Lecture 27 - UM 102 (Spring 2021)

Vamsi Pritham Pingali

IISc

Recap

▲御▶ ▲ 臣▶ ▲ 臣▶

• Proved a theorem

• Proved a theorem about limits

∃ → ∢

• Proved a theorem about limits that implied that

Proved a theorem about limits that implied that it is enough to

 Proved a theorem about limits that implied that it is enough to "test" a limit • Proved a theorem about limits that implied that it is enough to "test" a limit against sequences (

• Proved a theorem about limits that implied that it is enough to "test" a limit against sequences (just as in one-variable calculus).

- Proved a theorem about limits that implied that it is enough to "test" a limit against sequences (just as in one-variable calculus).
- Proved a

- Proved a theorem about limits that implied that it is enough to "test" a limit against sequences (just as in one-variable calculus).
- Proved a *sufficient* condition

- Proved a theorem about limits that implied that it is enough to "test" a limit against sequences (just as in one-variable calculus).
- Proved a sufficient condition for differentiability,

- Proved a theorem about limits that implied that it is enough to "test" a limit against sequences (just as in one-variable calculus).
- Proved a *sufficient* condition for differentiability, i.e., continuous partials

2/9

- Proved a theorem about limits that implied that it is enough to "test" a limit against sequences (just as in one-variable calculus).
- Proved a *sufficient* condition for differentiability, i.e., continuous partials implies differentiability.

2/9

- Proved a theorem about limits that implied that it is enough to "test" a limit against sequences (just as in one-variable calculus).
- Proved a *sufficient* condition for differentiability, i.e., continuous partials implies differentiability. Saw that rational functions

- Proved a theorem about limits that implied that it is enough to "test" a limit against sequences (just as in one-variable calculus).
- Proved a *sufficient* condition for differentiability, i.e., continuous partials implies differentiability. Saw that rational functions are differentiable

- Proved a theorem about limits that implied that it is enough to "test" a limit against sequences (just as in one-variable calculus).
- Proved a *sufficient* condition for differentiability, i.e., continuous partials implies differentiability. Saw that rational functions are differentiable on their domain (

- Proved a theorem about limits that implied that it is enough to "test" a limit against sequences (just as in one-variable calculus).
- Proved a *sufficient* condition for differentiability, i.e., continuous partials implies differentiability. Saw that rational functions are differentiable on their domain (when the

- Proved a theorem about limits that implied that it is enough to "test" a limit against sequences (just as in one-variable calculus).
- Proved a *sufficient* condition for differentiability, i.e., continuous partials implies differentiability. Saw that rational functions are differentiable on their domain (when the denominator is non-zero).

• Recall that

• Recall that if $h(x) = \sin(x^2)$ then $f'(x) = \cos(x^2)2x$.

()

• Recall that if $h(x) = \sin(x^2)$ then $f'(x) = \cos(x^2)2x$. That is,

∃ → ∢

• Recall that if $h(x) = \sin(x^2)$ then $f'(x) = \cos(x^2)2x$. That is, if $f : \mathbb{R} \to \mathbb{R}$ is differentiable and

• Recall that if $h(x) = \sin(x^2)$ then $f'(x) = \cos(x^2)2x$. That is, if $f : \mathbb{R} \to \mathbb{R}$ is differentiable and $g : \mathbb{R} \to \mathbb{R}$ is differentiable, then

Recall that if h(x) = sin(x²) then f'(x) = cos(x²)2x. That is, if f : ℝ → ℝ is differentiable and g : ℝ → ℝ is differentiable, then f ∘ g : ℝ → ℝ is differentiable and

Recall that if h(x) = sin(x²) then f'(x) = cos(x²)2x. That is, if f : ℝ → ℝ is differentiable and g : ℝ → ℝ is differentiable, then f ∘ g : ℝ → ℝ is differentiable and (f ∘ g)'(x) = f'(g(x))g'(x).

- Recall that if h(x) = sin(x²) then f'(x) = cos(x²)2x. That is, if f : ℝ → ℝ is differentiable and g : ℝ → ℝ is differentiable, then f ∘ g : ℝ → ℝ is differentiable and (f ∘ g)'(x) = f'(g(x))g'(x).
- The rough idea

- Recall that if h(x) = sin(x²) then f'(x) = cos(x²)2x. That is, if f : ℝ → ℝ is differentiable and g : ℝ → ℝ is differentiable, then f ∘ g : ℝ → ℝ is differentiable and (f ∘ g)'(x) = f'(g(x))g'(x).
- The rough idea of the proof is as follows.

- Recall that if h(x) = sin(x²) then f'(x) = cos(x²)2x. That is, if f : ℝ → ℝ is differentiable and g : ℝ → ℝ is differentiable, then f ∘ g : ℝ → ℝ is differentiable and (f ∘ g)'(x) = f'(g(x))g'(x).
- The rough idea of the proof is as follows. $g(x+h) \approx g(x) + hg'(x)$ when h is small.

- Recall that if h(x) = sin(x²) then f'(x) = cos(x²)2x. That is, if f : ℝ → ℝ is differentiable and g : ℝ → ℝ is differentiable, then f ∘ g : ℝ → ℝ is differentiable and (f ∘ g)'(x) = f'(g(x))g'(x).
- The rough idea of the proof is as follows. $g(x + h) \approx g(x) + hg'(x)$ when h is small. $f(y + k) \approx f(y) + kf'(y)$ when k is small.

- Recall that if h(x) = sin(x²) then f'(x) = cos(x²)2x. That is, if f : ℝ → ℝ is differentiable and g : ℝ → ℝ is differentiable, then f ∘ g : ℝ → ℝ is differentiable and (f ∘ g)'(x) = f'(g(x))g'(x).
- The rough idea of the proof is as follows. $g(x+h) \approx g(x) + hg'(x)$ when h is small. $f(y+k) \approx f(y) + kf'(y)$ when k is small. So $f(g(x+h)) \approx f(g(x) + hg'(x))$ which is

- Recall that if h(x) = sin(x²) then f'(x) = cos(x²)2x. That is, if f : ℝ → ℝ is differentiable and g : ℝ → ℝ is differentiable, then f ∘ g : ℝ → ℝ is differentiable and (f ∘ g)'(x) = f'(g(x))g'(x).
- The rough idea of the proof is as follows. $g(x+h) \approx g(x) + hg'(x)$ when h is small. $f(y+k) \approx f(y) + kf'(y)$ when k is small. So $f(g(x+h)) \approx f(g(x) + hg'(x))$ which is f(g(x)) + hg'(x)f'(g(x)) when h is small.

- Recall that if h(x) = sin(x²) then f'(x) = cos(x²)2x. That is, if f : ℝ → ℝ is differentiable and g : ℝ → ℝ is differentiable, then f ∘ g : ℝ → ℝ is differentiable and (f ∘ g)'(x) = f'(g(x))g'(x).
- The rough idea of the proof is as follows. $g(x + h) \approx g(x) + hg'(x)$ when h is small. $f(y + k) \approx f(y) + kf'(y)$ when k is small. So $f(g(x + h)) \approx f(g(x) + hg'(x))$ which is f(g(x)) + hg'(x)f'(g(x)) when h is small. Thus $\frac{f(g(x+h)) - f(g(x))}{h} \approx g'(x)f'(g(x))$ when h is small.

- Recall that if h(x) = sin(x²) then f'(x) = cos(x²)2x. That is, if f : ℝ → ℝ is differentiable and g : ℝ → ℝ is differentiable, then f ∘ g : ℝ → ℝ is differentiable and (f ∘ g)'(x) = f'(g(x))g'(x).
- The rough idea of the proof is as follows. $g(x+h) \approx g(x) + hg'(x)$ when h is small. $f(y+k) \approx f(y) + kf'(y)$ when k is small. So $f(g(x+h)) \approx f(g(x) + hg'(x))$ which is f(g(x)) + hg'(x)f'(g(x)) when h is small. Thus $\frac{f(g(x+h)) - f(g(x))}{h} \approx g'(x)f'(g(x))$ when h is small.

Of course,

- Recall that if h(x) = sin(x²) then f'(x) = cos(x²)2x. That is, if f : ℝ → ℝ is differentiable and g : ℝ → ℝ is differentiable, then f ∘ g : ℝ → ℝ is differentiable and (f ∘ g)'(x) = f'(g(x))g'(x).
- The rough idea of the proof is as follows. $g(x + h) \approx g(x) + hg'(x)$ when h is small. $f(y + k) \approx f(y) + kf'(y)$ when k is small. So $f(g(x + h)) \approx f(g(x) + hg'(x))$ which is f(g(x)) + hg'(x)f'(g(x)) when h is small. Thus $\frac{f(g(x+h)) - f(g(x))}{h} \approx g'(x)f'(g(x))$ when h is small.
- Of course, one has to make

3/9
One-variable chain rule

- Recall that if h(x) = sin(x²) then f'(x) = cos(x²)2x. That is, if f : ℝ → ℝ is differentiable and g : ℝ → ℝ is differentiable, then f ∘ g : ℝ → ℝ is differentiable and (f ∘ g)'(x) = f'(g(x))g'(x).
- The rough idea of the proof is as follows. $g(x+h) \approx g(x) + hg'(x)$ when h is small. $f(y+k) \approx f(y) + kf'(y)$ when k is small. So $f(g(x+h)) \approx f(g(x) + hg'(x))$ which is f(g(x)) + hg'(x)f'(g(x)) when h is small. Thus $\frac{f(g(x+h)) - f(g(x))}{h} \approx g'(x)f'(g(x))$ when h is small.
- Of course, one has to make the above rigorous

3/9

One-variable chain rule

- Recall that if h(x) = sin(x²) then f'(x) = cos(x²)2x. That is, if f : ℝ → ℝ is differentiable and g : ℝ → ℝ is differentiable, then f ∘ g : ℝ → ℝ is differentiable and (f ∘ g)'(x) = f'(g(x))g'(x).
- The rough idea of the proof is as follows. $g(x + h) \approx g(x) + hg'(x)$ when h is small. $f(y + k) \approx f(y) + kf'(y)$ when k is small. So $f(g(x + h)) \approx f(g(x) + hg'(x))$ which is f(g(x)) + hg'(x)f'(g(x)) when h is small. Thus $\frac{f(g(x+h)) - f(g(x))}{h} \approx g'(x)f'(g(x))$ when h is small.
- Of course, one has to make the above rigorous using δ s and ϵ s.

æ

• There is a

æ

• There is a genuine need

• There is a genuine need for a higher-variable

• There is a genuine need for a higher-variable chain rule.

• There is a genuine need for a higher-variable chain rule. Here are two examples

• There is a genuine need for a higher-variable chain rule. Here are two examples where such a rule

• There is a genuine need for a higher-variable chain rule. Here are two examples where such a rule might help.

- There is a genuine need for a higher-variable chain rule. Here are two examples where such a rule might help.
- Suppose a particle

- There is a genuine need for a higher-variable chain rule. Here are two examples where such a rule might help.
- Suppose a particle is moving along a path $\vec{r}(t)$

- There is a genuine need for a higher-variable chain rule. Here are two examples where such a rule might help.
- Suppose a particle is moving along a path $\vec{r}(t)$ in a room.

- There is a genuine need for a higher-variable chain rule. Here are two examples where such a rule might help.
- Suppose a particle is moving along a path r(t) in a room.
 One question is

- There is a genuine need for a higher-variable chain rule. Here are two examples where such a rule might help.

- There is a genuine need for a higher-variable chain rule. Here are two examples where such a rule might help.
- Suppose a particle is moving along a path r
 (t) in a room.
 One question is what rate of temperature rise

- There is a genuine need for a higher-variable chain rule. Here are two examples where such a rule might help.

- There is a genuine need for a higher-variable chain rule. Here are two examples where such a rule might help.
- Suppose a particle is moving along a path r
 (t) in a room.
 One question is what rate of temperature rise will the particle experience? That is,

- There is a genuine need for a higher-variable chain rule. Here are two examples where such a rule might help.
- Suppose a particle is moving along a path r
 (t) in a room.
 One question is what rate of temperature rise will the particle experience? That is, suppose T(x, y, z) is the temperature (

- There is a genuine need for a higher-variable chain rule. Here are two examples where such a rule might help.
- Suppose a particle is moving along a path r
 (t) in a room.
 One question is what rate of temperature rise will the particle
 experience? That is, suppose T(x, y, z) is the temperature
 (presumably an infinitely differentiable function)

- There is a genuine need for a higher-variable chain rule. Here are two examples where such a rule might help.
- Suppose a particle is moving along a path r(t) in a room. One question is what rate of temperature rise will the particle experience? That is, suppose T(x, y, z) is the temperature (presumably an infinitely differentiable function) and r(t) = (x(t), y(t), z(t)) is the trajectory (

- There is a genuine need for a higher-variable chain rule. Here are two examples where such a rule might help.
- Suppose a particle is moving along a path $\vec{r}(t)$ in a room. One question is what rate of temperature rise will the particle experience? That is, suppose T(x, y, z) is the temperature (presumably an infinitely differentiable function) and $\vec{r}(t) = (x(t), y(t), z(t))$ is the trajectory (again presumably highly differentiable),

4/9

- There is a genuine need for a higher-variable chain rule. Here are two examples where such a rule might help.
- Suppose a particle is moving along a path $\vec{r}(t)$ in a room. One question is what rate of temperature rise will the particle experience? That is, suppose T(x, y, z) is the temperature (presumably an infinitely differentiable function) and $\vec{r}(t) = (x(t), y(t), z(t))$ is the trajectory (again presumably highly differentiable), then what is $\frac{dT(x(t), y(t), z(t))}{dt}$?

- There is a genuine need for a higher-variable chain rule. Here are two examples where such a rule might help.
- Suppose a particle is moving along a path $\vec{r}(t)$ in a room. One question is what rate of temperature rise will the particle experience? That is, suppose T(x, y, z) is the temperature (presumably an infinitely differentiable function) and $\vec{r}(t) = (x(t), y(t), z(t))$ is the trajectory (again presumably highly differentiable), then what is $\frac{dT(x(t), y(t), z(t))}{dt}$?

• Consider the polar coordinates

- There is a genuine need for a higher-variable chain rule. Here are two examples where such a rule might help.
- Suppose a particle is moving along a path $\vec{r}(t)$ in a room. One question is what rate of temperature rise will the particle experience? That is, suppose T(x, y, z) is the temperature (presumably an infinitely differentiable function) and $\vec{r}(t) = (x(t), y(t), z(t))$ is the trajectory (again presumably highly differentiable), then what is $\frac{dT(x(t), y(t), z(t))}{dt}$?

• Consider the polar coordinates $x = r \cos(\theta), y = r \sin(\theta)$, i.e.,

- There is a genuine need for a higher-variable chain rule. Here are two examples where such a rule might help.
- Suppose a particle is moving along a path $\vec{r}(t)$ in a room. One question is what rate of temperature rise will the particle experience? That is, suppose T(x, y, z) is the temperature (presumably an infinitely differentiable function) and $\vec{r}(t) = (x(t), y(t), z(t))$ is the trajectory (again presumably highly differentiable), then what is $\frac{dT(x(t), y(t), z(t))}{dt}$?
- Consider the polar coordinates $x = r \cos(\theta)$, $y = r \sin(\theta)$, i.e., $r^2 = x^2 + y^2$ and $\tan(\theta) = \frac{y}{x}$. (

- There is a genuine need for a higher-variable chain rule. Here are two examples where such a rule might help.
- Suppose a particle is moving along a path $\vec{r}(t)$ in a room. One question is what rate of temperature rise will the particle experience? That is, suppose T(x, y, z) is the temperature (presumably an infinitely differentiable function) and $\vec{r}(t) = (x(t), y(t), z(t))$ is the trajectory (again presumably highly differentiable), then what is $\frac{dT(x(t), y(t), z(t))}{dt}$?
- Consider the polar coordinates $x = r \cos(\theta)$, $y = r \sin(\theta)$, i.e., $r^2 = x^2 + y^2$ and $\tan(\theta) = \frac{y}{x}$. (By the way,

- There is a genuine need for a higher-variable chain rule. Here are two examples where such a rule might help.
- Suppose a particle is moving along a path $\vec{r}(t)$ in a room. One question is what rate of temperature rise will the particle experience? That is, suppose T(x, y, z) is the temperature (presumably an infinitely differentiable function) and $\vec{r}(t) = (x(t), y(t), z(t))$ is the trajectory (again presumably highly differentiable), then what is $\frac{dT(x(t), y(t), z(t))}{dt}$?
- Consider the polar coordinates $x = r \cos(\theta)$, $y = r \sin(\theta)$, i.e., $r^2 = x^2 + y^2$ and $\tan(\theta) = \frac{y}{x}$. (By the way, they make sense only

- There is a genuine need for a higher-variable chain rule. Here are two examples where such a rule might help.
- Suppose a particle is moving along a path $\vec{r}(t)$ in a room. One question is what rate of temperature rise will the particle experience? That is, suppose T(x, y, z) is the temperature (presumably an infinitely differentiable function) and $\vec{r}(t) = (x(t), y(t), z(t))$ is the trajectory (again presumably highly differentiable), then what is $\frac{dT(x(t), y(t), z(t))}{dt}$?
- Consider the polar coordinates x = r cos(θ), y = r sin(θ), i.e., r² = x² + y² and tan(θ) = ^y/_x. (By the way, they make sense only away from the positive x-axis and the origin.)

- There is a genuine need for a higher-variable chain rule. Here are two examples where such a rule might help.
- Suppose a particle is moving along a path $\vec{r}(t)$ in a room. One question is what rate of temperature rise will the particle experience? That is, suppose T(x, y, z) is the temperature (presumably an infinitely differentiable function) and $\vec{r}(t) = (x(t), y(t), z(t))$ is the trajectory (again presumably highly differentiable), then what is $\frac{dT(x(t), y(t), z(t))}{dt}$?
- Consider the polar coordinates $x = r \cos(\theta)$, $y = r \sin(\theta)$, i.e., $r^2 = x^2 + y^2$ and $\tan(\theta) = \frac{y}{x}$. (By the way, they make sense only away from the positive x-axis and the origin.) Again, let's assume

- There is a genuine need for a higher-variable chain rule. Here are two examples where such a rule might help.
- Suppose a particle is moving along a path $\vec{r}(t)$ in a room. One question is what rate of temperature rise will the particle experience? That is, suppose T(x, y, z) is the temperature (presumably an infinitely differentiable function) and $\vec{r}(t) = (x(t), y(t), z(t))$ is the trajectory (again presumably highly differentiable), then what is $\frac{dT(x(t), y(t), z(t))}{dt}$?
- Consider the polar coordinates $x = r \cos(\theta)$, $y = r \sin(\theta)$, i.e., $r^2 = x^2 + y^2$ and $\tan(\theta) = \frac{y}{x}$. (By the way, they make sense only away from the positive x-axis and the origin.) Again, let's assume T(x, y) is the temperature

- There is a genuine need for a higher-variable chain rule. Here are two examples where such a rule might help.
- Suppose a particle is moving along a path $\vec{r}(t)$ in a room. One question is what rate of temperature rise will the particle experience? That is, suppose T(x, y, z) is the temperature (presumably an infinitely differentiable function) and $\vec{r}(t) = (x(t), y(t), z(t))$ is the trajectory (again presumably highly differentiable), then what is $\frac{dT(x(t), y(t), z(t))}{dt}$?
- Consider the polar coordinates x = r cos(θ), y = r sin(θ), i.e., r² = x² + y² and tan(θ) = ^y/_x. (By the way, they make sense only away from the positive x-axis and the origin.) Again, let's assume T(x, y) is the temperature of a hot circular plate.

- There is a genuine need for a higher-variable chain rule. Here are two examples where such a rule might help.
- Suppose a particle is moving along a path $\vec{r}(t)$ in a room. One question is what rate of temperature rise will the particle experience? That is, suppose T(x, y, z) is the temperature (presumably an infinitely differentiable function) and $\vec{r}(t) = (x(t), y(t), z(t))$ is the trajectory (again presumably highly differentiable), then what is $\frac{dT(x(t), y(t), z(t))}{dt}$?
- Consider the polar coordinates x = r cos(θ), y = r sin(θ), i.e., r² = x² + y² and tan(θ) = ^y/_x. (By the way, they make sense only away from the positive x-axis and the origin.) Again, let's assume T(x, y) is the temperature of a hot circular plate. So T̃(r, θ) = T(x(r, θ), y(r, θ)) is a function.

- There is a genuine need for a higher-variable chain rule. Here are two examples where such a rule might help.
- Suppose a particle is moving along a path $\vec{r}(t)$ in a room. One question is what rate of temperature rise will the particle experience? That is, suppose T(x, y, z) is the temperature (presumably an infinitely differentiable function) and $\vec{r}(t) = (x(t), y(t), z(t))$ is the trajectory (again presumably highly differentiable), then what is $\frac{dT(x(t), y(t), z(t))}{dt}$?
- Consider the polar coordinates x = r cos(θ), y = r sin(θ), i.e., r² = x² + y² and tan(θ) = ^y/_x. (By the way, they make sense only away from the positive x-axis and the origin.) Again, let's assume T(x, y) is the temperature of a hot circular plate. So T̃(r, θ) = T(x(r, θ), y(r, θ)) is a function. We want <u>∂T̃</u>, <u>∂T̃</u> in terms of

- There is a genuine need for a higher-variable chain rule. Here are two examples where such a rule might help.
- Suppose a particle is moving along a path $\vec{r}(t)$ in a room. One question is what rate of temperature rise will the particle experience? That is, suppose T(x, y, z) is the temperature (presumably an infinitely differentiable function) and $\vec{r}(t) = (x(t), y(t), z(t))$ is the trajectory (again presumably highly differentiable), then what is $\frac{dT(x(t), y(t), z(t))}{dt}$?
- Consider the polar coordinates x = r cos(θ), y = r sin(θ), i.e., r² = x² + y² and tan(θ) = ^y/_x. (By the way, they make sense only away from the positive x-axis and the origin.) Again, let's assume T(x, y) is the temperature of a hot circular plate. So T̃(r, θ) = T(x(r, θ), y(r, θ)) is a function. We want <u>∂T̃</u>, <u>∂T̃</u> in terms of <u>∂T</u>/_{∂x}, <u>∂T</u>/_{∂y}.

A rough idea for the first example

æ
• What we want is

• What we want is
$$\lim_{h\to 0} \frac{T(\vec{r}(t+h)) - T(\vec{r}(t))}{h}$$
. Note that

æ

• What we want is $\lim_{h\to 0} \frac{T(\vec{r}(t+h)) - T(\vec{r}(t))}{h}$. Note that $x(t+h) \approx x(t) + hx'(t)$ when h is small.

• What we want is $\lim_{h\to 0} \frac{T(\vec{r}(t+h)) - T(\vec{r}(t))}{h}$. Note that $x(t+h) \approx x(t) + hx'(t)$ when h is small. Likewise for y(t), z(t), i.e.,

• What we want is $\lim_{h\to 0} \frac{T(\vec{r}(t+h)) - T(\vec{r}(t))}{h}$. Note that $x(t+h) \approx x(t) + hx'(t)$ when h is small. Likewise for y(t), z(t), i.e., $\vec{r}(t+h) \approx \vec{r}(t) + h\vec{r}'(t)$.

- What we want is $\lim_{h\to 0} \frac{T(\vec{r}(t+h)) T(\vec{r}(t))}{h}$. Note that $x(t+h) \approx x(t) + hx'(t)$ when h is small. Likewise for y(t), z(t), i.e., $\vec{r}(t+h) \approx \vec{r}(t) + h\vec{r}'(t)$.
- Now

$$T(x+\Delta x, y+\Delta y, z+\Delta z) \approx T(x, y, z) + \Delta x T_x + \Delta y T_y + \Delta z T_z$$

- What we want is $\lim_{h\to 0} \frac{T(\vec{r}(t+h)) T(\vec{r}(t))}{h}$. Note that $x(t+h) \approx x(t) + hx'(t)$ when h is small. Likewise for y(t), z(t), i.e., $\vec{r}(t+h) \approx \vec{r}(t) + h\vec{r}'(t)$.
- Now

 $T(x+\Delta x, y+\Delta y, z+\Delta z) \approx T(x, y, z)+\Delta xT_x+\Delta yT_y+\Delta zT_z$ (by definition of differentiability).

- What we want is $\lim_{h\to 0} \frac{T(\vec{r}(t+h)) T(\vec{r}(t))}{h}$. Note that $x(t+h) \approx x(t) + hx'(t)$ when h is small. Likewise for y(t), z(t), i.e., $\vec{r}(t+h) \approx \vec{r}(t) + h\vec{r}'(t)$.
- Now

 $T(x+\Delta x, y+\Delta y, z+\Delta z) \approx T(x, y, z)+\Delta xT_x+\Delta yT_y+\Delta zT_z$ (by definition of differentiability).

• Taking $\Delta x = x'(t)h$ and

- What we want is $\lim_{h\to 0} \frac{T(\vec{r}(t+h)) T(\vec{r}(t))}{h}$. Note that $x(t+h) \approx x(t) + hx'(t)$ when h is small. Likewise for y(t), z(t), i.e., $\vec{r}(t+h) \approx \vec{r}(t) + h\vec{r}'(t)$.
- Now

 $T(x+\Delta x, y+\Delta y, z+\Delta z) \approx T(x, y, z)+\Delta xT_x+\Delta yT_y+\Delta zT_z$ (by definition of differentiability).

• Taking $\Delta x = x'(t)h$ and likewise for y, z, we see that

- What we want is $\lim_{h\to 0} \frac{T(\vec{r}(t+h)) T(\vec{r}(t))}{h}$. Note that $x(t+h) \approx x(t) + hx'(t)$ when h is small. Likewise for y(t), z(t), i.e., $\vec{r}(t+h) \approx \vec{r}(t) + h\vec{r}'(t)$.
- Now

 $T(x+\Delta x, y+\Delta y, z+\Delta z) \approx T(x, y, z)+\Delta xT_x+\Delta yT_y+\Delta zT_z$ (by definition of differentiability).

• Taking $\Delta x = x'(t)h$ and likewise for y, z, we see that $T(\vec{r}(t+h)) \approx T(\vec{r}(t)) + h(x'(t)T_x + y'(t)T_y + z'(t)T_z)$, i.e.,

• What we want is $\lim_{h\to 0} \frac{T(\vec{r}(t+h)) - T(\vec{r}(t))}{h}$. Note that $x(t+h) \approx x(t) + hx'(t)$ when h is small. Likewise for y(t), z(t), i.e., $\vec{r}(t+h) \approx \vec{r}(t) + h\vec{r}'(t)$.

Now

 $T(x+\Delta x, y+\Delta y, z+\Delta z) \approx T(x, y, z)+\Delta xT_x+\Delta yT_y+\Delta zT_z$ (by definition of differentiability).

• Taking $\Delta x = x'(t)h$ and likewise for y, z, we see that $T(\vec{r}(t+h)) \approx T(\vec{r}(t)) + h(x'(t)T_x + y'(t)T_y + z'(t)T_z)$, i.e., $\frac{T(\vec{r}(t+h)) - T(\vec{r}(t))}{h} \approx x'(t)T_x + y'(t)T_y + z'(t)T_z =$ $\langle \nabla T, \vec{r}'(t) \rangle = \nabla_{\vec{r}'(t)}T$.

5/9

æ

• Let $f(\vec{r}): S \subset \mathbb{R}^n \to \mathbb{R}$ be a

• Let $f(\vec{r}) : S \subset \mathbb{R}^n \to \mathbb{R}$ be a scalar field.

• Let $f(\vec{r}) : S \subset \mathbb{R}^n \to \mathbb{R}$ be a scalar field. Let $\vec{r}(t) : (a, b) \in \mathbb{R} \to \mathbb{R}^n$ be a vector-valued function.

• Let $f(\vec{r}) : S \subset \mathbb{R}^n \to \mathbb{R}$ be a scalar field. Let $\vec{r}(t) : (a, b) \in \mathbb{R} \to \mathbb{R}^n$ be a vector-valued function. Define the composition $h(t) : (a, b) \to \mathbb{R}$ as

• Let $f(\vec{r}) : S \subset \mathbb{R}^n \to \mathbb{R}$ be a scalar field. Let $\vec{r}(t) : (a, b) \in \mathbb{R} \to \mathbb{R}^n$ be a vector-valued function. Define the composition $h(t) : (a, b) \to \mathbb{R}$ as $h(t) = f(\vec{r}(t))$.

• Let $f(\vec{r}) : S \subset \mathbb{R}^n \to \mathbb{R}$ be a scalar field. Let $\vec{r}(t) : (a, b) \in \mathbb{R} \to \mathbb{R}^n$ be a vector-valued function. Define the composition $h(t) : (a, b) \to \mathbb{R}$ as $h(t) = f(\vec{r}(t))$.

• Suppose
$$t_0 \in (a, b)$$
 is a point

- Let $f(\vec{r}) : S \subset \mathbb{R}^n \to \mathbb{R}$ be a scalar field. Let $\vec{r}(t) : (a, b) \in \mathbb{R} \to \mathbb{R}^n$ be a vector-valued function. Define the composition $h(t) : (a, b) \to \mathbb{R}$ as $h(t) = f(\vec{r}(t))$.
- Suppose t₀ ∈ (a, b) is a point where x₁(t), x₂(t), ... are differentiable functions

6/9

- Let $f(\vec{r}) : S \subset \mathbb{R}^n \to \mathbb{R}$ be a scalar field. Let $\vec{r}(t) : (a, b) \in \mathbb{R} \to \mathbb{R}^n$ be a vector-valued function. Define the composition $h(t) : (a, b) \to \mathbb{R}$ as $h(t) = f(\vec{r}(t))$.
- Suppose t₀ ∈ (a, b) is a point where x₁(t), x₂(t),... are differentiable functions and f is differentiable at r(t₀).

6/9

- Let $f(\vec{r}): S \subset \mathbb{R}^n \to \mathbb{R}$ be a scalar field. Let $\vec{r}(t): (a, b) \in \mathbb{R} \to \mathbb{R}^n$ be a vector-valued function. Define the composition $h(t): (a, b) \to \mathbb{R}$ as $h(t) = f(\vec{r}(t))$.
- Suppose t₀ ∈ (a, b) is a point where x₁(t), x₂(t), ... are differentiable functions and f is differentiable at r(t₀).
- Then h(t) is differentiable at t_0

- Let $f(\vec{r}) : S \subset \mathbb{R}^n \to \mathbb{R}$ be a scalar field. Let $\vec{r}(t) : (a, b) \in \mathbb{R} \to \mathbb{R}^n$ be a vector-valued function. Define the composition $h(t) : (a, b) \to \mathbb{R}$ as $h(t) = f(\vec{r}(t))$.
- Suppose t₀ ∈ (a, b) is a point where x₁(t), x₂(t), ... are differentiable functions and f is differentiable at r(t₀).
- Then h(t) is differentiable at t_0 and $h'(t_0) = \langle \nabla f(\vec{r}(t_0)), \vec{r}'(t_0) \rangle = \nabla_{\vec{r}'(t_0)} f(\vec{r}(t)).$

æ

• If a path

æ

• If a path is a *regular* path, i.e.,

• If a path is a *regular* path, i.e., $\vec{r}'(t) \neq 0 \forall t$,

æ

• If a path is a *regular* path, i.e., $\vec{r}'(t) \neq 0 \forall t$, then $\frac{1}{\|\vec{r}'(t)\|} \langle \nabla f(\vec{r}(t_0)), \vec{r}'(t_0) \rangle \text{ is called}$

• If a path is a *regular* path, i.e., $\vec{r}'(t) \neq 0 \forall t$, then $\frac{1}{\|\vec{r}'(t)\|} \langle \nabla f(\vec{r}(t_0)), \vec{r}'(t_0) \rangle$ is called the *directional derivative along the curve*

• If a path is a *regular* path, i.e., $\vec{r}'(t) \neq 0 \forall t$, then $\frac{1}{\|\vec{r}'(t)\|} \langle \nabla f(\vec{r}(t_0)), \vec{r}'(t_0) \rangle$ is called the *directional derivative along the curve* and denoted as $\frac{df}{ds}$ (the change in f per metre of the curve).

If a path is a *regular* path, i.e., r'(t) ≠ 0 ∀ t, then
¹/_{||r'(t)||} ⟨∇f(r(t₀)), r'(t₀)⟩ is called the *directional derivative along the curve* and denoted as df/ds (the change in f per metre
of the curve). For instance, if

• If a path is a *regular* path, i.e., $\vec{r}'(t) \neq 0 \forall t$, then $\frac{1}{\|\vec{r}'(t)\|} \langle \nabla f(\vec{r}(t_0)), \vec{r}'(t_0) \rangle$ is called the *directional derivative along the curve* and denoted as $\frac{df}{ds}$ (the change in f per metre of the curve). For instance, if $f(x, y) = x^2 - 3xy$ and the path is $(t, t^2 - t + 2)$,

• If a path is a *regular* path, i.e., $\vec{r}'(t) \neq 0 \forall t$, then $\frac{1}{\|\vec{r}'(t)\|} \langle \nabla f(\vec{r}(t_0)), \vec{r}'(t_0) \rangle$ is called the *directional derivative along the curve* and denoted as $\frac{df}{ds}$ (the change in f per metre of the curve). For instance, if $f(x, y) = x^2 - 3xy$ and the path is $(t, t^2 - t + 2)$, and we want to find

• If a path is a *regular* path, i.e., $\vec{r}'(t) \neq 0 \forall t$, then $\frac{1}{\|\vec{r}'(t)\|} \langle \nabla f(\vec{r}(t_0)), \vec{r}'(t_0) \rangle$ is called the *directional derivative along the curve* and denoted as $\frac{df}{ds}$ (the change in f per metre of the curve). For instance, if $f(x, y) = x^2 - 3xy$ and the path is $(t, t^2 - t + 2)$, and we want to find $\frac{df}{ds}|_{t=1}$,

• If a path is a *regular* path, i.e., $\vec{r}'(t) \neq 0 \forall t$, then $\frac{1}{\|\vec{r}'(t)\|} \langle \nabla f(\vec{r}(t_0)), \vec{r}'(t_0) \rangle$ is called the *directional derivative along the curve* and denoted as $\frac{df}{ds}$ (the change in f per metre of the curve). For instance, if $f(x, y) = x^2 - 3xy$ and the path is $(t, t^2 - t + 2)$, and we want to find $\frac{df}{ds}|_{t=1}$, then we calculate as follows.

• If a path is a *regular* path, i.e., $\vec{r}'(t) \neq 0 \forall t$, then $\frac{1}{\|\vec{r}'(t)\|} \langle \nabla f(\vec{r}(t_0)), \vec{r}'(t_0) \rangle$ is called the *directional derivative along the curve* and denoted as $\frac{df}{ds}$ (the change in f per metre of the curve). For instance, if $f(x, y) = x^2 - 3xy$ and the path is $(t, t^2 - t + 2)$, and we want to find $\frac{df}{ds}|_{t=1}$, then we calculate as follows. $\nabla f = (f_x, f_y) = (2x - 3y, -3x)$ which at t = 1 is

• If a path is a *regular* path, i.e., $\vec{r}'(t) \neq 0 \forall t$, then $\frac{1}{\|\vec{r}'(t)\|} \langle \nabla f(\vec{r}(t_0)), \vec{r}'(t_0) \rangle$ is called the *directional derivative along the curve* and denoted as $\frac{df}{ds}$ (the change in f per metre of the curve). For instance, if $f(x, y) = x^2 - 3xy$ and the path is $(t, t^2 - t + 2)$, and we want to find $\frac{df}{ds}|_{t=1}$, then we calculate as follows. $\nabla f = (f_x, f_y) = (2x - 3y, -3x)$ which at t = 1 is $\nabla f(\vec{r}(1)) = (-4, -3)$ and
• If a path is a *regular* path, i.e., $\vec{r}'(t) \neq 0 \forall t$, then $\frac{1}{\|\vec{r}'(t)\|} \langle \nabla f(\vec{r}(t_0)), \vec{r}'(t_0) \rangle$ is called the *directional derivative along the curve* and denoted as $\frac{df}{ds}$ (the change in f per metre of the curve). For instance, if $f(x, y) = x^2 - 3xy$ and the path is $(t, t^2 - t + 2)$, and we want to find $\frac{df}{ds}|_{t=1}$, then we calculate as follows. $\nabla f = (f_x, f_y) = (2x - 3y, -3x)$ which at t = 1 is $\nabla f(\vec{r}(1)) = (-4, -3)$ and $\vec{r}'(t) = (1, 2t - 1)$ which leads to $\vec{r}'(1) = (1, 1)$. Thus

• If a path is a *regular* path, i.e., $\vec{r}'(t) \neq 0 \forall t$, then $\frac{1}{\|\vec{r}'(t)\|} \langle \nabla f(\vec{r}(t_0)), \vec{r}'(t_0) \rangle \text{ is called the$ *directional derivative* $}$ *along the curve* and denoted as $\frac{df}{ds}$ (the change in f per metre of the curve). For instance, if $f(x, y) = x^2 - 3xy$ and the path is $(t, t^2 - t + 2)$, and we want to find $\frac{df}{ds}|_{t=1}$, then we calculate as follows. $\nabla f = (f_x, f_y) = (2x - 3y, -3x)$ which at t = 1 is $\nabla f(\vec{r}(1)) = (-4, -3)$ and $\vec{r}'(t) = (1, 2t - 1)$ which leads to $\vec{r}'(1) = (1, 1)$. Thus $\frac{df}{ds}|_{t=1} = \frac{1}{\sqrt{2}} \langle \nabla f, \vec{r}'(t) \rangle = \frac{1}{\sqrt{2}} (-4, -3) \cdot (1, 1) = \frac{-7}{\sqrt{2}}$.

• If a path is a *regular* path, i.e., $\vec{r}'(t) \neq 0 \forall t$, then $\frac{1}{\|\vec{r}'(t)\|}\langle \nabla f(\vec{r}(t_0)), \vec{r}'(t_0) \rangle$ is called the *directional derivative* along the curve and denoted as $\frac{df}{ds}$ (the change in f per metre of the curve). For instance, if $f(x, y) = x^2 - 3xy$ and the path is $(t, t^2 - t + 2)$, and we want to find $\frac{df}{dc}|_{t=1}$, then we calculate as follows. $\nabla f = (f_x, f_y) = (2x - 3y, -3x)$ which at t = 1 is $\nabla f(\vec{r}(1)) = (-4, -3)$ and $\vec{r}'(t) = (1, 2t - 1)$ which leads to $\vec{r}'(1) = (1, 1)$. Thus $\frac{df}{ds}|_{t=1} = \frac{1}{\sqrt{2}} \langle \nabla f, \vec{r}'(t) \rangle = \frac{1}{\sqrt{2}} (-4, -3) \cdot (1, 1) = \frac{-7}{\sqrt{2}}.$ • Suppose $f(x, y) = x^2 - y^2$ and $\vec{r_1}(t) = (t, 2t)$ and $\vec{r}_2(t) = (2t, 4t).$

• If a path is a *regular* path, i.e., $\vec{r}'(t) \neq 0 \forall t$, then $\frac{1}{\|\vec{r}'(t)\|}\langle \nabla f(\vec{r}(t_0)), \vec{r}'(t_0) \rangle$ is called the *directional derivative* along the curve and denoted as $\frac{df}{ds}$ (the change in f per metre of the curve). For instance, if $f(x, y) = x^2 - 3xy$ and the path is $(t, t^2 - t + 2)$, and we want to find $\frac{df}{dc}|_{t=1}$, then we calculate as follows. $\nabla f = (f_x, f_y) = (2x - 3y, -3x)$ which at t = 1 is $\nabla f(\vec{r}(1)) = (-4, -3)$ and $\vec{r}'(t) = (1, 2t - 1)$ which leads to $\vec{r}'(1) = (1, 1)$. Thus $\frac{df}{ds}|_{t=1} = \frac{1}{\sqrt{2}} \langle \nabla f, \vec{r}'(t) \rangle = \frac{1}{\sqrt{2}} (-4, -3) \cdot (1, 1) = \frac{-7}{\sqrt{2}}.$ • Suppose $f(x, y) = x^2 - y^2$ and $\vec{r_1}(t) = (t, 2t)$ and $\vec{r}_2(t) = (2t, 4t)$. Then $\nabla f = (2x, -2y)$ and $\vec{r}_1 = (1, 2)$, $\vec{r}_2 = (2, 4).$

• If a path is a *regular* path, i.e., $\vec{r}'(t) \neq 0 \forall t$, then $\frac{1}{\|\vec{r}'(t)\|}\langle \nabla f(\vec{r}(t_0)), \vec{r}'(t_0) \rangle$ is called the *directional derivative* along the curve and denoted as $\frac{df}{ds}$ (the change in f per metre of the curve). For instance, if $f(x, y) = x^2 - 3xy$ and the path is $(t, t^2 - t + 2)$, and we want to find $\frac{df}{dc}|_{t=1}$, then we calculate as follows. $\nabla f = (f_x, f_y) = (2x - 3y, -3x)$ which at t = 1 is $\nabla f(\vec{r}(1)) = (-4, -3)$ and $\vec{r}'(t) = (1, 2t - 1)$ which leads to $\vec{r}'(1) = (1, 1)$. Thus $\frac{df}{ds}|_{t=1} = \frac{1}{\sqrt{2}} \langle \nabla f, \vec{r}'(t) \rangle = \frac{1}{\sqrt{2}} (-4, -3) \cdot (1, 1) = \frac{-7}{\sqrt{2}}.$ • Suppose $f(x, y) = x^2 - y^2$ and $\vec{r_1}(t) = (t, 2t)$ and $\vec{r}_2(t) = (2t, 4t)$. Then $\nabla f = (2x, -2y)$ and $\vec{r}_1' = (1, 2)$, $\vec{r}_2 = (2, 4)$. Thus $\frac{df(x_1(t), y_2(t))}{dt} = -6t$ and $\frac{df(x_1(t), y_2(t))}{dt} = -24t$

• If a path is a *regular* path, i.e., $\vec{r}'(t) \neq 0 \forall t$, then $\frac{1}{\|\vec{r}'(t)\|}\langle \nabla f(\vec{r}(t_0)), \vec{r}'(t_0) \rangle$ is called the *directional derivative* along the curve and denoted as $\frac{df}{ds}$ (the change in f per metre of the curve). For instance, if $f(x, y) = x^2 - 3xy$ and the path is $(t, t^2 - t + 2)$, and we want to find $\frac{df}{dc}|_{t=1}$, then we calculate as follows. $\nabla f = (f_x, f_y) = (2x - 3y, -3x)$ which at t = 1 is $\nabla f(\vec{r}(1)) = (-4, -3)$ and $\vec{r}'(t) = (1, 2t - 1)$ which leads to $\vec{r}'(1) = (1, 1)$. Thus $\frac{df}{ds}|_{t=1} = \frac{1}{\sqrt{2}} \langle \nabla f, \vec{r}'(t) \rangle = \frac{1}{\sqrt{2}} (-4, -3) \cdot (1, 1) = \frac{-7}{\sqrt{2}}.$ • Suppose $f(x, y) = x^2 - y^2$ and $\vec{r_1}(t) = (t, 2t)$ and $\vec{r}_2(t) = (2t, 4t)$. Then $\nabla f = (2x, -2y)$ and $\vec{r}_1' = (1, 2)$, $\vec{r}_2 = (2, 4)$. Thus $\frac{df(x_1(t), y_2(t))}{dt} = -6t$ and $\frac{df(x_1(t),y_2(t))}{dt} = -24t$. In other words,

• If a path is a *regular* path, i.e., $\vec{r}'(t) \neq 0 \forall t$, then $\frac{1}{\|\vec{r}'(t)\|}\langle \nabla f(\vec{r}(t_0)), \vec{r}'(t_0) \rangle$ is called the *directional derivative* along the curve and denoted as $\frac{df}{ds}$ (the change in f per metre of the curve). For instance, if $f(x, y) = x^2 - 3xy$ and the path is $(t, t^2 - t + 2)$, and we want to find $\frac{df}{dc}|_{t=1}$, then we calculate as follows. $\nabla f = (f_x, f_y) = (2x - 3y, -3x)$ which at t = 1 is $\nabla f(\vec{r}(1)) = (-4, -3)$ and $\vec{r}'(t) = (1, 2t - 1)$ which leads to $\vec{r}'(1) = (1, 1)$. Thus $\frac{df}{ds}|_{t=1} = \frac{1}{\sqrt{2}} \langle \nabla f, \vec{r}'(t) \rangle = \frac{1}{\sqrt{2}} (-4, -3) \cdot (1, 1) = \frac{-7}{\sqrt{2}}.$ • Suppose $f(x, y) = x^2 - y^2$ and $\vec{r_1}(t) = (t, 2t)$ and $\vec{r}_2(t) = (2t, 4t)$. Then $\nabla f = (2x, -2y)$ and $\vec{r}_1' = (1, 2)$, $\vec{r}_2 = (2, 4)$. Thus $\frac{df(x_1(t), y_2(t))}{dt} = -6t$ and $\frac{df(x_1(t),y_2(t))}{dt} = -24t$. In other words, the choice of parameterisation

• If a path is a *regular* path, i.e., $\vec{r}'(t) \neq 0 \forall t$, then $\frac{1}{\|\vec{r}'(t)\|}\langle \nabla f(\vec{r}(t_0)), \vec{r}'(t_0) \rangle$ is called the *directional derivative* along the curve and denoted as $\frac{df}{ds}$ (the change in f per metre of the curve). For instance, if $f(x, y) = x^2 - 3xy$ and the path is $(t, t^2 - t + 2)$, and we want to find $\frac{df}{dc}|_{t=1}$, then we calculate as follows. $\nabla f = (f_x, f_y) = (2x - 3y, -3x)$ which at t = 1 is $\nabla f(\vec{r}(1)) = (-4, -3)$ and $\vec{r}'(t) = (1, 2t - 1)$ which leads to $\vec{r}'(1) = (1, 1)$. Thus $\frac{df}{ds}|_{t=1} = \frac{1}{\sqrt{2}} \langle \nabla f, \vec{r}'(t) \rangle = \frac{1}{\sqrt{2}} (-4, -3) \cdot (1, 1) = \frac{-7}{\sqrt{2}}.$ • Suppose $f(x, y) = x^2 - y^2$ and $\vec{r_1}(t) = (t, 2t)$ and $\vec{r}_2(t) = (2t, 4t)$. Then $\nabla f = (2x, -2y)$ and $\vec{r}_1' = (1, 2)$, $\vec{r}_2 = (2, 4)$. Thus $\frac{df(x_1(t), y_2(t))}{dt} = -6t$ and $\frac{df(x_1(t),y_2(t))}{dt} = -24t$. In other words, the choice of parameterisation can *affect* the result. (

• If a path is a *regular* path, i.e., $\vec{r}'(t) \neq 0 \forall t$, then $\frac{1}{\|\vec{r}'(t)\|}\langle \nabla f(\vec{r}(t_0)), \vec{r}'(t_0) \rangle$ is called the *directional derivative* along the curve and denoted as $\frac{df}{ds}$ (the change in f per metre of the curve). For instance, if $f(x, y) = x^2 - 3xy$ and the path is $(t, t^2 - t + 2)$, and we want to find $\frac{df}{dc}|_{t=1}$, then we calculate as follows. $\nabla f = (f_x, f_y) = (2x - 3y, -3x)$ which at t = 1 is $\nabla f(\vec{r}(1)) = (-4, -3)$ and $\vec{r}'(t) = (1, 2t - 1)$ which leads to $\vec{r}'(1) = (1, 1)$. Thus $\frac{df}{ds}|_{t=1} = \frac{1}{\sqrt{2}} \langle \nabla f, \vec{r}'(t) \rangle = \frac{1}{\sqrt{2}} (-4, -3) \cdot (1, 1) = \frac{-7}{\sqrt{2}}.$ • Suppose $f(x, y) = x^2 - y^2$ and $\vec{r_1}(t) = (t, 2t)$ and $\vec{r}_2(t) = (2t, 4t)$. Then $\nabla f = (2x, -2y)$ and $\vec{r}_1' = (1, 2)$, $\vec{r}_2 = (2, 4)$. Thus $\frac{df(x_1(t), y_2(t))}{dt} = -6t$ and $\frac{df(x_1(t),y_2(t))}{dt} = -24t$. In other words, the choice of parameterisation can affect the result. (Warning: At a point say (1, 2), for $\vec{r_1}$, t = 1 and for $\vec{r_2}$, $t = \frac{1}{2}$. Thus the derivatives of f are -6, -12 respectively. On the other hand, $\frac{df}{ds}$ is the same for both paths Vamsi Pritham Pingali Lecture 27 7/9

≣ ⊁

æ

• Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a

∃ → ∢

æ

• Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a differentiable scalar field

• Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a differentiable scalar field such that $\nabla f \neq \vec{0}$ anywhere.

• Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a differentiable scalar field such that $\nabla f \neq \vec{0}$ anywhere. Let $c \in \mathbb{R}$ a constant

• Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a differentiable scalar field such that $\nabla f \neq \vec{0}$ anywhere. Let $c \in \mathbb{R}$ a constant such that f(x, y) = c describes

• Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a differentiable scalar field such that $\nabla f \neq \vec{0}$ anywhere. Let $c \in \mathbb{R}$ a constant such that f(x, y) = c describes a differentiable curve C having a

• Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a differentiable scalar field such that $\nabla f \neq \vec{0}$ anywhere. Let $c \in \mathbb{R}$ a constant such that f(x, y) = c describes a differentiable curve C having a well-defined unit tangent vector

 Let f : ℝ² → ℝ be a differentiable scalar field such that ∇f ≠ 0 anywhere. Let c ∈ ℝ a constant such that f(x, y) = c describes a differentiable curve C having a well-defined unit tangent vector at each point. Let f : ℝ² → ℝ be a differentiable scalar field such that ∇f ≠ 0 anywhere. Let c ∈ ℝ a constant such that f(x, y) = c describes a differentiable curve C having a well-defined unit tangent vector at each point. Prove that the following hold.

- Let f : ℝ² → ℝ be a differentiable scalar field such that ∇f ≠ 0 anywhere. Let c ∈ ℝ a constant such that f(x, y) = c describes a differentiable curve C having a well-defined unit tangent vector at each point. Prove that the following hold.
- The gradient vector ∇f

- Let f : ℝ² → ℝ be a differentiable scalar field such that
 ∇f ≠ 0 anywhere. Let c ∈ ℝ a constant such that f(x, y) = c describes a differentiable curve C having a well-defined unit tangent vector at each point. Prove that the following hold.
- The gradient vector ∇f is *normal* to *C*.

- Let f : ℝ² → ℝ be a differentiable scalar field such that ∇f ≠ 0 anywhere. Let c ∈ ℝ a constant such that f(x, y) = c describes a differentiable curve C having a well-defined unit tangent vector at each point. Prove that the following hold.
- The gradient vector ∇f is *normal* to *C*.
- The directional derivative $\frac{df}{ds}$ along C

- Let f : ℝ² → ℝ be a differentiable scalar field such that ∇f ≠ 0 anywhere. Let c ∈ ℝ a constant such that f(x, y) = c describes a differentiable curve C having a well-defined unit tangent vector at each point. Prove that the following hold.
- The gradient vector ∇f is *normal* to *C*.
- The directional derivative $\frac{df}{ds}$ along C is 0.

- Let f : ℝ² → ℝ be a differentiable scalar field such that ∇f ≠ 0 anywhere. Let c ∈ ℝ a constant such that f(x, y) = c describes a differentiable curve C having a well-defined unit tangent vector at each point. Prove that the following hold.
- The gradient vector ∇f is *normal* to *C*.
- The directional derivative $\frac{df}{ds}$ along C is 0.
- The directional derivative of f

- Let f : ℝ² → ℝ be a differentiable scalar field such that ∇f ≠ 0 anywhere. Let c ∈ ℝ a constant such that f(x, y) = c describes a differentiable curve C having a well-defined unit tangent vector at each point. Prove that the following hold.
- The gradient vector ∇f is *normal* to *C*.
- The directional derivative $\frac{df}{ds}$ along C is 0.
- The directional derivative of f at any point on C

- Let f : ℝ² → ℝ be a differentiable scalar field such that ∇f ≠ 0 anywhere. Let c ∈ ℝ a constant such that f(x, y) = c describes a differentiable curve C having a well-defined unit tangent vector at each point. Prove that the following hold.
- The gradient vector ∇f is *normal* to *C*.
- The directional derivative $\frac{df}{ds}$ along C is 0.
- The directional derivative of *f* at any point on *C* is highest in the

- Let f : ℝ² → ℝ be a differentiable scalar field such that ∇f ≠ 0 anywhere. Let c ∈ ℝ a constant such that f(x, y) = c describes a differentiable curve C having a well-defined unit tangent vector at each point. Prove that the following hold.
- The gradient vector ∇f is *normal* to *C*.
- The directional derivative $\frac{df}{ds}$ along C is 0.
- The directional derivative of f at any point on C is highest in the normal direction to C.

≣ ⊁

æ

• Let \vec{v} be

≣ ⊁

æ

• Let \vec{v} be the unit tangent vector

• Let \vec{v} be the unit tangent vector at a point (x_0, y_0) on C,

э

• Let \vec{v} be the unit tangent vector at a point (x_0, y_0) on C, i.e., $f(x_0, y_0) = c$.

∃ ► < ∃ ►</p>

- Let \vec{v} be the unit tangent vector at a point (x_0, y_0) on C, i.e., $f(x_0, y_0) = c$.
- By the assumption of

- Let \vec{v} be the unit tangent vector at a point (x_0, y_0) on C, i.e., $f(x_0, y_0) = c$.
- By the assumption of a well-defined unit tangent

- Let \vec{v} be the unit tangent vector at a point (x_0, y_0) on C, i.e., $f(x_0, y_0) = c$.
- By the assumption of a well-defined unit tangent , the curve C can be parameterised

- Let \vec{v} be the unit tangent vector at a point (x_0, y_0) on C, i.e., $f(x_0, y_0) = c$.
- By the assumption of a well-defined unit tangent , the curve C can be parameterised as $\vec{r}(t) = (x(t), y(t))$ where
- Let \vec{v} be the unit tangent vector at a point (x_0, y_0) on C, i.e., $f(x_0, y_0) = c$.
- By the assumption of a well-defined unit tangent, the curve C can be parameterised as r(t) = (x(t), y(t)) where the tangent vector at (x₀, y₀) = (x(0), y(0)) is

- Let \vec{v} be the unit tangent vector at a point (x_0, y_0) on C, i.e., $f(x_0, y_0) = c$.
- By the assumption of a well-defined unit tangent, the curve C can be parameterised as r(t) = (x(t), y(t)) where the tangent vector at (x₀, y₀) = (x(0), y(0)) is v, i.e., (x'(t), y'(t)) = v.

- Let \vec{v} be the unit tangent vector at a point (x_0, y_0) on C, i.e., $f(x_0, y_0) = c$.
- By the assumption of a well-defined unit tangent, the curve C can be parameterised as r(t) = (x(t), y(t)) where the tangent vector at (x₀, y₀) = (x(0), y(0)) is v, i.e., (x'(t), y'(t)) = v. Thus df/ds at t = 0, i.e.,

- Let \vec{v} be the unit tangent vector at a point (x_0, y_0) on C, i.e., $f(x_0, y_0) = c$.
- By the assumption of a well-defined unit tangent, the curve C can be parameterised as r(t) = (x(t), y(t)) where the tangent vector at (x₀, y₀) = (x(0), y(0)) is v, i.e., (x'(t), y'(t)) = v. Thus df/ds at t = 0, i.e., at (x₀, y₀) is

- Let \vec{v} be the unit tangent vector at a point (x_0, y_0) on C, i.e., $f(x_0, y_0) = c$.
- By the assumption of a well-defined unit tangent, the curve C can be parameterised as r(t) = (x(t), y(t)) where the tangent vector at (x₀, y₀) = (x(0), y(0)) is v, i.e., (x'(t), y'(t)) = v. Thus df/ds at t = 0, i.e., at (x₀, y₀) is df(x(t),y(t))/dt = 0 because

- Let \vec{v} be the unit tangent vector at a point (x_0, y_0) on C, i.e., $f(x_0, y_0) = c$.
- By the assumption of a well-defined unit tangent , the curve C can be parameterised as $\vec{r}(t) = (x(t), y(t))$ where the tangent vector at $(x_0, y_0) = (x(0), y(0))$ is \vec{v} , i.e., $(x'(t), y'(t)) = \vec{v}$. Thus $\frac{df}{ds}$ at t = 0, i.e., at (x_0, y_0) is $\frac{df(x(t), y(t))}{dt} = 0$ because f(x(t), y(t)) = c for all t.

- Let \vec{v} be the unit tangent vector at a point (x_0, y_0) on C, i.e., $f(x_0, y_0) = c$.
- By the assumption of a well-defined unit tangent , the curve C can be parameterised as $\vec{r}(t) = (x(t), y(t))$ where the tangent vector at $(x_0, y_0) = (x(0), y(0))$ is \vec{v} , i.e., $(x'(t), y'(t)) = \vec{v}$. Thus $\frac{df}{ds}$ at t = 0, i.e., at (x_0, y_0) is $\frac{df(x(t), y(t))}{dt} = 0$ because f(x(t), y(t)) = c for all t. This proves the

- Let \vec{v} be the unit tangent vector at a point (x_0, y_0) on C, i.e., $f(x_0, y_0) = c$.
- By the assumption of a well-defined unit tangent , the curve C can be parameterised as $\vec{r}(t) = (x(t), y(t))$ where the tangent vector at $(x_0, y_0) = (x(0), y(0))$ is \vec{v} , i.e., $(x'(t), y'(t)) = \vec{v}$. Thus $\frac{df}{ds}$ at t = 0, i.e., at (x_0, y_0) is $\frac{df(x(t), y(t))}{dt} = 0$ because f(x(t), y(t)) = c for all t. This proves the second part.

9/9

- Let \vec{v} be the unit tangent vector at a point (x_0, y_0) on C, i.e., $f(x_0, y_0) = c$.
- By the assumption of a well-defined unit tangent, the curve C can be parameterised as r(t) = (x(t), y(t)) where the tangent vector at (x₀, y₀) = (x(0), y(0)) is v, i.e., (x'(t), y'(t)) = v. Thus df/ds at t = 0, i.e., at (x₀, y₀) is df(x(t),y(t))/dt = 0 because f(x(t), y(t)) = c for all t. This proves the second part.
- Moreover,

- Let \vec{v} be the unit tangent vector at a point (x_0, y_0) on C, i.e., $f(x_0, y_0) = c$.
- By the assumption of a well-defined unit tangent , the curve C can be parameterised as r(t) = (x(t), y(t)) where the tangent vector at (x₀, y₀) = (x(0), y(0)) is v, i.e., (x'(t), y'(t)) = v. Thus df/ds at t = 0, i.e., at (x₀, y₀) is df(x(t),y(t))/dt = 0 because f(x(t), y(t)) = c for all t. This proves the second part.
 Moreover, df(x(t),y(t))/dt = (∇f, v) = 0 and hence

- Let \vec{v} be the unit tangent vector at a point (x_0, y_0) on C, i.e., $f(x_0, y_0) = c$.
- By the assumption of a well-defined unit tangent , the curve C can be parameterised as $\vec{r}(t) = (x(t), y(t))$ where the tangent vector at $(x_0, y_0) = (x(0), y(0))$ is \vec{v} , i.e., $(x'(t), y'(t)) = \vec{v}$. Thus $\frac{df}{ds}$ at t = 0, i.e., at (x_0, y_0) is $\frac{df(x(t), y(t))}{dt} = 0$ because f(x(t), y(t)) = c for all t. This proves the second part.
- Moreover, $\frac{df(x(t),y(t))}{dt} = \langle \nabla f, \vec{v} \rangle = 0$ and hence $\nabla f(x_0, y_0)$ is perpendicular to the tangent, i.e.,

- Let \vec{v} be the unit tangent vector at a point (x_0, y_0) on C, i.e., $f(x_0, y_0) = c$.
- By the assumption of a well-defined unit tangent , the curve C can be parameterised as $\vec{r}(t) = (x(t), y(t))$ where the tangent vector at $(x_0, y_0) = (x(0), y(0))$ is \vec{v} , i.e., $(x'(t), y'(t)) = \vec{v}$. Thus $\frac{df}{ds}$ at t = 0, i.e., at (x_0, y_0) is $\frac{df(x(t), y(t))}{dt} = 0$ because f(x(t), y(t)) = c for all t. This proves the second part.
- Moreover, $\frac{df(x(t),y(t))}{dt} = \langle \nabla f, \vec{v} \rangle = 0$ and hence $\nabla f(x_0, y_0)$ is perpendicular to the tangent, i.e., it is normal to C.

- Let \vec{v} be the unit tangent vector at a point (x_0, y_0) on C, i.e., $f(x_0, y_0) = c$.
- By the assumption of a well-defined unit tangent, the curve C can be parameterised as r(t) = (x(t), y(t)) where the tangent vector at (x₀, y₀) = (x(0), y(0)) is v, i.e., (x'(t), y'(t)) = v. Thus df/ds at t = 0, i.e., at (x₀, y₀) is df(x(t),y(t))/dt = 0 because f(x(t), y(t)) = c for all t. This proves the second part.
- Moreover, $\frac{df(x(t),y(t))}{dt} = \langle \nabla f, \vec{v} \rangle = 0$ and hence $\nabla f(x_0, y_0)$ is perpendicular to the tangent, i.e., it is normal to C.
- Lastly, by Cauchy-Schwarz,

- Let \vec{v} be the unit tangent vector at a point (x_0, y_0) on C, i.e., $f(x_0, y_0) = c$.
- By the assumption of a well-defined unit tangent, the curve C can be parameterised as r(t) = (x(t), y(t)) where the tangent vector at (x₀, y₀) = (x(0), y(0)) is v, i.e., (x'(t), y'(t)) = v. Thus df/ds at t = 0, i.e., at (x₀, y₀) is df(x(t),y(t))/dt = 0 because f(x(t), y(t)) = c for all t. This proves the second part.
- Moreover, $\frac{df(x(t),y(t))}{dt} = \langle \nabla f, \vec{v} \rangle = 0$ and hence $\nabla f(x_0, y_0)$ is perpendicular to the tangent, i.e., it is normal to *C*.
- Lastly, by Cauchy-Schwarz, the directional derivative at (x₀, y₀) is highest

- Let \vec{v} be the unit tangent vector at a point (x_0, y_0) on C, i.e., $f(x_0, y_0) = c$.
- By the assumption of a well-defined unit tangent, the curve C can be parameterised as r(t) = (x(t), y(t)) where the tangent vector at (x₀, y₀) = (x(0), y(0)) is v, i.e., (x'(t), y'(t)) = v. Thus df/ds at t = 0, i.e., at (x₀, y₀) is df(x(t),y(t))/dt = 0 because f(x(t), y(t)) = c for all t. This proves the second part.
- Moreover, $\frac{df(x(t),y(t))}{dt} = \langle \nabla f, \vec{v} \rangle = 0$ and hence $\nabla f(x_0, y_0)$ is perpendicular to the tangent, i.e., it is normal to *C*.
- Lastly, by Cauchy-Schwarz, the directional derivative at (x₀, y₀) is highest along ∇f(x₀, y₀) which

- Let \vec{v} be the unit tangent vector at a point (x_0, y_0) on C, i.e., $f(x_0, y_0) = c$.
- By the assumption of a well-defined unit tangent , the curve C can be parameterised as $\vec{r}(t) = (x(t), y(t))$ where the tangent vector at $(x_0, y_0) = (x(0), y(0))$ is \vec{v} , i.e., $(x'(t), y'(t)) = \vec{v}$. Thus $\frac{df}{ds}$ at t = 0, i.e., at (x_0, y_0) is $\frac{df(x(t), y(t))}{dt} = 0$ because f(x(t), y(t)) = c for all t. This proves the second part.
- Moreover, $\frac{df(x(t),y(t))}{dt} = \langle \nabla f, \vec{v} \rangle = 0$ and hence $\nabla f(x_0, y_0)$ is perpendicular to the tangent, i.e., it is normal to *C*.
- Lastly, by Cauchy-Schwarz, the directional derivative at (x₀, y₀) is highest along ∇f(x₀, y₀) which we just proved is normal to C.