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Recap

Proved the chain rule for scalar fields.

Did level sets and tangent planes of regular level sets.

Directional derivatives and differentiability for vector fields.
Derivative matrix. Differentiability implies continuity.
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Chain rule for scalar fields

Recall that we wanted to know that if T (x , y) and
T̃ (x(r , θ), y(r , θ)) are functions, then what is T̃r in terms of
Tx ,Ty etc.

Roughly speaking, T̃ (x(r + h, θ + k), y(r + h, θ + k)) ≈
T̃ (x(r) + h ∂x∂r + ∂x

∂θ k , y(r) + h ∂y∂r + k ∂y∂θ which is further
approximately equal to

T̃ (x(r , θ), y(r , θ)) + ∂T̃
∂x

(
h ∂x∂r + ∂x

∂θ k
)

+ ∂T̃
∂y

(
h ∂y∂r + ∂y

∂θ k
)

.

In terms of matrices, it is

(∇T )

[
xr = cos(θ) xθ = −r sin(θ)
yr = sin(θ) yθ = r cos(θ)

] [
h
k

]
.

The statement of the chain rule in this case is: If
~g(u, v) = (x(u, v), y(u, v)) is differentiable at (a, b) and
f (x , y) is differentiable at ~g(a, b), then
h(u, v) = f ◦ ~g(u, v) = f (x(u, v), y(u, v)) is differentiable at
(a, b) and ∇h = ∇fD~g .
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] [
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k

]
.
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Chain rule for vector fields

Suppose we have ~F (x , y) = (F1(x , y),F2(x , y)) and
~g(u, v) = (x(u, v), y(u, v)), then what must the derivative of
~H = ~F ◦ ~g at ~a look like?

Going by the Chain rule stated earlier, it ought to be[
∇H1

∇H2

]
=

[
∇F1D~g
∇F2D~g

]
= D ~F~g(~a)D~g~a

In other words, we expect the derivative linear map to be a
composition of the maps or the matrix to be a product of
derivative matrices.

Theorem: Let ~G : S ⊂ Rn → Rm be a vector field
differentiable at an interior point ~a ∈ S . Let
~F : U ⊂ Rm → Rp be a vector field defined on U containing
~G (S). Suppose ~g(~a) is an interior point of U and ~F is
differentiable at ~g(~a). Then ~H = ~F ◦ ~G : S ⊂ Rn → Rp is
differentiable at ~a and D ~H~a = D ~F~g(~a) ◦ D ~G~a or in terms of
matrices, it is the product of matrices.
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Equality of mixed partials

Let f (x , y) = xy(x2−y2)
x2+y2 when (x , y) = (0, 0) and f (0, 0) = 0.

fx , fy clearly exist away from (0, 0) and equal
y(x4+4x2y2−y4)

(x2+y2)2
,− x(y4+4x2y2−x4)

(x2+y2)2
respectively. At (0, 0),

fx = fy = 0 continue to exist.

We aim to compute fxy , fyx at (0, 0).

fyx(0, 0) = limk→0
fx (0,k)−fx (0,0)

k = limk→0
−k5

k5 = −1.
Likewise, fxy (0, 0) = 1. Thus they may not be equal in
general!

Clairut’s theorem: Assume that f : S ⊂ R2 → R is scalar
field, and (a, b) ∈ S is an interior point. Suppose fx , fy , fxy , fyx
exist in a neighbourhood of (a, b) and fxy , fyx are continuous
at (a, b). Then fxy (a, b) = fy ,x(a, b). In particular, for C 2

functions, the mixed partials are equal.
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Local extrema

Recall that in one-variable calculus, it makes sense to ask
where a continuous function f : [a, b]→ R assumes its
maximum and minimum possible values (global or absolute
extrema). This makes sense because of the extreme value
theorem.

Now such a function can achieve its global extrema either at
the end-points a and b or somewhere inside. If, in addition, f
is differentiable on (a, b), then wherever it attains a local
extremum (that is, a local max is a point x0 ∈ (a, b) such that
f (x) ≤ f (x0) for all x near x0; likewise for a local min),
f ′(x0) = 0. So to find global extrema, it suffices to look at
the end-points and the local extrema.

One question: Given a local extremum, how can we decide
whether it is a local max or a local min? To answer this
question we need a better approximation (than the linear
approximation that is).
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Second-order Taylor theorem (Wikipedia is not a bad
resource for this)

Recall that if f is differentiable at a then
f (x) = f (a) + f ′(a)(x − a) + h1(x)(x − a) where h1(x)→ 0
as x → a.

If f is once-differentiable in (a− ε, a + ε) for some ε > 0, and
twice-differentiable at a then Taylor’s theorem holds:

f (x) = f (a) + f ′(a)(x − a) + f ′′(a)
2 (x − a)2 + h2(x)(x − a)2

where h2(x)→ 0 as x → a.

Proof: Define h2(x) =
f (x)−f (a)−f ′(a)(x−a)− f ′′(a)

2
(x−a)2

(x−a)2 . At this

point, one may use L’Hopital’s rule (yes, there is a rigorous
version; no I am not going to bore you with it) twice to see
the result. (The proof is easier (using the fundamental
theorem of calculus and integration by parts) if we assume
that f ′′′ exists and is continuous in [a, x ].)
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point, one may use L’Hopital’s rule (

yes, there is a rigorous
version; no I am not going to bore you with it) twice to see
the result. (The proof is easier (using the fundamental
theorem of calculus and integration by parts) if we assume
that f ′′′ exists and is continuous in [a, x ].)
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Second-derivative test

Theorem: Suppose f attains a local extremum at an interior
point a. Assume that f is once-differentiable on (a− ε, a + ε)
for some ε > 0, and twice-differentiable at a. Then f ′(a) = 0
and if f ′′(a) > 0, a is a point of local min, and if f ′′(a) < 0 it
is a point of local max.

Proof: The fact that f ′(a) = 0 was already proven.
Nonetheless, if f ′(a) 6= 0, then suppose f ′(a) > 0 (the other
case is similar). Then f (x)− f (a) = f ′(a)(x − a) + (x − a)h(x)
where h(x)→ 0 as x → a. Hence, for x close enough to a,
f ′(a) + h(x) > 0 and hence if x < a, f (x) < f (a) whereas if
x > a, f (x) > f (a). Thus f is not a local extremum. Now if

f ′′(a) > 0, then f (x)− f (a) = (x − a)2( f
′′(a)
2 + h2(x)) where

if x is close enough to a, then f ′′(a)
2 + h(x) > 0 and hence

f (x) ≥ f (a). Thus it is a local min. Likewise if f ′′(a) < 0.
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