r(to)), ' (to)) is called the directional derivative

along the curve
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o If a path is a regular path, i.e., 7(t) # 0V t, then
||"’(t 0 (VF(r(to)), 7 (to)) is caIIed the directional derivative

along the curve and denoted as o (the change in f per metre
of the curve).
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o If a path is a regular path, i.e., 7(t) # 0V t, then
||"’(t 0 (VI(r(to)), 7' (to)) is caIIed the directional derivative
along the curve and denoted as o (the change in f per metre
of the curve). For instance, if f(x y) = x?> — 3xy and the
path is (t,t?> — t +2), and we want to find £|t:1, then we
calculate as follows.
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path is (t,t?> — t +2), and we want to find £|t:1, then we
calculate as follows. Vf = (£, f,) = (2x — 3y, —3x) which at
t =11is VF(F(1)) = (—4,-3) and 7(t) = (1,2t — 1) which
leads to 7/(1) = (1,1). Thus

Elem1 = (VA7) = J5(—4,-3).(1,1) =

Sl
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path is (t,t?> — t +2), and we want to find £|t:1, then we
calculate as follows. Vf = (£, f,) = (2x — 3y, —3x) which at
t =11is VF(F(1)) = (—4,-3) and 7(t) = (1,2t — 1) which
leads to (1) = (1,1). Thus
Fle1= S(VFP(1) = 55(-4,-3).(1,1) = L.

@ Suppose f(x,y) = x> — y? and rA(t) = (t,2t) and
ra(t) = (2t,4t).
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@ Suppose f(x,y) = x> — y? and rA(t) = (t,2t) and
r(t) = (2t,4t). Then Vf = (2x,—2y) and /; = (1,2),
r =(2,4). Thus 7‘1“”(2’”“)) = —6t and
w = —24t. In other words, the choice of
parameterisation can affect the result. (Warning: At a point
say (1,2), for i, t =1 and for i3, t = % Thus the derivatives

of f are —6, —12 respectively. On the other hand, Z—Z is the
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vector at (x0, Y0) = (x(0),y(0)) is v, i.e., (X'(t),y'(t)) = V.
Thus Fatt=0, ie, at (xo,y0) is w = 0 because
f(x(t),y(t)) = ¢ for all t. This proves the second part.

e Moreover, M = (Vf,V) =0 and hence Vf(xo, y0) is
perpendicular to the tangent, i.e., it is normal to C.

@ Lastly, by Cauchy-Schwarz, the directional derivative at
(x0, ¥0) is highest along Vf(xo, yo) which we just proved is
normal to C.
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