Lecture 29 - UM 102 (Spring 2021)

Vamsi Pritham Pingali

IISc

Recap

▲御▶ ▲ 臣▶ ▲ 臣▶

• Stated the chain rule

≣ ► +

• Stated the chain rule for $f(\vec{r}(t))$ whose

• Stated the chain rule for $f(\vec{r}(t))$ whose derivative is $\frac{df}{dt} = \langle \nabla f, \vec{r}'(t) \rangle$.

∃ ▶

э

- Stated the chain rule for $f(\vec{r}(t))$ whose derivative is $\frac{df}{dt} = \langle \nabla f, \vec{r}'(t) \rangle$.
- Defined paths, regular paths, and curves.

- Stated the chain rule for $f(\vec{r}(t))$ whose derivative is $\frac{df}{dt} = \langle \nabla f, \vec{r}'(t) \rangle$.
- Defined paths, regular paths, and curves. Defined the notion

- Stated the chain rule for $f(\vec{r}(t))$ whose derivative is $\frac{df}{dt} = \langle \nabla f, \vec{r}'(t) \rangle$.
- Defined paths, regular paths, and curves. Defined the notion of directional derivative along a regular path $\frac{df}{ds}$

- Stated the chain rule for $f(\vec{r}(t))$ whose derivative is $\frac{df}{dt} = \langle \nabla f, \vec{r}'(t) \rangle$.
- Defined paths, regular paths, and curves. Defined the notion of directional derivative along a regular path $\frac{df}{ds}$ as $\frac{1}{\|\vec{r'}(t_0)\|} \langle \nabla f(\vec{r}(t_0)), \vec{r'}(t_0) \rangle$.

イロト イヨト イヨト イヨト

• Recall that

▲御▶ ▲ 陸▶ ▲ 陸▶

• Recall that roughly, $f(\vec{r}(t+h)) - f(\vec{r}) \approx f(\vec{r}+h\vec{r}') - f(\vec{r}) \approx h\nabla_{\vec{r}'}f.$

'문▶' ★ 문▶

- Recall that roughly, $f(\vec{r}(t+h)) - f(\vec{r}) \approx f(\vec{r}+h\vec{r}') - f(\vec{r}) \approx h\nabla_{\vec{r}'}f.$
- More rigorously,

∃ >

- Recall that roughly, $f(\vec{r}(t+h)) - f(\vec{r}) \approx f(\vec{r}+h\vec{r}') - f(\vec{r}) \approx h\nabla_{\vec{r}'}f.$
- More rigorously, letting $g(t) = f(\vec{r}(t))$,

- Recall that roughly, $f(\vec{r}(t+h)) - f(\vec{r}) \approx f(\vec{r}+h\vec{r}') - f(\vec{r}) \approx h\nabla_{\vec{r}'}f.$
- More rigorously, letting $g(t) = f(\vec{r}(t))$, $g(t_0 + h) - g(t_0) = f(\vec{a} + \vec{y}) - f(\vec{a})$ where

- Recall that roughly, $f(\vec{r}(t+h)) - f(\vec{r}) \approx f(\vec{r}+h\vec{r}') - f(\vec{r}) \approx h\nabla_{\vec{r}'}f.$
- More rigorously, letting $g(t) = f(\vec{r}(t))$, $g(t_0 + h) - g(t_0) = f(\vec{a} + \vec{y}) - f(\vec{a})$ where $\vec{a} = \vec{r}(t_0)$, $\vec{y} = \vec{r}(t_0 + h) - \vec{r}(t_0)$.

- Recall that roughly, $f(\vec{r}(t+h)) - f(\vec{r}) \approx f(\vec{r}+h\vec{r}') - f(\vec{r}) \approx h\nabla_{\vec{r}'}f.$
- More rigorously, letting $g(t) = f(\vec{r}(t))$, $g(t_0 + h) - g(t_0) = f(\vec{a} + \vec{y}) - f(\vec{a})$ where $\vec{a} = \vec{r}(t_0)$, $\vec{y} = \vec{r}(t_0 + h) - \vec{r}(t_0)$.
- Using the definition

- Recall that roughly, $f(\vec{r}(t+h)) - f(\vec{r}) \approx f(\vec{r}+h\vec{r}') - f(\vec{r}) \approx h\nabla_{\vec{r}'}f.$
- More rigorously, letting $g(t) = f(\vec{r}(t))$, $g(t_0 + h) - g(t_0) = f(\vec{a} + \vec{y}) - f(\vec{a})$ where $\vec{a} = \vec{r}(t_0)$, $\vec{y} = \vec{r}(t_0 + h) - \vec{r}(t_0)$.
- Using the definition of differentiability of f,

- Recall that roughly, $f(\vec{r}(t+h)) - f(\vec{r}) \approx f(\vec{r}+h\vec{r}') - f(\vec{r}) \approx h\nabla_{\vec{r}'}f.$
- More rigorously, letting $g(t) = f(\vec{r}(t))$, $g(t_0 + h) - g(t_0) = f(\vec{a} + \vec{y}) - f(\vec{a})$ where $\vec{a} = \vec{r}(t_0)$, $\vec{y} = \vec{r}(t_0 + h) - \vec{r}(t_0)$.
- Using the definition of differentiability of f, $f(\vec{a} + \vec{y}) = f(\vec{a}) + \langle \nabla f(\vec{a}), \vec{y} \rangle + ||\vec{y}|| E(\vec{a}, \vec{y})$, where

- Recall that roughly, $f(\vec{r}(t+h)) - f(\vec{r}) \approx f(\vec{r}+h\vec{r}') - f(\vec{r}) \approx h\nabla_{\vec{r}'}f.$
- More rigorously, letting $g(t) = f(\vec{r}(t))$, $g(t_0 + h) - g(t_0) = f(\vec{a} + \vec{y}) - f(\vec{a})$ where $\vec{a} = \vec{r}(t_0)$, $\vec{y} = \vec{r}(t_0 + h) - \vec{r}(t_0)$.
- Using the definition of differentiability of f, $f(\vec{a} + \vec{y}) = f(\vec{a}) + \langle \nabla f(\vec{a}), \vec{y} \rangle + ||\vec{y}|| E(\vec{a}, \vec{y})$, where $E \to 0$ as $||\vec{y}|| \to 0$.

- Recall that roughly, $f(\vec{r}(t+h)) - f(\vec{r}) \approx f(\vec{r}+h\vec{r}') - f(\vec{r}) \approx h\nabla_{\vec{r}'}f.$
- More rigorously, letting $g(t) = f(\vec{r}(t))$, $g(t_0 + h) - g(t_0) = f(\vec{a} + \vec{y}) - f(\vec{a})$ where $\vec{a} = \vec{r}(t_0)$, $\vec{y} = \vec{r}(t_0 + h) - \vec{r}(t_0)$.
- Using the definition of differentiability of f, $f(\vec{a} + \vec{y}) = f(\vec{a}) + \langle \nabla f(\vec{a}), \vec{y} \rangle + ||\vec{y}|| E(\vec{a}, \vec{y})$, where $E \to 0$ as $||\vec{y}|| \to 0$.

• So
$$\frac{g(t_0+h)-g(t_0)}{h} = \frac{\langle \nabla f(\vec{r}(t_0)), \vec{r}(t_0+h) - \vec{r}(t_0) \rangle}{h} + \frac{\|\vec{r}(t_0+h) - \vec{r}(t_0)\|}{h} E(\vec{a}, \vec{r}(t_0+h) - \vec{r}(t_0)).$$

3/8

- Recall that roughly, $f(\vec{r}(t+h)) - f(\vec{r}) \approx f(\vec{r}+h\vec{r}') - f(\vec{r}) \approx h\nabla_{\vec{r}'}f.$
- More rigorously, letting $g(t) = f(\vec{r}(t))$, $g(t_0 + h) - g(t_0) = f(\vec{a} + \vec{y}) - f(\vec{a})$ where $\vec{a} = \vec{r}(t_0)$, $\vec{y} = \vec{r}(t_0 + h) - \vec{r}(t_0)$.
- Using the definition of differentiability of f, $f(\vec{a} + \vec{y}) = f(\vec{a}) + \langle \nabla f(\vec{a}), \vec{y} \rangle + ||\vec{y}|| E(\vec{a}, \vec{y})$, where $E \to 0$ as $||\vec{y}|| \to 0$.

• So
$$\frac{g(t_0+h)-g(t_0)}{h} = \frac{\langle \nabla f(\vec{r}(t_0)), \vec{r}(t_0+h)-\vec{r}(t_0) \rangle}{h} + \frac{\|\vec{r}(t_0+h)-\vec{r}(t_0)\|}{h} E(\vec{a}, \vec{r}(t_0+h)-\vec{r}(t_0)).$$

This goes to the

- Recall that roughly, $f(\vec{r}(t+h)) - f(\vec{r}) \approx f(\vec{r}+h\vec{r}') - f(\vec{r}) \approx h\nabla_{\vec{r}'}f.$
- More rigorously, letting $g(t) = f(\vec{r}(t))$, $g(t_0 + h) - g(t_0) = f(\vec{a} + \vec{y}) - f(\vec{a})$ where $\vec{a} = \vec{r}(t_0)$, $\vec{y} = \vec{r}(t_0 + h) - \vec{r}(t_0)$.
- Using the definition of differentiability of f, $f(\vec{a} + \vec{y}) = f(\vec{a}) + \langle \nabla f(\vec{a}), \vec{y} \rangle + ||\vec{y}|| E(\vec{a}, \vec{y})$, where $E \to 0$ as $||\vec{y}|| \to 0$.

• So
$$\frac{g(t_0+h)-g(t_0)}{h} = \frac{\langle \nabla f(\vec{r}(t_0)), \vec{r}(t_0+h)-\vec{r}(t_0) \rangle}{h} + \frac{\|\vec{r}(t_0+h)-\vec{r}(t_0)\|}{h} E(\vec{a}, \vec{r}(t_0+h)-\vec{r}(t_0)).$$

This goes to the correct answer as $h \to 0$. Indeed

3/8

- Recall that roughly, $f(\vec{r}(t+h)) - f(\vec{r}) \approx f(\vec{r}+h\vec{r}') - f(\vec{r}) \approx h\nabla_{\vec{r}'}f.$
- More rigorously, letting $g(t) = f(\vec{r}(t))$, $g(t_0 + h) - g(t_0) = f(\vec{a} + \vec{y}) - f(\vec{a})$ where $\vec{a} = \vec{r}(t_0)$, $\vec{y} = \vec{r}(t_0 + h) - \vec{r}(t_0)$.
- Using the definition of differentiability of f, $f(\vec{a} + \vec{y}) = f(\vec{a}) + \langle \nabla f(\vec{a}), \vec{y} \rangle + ||\vec{y}|| E(\vec{a}, \vec{y})$, where $E \to 0$ as $||\vec{y}|| \to 0$.

• So
$$\frac{g(t_0+h)-g(t_0)}{h} = \frac{\langle \nabla f(\vec{r}(t_0)), \vec{r}(t_0+h)-\vec{r}(t_0) \rangle}{h} + \frac{\|\vec{r}(t_0+h)-\vec{r}(t_0)\|}{h} E(\vec{a}, \vec{r}(t_0+h)-\vec{r}(t_0)).$$

This goes to the correct answer as $h \to 0$. Indeed
 $|\frac{\|\vec{r}(t_0+h)-\vec{r}(t_0)\|}{h}|E \to 0.$

• Returning back to

• Returning back to this concept

• Returning back to this concept in greater generality,

• Returning back to this concept in greater generality, whenever $f : \mathbb{R}^n \to \mathbb{R}$ is a function,

• Returning back to this concept in greater generality, whenever $f : \mathbb{R}^n \to \mathbb{R}$ is a function, the set $\vec{r} \in \mathbb{R}^n$ such that $f(\vec{r}) = c$ is

• Returning back to this concept in greater generality, whenever $f : \mathbb{R}^n \to \mathbb{R}$ is a function, the set $\vec{r} \in \mathbb{R}^n$ such that $f(\vec{r}) = c$ is called a *level set* of f. (

Returning back to this concept in greater generality, whenever f: ℝⁿ → ℝ is a function, the set r ∈ ℝⁿ such that f(r) = c is called a *level set* of f. (If n = 2, it is a called

• Returning back to this concept in greater generality, whenever $f : \mathbb{R}^n \to \mathbb{R}$ is a function, the set $\vec{r} \in \mathbb{R}^n$ such that $f(\vec{r}) = c$ is called a *level set* of f. (If n = 2, it is a called a level curve or a contour line. If n = 3, it is called a level surface.)

- Returning back to this concept in greater generality, whenever $f : \mathbb{R}^n \to \mathbb{R}$ is a function, the set $\vec{r} \in \mathbb{R}^n$ such that $f(\vec{r}) = c$ is called a *level set* of f. (If n = 2, it is a called a level curve or a contour line. If n = 3, it is called a level surface.)
- These occur

- Returning back to this concept in greater generality, whenever $f : \mathbb{R}^n \to \mathbb{R}$ is a function, the set $\vec{r} \in \mathbb{R}^n$ such that $f(\vec{r}) = c$ is called a *level set* of f. (If n = 2, it is a called a level curve or a contour line. If n = 3, it is called a level surface.)
- These occur as equipotential surfaces

- Returning back to this concept in greater generality, whenever $f : \mathbb{R}^n \to \mathbb{R}$ is a function, the set $\vec{r} \in \mathbb{R}^n$ such that $f(\vec{r}) = c$ is called a *level set* of f. (If n = 2, it is a called a level curve or a contour line. If n = 3, it is called a level surface.)
- These occur as equipotential surfaces in physics.
- Returning back to this concept in greater generality, whenever $f : \mathbb{R}^n \to \mathbb{R}$ is a function, the set $\vec{r} \in \mathbb{R}^n$ such that $f(\vec{r}) = c$ is called a *level set* of f. (If n = 2, it is a called a level curve or a contour line. If n = 3, it is called a level surface.)
- These occur as equipotential surfaces in physics.
- Even if f is C^1 ,

- Returning back to this concept in greater generality, whenever $f : \mathbb{R}^n \to \mathbb{R}$ is a function, the set $\vec{r} \in \mathbb{R}^n$ such that $f(\vec{r}) = c$ is called a *level set* of f. (If n = 2, it is a called a level curve or a contour line. If n = 3, it is called a level surface.)
- These occur as equipotential surfaces in physics.
- Even if f is C^1 , this level set

- Returning back to this concept in greater generality, whenever $f : \mathbb{R}^n \to \mathbb{R}$ is a function, the set $\vec{r} \in \mathbb{R}^n$ such that $f(\vec{r}) = c$ is called a *level set* of f. (If n = 2, it is a called a level curve or a contour line. If n = 3, it is called a level surface.)
- These occur as equipotential surfaces in physics.
- Even if f is C^1 , this level set need not always be a

- Returning back to this concept in greater generality, whenever $f : \mathbb{R}^n \to \mathbb{R}$ is a function, the set $\vec{r} \in \mathbb{R}^n$ such that $f(\vec{r}) = c$ is called a *level set* of f. (If n = 2, it is a called a level curve or a contour line. If n = 3, it is called a level surface.)
- These occur as equipotential surfaces in physics.
- Even if f is C¹, this level set need not always be a "nice smoothly varying" object.

- Returning back to this concept in greater generality, whenever $f : \mathbb{R}^n \to \mathbb{R}$ is a function, the set $\vec{r} \in \mathbb{R}^n$ such that $f(\vec{r}) = c$ is called a *level set* of f. (If n = 2, it is a called a level curve or a contour line. If n = 3, it is called a level surface.)
- These occur as equipotential surfaces in physics.
- Even if f is C¹, this level set need not always be a "nice smoothly varying" object. For instance,

- Returning back to this concept in greater generality, whenever $f : \mathbb{R}^n \to \mathbb{R}$ is a function, the set $\vec{r} \in \mathbb{R}^n$ such that $f(\vec{r}) = c$ is called a *level set* of f. (If n = 2, it is a called a level curve or a contour line. If n = 3, it is called a level surface.)
- These occur as equipotential surfaces in physics.
- Even if f is C¹, this level set need not always be a "nice smoothly varying" object. For instance, take xy = 0 in ℝ² or

- Returning back to this concept in greater generality, whenever $f : \mathbb{R}^n \to \mathbb{R}$ is a function, the set $\vec{r} \in \mathbb{R}^n$ such that $f(\vec{r}) = c$ is called a *level set* of f. (If n = 2, it is a called a level curve or a contour line. If n = 3, it is called a level surface.)
- These occur as equipotential surfaces in physics.
- Even if f is C¹, this level set need not always be a "nice smoothly varying" object. For instance, take xy = 0 in ℝ² or x² + y² = z² in ℝ³.

- Returning back to this concept in greater generality, whenever $f : \mathbb{R}^n \to \mathbb{R}$ is a function, the set $\vec{r} \in \mathbb{R}^n$ such that $f(\vec{r}) = c$ is called a *level set* of f. (If n = 2, it is a called a level curve or a contour line. If n = 3, it is called a level surface.)
- These occur as equipotential surfaces in physics.
- Even if f is C¹, this level set need not always be a "nice smoothly varying" object. For instance, take xy = 0 in ℝ² or x² + y² = z² in ℝ³.
- If f is C^1 ,

- Returning back to this concept in greater generality, whenever $f : \mathbb{R}^n \to \mathbb{R}$ is a function, the set $\vec{r} \in \mathbb{R}^n$ such that $f(\vec{r}) = c$ is called a *level set* of f. (If n = 2, it is a called a level curve or a contour line. If n = 3, it is called a level surface.)
- These occur as equipotential surfaces in physics.
- Even if f is C¹, this level set need not always be a "nice smoothly varying" object. For instance, take xy = 0 in ℝ² or x² + y² = z² in ℝ³.
- If f is C^1 , and on the *entire* level set $f^{-1}(c)$,

- Returning back to this concept in greater generality, whenever $f : \mathbb{R}^n \to \mathbb{R}$ is a function, the set $\vec{r} \in \mathbb{R}^n$ such that $f(\vec{r}) = c$ is called a *level set* of f. (If n = 2, it is a called a level curve or a contour line. If n = 3, it is called a level surface.)
- These occur as equipotential surfaces in physics.
- Even if f is C¹, this level set need not always be a "nice smoothly varying" object. For instance, take xy = 0 in ℝ² or x² + y² = z² in ℝ³.
- If f is C^1 , and on the *entire* level set $f^{-1}(c)$, $\nabla f \neq \vec{0}$ (a *regular* level set),

- Returning back to this concept in greater generality, whenever $f : \mathbb{R}^n \to \mathbb{R}$ is a function, the set $\vec{r} \in \mathbb{R}^n$ such that $f(\vec{r}) = c$ is called a *level set* of f. (If n = 2, it is a called a level curve or a contour line. If n = 3, it is called a level surface.)
- These occur as equipotential surfaces in physics.
- Even if f is C¹, this level set need not always be a "nice smoothly varying" object. For instance, take xy = 0 in ℝ² or x² + y² = z² in ℝ³.
- If f is C^1 , and on the *entire* level set $f^{-1}(c)$, $\nabla f \neq \vec{0}$ (a *regular* level set), then it turns out

- Returning back to this concept in greater generality, whenever $f : \mathbb{R}^n \to \mathbb{R}$ is a function, the set $\vec{r} \in \mathbb{R}^n$ such that $f(\vec{r}) = c$ is called a *level set* of f. (If n = 2, it is a called a level curve or a contour line. If n = 3, it is called a level surface.)
- These occur as equipotential surfaces in physics.
- Even if f is C¹, this level set need not always be a "nice smoothly varying" object. For instance, take xy = 0 in ℝ² or x² + y² = z² in ℝ³.
- If f is C¹, and on the entire level set f⁻¹(c), ∇f ≠ 0 (a regular level set), then it turns out (by a theorem called the implicit function theorem)

- Returning back to this concept in greater generality, whenever $f : \mathbb{R}^n \to \mathbb{R}$ is a function, the set $\vec{r} \in \mathbb{R}^n$ such that $f(\vec{r}) = c$ is called a *level set* of f. (If n = 2, it is a called a level curve or a contour line. If n = 3, it is called a level surface.)
- These occur as equipotential surfaces in physics.
- Even if f is C¹, this level set need not always be a "nice smoothly varying" object. For instance, take xy = 0 in ℝ² or x² + y² = z² in ℝ³.
- If f is C¹, and on the entire level set f⁻¹(c), ∇f ≠ 0 (a regular level set), then it turns out (by a theorem called the implicit function theorem) that near any point

- Returning back to this concept in greater generality, whenever $f : \mathbb{R}^n \to \mathbb{R}$ is a function, the set $\vec{r} \in \mathbb{R}^n$ such that $f(\vec{r}) = c$ is called a *level set* of f. (If n = 2, it is a called a level curve or a contour line. If n = 3, it is called a level surface.)
- These occur as equipotential surfaces in physics.
- Even if f is C¹, this level set need not always be a "nice smoothly varying" object. For instance, take xy = 0 in ℝ² or x² + y² = z² in ℝ³.
- If f is C¹, and on the entire level set f⁻¹(c), ∇f ≠ 0 (a regular level set), then it turns out (by a theorem called the implicit function theorem) that near any point on this level set

- Returning back to this concept in greater generality, whenever $f : \mathbb{R}^n \to \mathbb{R}$ is a function, the set $\vec{r} \in \mathbb{R}^n$ such that $f(\vec{r}) = c$ is called a *level set* of f. (If n = 2, it is a called a level curve or a contour line. If n = 3, it is called a level surface.)
- These occur as equipotential surfaces in physics.
- Even if f is C¹, this level set need not always be a "nice smoothly varying" object. For instance, take xy = 0 in ℝ² or x² + y² = z² in ℝ³.
- If f is C¹, and on the entire level set f⁻¹(c), ∇f ≠ 0 (a regular level set), then it turns out (by a theorem called the implicit function theorem) that near any point on this level set the level set can be treated as

- Returning back to this concept in greater generality, whenever $f : \mathbb{R}^n \to \mathbb{R}$ is a function, the set $\vec{r} \in \mathbb{R}^n$ such that $f(\vec{r}) = c$ is called a *level set* of f. (If n = 2, it is a called a level curve or a contour line. If n = 3, it is called a level surface.)
- These occur as equipotential surfaces in physics.
- Even if f is C¹, this level set need not always be a "nice smoothly varying" object. For instance, take xy = 0 in ℝ² or x² + y² = z² in ℝ³.
- If f is C¹, and on the entire level set f⁻¹(c), ∇f ≠ 0 (a regular level set), then it turns out (by a theorem called the implicit function theorem) that near any point on this level set the level set can be treated as a graph of a function.

- Returning back to this concept in greater generality, whenever $f : \mathbb{R}^n \to \mathbb{R}$ is a function, the set $\vec{r} \in \mathbb{R}^n$ such that $f(\vec{r}) = c$ is called a *level set* of f. (If n = 2, it is a called a level curve or a contour line. If n = 3, it is called a level surface.)
- These occur as equipotential surfaces in physics.
- Even if f is C¹, this level set need not always be a "nice smoothly varying" object. For instance, take xy = 0 in ℝ² or x² + y² = z² in ℝ³.
- If f is C¹, and on the entire level set f⁻¹(c), ∇f ≠ 0 (a regular level set), then it turns out (by a theorem called the implicit function theorem) that near any point on this level set the level set can be treated as a graph of a function. In particular,

- Returning back to this concept in greater generality, whenever $f : \mathbb{R}^n \to \mathbb{R}$ is a function, the set $\vec{r} \in \mathbb{R}^n$ such that $f(\vec{r}) = c$ is called a *level set* of f. (If n = 2, it is a called a level curve or a contour line. If n = 3, it is called a level surface.)
- These occur as equipotential surfaces in physics.
- Even if f is C¹, this level set need not always be a "nice smoothly varying" object. For instance, take xy = 0 in ℝ² or x² + y² = z² in ℝ³.
- If f is C¹, and on the entire level set f⁻¹(c), ∇f ≠ 0 (a regular level set), then it turns out (by a theorem called the implicit function theorem) that near any point on this level set the level set can be treated as a graph of a function. In particular, the tangent planes exist at

- Returning back to this concept in greater generality, whenever $f : \mathbb{R}^n \to \mathbb{R}$ is a function, the set $\vec{r} \in \mathbb{R}^n$ such that $f(\vec{r}) = c$ is called a *level set* of f. (If n = 2, it is a called a level curve or a contour line. If n = 3, it is called a level surface.)
- These occur as equipotential surfaces in physics.
- Even if f is C¹, this level set need not always be a "nice smoothly varying" object. For instance, take xy = 0 in ℝ² or x² + y² = z² in ℝ³.
- If f is C¹, and on the entire level set f⁻¹(c), ∇f ≠ 0 (a regular level set), then it turns out (by a theorem called the implicit function theorem) that near any point on this level set the level set can be treated as a graph of a function. In particular, the tangent planes exist at any point.

æ

• Near a point \vec{a}

• Near a point \vec{a} if $\vec{r}(t)$ is a C^1 curve passing through \vec{a} ,

• Near a point \vec{a} if $\vec{r}(t)$ is a C^1 curve passing through \vec{a} , i.e., $\vec{r}(0) = \vec{a}$, and if $\vec{r}'(0) = \vec{v}$, then since $f(\vec{r}(t)) = c$ for all t,

• Near a point \vec{a} if $\vec{r}(t)$ is a C^1 curve passing through \vec{a} , i.e., $\vec{r}(0) = \vec{a}$, and if $\vec{r}'(0) = \vec{v}$, then since $f(\vec{r}(t)) = c$ for all t, its derivative is zero and hence

• Near a point \vec{a} if $\vec{r}(t)$ is a C^1 curve passing through \vec{a} , i.e., $\vec{r}(0) = \vec{a}$, and if $\vec{r}'(0) = \vec{v}$, then since $f(\vec{r}(t)) = c$ for all t, its derivative is zero and hence $\langle \nabla f(\vec{a}), \vec{v} \rangle = 0$.

- Near a point \vec{a} if $\vec{r}(t)$ is a C^1 curve passing through \vec{a} , i.e., $\vec{r}(0) = \vec{a}$, and if $\vec{r}'(0) = \vec{v}$, then since $f(\vec{r}(t)) = c$ for all t, its derivative is zero and hence $\langle \nabla f(\vec{a}), \vec{v} \rangle = 0$.
- This means that

- Near a point \vec{a} if $\vec{r}(t)$ is a C^1 curve passing through \vec{a} , i.e., $\vec{r}(0) = \vec{a}$, and if $\vec{r}'(0) = \vec{v}$, then since $f(\vec{r}(t)) = c$ for all t, its derivative is zero and hence $\langle \nabla f(\vec{a}), \vec{v} \rangle = 0$.
- This means that $\nabla f(\vec{a})$ is perpendicular to

- Near a point \vec{a} if $\vec{r}(t)$ is a C^1 curve passing through \vec{a} , i.e., $\vec{r}(0) = \vec{a}$, and if $\vec{r}'(0) = \vec{v}$, then since $f(\vec{r}(t)) = c$ for all t, its derivative is zero and hence $\langle \nabla f(\vec{a}), \vec{v} \rangle = 0$.
- This means that $\nabla f(\vec{a})$ is perpendicular to every tangential vector \vec{v} .

- Near a point \vec{a} if $\vec{r}(t)$ is a C^1 curve passing through \vec{a} , i.e., $\vec{r}(0) = \vec{a}$, and if $\vec{r}'(0) = \vec{v}$, then since $f(\vec{r}(t)) = c$ for all t, its derivative is zero and hence $\langle \nabla f(\vec{a}), \vec{v} \rangle = 0$.
- This means that $\nabla f(\vec{a})$ is perpendicular to every tangential vector \vec{v} . If the level set is regular,

- Near a point \vec{a} if $\vec{r}(t)$ is a C^1 curve passing through \vec{a} , i.e., $\vec{r}(0) = \vec{a}$, and if $\vec{r}'(0) = \vec{v}$, then since $f(\vec{r}(t)) = c$ for all t, its derivative is zero and hence $\langle \nabla f(\vec{a}), \vec{v} \rangle = 0$.
- This means that ∇f(ā) is perpendicular to every tangential vector v. If the level set is regular, then since tanget planes exist,

- Near a point \vec{a} if $\vec{r}(t)$ is a C^1 curve passing through \vec{a} , i.e., $\vec{r}(0) = \vec{a}$, and if $\vec{r}'(0) = \vec{v}$, then since $f(\vec{r}(t)) = c$ for all t, its derivative is zero and hence $\langle \nabla f(\vec{a}), \vec{v} \rangle = 0$.
- This means that ∇f(*ā*) is perpendicular to every tangential vector *v*. If the level set is regular, then since tanget planes exist, their equation is

- Near a point \vec{a} if $\vec{r}(t)$ is a C^1 curve passing through \vec{a} , i.e., $\vec{r}(0) = \vec{a}$, and if $\vec{r}'(0) = \vec{v}$, then since $f(\vec{r}(t)) = c$ for all t, its derivative is zero and hence $\langle \nabla f(\vec{a}), \vec{v} \rangle = 0$.
- This means that $\nabla f(\vec{a})$ is perpendicular to every tangential vector \vec{v} . If the level set is regular, then since tanget planes exist, their equation is $(\vec{r} \vec{a}) \cdot \nabla f(\vec{a}) = 0$.

- Near a point \vec{a} if $\vec{r}(t)$ is a C^1 curve passing through \vec{a} , i.e., $\vec{r}(0) = \vec{a}$, and if $\vec{r}'(0) = \vec{v}$, then since $f(\vec{r}(t)) = c$ for all t, its derivative is zero and hence $\langle \nabla f(\vec{a}), \vec{v} \rangle = 0$.
- This means that $\nabla f(\vec{a})$ is perpendicular to every tangential vector \vec{v} . If the level set is regular, then since tanget planes exist, their equation is $(\vec{r} \vec{a}) \cdot \nabla f(\vec{a}) = 0$.
- For example,

- Near a point \vec{a} if $\vec{r}(t)$ is a C^1 curve passing through \vec{a} , i.e., $\vec{r}(0) = \vec{a}$, and if $\vec{r}'(0) = \vec{v}$, then since $f(\vec{r}(t)) = c$ for all t, its derivative is zero and hence $\langle \nabla f(\vec{a}), \vec{v} \rangle = 0$.
- This means that $\nabla f(\vec{a})$ is perpendicular to every tangential vector \vec{v} . If the level set is regular, then since tanget planes exist, their equation is $(\vec{r} \vec{a}) \cdot \nabla f(\vec{a}) = 0$.
- For example, if one considers $x^2 + y^2 + z^2 = 1$,

- Near a point \vec{a} if $\vec{r}(t)$ is a C^1 curve passing through \vec{a} , i.e., $\vec{r}(0) = \vec{a}$, and if $\vec{r}'(0) = \vec{v}$, then since $f(\vec{r}(t)) = c$ for all t, its derivative is zero and hence $\langle \nabla f(\vec{a}), \vec{v} \rangle = 0$.
- This means that $\nabla f(\vec{a})$ is perpendicular to every tangential vector \vec{v} . If the level set is regular, then since tanget planes exist, their equation is $(\vec{r} \vec{a}) \cdot \nabla f(\vec{a}) = 0$.
- For example, if one considers $x^2 + y^2 + z^2 = 1$, $\nabla f = (2x, 2y, 2z)$ which is

- Near a point \vec{a} if $\vec{r}(t)$ is a C^1 curve passing through \vec{a} , i.e., $\vec{r}(0) = \vec{a}$, and if $\vec{r}'(0) = \vec{v}$, then since $f(\vec{r}(t)) = c$ for all t, its derivative is zero and hence $\langle \nabla f(\vec{a}), \vec{v} \rangle = 0$.
- This means that $\nabla f(\vec{a})$ is perpendicular to every tangential vector \vec{v} . If the level set is regular, then since tanget planes exist, their equation is $(\vec{r} \vec{a}) \cdot \nabla f(\vec{a}) = 0$.
- For example, if one considers $x^2 + y^2 + z^2 = 1$, $\nabla f = (2x, 2y, 2z)$ which is never zero on the sphere.
- Near a point \vec{a} if $\vec{r}(t)$ is a C^1 curve passing through \vec{a} , i.e., $\vec{r}(0) = \vec{a}$, and if $\vec{r}'(0) = \vec{v}$, then since $f(\vec{r}(t)) = c$ for all t, its derivative is zero and hence $\langle \nabla f(\vec{a}), \vec{v} \rangle = 0$.
- This means that $\nabla f(\vec{a})$ is perpendicular to every tangential vector \vec{v} . If the level set is regular, then since tanget planes exist, their equation is $(\vec{r} \vec{a}) \cdot \nabla f(\vec{a}) = 0$.
- For example, if one considers x² + y² + z² = 1,
 ∇f = (2x, 2y, 2z) which is never zero on the sphere. Hence the sphere is a regular surface.

- Near a point \vec{a} if $\vec{r}(t)$ is a C^1 curve passing through \vec{a} , i.e., $\vec{r}(0) = \vec{a}$, and if $\vec{r}'(0) = \vec{v}$, then since $f(\vec{r}(t)) = c$ for all t, its derivative is zero and hence $\langle \nabla f(\vec{a}), \vec{v} \rangle = 0$.
- This means that $\nabla f(\vec{a})$ is perpendicular to every tangential vector \vec{v} . If the level set is regular, then since tanget planes exist, their equation is $(\vec{r} \vec{a}) \cdot \nabla f(\vec{a}) = 0$.
- For example, if one considers $x^2 + y^2 + z^2 = 1$, $\nabla f = (2x, 2y, 2z)$ which is never zero on the sphere. Hence the sphere is a regular surface. At a point like $(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}})$, we see that $\nabla f = 2(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}})$ and hence

- Near a point \vec{a} if $\vec{r}(t)$ is a C^1 curve passing through \vec{a} , i.e., $\vec{r}(0) = \vec{a}$, and if $\vec{r}'(0) = \vec{v}$, then since $f(\vec{r}(t)) = c$ for all t, its derivative is zero and hence $\langle \nabla f(\vec{a}), \vec{v} \rangle = 0$.
- This means that $\nabla f(\vec{a})$ is perpendicular to every tangential vector \vec{v} . If the level set is regular, then since tanget planes exist, their equation is $(\vec{r} \vec{a}) \cdot \nabla f(\vec{a}) = 0$.
- For example, if one considers $x^2 + y^2 + z^2 = 1$, $\nabla f = (2x, 2y, 2z)$ which is never zero on the sphere. Hence the sphere is a regular surface. At a point like $(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}})$, we see that $\nabla f = 2(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}})$ and hence $\vec{N} = (\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}})$. Now

- Near a point \vec{a} if $\vec{r}(t)$ is a C^1 curve passing through \vec{a} , i.e., $\vec{r}(0) = \vec{a}$, and if $\vec{r}'(0) = \vec{v}$, then since $f(\vec{r}(t)) = c$ for all t, its derivative is zero and hence $\langle \nabla f(\vec{a}), \vec{v} \rangle = 0$.
- This means that $\nabla f(\vec{a})$ is perpendicular to every tangential vector \vec{v} . If the level set is regular, then since tanget planes exist, their equation is $(\vec{r} \vec{a}) \cdot \nabla f(\vec{a}) = 0$.
- For example, if one considers $x^2 + y^2 + z^2 = 1$, $\nabla f = (2x, 2y, 2z)$ which is never zero on the sphere. Hence the sphere is a regular surface. At a point like $(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}})$, we see that $\nabla f = 2(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}})$ and hence $\vec{N} = (\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}})$. Now the equation of the tangent plane

- Near a point \vec{a} if $\vec{r}(t)$ is a C^1 curve passing through \vec{a} , i.e., $\vec{r}(0) = \vec{a}$, and if $\vec{r}'(0) = \vec{v}$, then since $f(\vec{r}(t)) = c$ for all t, its derivative is zero and hence $\langle \nabla f(\vec{a}), \vec{v} \rangle = 0$.
- This means that $\nabla f(\vec{a})$ is perpendicular to every tangential vector \vec{v} . If the level set is regular, then since tanget planes exist, their equation is $(\vec{r} \vec{a}) \cdot \nabla f(\vec{a}) = 0$.
- For example, if one considers x² + y² + z² = 1, ∇f = (2x, 2y, 2z) which is never zero on the sphere. Hence the sphere is a regular surface. At a point like (¹/_{√3}, ¹/_{√3}, ¹/_{√3}), we see that ∇f = 2(¹/_{√3}, ¹/_{√3}, ¹/_{√3}) and hence N = (¹/_{√3}, ¹/_{√3}, ¹/_{√3}). Now the equation of the tangent plane at this point is

- Near a point \vec{a} if $\vec{r}(t)$ is a C^1 curve passing through \vec{a} , i.e., $\vec{r}(0) = \vec{a}$, and if $\vec{r}'(0) = \vec{v}$, then since $f(\vec{r}(t)) = c$ for all t, its derivative is zero and hence $\langle \nabla f(\vec{a}), \vec{v} \rangle = 0$.
- This means that $\nabla f(\vec{a})$ is perpendicular to every tangential vector \vec{v} . If the level set is regular, then since tanget planes exist, their equation is $(\vec{r} \vec{a}) \cdot \nabla f(\vec{a}) = 0$.
- For example, if one considers $x^2 + y^2 + z^2 = 1$, $\nabla f = (2x, 2y, 2z)$ which is never zero on the sphere. Hence the sphere is a regular surface. At a point like $(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}})$, we see that $\nabla f = 2(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}})$ and hence $\vec{N} = (\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}})$. Now the equation of the tangent plane at this point is $(x - \frac{1}{\sqrt{3}}) \cdot \frac{1}{\sqrt{3}} + (y - \frac{1}{\sqrt{3}}) \cdot \frac{1}{\sqrt{3}} + (z - \frac{1}{\sqrt{3}}) \cdot \frac{1}{\sqrt{3}} = 0$, or $x + y + z = \sqrt{3}$.

Lecture 29

æ

Recall that

문 문 문

• Recall that a vector field

æ

• Recall that a vector field is a function $\vec{F} : S \subset \mathbb{R}^n \to \mathbb{R}^m$.

- Recall that a vector field is a function $\vec{F} : S \subset \mathbb{R}^n \to \mathbb{R}^m$.
- Recall that \vec{F} is said to be

- Recall that a vector field is a function $\vec{F} : S \subset \mathbb{R}^n \to \mathbb{R}^m$.
- Recall that \vec{F} is said to be continuous at \vec{a}

- Recall that a vector field is a function $\vec{F} : S \subset \mathbb{R}^n \to \mathbb{R}^m$.
- Recall that \vec{F} is said to be continuous at \vec{a} given $\epsilon > 0$ there exists

- Recall that a vector field is a function $\vec{F} : S \subset \mathbb{R}^n \to \mathbb{R}^m$.
- Recall that *F* is said to be continuous at *ā* given *ε* > 0 there exists a *δ* > 0 such that

- Recall that a vector field is a function $\vec{F} : S \subset \mathbb{R}^n \to \mathbb{R}^m$.
- Recall that \vec{F} is said to be continuous at \vec{a} given $\epsilon > 0$ there exists a $\delta > 0$ such that whenever $|\vec{r} \vec{a}| < \delta$, then $|\vec{F}(\vec{r}) \vec{F}(\vec{a})| < \epsilon$.

- Recall that a vector field is a function $\vec{F} : S \subset \mathbb{R}^n \to \mathbb{R}^m$.
- Recall that \vec{F} is said to be continuous at \vec{a} given $\epsilon > 0$ there exists a $\delta > 0$ such that whenever $|\vec{r} \vec{a}| < \delta$, then $|\vec{F}(\vec{r}) \vec{F}(\vec{a})| < \epsilon$. \vec{F} is continuous

- Recall that a vector field is a function $\vec{F} : S \subset \mathbb{R}^n \to \mathbb{R}^m$.
- Recall that \vec{F} is said to be continuous at \vec{a} given $\epsilon > 0$ there exists a $\delta > 0$ such that whenever $|\vec{r} \vec{a}| < \delta$, then $|\vec{F}(\vec{r}) \vec{F}(\vec{a})| < \epsilon$. \vec{F} is continuous if and only if

- Recall that a vector field is a function $\vec{F} : S \subset \mathbb{R}^n \to \mathbb{R}^m$.
- Recall that \vec{F} is said to be continuous at \vec{a} given $\epsilon > 0$ there exists a $\delta > 0$ such that whenever $|\vec{r} \vec{a}| < \delta$, then $|\vec{F}(\vec{r}) \vec{F}(\vec{a})| < \epsilon$. \vec{F} is continuous if and only if its component scalar fields are so.

- Recall that a vector field is a function $\vec{F} : S \subset \mathbb{R}^n \to \mathbb{R}^m$.
- Recall that \vec{F} is said to be continuous at \vec{a} given $\epsilon > 0$ there exists a $\delta > 0$ such that whenever $|\vec{r} \vec{a}| < \delta$, then $|\vec{F}(\vec{r}) \vec{F}(\vec{a})| < \epsilon$. \vec{F} is continuous if and only if its component scalar fields are so.
- Let $\vec{a} \in S$ be an interior point.

- Recall that a vector field is a function $\vec{F} : S \subset \mathbb{R}^n \to \mathbb{R}^m$.
- Recall that \vec{F} is said to be continuous at \vec{a} given $\epsilon > 0$ there exists a $\delta > 0$ such that whenever $|\vec{r} \vec{a}| < \delta$, then $|\vec{F}(\vec{r}) \vec{F}(\vec{a})| < \epsilon$. \vec{F} is continuous if and only if its component scalar fields are so.
- Let $\vec{a} \in S$ be an interior point. \vec{F} is said to

- Recall that a vector field is a function $\vec{F} : S \subset \mathbb{R}^n \to \mathbb{R}^m$.
- Recall that \vec{F} is said to be continuous at \vec{a} given $\epsilon > 0$ there exists a $\delta > 0$ such that whenever $|\vec{r} \vec{a}| < \delta$, then $|\vec{F}(\vec{r}) \vec{F}(\vec{a})| < \epsilon$. \vec{F} is continuous if and only if its component scalar fields are so.
- Let $\vec{a} \in S$ be an interior point. \vec{F} is said to have a directional derivative $\nabla_{\vec{v}} \vec{F}(\vec{a})$

- Recall that a vector field is a function $\vec{F} : S \subset \mathbb{R}^n \to \mathbb{R}^m$.
- Recall that \vec{F} is said to be continuous at \vec{a} given $\epsilon > 0$ there exists a $\delta > 0$ such that whenever $|\vec{r} \vec{a}| < \delta$, then $|\vec{F}(\vec{r}) \vec{F}(\vec{a})| < \epsilon$. \vec{F} is continuous if and only if its component scalar fields are so.
- Let $\vec{a} \in S$ be an interior point. \vec{F} is said to have a directional derivative $\nabla_{\vec{v}} \vec{F}(\vec{a})$ along \vec{v} at the point \vec{a} if

- Recall that a vector field is a function $\vec{F} : S \subset \mathbb{R}^n \to \mathbb{R}^m$.
- Recall that \vec{F} is said to be continuous at \vec{a} given $\epsilon > 0$ there exists a $\delta > 0$ such that whenever $|\vec{r} \vec{a}| < \delta$, then $|\vec{F}(\vec{r}) \vec{F}(\vec{a})| < \epsilon$. \vec{F} is continuous if and only if its component scalar fields are so.
- Let $\vec{a} \in S$ be an interior point. \vec{F} is said to have a directional derivative $\nabla_{\vec{v}}\vec{F}(\vec{a})$ along \vec{v} at the point \vec{a} if $\nabla_{\vec{v}}\vec{F}(\vec{a}) = \frac{\vec{F}(\vec{a}+h\vec{v})-\vec{F}(\vec{a})}{h}$ exists.

- Recall that a vector field is a function $\vec{F} : S \subset \mathbb{R}^n \to \mathbb{R}^m$.
- Recall that \vec{F} is said to be continuous at \vec{a} given $\epsilon > 0$ there exists a $\delta > 0$ such that whenever $|\vec{r} \vec{a}| < \delta$, then $|\vec{F}(\vec{r}) \vec{F}(\vec{a})| < \epsilon$. \vec{F} is continuous if and only if its component scalar fields are so.
- Let $\vec{a} \in S$ be an interior point. \vec{F} is said to have a directional derivative $\nabla_{\vec{v}}\vec{F}(\vec{a})$ along \vec{v} at the point \vec{a} if $\nabla_{\vec{v}}\vec{F}(\vec{a}) = \frac{\vec{F}(\vec{a}+h\vec{v})-\vec{F}(\vec{a})}{h}$ exists. It is easy to prove that

- Recall that a vector field is a function $\vec{F} : S \subset \mathbb{R}^n \to \mathbb{R}^m$.
- Recall that \vec{F} is said to be continuous at \vec{a} given $\epsilon > 0$ there exists a $\delta > 0$ such that whenever $|\vec{r} \vec{a}| < \delta$, then $|\vec{F}(\vec{r}) \vec{F}(\vec{a})| < \epsilon$. \vec{F} is continuous if and only if its component scalar fields are so.
- Let \$\vec{a} \in S\$ be an interior point. \$\vec{F}\$ is said to have a directional derivative \$\nabla_{\vec{v}} \vec{F}(\vec{a})\$ along \$\vec{v}\$ at the point \$\vec{a}\$ if \$\nabla_{\vec{v}} \vec{F}(\vec{a}) = \frac{\vec{F}(\vec{a}+h\vec{v}) \vec{F}(\vec{a})}{h}\$ exists. It is easy to prove that the directional derivative exists

- Recall that a vector field is a function $\vec{F} : S \subset \mathbb{R}^n \to \mathbb{R}^m$.
- Recall that \vec{F} is said to be continuous at \vec{a} given $\epsilon > 0$ there exists a $\delta > 0$ such that whenever $|\vec{r} \vec{a}| < \delta$, then $|\vec{F}(\vec{r}) \vec{F}(\vec{a})| < \epsilon$. \vec{F} is continuous if and only if its component scalar fields are so.
- Let $\vec{a} \in S$ be an interior point. \vec{F} is said to have a directional derivative $\nabla_{\vec{v}}\vec{F}(\vec{a})$ along \vec{v} at the point \vec{a} if $\nabla_{\vec{v}}\vec{F}(\vec{a}) = \frac{\vec{F}(\vec{a}+h\vec{v})-\vec{F}(\vec{a})}{h}$ exists. It is easy to prove that the directional derivative exists if and only if

- Recall that a vector field is a function $\vec{F} : S \subset \mathbb{R}^n \to \mathbb{R}^m$.
- Recall that \vec{F} is said to be continuous at \vec{a} given $\epsilon > 0$ there exists a $\delta > 0$ such that whenever $|\vec{r} \vec{a}| < \delta$, then $|\vec{F}(\vec{r}) \vec{F}(\vec{a})| < \epsilon$. \vec{F} is continuous if and only if its component scalar fields are so.
- Let *a* ∈ S be an interior point. *F* is said to have a directional derivative ∇_v*F*(*a*) along *v* at the point *a* if ∇_v*F*(*a*) = ^{*F*(*a*+*hv*)-*F*(*a*)}/_{*h*} exists. It is easy to prove that the directional derivative exists if and only if the directional derivative of

- Recall that a vector field is a function $\vec{F} : S \subset \mathbb{R}^n \to \mathbb{R}^m$.
- Recall that \vec{F} is said to be continuous at \vec{a} given $\epsilon > 0$ there exists a $\delta > 0$ such that whenever $|\vec{r} \vec{a}| < \delta$, then $|\vec{F}(\vec{r}) \vec{F}(\vec{a})| < \epsilon$. \vec{F} is continuous if and only if its component scalar fields are so.
- Let *a* ∈ S be an interior point. *F* is said to have a directional derivative ∇_v*F*(*a*) along *v* at the point *a* if ∇_v*F*(*a*) = ^{*F*(*a*+*hv*)-*F*(*a*)}/_{*h*} exists. It is easy to prove that the directional derivative exists if and only if the directional derivative of each component exists.

- Recall that a vector field is a function $\vec{F} : S \subset \mathbb{R}^n \to \mathbb{R}^m$.
- Recall that \vec{F} is said to be continuous at \vec{a} given $\epsilon > 0$ there exists a $\delta > 0$ such that whenever $|\vec{r} \vec{a}| < \delta$, then $|\vec{F}(\vec{r}) \vec{F}(\vec{a})| < \epsilon$. \vec{F} is continuous if and only if its component scalar fields are so.
- Let *a* ∈ S be an interior point. *F* is said to have a directional derivative ∇_v*F*(*a*) along *v* at the point *a* if ∇_v*F*(*a*) = ^{*F*(*a*+*hv*)-*F*(*a*)}/_{*h*} exists. It is easy to prove that the directional derivative exists if and only if the directional derivative of each component exists. Moreover, ∇_v*F*(*a*) = (∇_v*F*₁(*a*), ∇_v*F*₂(*a*),...) (HW).

- Recall that a vector field is a function $\vec{F} : S \subset \mathbb{R}^n \to \mathbb{R}^m$.
- Recall that \vec{F} is said to be continuous at \vec{a} given $\epsilon > 0$ there exists a $\delta > 0$ such that whenever $|\vec{r} \vec{a}| < \delta$, then $|\vec{F}(\vec{r}) \vec{F}(\vec{a})| < \epsilon$. \vec{F} is continuous if and only if its component scalar fields are so.
- Let *a* ∈ S be an interior point. *F* is said to have a directional derivative ∇_v*F*(*a*) along *v* at the point *a* if
 ∇_v*F*(*a*) = ^{*F*(*a*+*hv*)-*F*(*a*)}/_{*h*} exists. It is easy to prove that the directional derivative exists if and only if the directional derivative of each component exists. Moreover,
 ∇_v*F*(*a*) = (∇_v*F*₁(*a*), ∇_v*F*₂(*a*),...) (HW). In particular,

- Recall that a vector field is a function $\vec{F} : S \subset \mathbb{R}^n \to \mathbb{R}^m$.
- Recall that \vec{F} is said to be continuous at \vec{a} given $\epsilon > 0$ there exists a $\delta > 0$ such that whenever $|\vec{r} \vec{a}| < \delta$, then $|\vec{F}(\vec{r}) \vec{F}(\vec{a})| < \epsilon$. \vec{F} is continuous if and only if its component scalar fields are so.
- Let $\vec{a} \in S$ be an interior point. \vec{F} is said to have a directional derivative $\nabla_{\vec{v}}\vec{F}(\vec{a})$ along \vec{v} at the point \vec{a} if $\nabla_{\vec{v}}\vec{F}(\vec{a}) = \frac{\vec{F}(\vec{a}+h\vec{v})-\vec{F}(\vec{a})}{h}$ exists. It is easy to prove that the directional derivative exists if and only if the directional derivative of each component exists. Moreover, $\nabla_{\vec{v}}\vec{F}(\vec{a}) = (\nabla_{\vec{v}}F_1(\vec{a}), \nabla_{\vec{v}}F_2(\vec{a}), \ldots)$ (HW). In particular, one can talk of

- Recall that a vector field is a function $\vec{F} : S \subset \mathbb{R}^n \to \mathbb{R}^m$.
- Recall that \vec{F} is said to be continuous at \vec{a} given $\epsilon > 0$ there exists a $\delta > 0$ such that whenever $|\vec{r} \vec{a}| < \delta$, then $|\vec{F}(\vec{r}) \vec{F}(\vec{a})| < \epsilon$. \vec{F} is continuous if and only if its component scalar fields are so.
- Let *a* ∈ S be an interior point. *F* is said to have a directional derivative ∇_v*F*(*a*) along *v* at the point *a* if
 ∇_v*F*(*a*) = *F*(*a*+*hv*)-*F*(*a*)/*h* exists. It is easy to prove that the directional derivative exists if and only if the directional derivative of each component exists. Moreover,
 ∇_v*F*(*a*) = (∇_v*F*₁(*a*), ∇_v*F*₂(*a*),...) (HW). In particular, one can talk of partial derivatives of *F*.

- Recall that a vector field is a function $\vec{F} : S \subset \mathbb{R}^n \to \mathbb{R}^m$.
- Recall that \vec{F} is said to be continuous at \vec{a} given $\epsilon > 0$ there exists a $\delta > 0$ such that whenever $|\vec{r} \vec{a}| < \delta$, then $|\vec{F}(\vec{r}) \vec{F}(\vec{a})| < \epsilon$. \vec{F} is continuous if and only if its component scalar fields are so.
- Let $\vec{a} \in S$ be an interior point. \vec{F} is said to have a directional derivative $\nabla_{\vec{v}}\vec{F}(\vec{a})$ along \vec{v} at the point \vec{a} if $\nabla_{\vec{v}}\vec{F}(\vec{a}) = \frac{\vec{F}(\vec{a}+h\vec{v})-\vec{F}(\vec{a})}{h}$ exists. It is easy to prove that the directional derivative exists if and only if the directional derivative of each component exists. Moreover, $\nabla_{\vec{v}}\vec{F}(\vec{a}) = (\nabla_{\vec{v}}F_1(\vec{a}), \nabla_{\vec{v}}F_2(\vec{a}), \ldots)$ (HW). In particular, one can talk of partial derivatives of \vec{F} .
- \vec{F} is said to be

6/8

- Recall that a vector field is a function $\vec{F} : S \subset \mathbb{R}^n \to \mathbb{R}^m$.
- Recall that \vec{F} is said to be continuous at \vec{a} given $\epsilon > 0$ there exists a $\delta > 0$ such that whenever $|\vec{r} \vec{a}| < \delta$, then $|\vec{F}(\vec{r}) \vec{F}(\vec{a})| < \epsilon$. \vec{F} is continuous if and only if its component scalar fields are so.
- Let $\vec{a} \in S$ be an interior point. \vec{F} is said to have a directional derivative $\nabla_{\vec{v}}\vec{F}(\vec{a})$ along \vec{v} at the point \vec{a} if $\nabla_{\vec{v}}\vec{F}(\vec{a}) = \frac{\vec{F}(\vec{a}+h\vec{v})-\vec{F}(\vec{a})}{h}$ exists. It is easy to prove that the directional derivative exists if and only if the directional derivative of each component exists. Moreover, $\nabla_{\vec{v}}\vec{F}(\vec{a}) = (\nabla_{\vec{v}}F_1(\vec{a}), \nabla_{\vec{v}}F_2(\vec{a}), \ldots)$ (HW). In particular, one can talk of partial derivatives of \vec{F} .
- \vec{F} is said to be *differentiable* at \vec{a}

- Recall that a vector field is a function $\vec{F} : S \subset \mathbb{R}^n \to \mathbb{R}^m$.
- Recall that \vec{F} is said to be continuous at \vec{a} given $\epsilon > 0$ there exists a $\delta > 0$ such that whenever $|\vec{r} \vec{a}| < \delta$, then $|\vec{F}(\vec{r}) \vec{F}(\vec{a})| < \epsilon$. \vec{F} is continuous if and only if its component scalar fields are so.
- Let $\vec{a} \in S$ be an interior point. \vec{F} is said to have a directional derivative $\nabla_{\vec{v}}\vec{F}(\vec{a})$ along \vec{v} at the point \vec{a} if $\nabla_{\vec{v}}\vec{F}(\vec{a}) = \frac{\vec{F}(\vec{a}+h\vec{v})-\vec{F}(\vec{a})}{h}$ exists. It is easy to prove that the directional derivative exists if and only if the directional derivative of each component exists. Moreover, $\nabla_{\vec{v}}\vec{F}(\vec{a}) = (\nabla_{\vec{v}}F_1(\vec{a}), \nabla_{\vec{v}}F_2(\vec{a}), \ldots)$ (HW). In particular, one can talk of partial derivatives of \vec{F} .
- \vec{F} is said to be *differentiable* at \vec{a} if there exists a linear map $D\vec{F}_{\vec{a}}: \mathbb{R}^n \to \mathbb{R}^m$ such that

- Recall that a vector field is a function $\vec{F} : S \subset \mathbb{R}^n \to \mathbb{R}^m$.
- Recall that \vec{F} is said to be continuous at \vec{a} given $\epsilon > 0$ there exists a $\delta > 0$ such that whenever $|\vec{r} \vec{a}| < \delta$, then $|\vec{F}(\vec{r}) \vec{F}(\vec{a})| < \epsilon$. \vec{F} is continuous if and only if its component scalar fields are so.
- Let *a* ∈ S be an interior point. *F* is said to have a directional derivative ∇_v*F*(*a*) along *v* at the point *a* if ∇_v*F*(*a*) = *F*(*a*+*hv*)-*F*(*a*)/*h* exists. It is easy to prove that the directional derivative exists if and only if the directional derivative of each component exists. Moreover, ∇_v*F*(*a*) = (∇_v*F*₁(*a*), ∇_v*F*₂(*a*),...) (HW). In particular, one can talk of partial derivatives of *F*.
- \vec{F} is said to be *differentiable* at \vec{a} if there exists a linear map $D\vec{F}_{\vec{a}}: \mathbb{R}^n \to \mathbb{R}^m$ such that $\lim_{\vec{h}\to\vec{0}} \frac{\|\vec{F}(\vec{a}+\vec{h})-\vec{F}(\vec{a})-D\vec{F}_{\vec{a}}(\vec{h})\|}{\|\vec{h}\|} = 0.$
Vector fields

- Recall that a vector field is a function $\vec{F} : S \subset \mathbb{R}^n \to \mathbb{R}^m$.
- Recall that \vec{F} is said to be continuous at \vec{a} given $\epsilon > 0$ there exists a $\delta > 0$ such that whenever $|\vec{r} \vec{a}| < \delta$, then $|\vec{F}(\vec{r}) \vec{F}(\vec{a})| < \epsilon$. \vec{F} is continuous if and only if its component scalar fields are so.
- Let *a* ∈ S be an interior point. *F* is said to have a directional derivative ∇_v*F*(*a*) along *v* at the point *a* if
 ∇_v*F*(*a*) = *F*(*a*+*hv*)-*F*(*a*)/*h* exists. It is easy to prove that the directional derivative exists if and only if the directional derivative of each component exists. Moreover,
 ∇_v*F*(*a*) = (∇_v*F*₁(*a*), ∇_v*F*₂(*a*),...) (HW). In particular, one can talk of partial derivatives of *F*.
- \vec{F} is said to be *differentiable* at \vec{a} if there exists a linear map $D\vec{F}_{\vec{a}}: \mathbb{R}^n \to \mathbb{R}^m$ such that $\lim_{\vec{h}\to\vec{0}} \frac{\|\vec{F}(\vec{a}+\vec{h})-\vec{F}(\vec{a})-D\vec{F}_{\vec{a}}(\vec{h})\|}{\|\vec{h}\|} = 0$. The map $D\vec{F}_{\vec{a}}$ is called the

Vector fields

- Recall that a vector field is a function $\vec{F} : S \subset \mathbb{R}^n \to \mathbb{R}^m$.
- Recall that \vec{F} is said to be continuous at \vec{a} given $\epsilon > 0$ there exists a $\delta > 0$ such that whenever $|\vec{r} \vec{a}| < \delta$, then $|\vec{F}(\vec{r}) \vec{F}(\vec{a})| < \epsilon$. \vec{F} is continuous if and only if its component scalar fields are so.
- Let $\vec{a} \in S$ be an interior point. \vec{F} is said to have a directional derivative $\nabla_{\vec{v}}\vec{F}(\vec{a})$ along \vec{v} at the point \vec{a} if $\nabla_{\vec{v}}\vec{F}(\vec{a}) = \frac{\vec{F}(\vec{a}+h\vec{v})-\vec{F}(\vec{a})}{h}$ exists. It is easy to prove that the directional derivative exists if and only if the directional derivative of each component exists. Moreover, $\nabla_{\vec{v}}\vec{F}(\vec{a}) = (\nabla_{\vec{v}}F_1(\vec{a}), \nabla_{\vec{v}}F_2(\vec{a}), \ldots)$ (HW). In particular, one can talk of partial derivatives of \vec{F} .
- \vec{F} is said to be *differentiable* at \vec{a} if there exists a linear map $D\vec{F}_{\vec{a}}: \mathbb{R}^n \to \mathbb{R}^m$ such that $\lim_{\vec{h}\to \vec{0}} \frac{\|\vec{F}(\vec{a}+\vec{h})-\vec{F}(\vec{a})-D\vec{F}_{\vec{a}}(\vec{h})\|}{\|\vec{h}\|} = 0$. The map $D\vec{F}_{\vec{a}}$ is called the derivative or total derivative of \vec{F} at \vec{a} .

æ

• (HW) \vec{F} is differentiable if and only if each component is so. Moreover, $D\vec{F}(\vec{v}) = \nabla_{\vec{v}}\vec{F}$.

- (HW) \vec{F} is differentiable if and only if each component is so. Moreover, $D\vec{F}(\vec{v}) = \nabla_{\vec{v}}\vec{F}$.
- In other words,

- (HW) \vec{F} is differentiable if and only if each component is so. Moreover, $D\vec{F}(\vec{v}) = \nabla_{\vec{v}}\vec{F}$.
- In other words,

$$D\vec{F}(\vec{v}) = \begin{bmatrix} \nabla F_1^T \\ \nabla F_2^T \\ \vdots \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \end{bmatrix} = \begin{bmatrix} \frac{\partial F_1}{\partial x_1} & \frac{\partial F_1}{\partial x_2} & \cdots \\ \frac{\partial F_2}{\partial x_1} & \frac{\partial F_2}{\partial x_2} & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \end{bmatrix}$$

- (HW) \vec{F} is differentiable if and only if each component is so. Moreover, $D\vec{F}(\vec{v}) = \nabla_{\vec{v}}\vec{F}$.
- In other words,

$$D\vec{F}(\vec{v}) = \begin{bmatrix} \nabla F_1^T \\ \nabla F_2^T \\ \vdots \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \end{bmatrix} = \begin{bmatrix} \frac{\partial F_1}{\partial x_1} & \frac{\partial F_1}{\partial x_2} & \cdots \\ \frac{\partial F_2}{\partial x_1} & \frac{\partial F_2}{\partial x_2} & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \end{bmatrix}$$

• For example,

- (HW) \vec{F} is differentiable if and only if each component is so. Moreover, $D\vec{F}(\vec{v}) = \nabla_{\vec{v}}\vec{F}$.
- In other words,

۲

$$D\vec{F}(\vec{v}) = \begin{bmatrix} \nabla F_1^T \\ \nabla F_2^T \\ \vdots \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \end{bmatrix} = \begin{bmatrix} \frac{\partial F_1}{\partial x_1} & \frac{\partial F_1}{\partial x_2} & \cdots \\ \frac{\partial F_2}{\partial x_1} & \frac{\partial F_2}{\partial x_2} & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \end{bmatrix}$$
For example, if $\vec{E} = (y, -x)$,

- (HW) \vec{F} is differentiable if and only if each component is so. Moreover, $D\vec{F}(\vec{v}) = \nabla_{\vec{v}}\vec{F}$.
- In other words,

$$D\vec{F}(\vec{v}) = \begin{bmatrix} \nabla F_1^T \\ \nabla F_2^T \\ \vdots \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \end{bmatrix} = \begin{bmatrix} \frac{\partial F_1}{\partial x_1} & \frac{\partial F_1}{\partial x_2} & \cdots \\ \frac{\partial F_2}{\partial x_1} & \frac{\partial F_2}{\partial x_2} & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \end{bmatrix}$$

• For example, if $\vec{E} = (y, -x)$, then since each component

- (HW) \vec{F} is differentiable if and only if each component is so. Moreover, $D\vec{F}(\vec{v}) = \nabla_{\vec{v}}\vec{F}$.
- In other words,

$$D\vec{F}(\vec{v}) = \begin{bmatrix} \nabla F_1^T \\ \nabla F_2^T \\ \vdots \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \end{bmatrix} = \begin{bmatrix} \frac{\partial F_1}{\partial x_1} & \frac{\partial F_1}{\partial x_2} & \cdots \\ \frac{\partial F_2}{\partial x_1} & \frac{\partial F_2}{\partial x_2} & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \end{bmatrix}$$

• For example, if $\vec{E} = (y, -x)$, then since each component is a polynomial,

- (HW) \vec{F} is differentiable if and only if each component is so. Moreover, $D\vec{F}(\vec{v}) = \nabla_{\vec{v}}\vec{F}$.
- In other words,

$$D\vec{F}(\vec{v}) = \begin{bmatrix} \nabla F_1^T \\ \nabla F_2^T \\ \vdots \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \end{bmatrix} = \begin{bmatrix} \frac{\partial F_1}{\partial x_1} & \frac{\partial F_1}{\partial x_2} & \cdots \\ \frac{\partial F_2}{\partial x_1} & \frac{\partial F_2}{\partial x_2} & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \end{bmatrix}$$

• For example, if $\vec{E} = (y, -x)$, then since each component is a polynomial, it is differentiable

- (HW) \vec{F} is differentiable if and only if each component is so. Moreover, $D\vec{F}(\vec{v}) = \nabla_{\vec{v}}\vec{F}$.
- In other words,

$$D\vec{F}(\vec{v}) = \begin{bmatrix} \nabla F_1^T \\ \nabla F_2^T \\ \vdots \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \end{bmatrix} = \begin{bmatrix} \frac{\partial F_1}{\partial x_1} & \frac{\partial F_1}{\partial x_2} & \cdots \\ \frac{\partial F_2}{\partial x_1} & \frac{\partial F_2}{\partial x_2} & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \end{bmatrix}$$

• For example, if $\vec{E} = (y, -x)$, then since each component is a polynomial, it is differentiable and $\nabla E_1 = (0, 1)$,

 $\nabla E_2 = (-1, 0)$. Thus

- (HW) \vec{F} is differentiable if and only if each component is so. Moreover, $D\vec{F}(\vec{v}) = \nabla_{\vec{v}}\vec{F}$.
- In other words,

$$D\vec{F}(\vec{v}) = \begin{bmatrix} \nabla F_1^T \\ \nabla F_2^T \\ \vdots \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \end{bmatrix} = \begin{bmatrix} \frac{\partial F_1}{\partial x_1} & \frac{\partial F_1}{\partial x_2} & \cdots \\ \frac{\partial F_2}{\partial x_1} & \frac{\partial F_2}{\partial x_2} & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \end{bmatrix}$$

• For example, if $\vec{E} = (y, -x)$, then since each component is a polynomial, it is differentiable and $\nabla E_1 = (0, 1)$,

$$abla E_2 = (-1,0).$$
 Thus $D\vec{E} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}.$

7/8

- (HW) \vec{F} is differentiable if and only if each component is so. Moreover, $D\vec{F}(\vec{v}) = \nabla_{\vec{v}}\vec{F}$.
- In other words,

$$D\vec{F}(\vec{v}) = \begin{bmatrix} \nabla F_1^T \\ \nabla F_2^T \\ \vdots \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \end{bmatrix} = \begin{bmatrix} \frac{\partial F_1}{\partial x_1} & \frac{\partial F_1}{\partial x_2} & \cdots \\ \frac{\partial F_2}{\partial x_1} & \frac{\partial F_2}{\partial x_2} & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \end{bmatrix}$$

• For example, if $\vec{E} = (y, -x)$, then since each component is a polynomial, it is differentiable and $\nabla E_1 = (0, 1)$,

$$abla E_2 = (-1,0).$$
 Thus $D\vec{E} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}.$

Another example,

- (HW) \vec{F} is differentiable if and only if each component is so. Moreover, $D\vec{F}(\vec{v}) = \nabla_{\vec{v}}\vec{F}$.
- In other words,

$$D\vec{F}(\vec{v}) = \begin{bmatrix} \nabla F_1^T \\ \nabla F_2^T \\ \vdots \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \end{bmatrix} = \begin{bmatrix} \frac{\partial F_1}{\partial x_1} & \frac{\partial F_1}{\partial x_2} & \cdots \\ \frac{\partial F_2}{\partial x_1} & \frac{\partial F_2}{\partial x_2} & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \end{bmatrix}$$

• For example, if $\vec{E} = (y, -x)$, then since each component is a polynomial, it is differentiable and $\nabla E_1 = (0, 1)$,

$$abla E_2 = (-1,0).$$
 Thus $D\vec{E} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}.$

• Another example, if $\vec{F}(r,\theta) = (r\cos(\theta), r\sin(\theta))$,

- (HW) \vec{F} is differentiable if and only if each component is so. Moreover, $D\vec{F}(\vec{v}) = \nabla_{\vec{v}}\vec{F}$.
- In other words,

$$D\vec{F}(\vec{v}) = \begin{bmatrix} \nabla F_1^T \\ \nabla F_2^T \\ \vdots \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \end{bmatrix} = \begin{bmatrix} \frac{\partial F_1}{\partial x_1} & \frac{\partial F_1}{\partial x_2} & \cdots \\ \frac{\partial F_2}{\partial x_1} & \frac{\partial F_2}{\partial x_2} & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \end{bmatrix}$$

• For example, if $\vec{E} = (y, -x)$, then since each component is a polynomial, it is differentiable and $\nabla E_1 = (0, 1)$,

$$abla E_2 = (-1,0).$$
 Thus $D\vec{E} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}.$

• Another example, if
$$\vec{F}(r,\theta) = (r\cos(\theta), r\sin(\theta))$$
, then
 $D\vec{F} = \begin{bmatrix} \cos(\theta) & -r\sin(\theta) \\ \sin(\theta) & r\cos(\theta) \end{bmatrix}$

• Theorem:

æ

• Theorem: If \vec{F} is differentiable at \vec{a} ,

• Theorem: If \vec{F} is differentiable at \vec{a} , then it is continuous at \vec{a} .

- Theorem: If \vec{F} is differentiable at \vec{a} , then it is continuous at \vec{a} .
- Proof:

- Theorem: If \vec{F} is differentiable at \vec{a} , then it is continuous at \vec{a} .
- Proof: $\|\vec{F}(\vec{a}+\vec{h})-\vec{F}(\vec{a})-D\vec{F}_{\vec{a}}(\vec{h})\| < \|\vec{h}\|_{\frac{\epsilon}{2}}$ whenever $0 < \|\vec{h}\| < \delta < 1.$

8/8

- Theorem: If \vec{F} is differentiable at \vec{a} , then it is continuous at \vec{a} .
- Proof: $\|\vec{F}(\vec{a}+\vec{h}) \vec{F}(\vec{a}) D\vec{F}_{\vec{a}}(\vec{h})\| < \|\vec{h}\| \frac{\epsilon}{2}$ whenever $0 < \|\vec{h}\| < \delta < 1$. By the triangle inequality

Theorem: If *F* is differentiable at *a*, then it is continuous at *a*.
Proof: ||*F*(*a* + *h*) - *F*(*a*) - *DF*_{*a*}(*h*)|| < ||*h*||^ε/₂ whenever
0 < ||*h*|| < δ < 1. By the triangle inequality
||*F*(*a* + *h*) - *F*(*a*)|| < ||*DF*_{*a*}(*h*)|| + ^ε/₂.

- Theorem: If \vec{F} is differentiable at \vec{a} , then it is continuous at \vec{a} .
- Proof: $\|\vec{F}(\vec{a}+\vec{h}) \vec{F}(\vec{a}) D\vec{F}_{\vec{a}}(\vec{h})\| < \|\vec{h}\|_{\frac{\epsilon}{2}}$ whenever $0 < \|\vec{h}\| < \delta < 1$. By the triangle inequality $\|\vec{F}(\vec{a}+\vec{h}) \vec{F}(\vec{a})\| < \|D\vec{F}_{\vec{a}}(\vec{h})\| + \frac{\epsilon}{2}$.
- At this juncture,

- Theorem: If \vec{F} is differentiable at \vec{a} , then it is continuous at \vec{a} .
- Proof: $\|\vec{F}(\vec{a}+\vec{h})-\vec{F}(\vec{a})-D\vec{F}_{\vec{a}}(\vec{h})\| < \|\vec{h}\|_{2}^{\epsilon}$ whenever $0 < \|\vec{h}\| < \delta < 1$. By the triangle inequality $\|\vec{F}(\vec{a}+\vec{h})-\vec{F}(\vec{a})\| < \|D\vec{F}_{\vec{a}}(\vec{h})\| + \frac{\epsilon}{2}$.
- At this juncture, we prove a useful

- Theorem: If \vec{F} is differentiable at \vec{a} , then it is continuous at \vec{a} .
- Proof: $\|\vec{F}(\vec{a}+\vec{h})-\vec{F}(\vec{a})-D\vec{F}_{\vec{a}}(\vec{h})\| < \|\vec{h}\|_{2}^{\epsilon}$ whenever $0 < \|\vec{h}\| < \delta < 1$. By the triangle inequality $\|\vec{F}(\vec{a}+\vec{h})-\vec{F}(\vec{a})\| < \|D\vec{F}_{\vec{a}}(\vec{h})\| + \frac{\epsilon}{2}$.
- At this juncture, we prove a useful linear algebraic lemma:

- Theorem: If \vec{F} is differentiable at \vec{a} , then it is continuous at \vec{a} .
- Proof: $\|\vec{F}(\vec{a}+\vec{h})-\vec{F}(\vec{a})-D\vec{F}_{\vec{a}}(\vec{h})\| < \|\vec{h}\|_{2}^{\epsilon}$ whenever $0 < \|\vec{h}\| < \delta < 1$. By the triangle inequality $\|\vec{F}(\vec{a}+\vec{h})-\vec{F}(\vec{a})\| < \|D\vec{F}_{\vec{a}}(\vec{h})\| + \frac{\epsilon}{2}$.
- At this juncture, we prove a useful linear algebraic lemma: Suppose A is an $m \times n$ matrix and $\vec{v} \in \mathbb{R}^n$.

- Theorem: If \vec{F} is differentiable at \vec{a} , then it is continuous at \vec{a} .
- Proof: $\|\vec{F}(\vec{a}+\vec{h}) \vec{F}(\vec{a}) D\vec{F}_{\vec{a}}(\vec{h})\| < \|\vec{h}\|_2^{\epsilon}$ whenever $0 < \|\vec{h}\| < \delta < 1$. By the triangle inequality $\|\vec{F}(\vec{a}+\vec{h}) \vec{F}(\vec{a})\| < \|D\vec{F}_{\vec{a}}(\vec{h})\| + \frac{\epsilon}{2}$.
- At this juncture, we prove a useful linear algebraic lemma: Suppose A is an $m \times n$ matrix and $\vec{v} \in \mathbb{R}^n$. Then $\|A\vec{v}\| \leq C_A \|\vec{v}\|$ where $C_A = \sum_i \|A_i\|$ (where A_i is the i^{th} row of A).

- Theorem: If \vec{F} is differentiable at \vec{a} , then it is continuous at \vec{a} .
- Proof: $\|\vec{F}(\vec{a}+\vec{h})-\vec{F}(\vec{a})-D\vec{F}_{\vec{a}}(\vec{h})\| < \|\vec{h}\|_{2}^{\epsilon}$ whenever $0 < \|\vec{h}\| < \delta < 1$. By the triangle inequality $\|\vec{F}(\vec{a}+\vec{h})-\vec{F}(\vec{a})\| < \|D\vec{F}_{\vec{a}}(\vec{h})\| + \frac{\epsilon}{2}$.
- At this juncture, we prove a useful linear algebraic lemma: Suppose A is an $m \times n$ matrix and $\vec{v} \in \mathbb{R}^n$. Then $\|A\vec{v}\| \leq C_A \|\vec{v}\|$ where $C_A = \sum_i \|A_i\|$ (where A_i is the i^{th} row of A).
- Proof of lemma:

- Theorem: If \vec{F} is differentiable at \vec{a} , then it is continuous at \vec{a} .
- Proof: $\|\vec{F}(\vec{a}+\vec{h}) \vec{F}(\vec{a}) D\vec{F}_{\vec{a}}(\vec{h})\| < \|\vec{h}\|_2^{\epsilon}$ whenever $0 < \|\vec{h}\| < \delta < 1$. By the triangle inequality $\|\vec{F}(\vec{a}+\vec{h}) \vec{F}(\vec{a})\| < \|D\vec{F}_{\vec{a}}(\vec{h})\| + \frac{\epsilon}{2}$.
- At this juncture, we prove a useful linear algebraic lemma: Suppose A is an $m \times n$ matrix and $\vec{v} \in \mathbb{R}^n$. Then $\|A\vec{v}\| \leq C_A \|\vec{v}\|$ where $C_A = \sum_i \|A_i\|$ (where A_i is the i^{th} row of A).
- Proof of lemma:

 $||A\vec{v}|| = ||\sum_i \langle A_i, \vec{v} \rangle|| \le \sum_i |\langle A_i, \vec{v} \rangle e_i| \le \sum_i ||A_i|| ||\vec{v}||$ by Cauchy-Schwarz.

- Theorem: If \vec{F} is differentiable at \vec{a} , then it is continuous at \vec{a} .
- Proof: $\|\vec{F}(\vec{a}+\vec{h})-\vec{F}(\vec{a})-D\vec{F}_{\vec{a}}(\vec{h})\| < \|\vec{h}\|_{2}^{\epsilon}$ whenever $0 < \|\vec{h}\| < \delta < 1$. By the triangle inequality $\|\vec{F}(\vec{a}+\vec{h})-\vec{F}(\vec{a})\| < \|D\vec{F}_{\vec{a}}(\vec{h})\| + \frac{\epsilon}{2}$.
- At this juncture, we prove a useful linear algebraic lemma: Suppose A is an $m \times n$ matrix and $\vec{v} \in \mathbb{R}^n$. Then $\|A\vec{v}\| \leq C_A \|\vec{v}\|$ where $C_A = \sum_i \|A_i\|$ (where A_i is the i^{th} row of A).
- Proof of lemma:

 $\|A\vec{v}\| = \|\sum_i \langle A_i, \vec{v} \rangle\| \le \sum_i |\langle A_i, \vec{v} \rangle e_i| \le \sum_i \|A_i\| \|\vec{v}\|$ by Cauchy-Schwarz.

Returning back to

- Theorem: If \vec{F} is differentiable at \vec{a} , then it is continuous at \vec{a} .
- Proof: $\|\vec{F}(\vec{a}+\vec{h})-\vec{F}(\vec{a})-D\vec{F}_{\vec{a}}(\vec{h})\| < \|\vec{h}\|_{2}^{\epsilon}$ whenever $0 < \|\vec{h}\| < \delta < 1$. By the triangle inequality $\|\vec{F}(\vec{a}+\vec{h})-\vec{F}(\vec{a})\| < \|D\vec{F}_{\vec{a}}(\vec{h})\| + \frac{\epsilon}{2}$.
- At this juncture, we prove a useful linear algebraic lemma: Suppose A is an $m \times n$ matrix and $\vec{v} \in \mathbb{R}^n$. Then $\|A\vec{v}\| \leq C_A \|\vec{v}\|$ where $C_A = \sum_i \|A_i\|$ (where A_i is the i^{th} row of A).
- Proof of lemma:
 - $||A\vec{v}|| = ||\sum_i \langle A_i, \vec{v} \rangle|| \le \sum_i |\langle A_i, \vec{v} \rangle e_i| \le \sum_i ||A_i|| ||\vec{v}||$ by Cauchy-Schwarz.
- Returning back to the proof of the theorem,

- Theorem: If \vec{F} is differentiable at \vec{a} , then it is continuous at \vec{a} .
- Proof: $\|\vec{F}(\vec{a}+\vec{h})-\vec{F}(\vec{a})-D\vec{F}_{\vec{a}}(\vec{h})\| < \|\vec{h}\|_{2}^{\epsilon}$ whenever $0 < \|\vec{h}\| < \delta < 1$. By the triangle inequality $\|\vec{F}(\vec{a}+\vec{h})-\vec{F}(\vec{a})\| < \|D\vec{F}_{\vec{a}}(\vec{h})\| + \frac{\epsilon}{2}$.
- At this juncture, we prove a useful linear algebraic lemma: Suppose A is an $m \times n$ matrix and $\vec{v} \in \mathbb{R}^n$. Then $\|A\vec{v}\| \leq C_A \|\vec{v}\|$ where $C_A = \sum_i \|A_i\|$ (where A_i is the i^{th} row of A).
- Proof of lemma: $\|A\vec{v}\| = \|\sum_i \langle A_i, \vec{v} \rangle\| \le \sum_i |\langle A_i, \vec{v} \rangle e_i| \le \sum_i \|A_i\| \|\vec{v}\|$ by Cauchy-Schwarz.
- Returning back to the proof of the theorem, $\|\vec{F}(\vec{a}+\vec{h})-\vec{F}(\vec{a})\| < \|\vec{h}\|C_{D\vec{F}_{\vec{a}}} + \frac{\epsilon}{2} < \epsilon$ if $\|\vec{h}\|$ is small enough.