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@ Stated the chain rule for scalar and vector fields (but forgot to
prove it!).
@ Stated Clairut’s theorem on mixed partials.

@ Proved the second order Taylor theorem and used it to prove
the second derivative test for local extrema in one-variable
calculus.
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then f is bounded and assumes its maximum and minimum
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@ f is said to have a local maximum at an interior point 3 € S if
f(r) < f(a) for all 7 lying in an open ball around & that is
completely contained in S.
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Extrema in more than one variable

o A scalar field f : S C— R"” — R is said to have an
absolute/global maximum at € S if f(r) < f(3) forall Fe S
and likewise for an absolute/global minimum. The number
f(3) is called the absolute/global maximum value of f on S.

@ Just as in one-variable, there is an extreme value theorem: If
f:S CR"— Ris continuous, S is a closed subset and S is
bounded, i.e., there is a finite-sized closed ball containing S,
then f is bounded and assumes its maximum and minimum
somewhere in S. There is no easy way to reduce it to
one-variable. You would have to go through the proof again.

@ Given this theorem, it makes sense to ask how to calculate the
global extrema. So we need local extrema.

@ f is said to have a local maximum at an interior point 3 € S if
f(r) < f(a) for all 7 lying in an open ball around & that is
completely contained in S. Likewise for a local minimum.
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@ Just as in one-variable calculus, to find the global extrema of
a differentiable function, we need to find all local extrema and
compare them to what happens on the boundary. The
boundary is not merely a finite collection of points! That is
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@ Theorem: Let f be differentiable
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@ Just as in one-variable calculus, to find the global extrema of
a differentiable function, we need to find all local extrema and
compare them to what happens on the boundary. The
boundary is not merely a finite collection of points! That is
what makes this harder!

@ Theorem: Let f be differentiable at a local extremum 3. Then
Vf(3) =0.

@ Proof: Let ||V| = 1.

Vamsi Pritham Pingali Lecture 31 5/8



Local extrema

@ Just as in one-variable calculus, to find the global extrema of
a differentiable function, we need to find all local extrema and
compare them to what happens on the boundary. The
boundary is not merely a finite collection of points! That is
what makes this harder!

@ Theorem: Let f be differentiable at a local extremum 3. Then
Vf(3) =0.

@ Proof: Let ||V]| = 1. Let g(t) = f(a+ tV) be defined

Vamsi Pritham Pingali Lecture 31 5/8



Local extrema

@ Just as in one-variable calculus, to find the global extrema of
a differentiable function, we need to find all local extrema and
compare them to what happens on the boundary. The
boundary is not merely a finite collection of points! That is
what makes this harder!

@ Theorem: Let f be differentiable at a local extremum &. Then
Vf(3) =0.

@ Proof: Let ||V|| = 1. Let g(t) = f(a+ tV) be defined for all
|t| < r for

Vamsi Pritham Pingali Lecture 31 5/8



Local extrema

Just as in one-variable calculus, to find the global extrema of
a differentiable function, we need to find all local extrema and
compare them to what happens on the boundary. The
boundary is not merely a finite collection of points! That is
what makes this harder!

Theorem: Let f be differentiable at a local extremum 4. Then
Vf(3) =0.

Proof: Let ||V]| = 1. Let g(t) = f(&+ tV) be defined for all
|t| < r for some small enough r.
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|t| < r for some small enough r. Then g is differentiable at 0
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Local extrema

@ Just as in one-variable calculus, to find the global extrema of
a differentiable function, we need to find all local extrema and
compare them to what happens on the boundary. The
boundary is not merely a finite collection of points! That is
what makes this harder!

@ Theorem: Let f be differentiable at a local extremum &. Then
Vf(3) =0.

@ Proof: Let ||V|| = 1. Let g(t) = f(a+ tV) be defined for all
|t| < r for some small enough r. Then g is differentiable at 0
and attains a local extremum there. Thus

g/(0) = (VF(a),7) = 0.
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@ Just as in one-variable calculus, to find the global extrema of
a differentiable function, we need to find all local extrema and
compare them to what happens on the boundary. The
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boundary is not merely a finite collection of points! That is
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@ Theorem: Let f be differentiable at a local extremum &. Then
Vf(3) =0.

@ Proof: Let ||V|| = 1. Let g(t) = f(a+ tV) be defined for all
|t| < r for some small enough r. Then g is differentiable at 0
and attains a local extremum there. Thus
g'(0) = (Vf(a), V) = 0. Since this fact is true for all v,
Vf(3) = 0. Points where the gradient vanishes are called
critical points.

@ Caution: If f is not differentiable
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Local extrema

@ Just as in one-variable calculus, to find the global extrema of
a differentiable function, we need to find all local extrema and
compare them to what happens on the boundary. The
boundary is not merely a finite collection of points! That is
what makes this harder!

@ Theorem: Let f be differentiable at a local extremum 3. Then
Vf(3) =0.

@ Proof: Let ||V|| = 1. Let g(t) = f(a+ tV) be defined for all
|t| < r for some small enough r. Then g is differentiable at 0
and attains a local extremum there. Thus
g'(0) = (Vf(a), V) = 0. Since this fact is true for all v,
Vf(3) = 0. Points where the gradient vanishes are called
critical points.

@ Caution: If f is not differentiable at a point,
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Local extrema

@ Just as in one-variable calculus, to find the global extrema of
a differentiable function, we need to find all local extrema and
compare them to what happens on the boundary. The
boundary is not merely a finite collection of points! That is
what makes this harder!

@ Theorem: Let f be differentiable at a local extremum &. Then
Vf(3) =0.

@ Proof: Let ||V|| = 1. Let g(t) = f(a+ tV) be defined for all
|t| < r for some small enough r. Then g is differentiable at 0
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Note that Vf = (2x,—2y) = (0,0) when (x,y) = (0,0).
Note that f does not assume a local extremum at (0,0). This
is not because the second derivatives vanish. Indeed,
fox = 2,1, = =2, f = f,x = 0. Rather, in some direction(s)
that is, along (0, 1), f decreases and in some other(s) (along
(1,0)) it increases.

@ Definition: A critical point is said to be a saddle point if every
open ball containing & lying completely in the domain,
contains points 7, 5 such that f(r) > f(3) and f(r2) < f(3).
In the example above (0,0) is a saddle point.
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2
W(0) = X, 52 (3)hihy.
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u"(0) =32 8325)( (a)hihj. Now replace t with |h| and h with
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