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Recap

Stated the chain rule for f (~r(t)) whose derivative is
df
dt = 〈∇f , ~r ′(t)〉.
Defined paths, regular paths, and curves. Defined the notion
of directional derivative along a regular path df

ds as
1

‖~r ′(t0)‖〈∇f (~r(t0)), ~r ′(t0)〉.
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Proof

Recall that roughly,
f (~r(t + h))− f (~r) ≈ f (~r + h~r ′)− f (~r) ≈ h∇~r ′f .

More rigorously, letting g(t) = f (~r(t)),
g(t0 + h)− g(t0) = f (~a + ~y)− f (~a) where ~a = ~r(t0),
~y = ~r(t0 + h)− ~r(t0).

Using the definition of differentiability of f ,
f (~a + ~y) = f (~a) + 〈∇f (~a), ~y〉+ ‖~y‖E (~a, ~y), where E → 0 as
‖~y‖ → 0.

So g(t0+h)−g(t0)
h =

〈∇f (~r(t0)),~r(t0+h)−~r(t0)〉
h + ‖~r(t0+h)−~r(t0)‖

h E (~a, ~r(t0 + h)− ~r(t0)).
This goes to the correct answer as h→ 0. Indeed
|‖~r(t0+h)−~r(t0)‖

h |E → 0.
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Level sets and tangent planes

Returning back to this concept in greater generality, whenever
f : Rn → R is a function, the set ~r ∈ Rn such that f (~r) = c is
called a level set of f . (If n = 2, it is a called a level curve or
a contour line. If n = 3, it is called a level surface.)

These occur as equipotential surfaces in physics.

Even if f is C 1, this level set need not always be a “nice
smoothly varying” object. For instance, take xy = 0 in R2 or
x2 + y2 = z2 in R3.

If f is C 1, and on the entire level set f −1(c), ∇f 6= ~0 (a
regular level set), then it turns out (by a theorem called the
implicit function theorem) that near any point on this level set
the level set can be treated as a graph of a function. In
particular, the tangent planes exist at any point.
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Level sets and tangent planes

Near a point ~a if ~r(t) is a C 1 curve passing through ~a, i.e.,
~r(0) = ~a, and if ~r ′(0) = ~v , then since f (~r(t)) = c for all t, its
derivative is zero and hence 〈∇f (~a), ~v〉 = 0.

This means that ∇f (~a) is perpendicular to every tangential
vector ~v . If the level set is regular, then since tanget planes
exist, their equation is (~r − ~a).∇f (~a) = 0.

For example, if one considers x2 + y2 + z2 = 1,
∇f = (2x , 2y , 2z) which is never zero on the sphere. Hence
the sphere is a regular surface. At a point like ( 1√

3
, 1√

3
, 1√

3
),

we see that ∇f = 2( 1√
3
, 1√

3
, 1√

3
) and hence

~N = ( 1√
3
, 1√

3
, 1√

3
). Now the equation of the tangent plane at

this point is (x − 1√
3

). 1√
3

+ (y − 1√
3

). 1√
3

+ (z − 1√
3

). 1√
3

= 0,

or x + y + z =
√

3.
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Vector fields

Recall that a vector field is a function ~F : S ⊂ Rn → Rm.

Recall that ~F is said to be continuous at ~a given ε > 0 there
exists a δ > 0 such that whenever |~r − ~a| < δ, then
|~F (~r)− ~F (~a)| < ε. ~F is continuous if and only if its
component scalar fields are so.

Let ~a ∈ S be an interior point. ~F is said to have a directional
derivative ∇~v ~F (~a) along ~v at the point ~a if

∇~v ~F (~a) =
~F (~a+h~v)−~F (~a)

h exists. It is easy to prove that the
directional derivative exists if and only if the directional
derivative of each component exists. Moreover,
∇~v ~F (~a) = (∇~vF1(~a),∇~vF2(~a), . . .) (HW). In particular, one
can talk of partial derivatives of ~F .
~F is said to be differentiable at ~a if there exists a linear map

D ~F~a : Rn → Rm such that lim~h→~0
‖~F (~a+~h)−~F (~a)−D ~F~a(~h)‖

‖~h‖
= 0.

The map D ~F~a is called the derivative or total derivative of ~F
at ~a.
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Derivatives of vector fields

(HW) ~F is differentiable if and only if each component is so.
Moreover, D ~F (~v) = ∇~v ~F .

In other words,

D ~F (~v) =

 ∇F
T
1

∇FT
2

...


 v1

v2
...

 =


∂F1
∂x1

∂F1
∂x2

. . .
∂F2
∂x1

∂F2
∂x2

. . .
...

...
. . .


 v1

v2
...

.

For example, if ~E = (y ,−x), then since each component is a
polynomial, it is differentiable and ∇E1 = (0, 1),

∇E2 = (−1, 0). Thus D ~E =

[
0 1
−1 0

]
.

Another example, if ~F (r , θ) = (r cos(θ), r sin(θ)), then

D ~F =

[
cos(θ) −r sin(θ)
sin(θ) r cos(θ)

]

Vamsi Pritham Pingali Lecture 29 7/8



Derivatives of vector fields

(HW) ~F is differentiable if and only if each component is so.
Moreover, D ~F (~v) = ∇~v ~F .

In other words,

D ~F (~v) =

 ∇F
T
1

∇FT
2

...


 v1

v2
...

 =


∂F1
∂x1

∂F1
∂x2

. . .
∂F2
∂x1

∂F2
∂x2

. . .
...

...
. . .


 v1

v2
...

.

For example, if ~E = (y ,−x), then since each component is a
polynomial, it is differentiable and ∇E1 = (0, 1),

∇E2 = (−1, 0). Thus D ~E =

[
0 1
−1 0

]
.

Another example, if ~F (r , θ) = (r cos(θ), r sin(θ)), then

D ~F =

[
cos(θ) −r sin(θ)
sin(θ) r cos(θ)

]

Vamsi Pritham Pingali Lecture 29 7/8



Derivatives of vector fields

(HW) ~F is differentiable if and only if each component is so.
Moreover, D ~F (~v) = ∇~v ~F .

In other words,

D ~F (~v) =

 ∇F
T
1

∇FT
2

...


 v1

v2
...

 =


∂F1
∂x1

∂F1
∂x2

. . .
∂F2
∂x1

∂F2
∂x2

. . .
...

...
. . .


 v1

v2
...

.

For example, if ~E = (y ,−x), then since each component is a
polynomial, it is differentiable and ∇E1 = (0, 1),

∇E2 = (−1, 0). Thus D ~E =

[
0 1
−1 0

]
.

Another example, if ~F (r , θ) = (r cos(θ), r sin(θ)), then

D ~F =

[
cos(θ) −r sin(θ)
sin(θ) r cos(θ)

]

Vamsi Pritham Pingali Lecture 29 7/8



Derivatives of vector fields

(HW) ~F is differentiable if and only if each component is so.
Moreover, D ~F (~v) = ∇~v ~F .

In other words,

D ~F (~v) =

 ∇F
T
1

∇FT
2

...


 v1

v2
...

 =


∂F1
∂x1

∂F1
∂x2

. . .
∂F2
∂x1

∂F2
∂x2

. . .
...

...
. . .


 v1

v2
...

.

For example, if ~E = (y ,−x), then since each component is a
polynomial, it is differentiable and ∇E1 = (0, 1),

∇E2 = (−1, 0). Thus D ~E =

[
0 1
−1 0

]
.

Another example, if ~F (r , θ) = (r cos(θ), r sin(θ)), then

D ~F =

[
cos(θ) −r sin(θ)
sin(θ) r cos(θ)

]

Vamsi Pritham Pingali Lecture 29 7/8



Derivatives of vector fields

(HW) ~F is differentiable if and only if each component is so.
Moreover, D ~F (~v) = ∇~v ~F .

In other words,

D ~F (~v) =

 ∇F
T
1

∇FT
2

...


 v1

v2
...

 =


∂F1
∂x1

∂F1
∂x2

. . .
∂F2
∂x1

∂F2
∂x2

. . .
...

...
. . .


 v1

v2
...

.

For example,

if ~E = (y ,−x), then since each component is a
polynomial, it is differentiable and ∇E1 = (0, 1),

∇E2 = (−1, 0). Thus D ~E =

[
0 1
−1 0

]
.

Another example, if ~F (r , θ) = (r cos(θ), r sin(θ)), then

D ~F =

[
cos(θ) −r sin(θ)
sin(θ) r cos(θ)

]

Vamsi Pritham Pingali Lecture 29 7/8



Derivatives of vector fields

(HW) ~F is differentiable if and only if each component is so.
Moreover, D ~F (~v) = ∇~v ~F .

In other words,

D ~F (~v) =

 ∇F
T
1

∇FT
2

...


 v1

v2
...

 =


∂F1
∂x1

∂F1
∂x2

. . .
∂F2
∂x1

∂F2
∂x2

. . .
...

...
. . .


 v1

v2
...

.

For example, if ~E = (y ,−x),

then since each component is a
polynomial, it is differentiable and ∇E1 = (0, 1),

∇E2 = (−1, 0). Thus D ~E =

[
0 1
−1 0

]
.

Another example, if ~F (r , θ) = (r cos(θ), r sin(θ)), then

D ~F =

[
cos(θ) −r sin(θ)
sin(θ) r cos(θ)

]

Vamsi Pritham Pingali Lecture 29 7/8



Derivatives of vector fields

(HW) ~F is differentiable if and only if each component is so.
Moreover, D ~F (~v) = ∇~v ~F .

In other words,

D ~F (~v) =

 ∇F
T
1

∇FT
2

...


 v1

v2
...

 =


∂F1
∂x1

∂F1
∂x2

. . .
∂F2
∂x1

∂F2
∂x2

. . .
...

...
. . .


 v1

v2
...

.

For example, if ~E = (y ,−x), then since each component

is a
polynomial, it is differentiable and ∇E1 = (0, 1),

∇E2 = (−1, 0). Thus D ~E =

[
0 1
−1 0

]
.

Another example, if ~F (r , θ) = (r cos(θ), r sin(θ)), then

D ~F =

[
cos(θ) −r sin(θ)
sin(θ) r cos(θ)

]

Vamsi Pritham Pingali Lecture 29 7/8



Derivatives of vector fields

(HW) ~F is differentiable if and only if each component is so.
Moreover, D ~F (~v) = ∇~v ~F .

In other words,

D ~F (~v) =

 ∇F
T
1

∇FT
2

...


 v1

v2
...

 =


∂F1
∂x1

∂F1
∂x2

. . .
∂F2
∂x1

∂F2
∂x2

. . .
...

...
. . .


 v1

v2
...

.

For example, if ~E = (y ,−x), then since each component is a
polynomial,

it is differentiable and ∇E1 = (0, 1),

∇E2 = (−1, 0). Thus D ~E =

[
0 1
−1 0

]
.

Another example, if ~F (r , θ) = (r cos(θ), r sin(θ)), then

D ~F =

[
cos(θ) −r sin(θ)
sin(θ) r cos(θ)

]

Vamsi Pritham Pingali Lecture 29 7/8



Derivatives of vector fields

(HW) ~F is differentiable if and only if each component is so.
Moreover, D ~F (~v) = ∇~v ~F .

In other words,

D ~F (~v) =

 ∇F
T
1

∇FT
2

...


 v1

v2
...

 =


∂F1
∂x1

∂F1
∂x2

. . .
∂F2
∂x1

∂F2
∂x2

. . .
...

...
. . .


 v1

v2
...

.

For example, if ~E = (y ,−x), then since each component is a
polynomial, it is differentiable

and ∇E1 = (0, 1),

∇E2 = (−1, 0). Thus D ~E =

[
0 1
−1 0

]
.

Another example, if ~F (r , θ) = (r cos(θ), r sin(θ)), then

D ~F =

[
cos(θ) −r sin(θ)
sin(θ) r cos(θ)

]

Vamsi Pritham Pingali Lecture 29 7/8



Derivatives of vector fields

(HW) ~F is differentiable if and only if each component is so.
Moreover, D ~F (~v) = ∇~v ~F .

In other words,

D ~F (~v) =

 ∇F
T
1

∇FT
2

...


 v1

v2
...

 =


∂F1
∂x1

∂F1
∂x2

. . .
∂F2
∂x1

∂F2
∂x2

. . .
...

...
. . .


 v1

v2
...

.

For example, if ~E = (y ,−x), then since each component is a
polynomial, it is differentiable and ∇E1 = (0, 1),

∇E2 = (−1, 0). Thus

D ~E =

[
0 1
−1 0

]
.

Another example, if ~F (r , θ) = (r cos(θ), r sin(θ)), then

D ~F =

[
cos(θ) −r sin(θ)
sin(θ) r cos(θ)

]

Vamsi Pritham Pingali Lecture 29 7/8



Derivatives of vector fields

(HW) ~F is differentiable if and only if each component is so.
Moreover, D ~F (~v) = ∇~v ~F .

In other words,

D ~F (~v) =

 ∇F
T
1

∇FT
2

...


 v1

v2
...

 =


∂F1
∂x1

∂F1
∂x2

. . .
∂F2
∂x1

∂F2
∂x2

. . .
...

...
. . .


 v1

v2
...

.

For example, if ~E = (y ,−x), then since each component is a
polynomial, it is differentiable and ∇E1 = (0, 1),

∇E2 = (−1, 0). Thus D ~E =

[
0 1
−1 0

]
.

Another example, if ~F (r , θ) = (r cos(θ), r sin(θ)), then

D ~F =

[
cos(θ) −r sin(θ)
sin(θ) r cos(θ)

]
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Differentiability implies continuity

Theorem: If ~F is differentiable at ~a, then it is continuous at ~a.

Proof: ‖~F (~a + ~h)− ~F (~a)− D ~F~a(~h)‖ < ‖~h‖ ε2 whenever

0 < ‖~h‖ < δ < 1. By the triangle inequality
‖~F (~a + ~h)− ~F (~a)‖ < ‖D ~F~a(~h)‖+ ε

2 .

At this juncture, we prove a useful linear algebraic lemma:
Suppose A is an m × n matrix and ~v ∈ Rn. Then
‖A~v‖ ≤ CA‖~v‖ where CA =

∑
i ‖Ai‖ (where Ai is the i th row

of A).

Proof of lemma:
‖A~v‖ = ‖

∑
i 〈Ai , ~v〉‖ ≤

∑
i |〈Ai , ~v〉ei | ≤

∑
i ‖Ai‖‖~v‖ by

Cauchy-Schwarz.

Returning back to the proof of the theorem,
‖~F (~a + ~h)− ~F (~a)‖ < ‖~h‖C

D ~F~a
+ ε

2 < ε if ‖~h‖ is small
enough.
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