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Recap

Stated the chain rule for scalar and vector fields (but forgot to
prove it!).

Stated Clairut’s theorem on mixed partials.

Proved the second order Taylor theorem and used it to prove
the second derivative test for local extrema in one-variable
calculus.
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An example

Of course, one can wonder what happens when f ′′(a) = 0 (for
instance,f (x) = x3 and a = 0). In that case, it need not be a
local extremum at all. If it is given to be a local extremum,
then one needs to invoke a higher-order Taylor theorem (but
in some cases, all the derivatives at the point can be zero and
yet one can have a local extremum!).

Let f (x) = x3 − 3x on [−2, 12 ]. Find all local extrema of f
and decide whether they are local maxima or minima.
Moreover, find the global extrema of f .

f ′(x) = 3x2 − 3 = 0 when x = ±1. On the given domain,
x = −1 is the only point where f ′(x) = 0. (By the way, points
where f ′(x) = 0 are called critical points.) To find global
extrema, compare f (−2) = −2, f (12) = −11

8 ,
f (−1) = −1 + 3 = 2. So f attains a global max at x = −1
and a global min at x = −2. To find out whether f attains a
local max or min at x = −1, f ′′(x) = 6x = 6×−1 < 0 and
hence a local max.
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Extrema in more than one variable

A scalar field f : S ⊂→ Rn → R is said to have an
absolute/global maximum at ~a ∈ S if f (~r) ≤ f (~a) for all ~r ∈ S
and likewise for an absolute/global minimum. The number
f (~a) is called the absolute/global maximum value of f on S .

Just as in one-variable, there is an extreme value theorem: If
f : S ⊂ Rn → R is continuous, S is a closed subset and S is
bounded, i.e., there is a finite-sized closed ball containing S ,
then f is bounded and assumes its maximum and minimum
somewhere in S . There is no easy way to reduce it to
one-variable. You would have to go through the proof again.

Given this theorem, it makes sense to ask how to calculate the
global extrema. So we need local extrema.

f is said to have a local maximum at an interior point ~a ∈ S if
f (~r) ≤ f (~a) for all ~r lying in an open ball around ~a that is
completely contained in S . Likewise for a local minimum.
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Local extrema

Just as in one-variable calculus, to find the global extrema of
a differentiable function, we need to find all local extrema and
compare them to what happens on the boundary. The
boundary is not merely a finite collection of points! That is
what makes this harder!

Theorem: Let f be differentiable at a local extremum ~a. Then
∇f (~a) = ~0.

Proof: Let ‖~v‖ = 1. Let g(t) = f (~a + t~v) be defined for all
|t| < r for some small enough r . Then g is differentiable at 0
and attains a local extremum there. Thus
g ′(0) = 〈∇f (~a), ~v〉 = 0. Since this fact is true for all ~v ,
∇f (~a) = ~0. Points where the gradient vanishes are called
critical points.

Caution: If f is not differentiable at a point, such a point
deserves special consideration. For instance, |x | assumes a
local min at 0 and it isn’t differentiable there. (Unlike us,
some books call points of non-diff. critical points.)
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An example

Find the global extrema of f (x , y , z) = x2 − y2 + 3z2 on
x2 + y2 + z2 ≤ 1.

f is diff everywhere. Let’s look at critical points first:
∇f = (2x ,−2y , 6z) which vanishes only at the origin (which
lies in S). The value of f there is 0.

On the boundary of S , i.e, on the sphere x2 + y2 + z2 = 1, We
see that f (x , y) = x2 − y2 + 3(1− x2 − y2) = 3− 2x2 − 4y2

on x2 + y2 ≤ 1. Now again let’s look at critical points:
∇f = (−4x ,−8y) which is 0 at (0, 0) lying in x2 + y2 ≤ 1.
The value of f is 3 there. Let’s look at the boundary
x2 + y2 = 1. There, f (x) = 3− 2x2 − 4(1− x2) = −1 + 2x2

and −1 ≤ x ≤ 1. Again f ′ = 4x = 0 when x = 0 ∈ [−1, 1].
There f (0) = −1. At the end-points, f (−1) = f (1) = 1.

Thus the global max value is 3 occuring at (0, 0,±1) and the
global min value is −1 occuring at (0,±1, 0).
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Second-derivative test

Before formulating a second-derivative test for local extrema,
note this curious phenomenon: Consider f (x , y) = x2 − y2.
Note that ∇f = (2x ,−2y) = (0, 0) when (x , y) = (0, 0).
Note that f does not assume a local extremum at (0, 0). This
is not because the second derivatives vanish. Indeed,
fxx = 2, fyy = −2, fxy = fyx = 0. Rather, in some direction(s)
that is, along (0, 1), f decreases and in some other(s) (along
(1, 0)) it increases.

Definition: A critical point is said to be a saddle point if every
open ball containing ~a lying completely in the domain,
contains points ~r1, ~r2 such that f (~r1) > f (~a) and f (~r2) < f (~a).
In the example above (0, 0) is a saddle point.
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Second-order Taylor expansion

Let ~a be a critical point of f . Suppose f is C 3 in a
neighbourhood of ~a (that is, the first, second, and third
partials exist in a neighbourhood of a and are continuous
there; by Clairut, the mixed partials are equal).
Theorem: Under the above assumptions, for all ~h lying in a
certain neighbourhood of ~0,
|f (~a + ~h)− f (~a)−∇~h

f (~a)− 1
2

∑
i ,j

∂2f
∂xi∂xj

(~a)hihj | ≤ C‖h‖3 for

some C > 0.
Proof: Consider u(t) = f (~a + t~h). By any application of the
chain rule and properties of continuity, we see that u(t) is C 3

in (−ε, ε) for some ε > 0. Applying a precise version of the
one-variable Taylor theorem, it turns out that

|u(t)− u(0)− u′(0)t − u′′(0)
2 t2| ≤ C |t3| in a neighbourhood

of t = 0 and C does not depend on ~h. Now u′(0) = ∇~h
f (~a).

In fact, u′(t) =
∑

i
∂f
∂xi

(~a + t~h)hi . Thus

u′′(0) =
∑

i ,j
∂2f

∂xi∂xj
(~a)hihj . Now replace t with |h| and h with

h
|h| to get the result.
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Theorem: Under the above assumptions, for all ~h lying in a
certain neighbourhood of ~0,
|f (~a + ~h)− f (~a)−∇~h

f (~a)− 1
2

∑
i ,j

∂2f
∂xi∂xj

(~a)hihj | ≤ C‖h‖3 for

some C > 0.
Proof: Consider u(t) = f (~a + t~h). By any application of the
chain rule and properties of continuity, we see that u(t) is C 3

in (−ε, ε) for some ε > 0. Applying a precise version of the
one-variable Taylor theorem, it turns out that

|u(t)− u(0)− u′(0)t − u′′(0)
2 t2| ≤ C |t3| in a neighbourhood

of t = 0 and C does not depend on ~h. Now u′(0) = ∇~h
f (~a).

In fact, u′(t) =
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i
∂f
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(~a + t~h)hi .
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u′′(0) =
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∂xi∂xj
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