Lecture 29 - UM 102 (Spring 2021)
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e Stated the chain rule for f(7{t)) whose derivative is

& (VF, (1)

@ Defined paths, regular paths, and curves. Defined the notion
of directional derivative along a regular path % as

||_"(t0 I (VF(r(to)), 7' (t0))-
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f:R" — R is a function, the set 7€ R" such that () = c is
called a level set of f. (If n =2, it is a called a level curve or
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@ Even if f is C1, this level set need not always be a “nice
smoothly varying” object.

Vamsi Pritham Pingali Lecture 29 4/8



Level sets and tangent planes

@ Returning back to this concept in greater generality, whenever
f:R" — R is a function, the set 7€ R" such that () = c is
called a level set of f. (If n =2, it is a called a level curve or
a contour line. If n =3, it is called a level surface.)

@ These occur as equipotential surfaces in physics.

@ Even if f is C1, this level set need not always be a “nice
smoothly varying” object. For instance,

Vamsi Pritham Pingali Lecture 29 4/8



Level sets and tangent planes

@ Returning back to this concept in greater generality, whenever
f:R" — R is a function, the set 7€ R" such that () = c is
called a level set of f. (If n =2, it is a called a level curve or
a contour line. If n =3, it is called a level surface.)

@ These occur as equipotential surfaces in physics.

@ Even if f is C1, this level set need not always be a “nice
smoothly varying” object. For instance, take xy = 0 in R? or

Vamsi Pritham Pingali Lecture 29 4/8



Level sets and tangent planes

@ Returning back to this concept in greater generality, whenever
f:R" — R is a function, the set 7€ R" such that () = c is
called a level set of f. (If n =2, it is a called a level curve or
a contour line. If n =3, it is called a level surface.)

@ These occur as equipotential surfaces in physics.

@ Even if f is C1, this level set need not always be a “nice
smoothly varying” object. For instance, take xy = 0 in R? or
x> +y?=2%in R3.

Vamsi Pritham Pingali Lecture 29 4/8



Level sets and tangent planes

@ Returning back to this concept in greater generality, whenever
f:R" — R is a function, the set 7€ R" such that () = c is
called a level set of f. (If n =2, it is a called a level curve or
a contour line. If n =3, it is called a level surface.)

@ These occur as equipotential surfaces in physics.

@ Even if f is C1, this level set need not always be a “nice
smoothly varying” object. For instance, take xy = 0 in R? or
x> +y?=2%in R3.

o If fis C1,

Vamsi Pritham Pingali Lecture 29 4/8



Level sets and tangent planes

@ Returning back to this concept in greater generality, whenever
f:R" — R is a function, the set 7€ R" such that () = c is
called a level set of f. (If n =2, it is a called a level curve or
a contour line. If n =3, it is called a level surface.)

@ These occur as equipotential surfaces in physics.

@ Even if f is C1, this level set need not always be a “nice
smoothly varying” object. For instance, take xy = 0 in R? or
x> +y?=2%in R3.

o If fis C!, and on the entire level set f~*(c),

Vamsi Pritham Pingali Lecture 29 4/8



Level sets and tangent planes

@ Returning back to this concept in greater generality, whenever
f:R" — R is a function, the set 7€ R" such that () = c is
called a level set of f. (If n =2, it is a called a level curve or
a contour line. If n =3, it is called a level surface.)

@ These occur as equipotential surfaces in physics.

@ Even if f is C1, this level set need not always be a “nice
smoothly varying” object. For instance, take xy = 0 in R? or
x> +y?=22inR3,

o If fis C1, and on the entire level set f~(c), Vf #0 (a
regular level set),

Vamsi Pritham Pingali Lecture 29 4/8



Level sets and tangent planes

@ Returning back to this concept in greater generality, whenever
f:R" — R is a function, the set 7€ R" such that () = c is
called a level set of f. (If n =2, it is a called a level curve or
a contour line. If n =3, it is called a level surface.)

@ These occur as equipotential surfaces in physics.

@ Even if f is C1, this level set need not always be a “nice
smoothly varying” object. For instance, take xy = 0 in R? or
x> +y?=2%in R3.

o If fis C1, and on the entire level set f~(c), Vf #0 (a
regular level set), then it turns out

Vamsi Pritham Pingali Lecture 29 4/8



Level sets and tangent planes

@ Returning back to this concept in greater generality, whenever
f:R" — R is a function, the set 7€ R" such that () = c is
called a level set of f. (If n =2, it is a called a level curve or
a contour line. If n =3, it is called a level surface.)

@ These occur as equipotential surfaces in physics.

@ Even if f is C1, this level set need not always be a “nice
smoothly varying” object. For instance, take xy = 0 in R? or
x> +y?=2%in R3.

o If fis C1, and on the entire level set f~(c), Vf #0 (a
regular level set), then it turns out (by a theorem called the
implicit function theorem)

Vamsi Pritham Pingali Lecture 29 4/8



Level sets and tangent planes

@ Returning back to this concept in greater generality, whenever
f:R" — R is a function, the set 7€ R" such that () = c is
called a level set of f. (If n =2, it is a called a level curve or
a contour line. If n =3, it is called a level surface.)

@ These occur as equipotential surfaces in physics.

@ Even if f is C1, this level set need not always be a “nice
smoothly varying” object. For instance, take xy = 0 in R? or
x> +y?=2%in R3.

o If fis C1, and on the entire level set f~(c), Vf #0 (a
regular level set), then it turns out (by a theorem called the
implicit function theorem) that near any point

Vamsi Pritham Pingali Lecture 29 4/8



Level sets and tangent planes

@ Returning back to this concept in greater generality, whenever
f:R" — R is a function, the set 7€ R" such that () = c is
called a level set of f. (If n =2, it is a called a level curve or
a contour line. If n =3, it is called a level surface.)

@ These occur as equipotential surfaces in physics.

@ Even if f is C1, this level set need not always be a “nice
smoothly varying” object. For instance, take xy = 0 in R? or
x> +y?=2%in R3.

o If fis C1, and on the entire level set f~(c), Vf #0 (a
regular level set), then it turns out (by a theorem called the
implicit function theorem) that near any point on this level set

Vamsi Pritham Pingali Lecture 29 4/8



Level sets and tangent planes

@ Returning back to this concept in greater generality, whenever
f:R" — R is a function, the set 7€ R" such that () = c is
called a level set of f. (If n =2, it is a called a level curve or
a contour line. If n =3, it is called a level surface.)

@ These occur as equipotential surfaces in physics.

@ Even if f is C1, this level set need not always be a “nice
smoothly varying” object. For instance, take xy = 0 in R? or
x> +y?=2%in R3.

o If fis C1, and on the entire level set f~(c), Vf #0 (a
regular level set), then it turns out (by a theorem called the
implicit function theorem) that near any point on this level set
the level set can be treated as

Vamsi Pritham Pingali Lecture 29 4/8



Level sets and tangent planes

@ Returning back to this concept in greater generality, whenever
f:R" — R is a function, the set 7€ R" such that () = c is
called a level set of f. (If n =2, it is a called a level curve or
a contour line. If n =3, it is called a level surface.)

@ These occur as equipotential surfaces in physics.

@ Even if f is C1, this level set need not always be a “nice
smoothly varying” object. For instance, take xy = 0 in R? or
x> +y?=2%in R3.

o If fis C1, and on the entire level set f~(c), Vf #0 (a
regular level set), then it turns out (by a theorem called the
implicit function theorem) that near any point on this level set
the level set can be treated as a graph of a function.

Vamsi Pritham Pingali Lecture 29 4/8



Level sets and tangent planes

@ Returning back to this concept in greater generality, whenever
f:R" — R is a function, the set 7€ R" such that () = c is
called a level set of f. (If n =2, it is a called a level curve or
a contour line. If n =3, it is called a level surface.)

@ These occur as equipotential surfaces in physics.

@ Even if f is C1, this level set need not always be a “nice
smoothly varying” object. For instance, take xy = 0 in R? or
x> +y?=2%in R3.

o If fis C1, and on the entire level set f~(c), Vf #0 (a
regular level set), then it turns out (by a theorem called the
implicit function theorem) that near any point on this level set
the level set can be treated as a graph of a function. In
particular,

Vamsi Pritham Pingali Lecture 29 4/8



Level sets and tangent planes

@ Returning back to this concept in greater generality, whenever
f:R" — R is a function, the set 7€ R" such that () = c is
called a level set of f. (If n =2, it is a called a level curve or
a contour line. If n =3, it is called a level surface.)

@ These occur as equipotential surfaces in physics.

@ Even if f is C1, this level set need not always be a “nice
smoothly varying” object. For instance, take xy = 0 in R? or
x> +y?=2%in R3.

o If fis C1, and on the entire level set f~(c), Vf #0 (a
regular level set), then it turns out (by a theorem called the
implicit function theorem) that near any point on this level set
the level set can be treated as a graph of a function. In
particular, the tangent planes exist at

Vamsi Pritham Pingali Lecture 29 4/8



Level sets and tangent planes

@ Returning back to this concept in greater generality, whenever
f:R" — R is a function, the set 7€ R" such that () = c is
called a level set of f. (If n =2, it is a called a level curve or
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the level set can be treated as a graph of a function. In
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exist, their equation is (F— 3).Vf(3) = 0.

@ For example, if one considers x2 + y2 +2z22=1,

Vf = (2x,2y,2z) which is never zero on the sphere. Hence

1 1

the sphere is a regular surface. At a point like (%, et %)

we see that Vf = 2(\[ et \f) and hence

N = (f el \[) Now the equation of the tangent plane at

this point is (x — %)% + (v — %)% +(z — \%)% =0,

or x+y+z=1+3
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o F is said to be differentiable at 3 if there exists a linear map
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Derivatives of vector fields

o (HW) F is differentiable if and only if each component is so.

Moreover, DF(V) = VF.

@ In other words,

VFT vi o5
DE(v)= | VF v|=| 52

o For example, if E = (v, —x),
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@ For example, if E= (¥, —x), then since each component is a
polynomial, it is differentiable and VE; = (0, 1),

VE, = (—1,0). Thus DE = [ _01 (1) ]

o Another example, if F(r,8) = (rcos(8), rsin(6)), then
= | cos(f) —rsin(0)
bF = sin(f)  rcos(h)
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Differentiability implies continuity

o Theorem: If F is differentiable at 3, then it is continuous at 3.
o Proof: ||[F(d+ h) — F(3) — DFs(h)| < ||h]|§ whenever
0<|h<é<1.
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o Theorem: If F is differentiable at & then it is continuous at &.
o Proof: ||[F(d+ h) — F(3) — DFs(h)| < ||h]|§ whenever
0< HEH_‘< 6 < 1. By the triangle inequality
IF(a+ h) — F(a)|| < [DFa(h)ll + 5.
@ At this juncture, we prove a useful linear algebraic lemma:
Suppose A is an m x n matrix and vV € R". Then
|AV|| < Cal|V|| where Ca =Y, ||Ai]l (where A; is the ith row
of A).

@ Proof of lemma:

JAVI] = 11325 CAL V| < 525 [(A V)eil < 325 Al vl by
Cauchy-Schwarz.

@ Returning back to the proof of the theorem,

IF(a+ k) — F(3)|| < [[Al|Cpe, + 5 < € if [|Al| is small

enough. O
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