Lecture 31 - UM 102 (Spring 2021)

Vamsi Pritham Pingali

IISc

Recap

Recap

- Stated the chain rule

Recap

- Stated the chain rule for scalar and vector fields (

Recap

- Stated the chain rule for scalar and vector fields (but forgot to prove it!).
- Stated the chain rule for scalar and vector fields (but forgot to prove it!).
- Stated Clairut's theorem
- Stated the chain rule for scalar and vector fields (but forgot to prove it!).
- Stated Clairut's theorem on mixed partials.
- Stated the chain rule for scalar and vector fields (but forgot to prove it!).
- Stated Clairut's theorem on mixed partials.
- Proved the second order
- Stated the chain rule for scalar and vector fields (but forgot to prove it!).
- Stated Clairut's theorem on mixed partials.
- Proved the second order Taylor theorem
- Stated the chain rule for scalar and vector fields (but forgot to prove it!).
- Stated Clairut's theorem on mixed partials.
- Proved the second order Taylor theorem and used it
- Stated the chain rule for scalar and vector fields (but forgot to prove it!).
- Stated Clairut's theorem on mixed partials.
- Proved the second order Taylor theorem and used it to prove the second derivative test for
- Stated the chain rule for scalar and vector fields (but forgot to prove it!).
- Stated Clairut's theorem on mixed partials.
- Proved the second order Taylor theorem and used it to prove the second derivative test for local extrema in one-variable calculus.

An example

An example

- Of course,

An example

- Of course, one can wonder

An example

- Of course, one can wonder what happens when

An example

- Of course, one can wonder what happens when $f^{\prime \prime}(a)=0$ (for instance,

An example

- Of course, one can wonder what happens when $f^{\prime \prime}(a)=0$ (for instance, $f(x)=x^{3}$ and $a=0$).

An example

- Of course, one can wonder what happens when $f^{\prime \prime}(a)=0$ (for instance, $f(x)=x^{3}$ and $a=0$). In that case,

An example

- Of course, one can wonder what happens when $f^{\prime \prime}(a)=0$ (for instance, $f(x)=x^{3}$ and $a=0$). In that case, it need not be

An example

- Of course, one can wonder what happens when $f^{\prime \prime}(a)=0$ (for instance, $f(x)=x^{3}$ and $\left.a=0\right)$. In that case, it need not be a local extremum at all.

An example

- Of course, one can wonder what happens when $f^{\prime \prime}(a)=0$ (for instance, $f(x)=x^{3}$ and $\left.a=0\right)$. In that case, it need not be a local extremum at all. If it is

An example

- Of course, one can wonder what happens when $f^{\prime \prime}(a)=0$ (for instance, $f(x)=x^{3}$ and $\left.a=0\right)$. In that case, it need not be a local extremum at all. If it is given to be a local extremum,

An example

- Of course, one can wonder what happens when $f^{\prime \prime}(a)=0$ (for instance, $f(x)=x^{3}$ and $\left.a=0\right)$. In that case, it need not be a local extremum at all. If it is given to be a local extremum, then one needs to invoke

An example

- Of course, one can wonder what happens when $f^{\prime \prime}(a)=0$ (for instance, $f(x)=x^{3}$ and $\left.a=0\right)$. In that case, it need not be a local extremum at all. If it is given to be a local extremum, then one needs to invoke a higher-order Taylor theorem (

An example

- Of course, one can wonder what happens when $f^{\prime \prime}(a)=0$ (for instance, $f(x)=x^{3}$ and $\left.a=0\right)$. In that case, it need not be a local extremum at all. If it is given to be a local extremum, then one needs to invoke a higher-order Taylor theorem (but in some cases,

An example

- Of course, one can wonder what happens when $f^{\prime \prime}(a)=0$ (for instance, $f(x)=x^{3}$ and $\left.a=0\right)$. In that case, it need not be a local extremum at all. If it is given to be a local extremum, then one needs to invoke a higher-order Taylor theorem (but in some cases, all the derivatives

An example

- Of course, one can wonder what happens when $f^{\prime \prime}(a)=0$ (for instance, $f(x)=x^{3}$ and $\left.a=0\right)$. In that case, it need not be a local extremum at all. If it is given to be a local extremum, then one needs to invoke a higher-order Taylor theorem (but in some cases, all the derivatives at the point can be zero

An example

- Of course, one can wonder what happens when $f^{\prime \prime}(a)=0$ (for instance, $f(x)=x^{3}$ and $\left.a=0\right)$. In that case, it need not be a local extremum at all. If it is given to be a local extremum, then one needs to invoke a higher-order Taylor theorem (but in some cases, all the derivatives at the point can be zero and yet one can have a local extremum!).

An example

- Of course, one can wonder what happens when $f^{\prime \prime}(a)=0$ (for instance, $f(x)=x^{3}$ and $\left.a=0\right)$. In that case, it need not be a local extremum at all. If it is given to be a local extremum, then one needs to invoke a higher-order Taylor theorem (but in some cases, all the derivatives at the point can be zero and yet one can have a local extremum!).
- Let $f(x)=x^{3}-3 x$ on $\left[-2, \frac{1}{2}\right]$.

An example

- Of course, one can wonder what happens when $f^{\prime \prime}(a)=0$ (for instance, $f(x)=x^{3}$ and $\left.a=0\right)$. In that case, it need not be a local extremum at all. If it is given to be a local extremum, then one needs to invoke a higher-order Taylor theorem (but in some cases, all the derivatives at the point can be zero and yet one can have a local extremum!).
- Let $f(x)=x^{3}-3 x$ on $\left[-2, \frac{1}{2}\right]$. Find all local extrema

An example

- Of course, one can wonder what happens when $f^{\prime \prime}(a)=0$ (for instance, $f(x)=x^{3}$ and $\left.a=0\right)$. In that case, it need not be a local extremum at all. If it is given to be a local extremum, then one needs to invoke a higher-order Taylor theorem (but in some cases, all the derivatives at the point can be zero and yet one can have a local extremum!).
- Let $f(x)=x^{3}-3 x$ on $\left[-2, \frac{1}{2}\right]$. Find all local extrema of f and decide

An example

- Of course, one can wonder what happens when $f^{\prime \prime}(a)=0$ (for instance, $f(x)=x^{3}$ and $\left.a=0\right)$. In that case, it need not be a local extremum at all. If it is given to be a local extremum, then one needs to invoke a higher-order Taylor theorem (but in some cases, all the derivatives at the point can be zero and yet one can have a local extremum!).
- Let $f(x)=x^{3}-3 x$ on $\left[-2, \frac{1}{2}\right]$. Find all local extrema of f and decide whether they are

An example

- Of course, one can wonder what happens when $f^{\prime \prime}(a)=0$ (for instance, $f(x)=x^{3}$ and $\left.a=0\right)$. In that case, it need not be a local extremum at all. If it is given to be a local extremum, then one needs to invoke a higher-order Taylor theorem (but in some cases, all the derivatives at the point can be zero and yet one can have a local extremum!).
- Let $f(x)=x^{3}-3 x$ on $\left[-2, \frac{1}{2}\right]$. Find all local extrema of f and decide whether they are local maxima or minima.

An example

- Of course, one can wonder what happens when $f^{\prime \prime}(a)=0$ (for instance, $f(x)=x^{3}$ and $\left.a=0\right)$. In that case, it need not be a local extremum at all. If it is given to be a local extremum, then one needs to invoke a higher-order Taylor theorem (but in some cases, all the derivatives at the point can be zero and yet one can have a local extremum!).
- Let $f(x)=x^{3}-3 x$ on $\left[-2, \frac{1}{2}\right]$. Find all local extrema of f and decide whether they are local maxima or minima. Moreover, find the global extrema of f.

An example

- Of course, one can wonder what happens when $f^{\prime \prime}(a)=0$ (for instance, $f(x)=x^{3}$ and $\left.a=0\right)$. In that case, it need not be a local extremum at all. If it is given to be a local extremum, then one needs to invoke a higher-order Taylor theorem (but in some cases, all the derivatives at the point can be zero and yet one can have a local extremum!).
- Let $f(x)=x^{3}-3 x$ on $\left[-2, \frac{1}{2}\right]$. Find all local extrema of f and decide whether they are local maxima or minima. Moreover, find the global extrema of f.
- $f^{\prime}(x)=3 x^{2}-3=0$ when $x= \pm 1$.

An example

- Of course, one can wonder what happens when $f^{\prime \prime}(a)=0$ (for instance, $f(x)=x^{3}$ and $\left.a=0\right)$. In that case, it need not be a local extremum at all. If it is given to be a local extremum, then one needs to invoke a higher-order Taylor theorem (but in some cases, all the derivatives at the point can be zero and yet one can have a local extremum!).
- Let $f(x)=x^{3}-3 x$ on $\left[-2, \frac{1}{2}\right]$. Find all local extrema of f and decide whether they are local maxima or minima. Moreover, find the global extrema of f.
- $f^{\prime}(x)=3 x^{2}-3=0$ when $x= \pm 1$. On the given domain,

An example

- Of course, one can wonder what happens when $f^{\prime \prime}(a)=0$ (for instance, $f(x)=x^{3}$ and $\left.a=0\right)$. In that case, it need not be a local extremum at all. If it is given to be a local extremum, then one needs to invoke a higher-order Taylor theorem (but in some cases, all the derivatives at the point can be zero and yet one can have a local extremum!).
- Let $f(x)=x^{3}-3 x$ on $\left[-2, \frac{1}{2}\right]$. Find all local extrema of f and decide whether they are local maxima or minima. Moreover, find the global extrema of f.
- $f^{\prime}(x)=3 x^{2}-3=0$ when $x= \pm 1$. On the given domain, $x=-1$ is the only

An example

- Of course, one can wonder what happens when $f^{\prime \prime}(a)=0$ (for instance, $f(x)=x^{3}$ and $\left.a=0\right)$. In that case, it need not be a local extremum at all. If it is given to be a local extremum, then one needs to invoke a higher-order Taylor theorem (but in some cases, all the derivatives at the point can be zero and yet one can have a local extremum!).
- Let $f(x)=x^{3}-3 x$ on $\left[-2, \frac{1}{2}\right]$. Find all local extrema of f and decide whether they are local maxima or minima. Moreover, find the global extrema of f.
- $f^{\prime}(x)=3 x^{2}-3=0$ when $x= \pm 1$. On the given domain, $x=-1$ is the only point where $f^{\prime}(x)=0$.

An example

- Of course, one can wonder what happens when $f^{\prime \prime}(a)=0$ (for instance, $f(x)=x^{3}$ and $\left.a=0\right)$. In that case, it need not be a local extremum at all. If it is given to be a local extremum, then one needs to invoke a higher-order Taylor theorem (but in some cases, all the derivatives at the point can be zero and yet one can have a local extremum!).
- Let $f(x)=x^{3}-3 x$ on $\left[-2, \frac{1}{2}\right]$. Find all local extrema of f and decide whether they are local maxima or minima. Moreover, find the global extrema of f.
- $f^{\prime}(x)=3 x^{2}-3=0$ when $x= \pm 1$. On the given domain, $x=-1$ is the only point where $f^{\prime}(x)=0$. (By the way,

An example

- Of course, one can wonder what happens when $f^{\prime \prime}(a)=0$ (for instance, $f(x)=x^{3}$ and $a=0$). In that case, it need not be a local extremum at all. If it is given to be a local extremum, then one needs to invoke a higher-order Taylor theorem (but in some cases, all the derivatives at the point can be zero and yet one can have a local extremum!).
- Let $f(x)=x^{3}-3 x$ on $\left[-2, \frac{1}{2}\right]$. Find all local extrema of f and decide whether they are local maxima or minima. Moreover, find the global extrema of f.
- $f^{\prime}(x)=3 x^{2}-3=0$ when $x= \pm 1$. On the given domain, $x=-1$ is the only point where $f^{\prime}(x)=0$. (By the way, points where $f^{\prime}(x)=0$ are called

An example

- Of course, one can wonder what happens when $f^{\prime \prime}(a)=0$ (for instance, $f(x)=x^{3}$ and $a=0$). In that case, it need not be a local extremum at all. If it is given to be a local extremum, then one needs to invoke a higher-order Taylor theorem (but in some cases, all the derivatives at the point can be zero and yet one can have a local extremum!).
- Let $f(x)=x^{3}-3 x$ on $\left[-2, \frac{1}{2}\right]$. Find all local extrema of f and decide whether they are local maxima or minima. Moreover, find the global extrema of f.
- $f^{\prime}(x)=3 x^{2}-3=0$ when $x= \pm 1$. On the given domain, $x=-1$ is the only point where $f^{\prime}(x)=0$. (By the way, points where $f^{\prime}(x)=0$ are called critical points.)

An example

- Of course, one can wonder what happens when $f^{\prime \prime}(a)=0$ (for instance, $f(x)=x^{3}$ and $a=0$). In that case, it need not be a local extremum at all. If it is given to be a local extremum, then one needs to invoke a higher-order Taylor theorem (but in some cases, all the derivatives at the point can be zero and yet one can have a local extremum!).
- Let $f(x)=x^{3}-3 x$ on $\left[-2, \frac{1}{2}\right]$. Find all local extrema of f and decide whether they are local maxima or minima. Moreover, find the global extrema of f.
- $f^{\prime}(x)=3 x^{2}-3=0$ when $x= \pm 1$. On the given domain, $x=-1$ is the only point where $f^{\prime}(x)=0$. (By the way, points where $f^{\prime}(x)=0$ are called critical points.) To find global extrema,

An example

- Of course, one can wonder what happens when $f^{\prime \prime}(a)=0$ (for instance, $f(x)=x^{3}$ and $a=0$). In that case, it need not be a local extremum at all. If it is given to be a local extremum, then one needs to invoke a higher-order Taylor theorem (but in some cases, all the derivatives at the point can be zero and yet one can have a local extremum!).
- Let $f(x)=x^{3}-3 x$ on $\left[-2, \frac{1}{2}\right]$. Find all local extrema of f and decide whether they are local maxima or minima. Moreover, find the global extrema of f.
- $f^{\prime}(x)=3 x^{2}-3=0$ when $x= \pm 1$. On the given domain, $x=-1$ is the only point where $f^{\prime}(x)=0$. (By the way, points where $f^{\prime}(x)=0$ are called critical points.) To find global extrema, compare $f(-2)=-2, f\left(\frac{1}{2}\right)=-\frac{11}{8}$, $f(-1)=-1+3=2$.

An example

- Of course, one can wonder what happens when $f^{\prime \prime}(a)=0$ (for instance, $f(x)=x^{3}$ and $a=0$). In that case, it need not be a local extremum at all. If it is given to be a local extremum, then one needs to invoke a higher-order Taylor theorem (but in some cases, all the derivatives at the point can be zero and yet one can have a local extremum!).
- Let $f(x)=x^{3}-3 x$ on $\left[-2, \frac{1}{2}\right]$. Find all local extrema of f and decide whether they are local maxima or minima. Moreover, find the global extrema of f.
- $f^{\prime}(x)=3 x^{2}-3=0$ when $x= \pm 1$. On the given domain, $x=-1$ is the only point where $f^{\prime}(x)=0$. (By the way, points where $f^{\prime}(x)=0$ are called critical points.) To find global extrema, compare $f(-2)=-2, f\left(\frac{1}{2}\right)=-\frac{11}{8}$, $f(-1)=-1+3=2$. So f attains a

An example

- Of course, one can wonder what happens when $f^{\prime \prime}(a)=0$ (for instance, $f(x)=x^{3}$ and $a=0$). In that case, it need not be a local extremum at all. If it is given to be a local extremum, then one needs to invoke a higher-order Taylor theorem (but in some cases, all the derivatives at the point can be zero and yet one can have a local extremum!).
- Let $f(x)=x^{3}-3 x$ on $\left[-2, \frac{1}{2}\right]$. Find all local extrema of f and decide whether they are local maxima or minima. Moreover, find the global extrema of f.
- $f^{\prime}(x)=3 x^{2}-3=0$ when $x= \pm 1$. On the given domain, $x=-1$ is the only point where $f^{\prime}(x)=0$. (By the way, points where $f^{\prime}(x)=0$ are called critical points.) To find global extrema, compare $f(-2)=-2, f\left(\frac{1}{2}\right)=-\frac{11}{8}$, $f(-1)=-1+3=2$. So f attains a global max at $x=-1$ and

An example

- Of course, one can wonder what happens when $f^{\prime \prime}(a)=0$ (for instance, $f(x)=x^{3}$ and $a=0$). In that case, it need not be a local extremum at all. If it is given to be a local extremum, then one needs to invoke a higher-order Taylor theorem (but in some cases, all the derivatives at the point can be zero and yet one can have a local extremum!).
- Let $f(x)=x^{3}-3 x$ on $\left[-2, \frac{1}{2}\right]$. Find all local extrema of f and decide whether they are local maxima or minima. Moreover, find the global extrema of f.
- $f^{\prime}(x)=3 x^{2}-3=0$ when $x= \pm 1$. On the given domain, $x=-1$ is the only point where $f^{\prime}(x)=0$. (By the way, points where $f^{\prime}(x)=0$ are called critical points.) To find global extrema, compare $f(-2)=-2, f\left(\frac{1}{2}\right)=-\frac{11}{8}$, $f(-1)=-1+3=2$. So f attains a global max at $x=-1$ and a global min at $x=-2$.

An example

- Of course, one can wonder what happens when $f^{\prime \prime}(a)=0$ (for instance, $f(x)=x^{3}$ and $a=0$). In that case, it need not be a local extremum at all. If it is given to be a local extremum, then one needs to invoke a higher-order Taylor theorem (but in some cases, all the derivatives at the point can be zero and yet one can have a local extremum!).
- Let $f(x)=x^{3}-3 x$ on $\left[-2, \frac{1}{2}\right]$. Find all local extrema of f and decide whether they are local maxima or minima. Moreover, find the global extrema of f.
- $f^{\prime}(x)=3 x^{2}-3=0$ when $x= \pm 1$. On the given domain, $x=-1$ is the only point where $f^{\prime}(x)=0$. (By the way, points where $f^{\prime}(x)=0$ are called critical points.) To find global extrema, compare $f(-2)=-2, f\left(\frac{1}{2}\right)=-\frac{11}{8}$, $f(-1)=-1+3=2$. So f attains a global max at $x=-1$ and a global min at $x=-2$. To find out whether

An example

- Of course, one can wonder what happens when $f^{\prime \prime}(a)=0$ (for instance, $f(x)=x^{3}$ and $a=0$). In that case, it need not be a local extremum at all. If it is given to be a local extremum, then one needs to invoke a higher-order Taylor theorem (but in some cases, all the derivatives at the point can be zero and yet one can have a local extremum!).
- Let $f(x)=x^{3}-3 x$ on $\left[-2, \frac{1}{2}\right]$. Find all local extrema of f and decide whether they are local maxima or minima. Moreover, find the global extrema of f.
- $f^{\prime}(x)=3 x^{2}-3=0$ when $x= \pm 1$. On the given domain, $x=-1$ is the only point where $f^{\prime}(x)=0$. (By the way, points where $f^{\prime}(x)=0$ are called critical points.) To find global extrema, compare $f(-2)=-2, f\left(\frac{1}{2}\right)=-\frac{11}{8}$, $f(-1)=-1+3=2$. So f attains a global max at $x=-1$ and a global min at $x=-2$. To find out whether f attains a local max or \min at $x=-1$,

An example

- Of course, one can wonder what happens when $f^{\prime \prime}(a)=0$ (for instance, $f(x)=x^{3}$ and $a=0$). In that case, it need not be a local extremum at all. If it is given to be a local extremum, then one needs to invoke a higher-order Taylor theorem (but in some cases, all the derivatives at the point can be zero and yet one can have a local extremum!).
- Let $f(x)=x^{3}-3 x$ on $\left[-2, \frac{1}{2}\right]$. Find all local extrema of f and decide whether they are local maxima or minima. Moreover, find the global extrema of f.
- $f^{\prime}(x)=3 x^{2}-3=0$ when $x= \pm 1$. On the given domain, $x=-1$ is the only point where $f^{\prime}(x)=0$. (By the way, points where $f^{\prime}(x)=0$ are called critical points.) To find global extrema, compare $f(-2)=-2, f\left(\frac{1}{2}\right)=-\frac{11}{8}$, $f(-1)=-1+3=2$. So f attains a global max at $x=-1$ and a global min at $x=-2$. To find out whether f attains a local max or min at $x=-1, f^{\prime \prime}(x)=6 x=6 \times-1<0$ and hence a local max.

Extrema in more than one variable

Extrema in more than one variable

- A scalar field $f: S \subset \rightarrow \mathbb{R}^{n} \rightarrow \mathbb{R}$ is said to have
- A scalar field $f: S \subset \rightarrow \mathbb{R}^{n} \rightarrow \mathbb{R}$ is said to have an absolute/global maximum at $\vec{a} \in S$ if
- A scalar field $f: S \subset \rightarrow \mathbb{R}^{n} \rightarrow \mathbb{R}$ is said to have an absolute/global maximum at $\vec{a} \in S$ if $f(\vec{r}) \leq f(\vec{a})$ for all $\vec{r} \in S$ and likewise
- A scalar field $f: S \subset \rightarrow \mathbb{R}^{n} \rightarrow \mathbb{R}$ is said to have an absolute/global maximum at $\vec{a} \in S$ if $f(\vec{r}) \leq f(\vec{a})$ for all $\vec{r} \in S$ and likewise for an absolute/global minimum.
- A scalar field $f: S \subset \rightarrow \mathbb{R}^{n} \rightarrow \mathbb{R}$ is said to have an absolute/global maximum at $\vec{a} \in S$ if $f(\vec{r}) \leq f(\vec{a})$ for all $\vec{r} \in S$ and likewise for an absolute/global minimum. The number $f(\vec{a})$ is called
- A scalar field $f: S \subset \rightarrow \mathbb{R}^{n} \rightarrow \mathbb{R}$ is said to have an absolute/global maximum at $\vec{a} \in S$ if $f(\vec{r}) \leq f(\vec{a})$ for all $\vec{r} \in S$ and likewise for an absolute/global minimum. The number $f(\vec{a})$ is called the absolute/global maximum value of f on S.
- A scalar field $f: S \subset \rightarrow \mathbb{R}^{n} \rightarrow \mathbb{R}$ is said to have an absolute/global maximum at $\vec{a} \in S$ if $f(\vec{r}) \leq f(\vec{a})$ for all $\vec{r} \in S$ and likewise for an absolute/global minimum. The number $f(\vec{a})$ is called the absolute/global maximum value of f on S.
- Just as in one-variable,
- A scalar field $f: S \subset \rightarrow \mathbb{R}^{n} \rightarrow \mathbb{R}$ is said to have an absolute/global maximum at $\vec{a} \in S$ if $f(\vec{r}) \leq f(\vec{a})$ for all $\vec{r} \in S$ and likewise for an absolute/global minimum. The number $f(\vec{a})$ is called the absolute/global maximum value of f on S.
- Just as in one-variable, there is an extreme value theorem:
- A scalar field $f: S \subset \rightarrow \mathbb{R}^{n} \rightarrow \mathbb{R}$ is said to have an absolute/global maximum at $\vec{a} \in S$ if $f(\vec{r}) \leq f(\vec{a})$ for all $\vec{r} \in S$ and likewise for an absolute/global minimum. The number $f(\vec{a})$ is called the absolute/global maximum value of f on S.
- Just as in one-variable, there is an extreme value theorem: If $f: S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous,
- A scalar field $f: S \subset \rightarrow \mathbb{R}^{n} \rightarrow \mathbb{R}$ is said to have an absolute/global maximum at $\vec{a} \in S$ if $f(\vec{r}) \leq f(\vec{a})$ for all $\vec{r} \in S$ and likewise for an absolute/global minimum. The number $f(\vec{a})$ is called the absolute/global maximum value of f on S.
- Just as in one-variable, there is an extreme value theorem: If $f: S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous, S is a closed subset
- A scalar field $f: S \subset \rightarrow \mathbb{R}^{n} \rightarrow \mathbb{R}$ is said to have an absolute/global maximum at $\vec{a} \in S$ if $f(\vec{r}) \leq f(\vec{a})$ for all $\vec{r} \in S$ and likewise for an absolute/global minimum. The number $f(\vec{a})$ is called the absolute/global maximum value of f on S.
- Just as in one-variable, there is an extreme value theorem: If $f: S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous, S is a closed subset and S is bounded, i.e.,
- A scalar field $f: S \subset \rightarrow \mathbb{R}^{n} \rightarrow \mathbb{R}$ is said to have an absolute/global maximum at $\vec{a} \in S$ if $f(\vec{r}) \leq f(\vec{a})$ for all $\vec{r} \in S$ and likewise for an absolute/global minimum. The number $f(\vec{a})$ is called the absolute/global maximum value of f on S.
- Just as in one-variable, there is an extreme value theorem: If $f: S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous, S is a closed subset and S is bounded, i.e., there is a finite-sized closed ball
- A scalar field $f: S \subset \rightarrow \mathbb{R}^{n} \rightarrow \mathbb{R}$ is said to have an absolute/global maximum at $\vec{a} \in S$ if $f(\vec{r}) \leq f(\vec{a})$ for all $\vec{r} \in S$ and likewise for an absolute/global minimum. The number $f(\vec{a})$ is called the absolute/global maximum value of f on S.
- Just as in one-variable, there is an extreme value theorem: If $f: S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous, S is a closed subset and S is bounded, i.e., there is a finite-sized closed ball containing S, then
- A scalar field $f: S \subset \rightarrow \mathbb{R}^{n} \rightarrow \mathbb{R}$ is said to have an absolute/global maximum at $\vec{a} \in S$ if $f(\vec{r}) \leq f(\vec{a})$ for all $\vec{r} \in S$ and likewise for an absolute/global minimum. The number $f(\vec{a})$ is called the absolute/global maximum value of f on S.
- Just as in one-variable, there is an extreme value theorem: If $f: S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous, S is a closed subset and S is bounded, i.e., there is a finite-sized closed ball containing S, then f is bounded and
- A scalar field $f: S \subset \rightarrow \mathbb{R}^{n} \rightarrow \mathbb{R}$ is said to have an absolute/global maximum at $\vec{a} \in S$ if $f(\vec{r}) \leq f(\vec{a})$ for all $\vec{r} \in S$ and likewise for an absolute/global minimum. The number $f(\vec{a})$ is called the absolute/global maximum value of f on S.
- Just as in one-variable, there is an extreme value theorem: If $f: S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous, S is a closed subset and S is bounded, i.e., there is a finite-sized closed ball containing S, then f is bounded and assumes its maximum and minimum somewhere in S.
- A scalar field $f: S \subset \rightarrow \mathbb{R}^{n} \rightarrow \mathbb{R}$ is said to have an absolute/global maximum at $\vec{a} \in S$ if $f(\vec{r}) \leq f(\vec{a})$ for all $\vec{r} \in S$ and likewise for an absolute/global minimum. The number $f(\vec{a})$ is called the absolute/global maximum value of f on S.
- Just as in one-variable, there is an extreme value theorem: If $f: S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous, S is a closed subset and S is bounded, i.e., there is a finite-sized closed ball containing S, then f is bounded and assumes its maximum and minimum somewhere in S. There is no
- A scalar field $f: S \subset \rightarrow \mathbb{R}^{n} \rightarrow \mathbb{R}$ is said to have an absolute/global maximum at $\vec{a} \in S$ if $f(\vec{r}) \leq f(\vec{a})$ for all $\vec{r} \in S$ and likewise for an absolute/global minimum. The number $f(\vec{a})$ is called the absolute/global maximum value of f on S.
- Just as in one-variable, there is an extreme value theorem: If $f: S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous, S is a closed subset and S is bounded, i.e., there is a finite-sized closed ball containing S, then f is bounded and assumes its maximum and minimum somewhere in S. There is no easy way to
- A scalar field $f: S \subset \rightarrow \mathbb{R}^{n} \rightarrow \mathbb{R}$ is said to have an absolute/global maximum at $\vec{a} \in S$ if $f(\vec{r}) \leq f(\vec{a})$ for all $\vec{r} \in S$ and likewise for an absolute/global minimum. The number $f(\vec{a})$ is called the absolute/global maximum value of f on S.
- Just as in one-variable, there is an extreme value theorem: If $f: S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous, S is a closed subset and S is bounded, i.e., there is a finite-sized closed ball containing S, then f is bounded and assumes its maximum and minimum somewhere in S. There is no easy way to reduce it to one-variable.
- A scalar field $f: S \subset \rightarrow \mathbb{R}^{n} \rightarrow \mathbb{R}$ is said to have an absolute/global maximum at $\vec{a} \in S$ if $f(\vec{r}) \leq f(\vec{a})$ for all $\vec{r} \in S$ and likewise for an absolute/global minimum. The number $f(\vec{a})$ is called the absolute/global maximum value of f on S.
- Just as in one-variable, there is an extreme value theorem: If $f: S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous, S is a closed subset and S is bounded, i.e., there is a finite-sized closed ball containing S, then f is bounded and assumes its maximum and minimum somewhere in S. There is no easy way to reduce it to one-variable. You would have to
- A scalar field $f: S \subset \rightarrow \mathbb{R}^{n} \rightarrow \mathbb{R}$ is said to have an absolute/global maximum at $\vec{a} \in S$ if $f(\vec{r}) \leq f(\vec{a})$ for all $\vec{r} \in S$ and likewise for an absolute/global minimum. The number $f(\vec{a})$ is called the absolute/global maximum value of f on S.
- Just as in one-variable, there is an extreme value theorem: If $f: S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous, S is a closed subset and S is bounded, i.e., there is a finite-sized closed ball containing S, then f is bounded and assumes its maximum and minimum somewhere in S. There is no easy way to reduce it to one-variable. You would have to go through the proof
- A scalar field $f: S \subset \rightarrow \mathbb{R}^{n} \rightarrow \mathbb{R}$ is said to have an absolute/global maximum at $\vec{a} \in S$ if $f(\vec{r}) \leq f(\vec{a})$ for all $\vec{r} \in S$ and likewise for an absolute/global minimum. The number $f(\vec{a})$ is called the absolute/global maximum value of f on S.
- Just as in one-variable, there is an extreme value theorem: If $f: S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous, S is a closed subset and S is bounded, i.e., there is a finite-sized closed ball containing S, then f is bounded and assumes its maximum and minimum somewhere in S. There is no easy way to reduce it to one-variable. You would have to go through the proof again.
- A scalar field $f: S \subset \rightarrow \mathbb{R}^{n} \rightarrow \mathbb{R}$ is said to have an absolute/global maximum at $\vec{a} \in S$ if $f(\vec{r}) \leq f(\vec{a})$ for all $\vec{r} \in S$ and likewise for an absolute/global minimum. The number $f(\vec{a})$ is called the absolute/global maximum value of f on S.
- Just as in one-variable, there is an extreme value theorem: If $f: S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous, S is a closed subset and S is bounded, i.e., there is a finite-sized closed ball containing S, then f is bounded and assumes its maximum and minimum somewhere in S. There is no easy way to reduce it to one-variable. You would have to go through the proof again.
- Given this theorem,
- A scalar field $f: S \subset \rightarrow \mathbb{R}^{n} \rightarrow \mathbb{R}$ is said to have an absolute/global maximum at $\vec{a} \in S$ if $f(\vec{r}) \leq f(\vec{a})$ for all $\vec{r} \in S$ and likewise for an absolute/global minimum. The number $f(\vec{a})$ is called the absolute/global maximum value of f on S.
- Just as in one-variable, there is an extreme value theorem: If $f: S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous, S is a closed subset and S is bounded, i.e., there is a finite-sized closed ball containing S, then f is bounded and assumes its maximum and minimum somewhere in S. There is no easy way to reduce it to one-variable. You would have to go through the proof again.
- Given this theorem, it makes sense to ask
- A scalar field $f: S \subset \rightarrow \mathbb{R}^{n} \rightarrow \mathbb{R}$ is said to have an absolute/global maximum at $\vec{a} \in S$ if $f(\vec{r}) \leq f(\vec{a})$ for all $\vec{r} \in S$ and likewise for an absolute/global minimum. The number $f(\vec{a})$ is called the absolute/global maximum value of f on S.
- Just as in one-variable, there is an extreme value theorem: If $f: S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous, S is a closed subset and S is bounded, i.e., there is a finite-sized closed ball containing S, then f is bounded and assumes its maximum and minimum somewhere in S. There is no easy way to reduce it to one-variable. You would have to go through the proof again.
- Given this theorem, it makes sense to ask how to calculate the global extrema.
- A scalar field $f: S \subset \rightarrow \mathbb{R}^{n} \rightarrow \mathbb{R}$ is said to have an absolute/global maximum at $\vec{a} \in S$ if $f(\vec{r}) \leq f(\vec{a})$ for all $\vec{r} \in S$ and likewise for an absolute/global minimum. The number $f(\vec{a})$ is called the absolute/global maximum value of f on S.
- Just as in one-variable, there is an extreme value theorem: If $f: S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous, S is a closed subset and S is bounded, i.e., there is a finite-sized closed ball containing S, then f is bounded and assumes its maximum and minimum somewhere in S. There is no easy way to reduce it to one-variable. You would have to go through the proof again.
- Given this theorem, it makes sense to ask how to calculate the global extrema. So we need local extrema.
- A scalar field $f: S \subset \rightarrow \mathbb{R}^{n} \rightarrow \mathbb{R}$ is said to have an absolute/global maximum at $\vec{a} \in S$ if $f(\vec{r}) \leq f(\vec{a})$ for all $\vec{r} \in S$ and likewise for an absolute/global minimum. The number $f(\vec{a})$ is called the absolute/global maximum value of f on S.
- Just as in one-variable, there is an extreme value theorem: If $f: S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous, S is a closed subset and S is bounded, i.e., there is a finite-sized closed ball containing S, then f is bounded and assumes its maximum and minimum somewhere in S. There is no easy way to reduce it to one-variable. You would have to go through the proof again.
- Given this theorem, it makes sense to ask how to calculate the global extrema. So we need local extrema.
- f is said to have
- A scalar field $f: S \subset \rightarrow \mathbb{R}^{n} \rightarrow \mathbb{R}$ is said to have an absolute/global maximum at $\vec{a} \in S$ if $f(\vec{r}) \leq f(\vec{a})$ for all $\vec{r} \in S$ and likewise for an absolute/global minimum. The number $f(\vec{a})$ is called the absolute/global maximum value of f on S.
- Just as in one-variable, there is an extreme value theorem: If $f: S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous, S is a closed subset and S is bounded, i.e., there is a finite-sized closed ball containing S, then f is bounded and assumes its maximum and minimum somewhere in S. There is no easy way to reduce it to one-variable. You would have to go through the proof again.
- Given this theorem, it makes sense to ask how to calculate the global extrema. So we need local extrema.
- f is said to have a local maximum at an
- A scalar field $f: S \subset \rightarrow \mathbb{R}^{n} \rightarrow \mathbb{R}$ is said to have an absolute/global maximum at $\vec{a} \in S$ if $f(\vec{r}) \leq f(\vec{a})$ for all $\vec{r} \in S$ and likewise for an absolute/global minimum. The number $f(\vec{a})$ is called the absolute/global maximum value of f on S.
- Just as in one-variable, there is an extreme value theorem: If $f: S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous, S is a closed subset and S is bounded, i.e., there is a finite-sized closed ball containing S, then f is bounded and assumes its maximum and minimum somewhere in S. There is no easy way to reduce it to one-variable. You would have to go through the proof again.
- Given this theorem, it makes sense to ask how to calculate the global extrema. So we need local extrema.
- f is said to have a local maximum at an interior point $\vec{a} \in S$ if
- A scalar field $f: S \subset \rightarrow \mathbb{R}^{n} \rightarrow \mathbb{R}$ is said to have an absolute/global maximum at $\vec{a} \in S$ if $f(\vec{r}) \leq f(\vec{a})$ for all $\vec{r} \in S$ and likewise for an absolute/global minimum. The number $f(\vec{a})$ is called the absolute/global maximum value of f on S.
- Just as in one-variable, there is an extreme value theorem: If $f: S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous, S is a closed subset and S is bounded, i.e., there is a finite-sized closed ball containing S, then f is bounded and assumes its maximum and minimum somewhere in S. There is no easy way to reduce it to one-variable. You would have to go through the proof again.
- Given this theorem, it makes sense to ask how to calculate the global extrema. So we need local extrema.
- f is said to have a local maximum at an interior point $\vec{a} \in S$ if $f(\vec{r}) \leq f(\vec{a})$ for all
- A scalar field $f: S \subset \rightarrow \mathbb{R}^{n} \rightarrow \mathbb{R}$ is said to have an absolute/global maximum at $\vec{a} \in S$ if $f(\vec{r}) \leq f(\vec{a})$ for all $\vec{r} \in S$ and likewise for an absolute/global minimum. The number $f(\vec{a})$ is called the absolute/global maximum value of f on S.
- Just as in one-variable, there is an extreme value theorem: If $f: S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous, S is a closed subset and S is bounded, i.e., there is a finite-sized closed ball containing S, then f is bounded and assumes its maximum and minimum somewhere in S. There is no easy way to reduce it to one-variable. You would have to go through the proof again.
- Given this theorem, it makes sense to ask how to calculate the global extrema. So we need local extrema.
- f is said to have a local maximum at an interior point $\vec{a} \in S$ if $f(\vec{r}) \leq f(\vec{a})$ for all \vec{r} lying in
- A scalar field $f: S \subset \rightarrow \mathbb{R}^{n} \rightarrow \mathbb{R}$ is said to have an absolute/global maximum at $\vec{a} \in S$ if $f(\vec{r}) \leq f(\vec{a})$ for all $\vec{r} \in S$ and likewise for an absolute/global minimum. The number $f(\vec{a})$ is called the absolute/global maximum value of f on S.
- Just as in one-variable, there is an extreme value theorem: If $f: S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous, S is a closed subset and S is bounded, i.e., there is a finite-sized closed ball containing S, then f is bounded and assumes its maximum and minimum somewhere in S. There is no easy way to reduce it to one-variable. You would have to go through the proof again.
- Given this theorem, it makes sense to ask how to calculate the global extrema. So we need local extrema.
- f is said to have a local maximum at an interior point $\vec{a} \in S$ if $f(\vec{r}) \leq f(\vec{a})$ for all \vec{r} lying in an open ball around \vec{a} that is completely contained in S.
- A scalar field $f: S \subset \rightarrow \mathbb{R}^{n} \rightarrow \mathbb{R}$ is said to have an absolute/global maximum at $\vec{a} \in S$ if $f(\vec{r}) \leq f(\vec{a})$ for all $\vec{r} \in S$ and likewise for an absolute/global minimum. The number $f(\vec{a})$ is called the absolute/global maximum value of f on S.
- Just as in one-variable, there is an extreme value theorem: If $f: S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous, S is a closed subset and S is bounded, i.e., there is a finite-sized closed ball containing S, then f is bounded and assumes its maximum and minimum somewhere in S. There is no easy way to reduce it to one-variable. You would have to go through the proof again.
- Given this theorem, it makes sense to ask how to calculate the global extrema. So we need local extrema.
- f is said to have a local maximum at an interior point $\vec{a} \in S$ if $f(\vec{r}) \leq f(\vec{a})$ for all \vec{r} lying in an open ball around \vec{a} that is completely contained in S. Likewise for a local minimum.

Local extrema

Local extrema

- Just as in one-variable calculus,

Local extrema

- Just as in one-variable calculus, to find the global extrema of a differentiable function,

Local extrema

- Just as in one-variable calculus, to find the global extrema of a differentiable function, we need to find all local extrema

Local extrema

- Just as in one-variable calculus, to find the global extrema of a differentiable function, we need to find all local extrema and compare them to

Local extrema

- Just as in one-variable calculus, to find the global extrema of a differentiable function, we need to find all local extrema and compare them to what happens on the boundary.
- Just as in one-variable calculus, to find the global extrema of a differentiable function, we need to find all local extrema and compare them to what happens on the boundary. The boundary is not merely

Local extrema

- Just as in one-variable calculus, to find the global extrema of a differentiable function, we need to find all local extrema and compare them to what happens on the boundary. The boundary is not merely a finite collection of points!
- Just as in one-variable calculus, to find the global extrema of a differentiable function, we need to find all local extrema and compare them to what happens on the boundary. The boundary is not merely a finite collection of points! That is what makes this harder!

Local extrema

- Just as in one-variable calculus, to find the global extrema of a differentiable function, we need to find all local extrema and compare them to what happens on the boundary. The boundary is not merely a finite collection of points! That is what makes this harder!
- Theorem:
- Just as in one-variable calculus, to find the global extrema of a differentiable function, we need to find all local extrema and compare them to what happens on the boundary. The boundary is not merely a finite collection of points! That is what makes this harder!
- Theorem: Let f be differentiable
- Just as in one-variable calculus, to find the global extrema of a differentiable function, we need to find all local extrema and compare them to what happens on the boundary. The boundary is not merely a finite collection of points! That is what makes this harder!
- Theorem: Let f be differentiable at a local extremum \vec{a}.
- Just as in one-variable calculus, to find the global extrema of a differentiable function, we need to find all local extrema and compare them to what happens on the boundary. The boundary is not merely a finite collection of points! That is what makes this harder!
- Theorem: Let f be differentiable at a local extremum \vec{a}. Then $\nabla f(\vec{a})=\overrightarrow{0}$.
- Just as in one-variable calculus, to find the global extrema of a differentiable function, we need to find all local extrema and compare them to what happens on the boundary. The boundary is not merely a finite collection of points! That is what makes this harder!
- Theorem: Let f be differentiable at a local extremum \vec{a}. Then $\nabla f(\vec{a})=\overrightarrow{0}$.
- Proof:
- Just as in one-variable calculus, to find the global extrema of a differentiable function, we need to find all local extrema and compare them to what happens on the boundary. The boundary is not merely a finite collection of points! That is what makes this harder!
- Theorem: Let f be differentiable at a local extremum \vec{a}. Then $\nabla f(\vec{a})=\overrightarrow{0}$.
- Proof: Let $\|\vec{v}\|=1$.

Local extrema

- Just as in one-variable calculus, to find the global extrema of a differentiable function, we need to find all local extrema and compare them to what happens on the boundary. The boundary is not merely a finite collection of points! That is what makes this harder!
- Theorem: Let f be differentiable at a local extremum \vec{a}. Then $\nabla f(\vec{a})=\overrightarrow{0}$.
- Proof: Let $\|\vec{v}\|=1$. Let $g(t)=f(\vec{a}+t \vec{v})$ be defined
- Just as in one-variable calculus, to find the global extrema of a differentiable function, we need to find all local extrema and compare them to what happens on the boundary. The boundary is not merely a finite collection of points! That is what makes this harder!
- Theorem: Let f be differentiable at a local extremum \vec{a}. Then $\nabla f(\vec{a})=\overrightarrow{0}$.
- Proof: Let $\|\vec{v}\|=1$. Let $g(t)=f(\vec{a}+t \vec{v})$ be defined for all $|t|<r$ for
- Just as in one-variable calculus, to find the global extrema of a differentiable function, we need to find all local extrema and compare them to what happens on the boundary. The boundary is not merely a finite collection of points! That is what makes this harder!
- Theorem: Let f be differentiable at a local extremum \vec{a}. Then $\nabla f(\vec{a})=\overrightarrow{0}$.
- Proof: Let $\|\vec{v}\|=1$. Let $g(t)=f(\vec{a}+t \vec{v})$ be defined for all $|t|<r$ for some small enough r.

Local extrema

- Just as in one-variable calculus, to find the global extrema of a differentiable function, we need to find all local extrema and compare them to what happens on the boundary. The boundary is not merely a finite collection of points! That is what makes this harder!
- Theorem: Let f be differentiable at a local extremum \vec{a}. Then $\nabla f(\vec{a})=\overrightarrow{0}$.
- Proof: Let $\|\vec{v}\|=1$. Let $g(t)=f(\vec{a}+t \vec{v})$ be defined for all $|t|<r$ for some small enough r. Then g is differentiable at 0

Local extrema

- Just as in one-variable calculus, to find the global extrema of a differentiable function, we need to find all local extrema and compare them to what happens on the boundary. The boundary is not merely a finite collection of points! That is what makes this harder!
- Theorem: Let f be differentiable at a local extremum \vec{a}. Then $\nabla f(\vec{a})=\overrightarrow{0}$.
- Proof: Let $\|\vec{v}\|=1$. Let $g(t)=f(\vec{a}+t \vec{v})$ be defined for all $|t|<r$ for some small enough r. Then g is differentiable at 0 and attains a local extremum there.
- Just as in one-variable calculus, to find the global extrema of a differentiable function, we need to find all local extrema and compare them to what happens on the boundary. The boundary is not merely a finite collection of points! That is what makes this harder!
- Theorem: Let f be differentiable at a local extremum \vec{a}. Then $\nabla f(\vec{a})=\overrightarrow{0}$.
- Proof: Let $\|\vec{v}\|=1$. Let $g(t)=f(\vec{a}+t \vec{v})$ be defined for all $|t|<r$ for some small enough r. Then g is differentiable at 0 and attains a local extremum there. Thus $g^{\prime}(0)=\langle\nabla f(\vec{a}), \vec{v}\rangle=0$.
- Just as in one-variable calculus, to find the global extrema of a differentiable function, we need to find all local extrema and compare them to what happens on the boundary. The boundary is not merely a finite collection of points! That is what makes this harder!
- Theorem: Let f be differentiable at a local extremum \vec{a}. Then $\nabla f(\vec{a})=\overrightarrow{0}$.
- Proof: Let $\|\vec{v}\|=1$. Let $g(t)=f(\vec{a}+t \vec{v})$ be defined for all $|t|<r$ for some small enough r. Then g is differentiable at 0 and attains a local extremum there. Thus $g^{\prime}(0)=\langle\nabla f(\vec{a}), \vec{v}\rangle=0$. Since this fact is true

Local extrema

- Just as in one-variable calculus, to find the global extrema of a differentiable function, we need to find all local extrema and compare them to what happens on the boundary. The boundary is not merely a finite collection of points! That is what makes this harder!
- Theorem: Let f be differentiable at a local extremum \vec{a}. Then $\nabla f(\vec{a})=\overrightarrow{0}$.
- Proof: Let $\|\vec{v}\|=1$. Let $g(t)=f(\vec{a}+t \vec{v})$ be defined for all $|t|<r$ for some small enough r. Then g is differentiable at 0 and attains a local extremum there. Thus $g^{\prime}(0)=\langle\nabla f(\vec{a}), \vec{v}\rangle=0$. Since this fact is true for all \vec{v},
- Just as in one-variable calculus, to find the global extrema of a differentiable function, we need to find all local extrema and compare them to what happens on the boundary. The boundary is not merely a finite collection of points! That is what makes this harder!
- Theorem: Let f be differentiable at a local extremum \vec{a}. Then $\nabla f(\vec{a})=\overrightarrow{0}$.
- Proof: Let $\|\vec{v}\|=1$. Let $g(t)=f(\vec{a}+t \vec{v})$ be defined for all $|t|<r$ for some small enough r. Then g is differentiable at 0 and attains a local extremum there. Thus $g^{\prime}(0)=\langle\nabla f(\vec{a}), \vec{v}\rangle=0$. Since this fact is true for all \vec{v}, $\nabla f(\vec{a})=\overrightarrow{0}$.

Local extrema

- Just as in one-variable calculus, to find the global extrema of a differentiable function, we need to find all local extrema and compare them to what happens on the boundary. The boundary is not merely a finite collection of points! That is what makes this harder!
- Theorem: Let f be differentiable at a local extremum \vec{a}. Then $\nabla f(\vec{a})=\overrightarrow{0}$.
- Proof: Let $\|\vec{v}\|=1$. Let $g(t)=f(\vec{a}+t \vec{v})$ be defined for all $|t|<r$ for some small enough r. Then g is differentiable at 0 and attains a local extremum there. Thus $g^{\prime}(0)=\langle\nabla f(\vec{a}), \vec{v}\rangle=0$. Since this fact is true for all \vec{v}, $\nabla f(\vec{a})=\overrightarrow{0}$. Points where the gradient

Local extrema

- Just as in one-variable calculus, to find the global extrema of a differentiable function, we need to find all local extrema and compare them to what happens on the boundary. The boundary is not merely a finite collection of points! That is what makes this harder!
- Theorem: Let f be differentiable at a local extremum \vec{a}. Then $\nabla f(\vec{a})=\overrightarrow{0}$.
- Proof: Let $\|\vec{v}\|=1$. Let $g(t)=f(\vec{a}+t \vec{v})$ be defined for all $|t|<r$ for some small enough r. Then g is differentiable at 0 and attains a local extremum there. Thus $g^{\prime}(0)=\langle\nabla f(\vec{a}), \vec{v}\rangle=0$. Since this fact is true for all \vec{v}, $\nabla f(\vec{a})=\overrightarrow{0}$. Points where the gradient vanishes are called critical points.

Local extrema

- Just as in one-variable calculus, to find the global extrema of a differentiable function, we need to find all local extrema and compare them to what happens on the boundary. The boundary is not merely a finite collection of points! That is what makes this harder!
- Theorem: Let f be differentiable at a local extremum \vec{a}. Then $\nabla f(\vec{a})=\overrightarrow{0}$.
- Proof: Let $\|\vec{v}\|=1$. Let $g(t)=f(\vec{a}+t \vec{v})$ be defined for all $|t|<r$ for some small enough r. Then g is differentiable at 0 and attains a local extremum there. Thus $g^{\prime}(0)=\langle\nabla f(\vec{a}), \vec{v}\rangle=0$. Since this fact is true for all \vec{v}, $\nabla f(\vec{a})=\overrightarrow{0}$. Points where the gradient vanishes are called critical points.
- Caution:

Local extrema

- Just as in one-variable calculus, to find the global extrema of a differentiable function, we need to find all local extrema and compare them to what happens on the boundary. The boundary is not merely a finite collection of points! That is what makes this harder!
- Theorem: Let f be differentiable at a local extremum \vec{a}. Then $\nabla f(\vec{a})=\overrightarrow{0}$.
- Proof: Let $\|\vec{v}\|=1$. Let $g(t)=f(\vec{a}+t \vec{v})$ be defined for all $|t|<r$ for some small enough r. Then g is differentiable at 0 and attains a local extremum there. Thus $g^{\prime}(0)=\langle\nabla f(\vec{a}), \vec{v}\rangle=0$. Since this fact is true for all \vec{v}, $\nabla f(\vec{a})=\overrightarrow{0}$. Points where the gradient vanishes are called critical points.
- Caution: If f is not differentiable

Local extrema

- Just as in one-variable calculus, to find the global extrema of a differentiable function, we need to find all local extrema and compare them to what happens on the boundary. The boundary is not merely a finite collection of points! That is what makes this harder!
- Theorem: Let f be differentiable at a local extremum \vec{a}. Then $\nabla f(\vec{a})=\overrightarrow{0}$.
- Proof: Let $\|\vec{v}\|=1$. Let $g(t)=f(\vec{a}+t \vec{v})$ be defined for all $|t|<r$ for some small enough r. Then g is differentiable at 0 and attains a local extremum there. Thus $g^{\prime}(0)=\langle\nabla f(\vec{a}), \vec{v}\rangle=0$. Since this fact is true for all \vec{v}, $\nabla f(\vec{a})=\overrightarrow{0}$. Points where the gradient vanishes are called critical points.
- Caution: If f is not differentiable at a point,

Local extrema

- Just as in one-variable calculus, to find the global extrema of a differentiable function, we need to find all local extrema and compare them to what happens on the boundary. The boundary is not merely a finite collection of points! That is what makes this harder!
- Theorem: Let f be differentiable at a local extremum \vec{a}. Then $\nabla f(\vec{a})=\overrightarrow{0}$.
- Proof: Let $\|\vec{v}\|=1$. Let $g(t)=f(\vec{a}+t \vec{v})$ be defined for all $|t|<r$ for some small enough r. Then g is differentiable at 0 and attains a local extremum there. Thus $g^{\prime}(0)=\langle\nabla f(\vec{a}), \vec{v}\rangle=0$. Since this fact is true for all \vec{v}, $\nabla f(\vec{a})=\overrightarrow{0}$. Points where the gradient vanishes are called critical points.
- Caution: If f is not differentiable at a point, such a point deserves special consideration.

Local extrema

- Just as in one-variable calculus, to find the global extrema of a differentiable function, we need to find all local extrema and compare them to what happens on the boundary. The boundary is not merely a finite collection of points! That is what makes this harder!
- Theorem: Let f be differentiable at a local extremum \vec{a}. Then $\nabla f(\vec{a})=\overrightarrow{0}$.
- Proof: Let $\|\vec{v}\|=1$. Let $g(t)=f(\vec{a}+t \vec{v})$ be defined for all $|t|<r$ for some small enough r. Then g is differentiable at 0 and attains a local extremum there. Thus $g^{\prime}(0)=\langle\nabla f(\vec{a}), \vec{v}\rangle=0$. Since this fact is true for all \vec{v}, $\nabla f(\vec{a})=\overrightarrow{0}$. Points where the gradient vanishes are called critical points.
- Caution: If f is not differentiable at a point, such a point deserves special consideration. For instance,

Local extrema

- Just as in one-variable calculus, to find the global extrema of a differentiable function, we need to find all local extrema and compare them to what happens on the boundary. The boundary is not merely a finite collection of points! That is what makes this harder!
- Theorem: Let f be differentiable at a local extremum \vec{a}. Then $\nabla f(\vec{a})=\overrightarrow{0}$.
- Proof: Let $\|\vec{v}\|=1$. Let $g(t)=f(\vec{a}+t \vec{v})$ be defined for all $|t|<r$ for some small enough r. Then g is differentiable at 0 and attains a local extremum there. Thus $g^{\prime}(0)=\langle\nabla f(\vec{a}), \vec{v}\rangle=0$. Since this fact is true for all \vec{v}, $\nabla f(\vec{a})=\overrightarrow{0}$. Points where the gradient vanishes are called critical points.
- Caution: If f is not differentiable at a point, such a point deserves special consideration. For instance, $|x|$ assumes a

Local extrema

- Just as in one-variable calculus, to find the global extrema of a differentiable function, we need to find all local extrema and compare them to what happens on the boundary. The boundary is not merely a finite collection of points! That is what makes this harder!
- Theorem: Let f be differentiable at a local extremum \vec{a}. Then $\nabla f(\vec{a})=\overrightarrow{0}$.
- Proof: Let $\|\vec{v}\|=1$. Let $g(t)=f(\vec{a}+t \vec{v})$ be defined for all $|t|<r$ for some small enough r. Then g is differentiable at 0 and attains a local extremum there. Thus $g^{\prime}(0)=\langle\nabla f(\vec{a}), \vec{v}\rangle=0$. Since this fact is true for all \vec{v}, $\nabla f(\vec{a})=\overrightarrow{0}$. Points where the gradient vanishes are called critical points.
- Caution: If f is not differentiable at a point, such a point deserves special consideration. For instance, $|x|$ assumes a local min at 0

Local extrema

- Just as in one-variable calculus, to find the global extrema of a differentiable function, we need to find all local extrema and compare them to what happens on the boundary. The boundary is not merely a finite collection of points! That is what makes this harder!
- Theorem: Let f be differentiable at a local extremum \vec{a}. Then $\nabla f(\vec{a})=\overrightarrow{0}$.
- Proof: Let $\|\vec{v}\|=1$. Let $g(t)=f(\vec{a}+t \vec{v})$ be defined for all $|t|<r$ for some small enough r. Then g is differentiable at 0 and attains a local extremum there. Thus $g^{\prime}(0)=\langle\nabla f(\vec{a}), \vec{v}\rangle=0$. Since this fact is true for all \vec{v}, $\nabla f(\vec{a})=\overrightarrow{0}$. Points where the gradient vanishes are called critical points.
- Caution: If f is not differentiable at a point, such a point deserves special consideration. For instance, $|x|$ assumes a local min at 0 and it isn't differentiable there. (

Local extrema

- Just as in one-variable calculus, to find the global extrema of a differentiable function, we need to find all local extrema and compare them to what happens on the boundary. The boundary is not merely a finite collection of points! That is what makes this harder!
- Theorem: Let f be differentiable at a local extremum \vec{a}. Then $\nabla f(\vec{a})=\overrightarrow{0}$.
- Proof: Let $\|\vec{v}\|=1$. Let $g(t)=f(\vec{a}+t \vec{v})$ be defined for all $|t|<r$ for some small enough r. Then g is differentiable at 0 and attains a local extremum there. Thus $g^{\prime}(0)=\langle\nabla f(\vec{a}), \vec{v}\rangle=0$. Since this fact is true for all \vec{v}, $\nabla f(\vec{a})=\overrightarrow{0}$. Points where the gradient vanishes are called critical points.
- Caution: If f is not differentiable at a point, such a point deserves special consideration. For instance, $|x|$ assumes a local min at 0 and it isn't differentiable there. (Unlike us,

Local extrema

- Just as in one-variable calculus, to find the global extrema of a differentiable function, we need to find all local extrema and compare them to what happens on the boundary. The boundary is not merely a finite collection of points! That is what makes this harder!
- Theorem: Let f be differentiable at a local extremum \vec{a}. Then $\nabla f(\vec{a})=\overrightarrow{0}$.
- Proof: Let $\|\vec{v}\|=1$. Let $g(t)=f(\vec{a}+t \vec{v})$ be defined for all $|t|<r$ for some small enough r. Then g is differentiable at 0 and attains a local extremum there. Thus $g^{\prime}(0)=\langle\nabla f(\vec{a}), \vec{v}\rangle=0$. Since this fact is true for all \vec{v}, $\nabla f(\vec{a})=\overrightarrow{0}$. Points where the gradient vanishes are called critical points.
- Caution: If f is not differentiable at a point, such a point deserves special consideration. For instance, $|x|$ assumes a local min at 0 and it isn't differentiable there. (Unlike us, some books
- Just as in one-variable calculus, to find the global extrema of a differentiable function, we need to find all local extrema and compare them to what happens on the boundary. The boundary is not merely a finite collection of points! That is what makes this harder!
- Theorem: Let f be differentiable at a local extremum \vec{a}. Then $\nabla f(\vec{a})=\overrightarrow{0}$.
- Proof: Let $\|\vec{v}\|=1$. Let $g(t)=f(\vec{a}+t \vec{v})$ be defined for all $|t|<r$ for some small enough r. Then g is differentiable at 0 and attains a local extremum there. Thus $g^{\prime}(0)=\langle\nabla f(\vec{a}), \vec{v}\rangle=0$. Since this fact is true for all \vec{v}, $\nabla f(\vec{a})=\overrightarrow{0}$. Points where the gradient vanishes are called critical points.
- Caution: If f is not differentiable at a point, such a point deserves special consideration. For instance, $|x|$ assumes a local min at 0 and it isn't differentiable there. (Unlike us, some books call points of non-diff.
- Just as in one-variable calculus, to find the global extrema of a differentiable function, we need to find all local extrema and compare them to what happens on the boundary. The boundary is not merely a finite collection of points! That is what makes this harder!
- Theorem: Let f be differentiable at a local extremum \vec{a}. Then $\nabla f(\vec{a})=\overrightarrow{0}$.
- Proof: Let $\|\vec{v}\|=1$. Let $g(t)=f(\vec{a}+t \vec{v})$ be defined for all $|t|<r$ for some small enough r. Then g is differentiable at 0 and attains a local extremum there. Thus $g^{\prime}(0)=\langle\nabla f(\vec{a}), \vec{v}\rangle=0$. Since this fact is true for all \vec{v}, $\nabla f(\vec{a})=\overrightarrow{0}$. Points where the gradient vanishes are called critical points.
- Caution: If f is not differentiable at a point, such a point deserves special consideration. For instance, $|x|$ assumes a local min at 0 and it isn't differentiable there. (Unlike us, some books call points of non-diff. critical points.)

An example

An example

- Find the global

An example

- Find the global extrema of $f(x, y, z)=x^{2}-y^{2}+3 z^{2}$ on $x^{2}+y^{2}+z^{2} \leq 1$.

An example

- Find the global extrema of $f(x, y, z)=x^{2}-y^{2}+3 z^{2}$ on $x^{2}+y^{2}+z^{2} \leq 1$.
- f is diff everywhere.

An example

- Find the global extrema of $f(x, y, z)=x^{2}-y^{2}+3 z^{2}$ on $x^{2}+y^{2}+z^{2} \leq 1$.
- f is diff everywhere. Let's look at critical points first:

An example

- Find the global extrema of $f(x, y, z)=x^{2}-y^{2}+3 z^{2}$ on $x^{2}+y^{2}+z^{2} \leq 1$.
- f is diff everywhere. Let's look at critical points first:
$\nabla f=(2 x,-2 y, 6 z)$ which vanishes only at

An example

- Find the global extrema of $f(x, y, z)=x^{2}-y^{2}+3 z^{2}$ on $x^{2}+y^{2}+z^{2} \leq 1$.
- f is diff everywhere. Let's look at critical points first:
$\nabla f=(2 x,-2 y, 6 z)$ which vanishes only at the origin (which

An example

- Find the global extrema of $f(x, y, z)=x^{2}-y^{2}+3 z^{2}$ on $x^{2}+y^{2}+z^{2} \leq 1$.
- f is diff everywhere. Let's look at critical points first:
$\nabla f=(2 x,-2 y, 6 z)$ which vanishes only at the origin (which lies in S).

An example

- Find the global extrema of $f(x, y, z)=x^{2}-y^{2}+3 z^{2}$ on $x^{2}+y^{2}+z^{2} \leq 1$.
- f is diff everywhere. Let's look at critical points first:
$\nabla f=(2 x,-2 y, 6 z)$ which vanishes only at the origin (which lies in S). The value of f there is 0 .

An example

- Find the global extrema of $f(x, y, z)=x^{2}-y^{2}+3 z^{2}$ on $x^{2}+y^{2}+z^{2} \leq 1$.
- f is diff everywhere. Let's look at critical points first:
$\nabla f=(2 x,-2 y, 6 z)$ which vanishes only at the origin (which lies in S). The value of f there is 0 .
- On the boundary of S,

An example

- Find the global extrema of $f(x, y, z)=x^{2}-y^{2}+3 z^{2}$ on $x^{2}+y^{2}+z^{2} \leq 1$.
- f is diff everywhere. Let's look at critical points first:
$\nabla f=(2 x,-2 y, 6 z)$ which vanishes only at the origin (which lies in S). The value of f there is 0 .
- On the boundary of S, i.e, on the sphere $x^{2}+y^{2}+z^{2}=1$,

An example

- Find the global extrema of $f(x, y, z)=x^{2}-y^{2}+3 z^{2}$ on $x^{2}+y^{2}+z^{2} \leq 1$.
- f is diff everywhere. Let's look at critical points first:
$\nabla f=(2 x,-2 y, 6 z)$ which vanishes only at the origin (which lies in S). The value of f there is 0 .
- On the boundary of S, i.e, on the sphere $x^{2}+y^{2}+z^{2}=1$, We see that $f(x, y)=x^{2}-y^{2}+3\left(1-x^{2}-y^{2}\right)=3-2 x^{2}-4 y^{2}$ on $x^{2}+y^{2} \leq 1$.

An example

- Find the global extrema of $f(x, y, z)=x^{2}-y^{2}+3 z^{2}$ on $x^{2}+y^{2}+z^{2} \leq 1$.
- f is diff everywhere. Let's look at critical points first:
$\nabla f=(2 x,-2 y, 6 z)$ which vanishes only at the origin (which lies in S). The value of f there is 0 .
- On the boundary of S, i.e, on the sphere $x^{2}+y^{2}+z^{2}=1$, We see that $f(x, y)=x^{2}-y^{2}+3\left(1-x^{2}-y^{2}\right)=3-2 x^{2}-4 y^{2}$ on $x^{2}+y^{2} \leq 1$. Now again let's look at

An example

- Find the global extrema of $f(x, y, z)=x^{2}-y^{2}+3 z^{2}$ on $x^{2}+y^{2}+z^{2} \leq 1$.
- f is diff everywhere. Let's look at critical points first:
$\nabla f=(2 x,-2 y, 6 z)$ which vanishes only at the origin (which lies in S). The value of f there is 0 .
- On the boundary of S, i.e, on the sphere $x^{2}+y^{2}+z^{2}=1$, We see that $f(x, y)=x^{2}-y^{2}+3\left(1-x^{2}-y^{2}\right)=3-2 x^{2}-4 y^{2}$ on $x^{2}+y^{2} \leq 1$. Now again let's look at critical points:

An example

- Find the global extrema of $f(x, y, z)=x^{2}-y^{2}+3 z^{2}$ on $x^{2}+y^{2}+z^{2} \leq 1$.
- f is diff everywhere. Let's look at critical points first:
$\nabla f=(2 x,-2 y, 6 z)$ which vanishes only at the origin (which lies in S). The value of f there is 0 .
- On the boundary of S, i.e, on the sphere $x^{2}+y^{2}+z^{2}=1$, We see that $f(x, y)=x^{2}-y^{2}+3\left(1-x^{2}-y^{2}\right)=3-2 x^{2}-4 y^{2}$ on $x^{2}+y^{2} \leq 1$. Now again let's look at critical points: $\nabla f=(-4 x,-8 y)$ which is 0 at

An example

- Find the global extrema of $f(x, y, z)=x^{2}-y^{2}+3 z^{2}$ on $x^{2}+y^{2}+z^{2} \leq 1$.
- f is diff everywhere. Let's look at critical points first:
$\nabla f=(2 x,-2 y, 6 z)$ which vanishes only at the origin (which lies in S). The value of f there is 0 .
- On the boundary of S, i.e, on the sphere $x^{2}+y^{2}+z^{2}=1$, We see that $f(x, y)=x^{2}-y^{2}+3\left(1-x^{2}-y^{2}\right)=3-2 x^{2}-4 y^{2}$ on $x^{2}+y^{2} \leq 1$. Now again let's look at critical points: $\nabla f=(-4 x,-8 y)$ which is 0 at $(0,0)$ lying in $x^{2}+y^{2} \leq 1$.

An example

- Find the global extrema of $f(x, y, z)=x^{2}-y^{2}+3 z^{2}$ on $x^{2}+y^{2}+z^{2} \leq 1$.
- f is diff everywhere. Let's look at critical points first:
$\nabla f=(2 x,-2 y, 6 z)$ which vanishes only at the origin (which lies in S). The value of f there is 0 .
- On the boundary of S, i.e, on the sphere $x^{2}+y^{2}+z^{2}=1$, We see that $f(x, y)=x^{2}-y^{2}+3\left(1-x^{2}-y^{2}\right)=3-2 x^{2}-4 y^{2}$ on $x^{2}+y^{2} \leq 1$. Now again let's look at critical points: $\nabla f=(-4 x,-8 y)$ which is 0 at $(0,0)$ lying in $x^{2}+y^{2} \leq 1$. The value of f is 3 there.

An example

- Find the global extrema of $f(x, y, z)=x^{2}-y^{2}+3 z^{2}$ on $x^{2}+y^{2}+z^{2} \leq 1$.
- f is diff everywhere. Let's look at critical points first: $\nabla f=(2 x,-2 y, 6 z)$ which vanishes only at the origin (which lies in S). The value of f there is 0 .
- On the boundary of S, i.e, on the sphere $x^{2}+y^{2}+z^{2}=1$, We see that $f(x, y)=x^{2}-y^{2}+3\left(1-x^{2}-y^{2}\right)=3-2 x^{2}-4 y^{2}$ on $x^{2}+y^{2} \leq 1$. Now again let's look at critical points: $\nabla f=(-4 x,-8 y)$ which is 0 at $(0,0)$ lying in $x^{2}+y^{2} \leq 1$. The value of f is 3 there. Let's look at the boundary $x^{2}+y^{2}=1$.

An example

- Find the global extrema of $f(x, y, z)=x^{2}-y^{2}+3 z^{2}$ on $x^{2}+y^{2}+z^{2} \leq 1$.
- f is diff everywhere. Let's look at critical points first:
$\nabla f=(2 x,-2 y, 6 z)$ which vanishes only at the origin (which lies in S). The value of f there is 0 .
- On the boundary of S, i.e, on the sphere $x^{2}+y^{2}+z^{2}=1$, We see that $f(x, y)=x^{2}-y^{2}+3\left(1-x^{2}-y^{2}\right)=3-2 x^{2}-4 y^{2}$ on $x^{2}+y^{2} \leq 1$. Now again let's look at critical points: $\nabla f=(-4 x,-8 y)$ which is 0 at $(0,0)$ lying in $x^{2}+y^{2} \leq 1$.
The value of f is 3 there. Let's look at the boundary $x^{2}+y^{2}=1$. There, $f(x)=3-2 x^{2}-4\left(1-x^{2}\right)=-1+2 x^{2}$ and $-1 \leq x \leq 1$.

An example

- Find the global extrema of $f(x, y, z)=x^{2}-y^{2}+3 z^{2}$ on $x^{2}+y^{2}+z^{2} \leq 1$.
- f is diff everywhere. Let's look at critical points first:
$\nabla f=(2 x,-2 y, 6 z)$ which vanishes only at the origin (which lies in S). The value of f there is 0 .
- On the boundary of S, i.e, on the sphere $x^{2}+y^{2}+z^{2}=1$, We see that $f(x, y)=x^{2}-y^{2}+3\left(1-x^{2}-y^{2}\right)=3-2 x^{2}-4 y^{2}$ on $x^{2}+y^{2} \leq 1$. Now again let's look at critical points: $\nabla f=(-4 x,-8 y)$ which is 0 at $(0,0)$ lying in $x^{2}+y^{2} \leq 1$.
The value of f is 3 there. Let's look at the boundary $x^{2}+y^{2}=1$. There, $f(x)=3-2 x^{2}-4\left(1-x^{2}\right)=-1+2 x^{2}$ and $-1 \leq x \leq 1$. Again $f^{\prime}=4 x=0$ when

An example

- Find the global extrema of $f(x, y, z)=x^{2}-y^{2}+3 z^{2}$ on $x^{2}+y^{2}+z^{2} \leq 1$.
- f is diff everywhere. Let's look at critical points first:
$\nabla f=(2 x,-2 y, 6 z)$ which vanishes only at the origin (which lies in S). The value of f there is 0 .
- On the boundary of S, i.e, on the sphere $x^{2}+y^{2}+z^{2}=1$, We see that $f(x, y)=x^{2}-y^{2}+3\left(1-x^{2}-y^{2}\right)=3-2 x^{2}-4 y^{2}$ on $x^{2}+y^{2} \leq 1$. Now again let's look at critical points: $\nabla f=(-4 x,-8 y)$ which is 0 at $(0,0)$ lying in $x^{2}+y^{2} \leq 1$.
The value of f is 3 there. Let's look at the boundary $x^{2}+y^{2}=1$. There, $f(x)=3-2 x^{2}-4\left(1-x^{2}\right)=-1+2 x^{2}$ and $-1 \leq x \leq 1$. Again $f^{\prime}=4 x=0$ when $x=0 \in[-1,1]$.

An example

- Find the global extrema of $f(x, y, z)=x^{2}-y^{2}+3 z^{2}$ on $x^{2}+y^{2}+z^{2} \leq 1$.
- f is diff everywhere. Let's look at critical points first:
$\nabla f=(2 x,-2 y, 6 z)$ which vanishes only at the origin (which lies in S). The value of f there is 0 .
- On the boundary of S, i.e, on the sphere $x^{2}+y^{2}+z^{2}=1$, We see that $f(x, y)=x^{2}-y^{2}+3\left(1-x^{2}-y^{2}\right)=3-2 x^{2}-4 y^{2}$ on $x^{2}+y^{2} \leq 1$. Now again let's look at critical points: $\nabla f=(-4 x,-8 y)$ which is 0 at $(0,0)$ lying in $x^{2}+y^{2} \leq 1$.
The value of f is 3 there. Let's look at the boundary $x^{2}+y^{2}=1$. There, $f(x)=3-2 x^{2}-4\left(1-x^{2}\right)=-1+2 x^{2}$ and $-1 \leq x \leq 1$. Again $f^{\prime}=4 x=0$ when $x=0 \in[-1,1]$. There $f(0)=-1$.

An example

- Find the global extrema of $f(x, y, z)=x^{2}-y^{2}+3 z^{2}$ on $x^{2}+y^{2}+z^{2} \leq 1$.
- f is diff everywhere. Let's look at critical points first: $\nabla f=(2 x,-2 y, 6 z)$ which vanishes only at the origin (which lies in S). The value of f there is 0 .
- On the boundary of S, i.e, on the sphere $x^{2}+y^{2}+z^{2}=1$, We see that $f(x, y)=x^{2}-y^{2}+3\left(1-x^{2}-y^{2}\right)=3-2 x^{2}-4 y^{2}$ on $x^{2}+y^{2} \leq 1$. Now again let's look at critical points: $\nabla f=(-4 x,-8 y)$ which is 0 at $(0,0)$ lying in $x^{2}+y^{2} \leq 1$.
The value of f is 3 there. Let's look at the boundary $x^{2}+y^{2}=1$. There, $f(x)=3-2 x^{2}-4\left(1-x^{2}\right)=-1+2 x^{2}$ and $-1 \leq x \leq 1$. Again $f^{\prime}=4 x=0$ when $x=0 \in[-1,1]$. There $f(0)=-1$. At the end-points,

An example

- Find the global extrema of $f(x, y, z)=x^{2}-y^{2}+3 z^{2}$ on $x^{2}+y^{2}+z^{2} \leq 1$.
- f is diff everywhere. Let's look at critical points first: $\nabla f=(2 x,-2 y, 6 z)$ which vanishes only at the origin (which lies in S). The value of f there is 0 .
- On the boundary of S, i.e, on the sphere $x^{2}+y^{2}+z^{2}=1$, We see that $f(x, y)=x^{2}-y^{2}+3\left(1-x^{2}-y^{2}\right)=3-2 x^{2}-4 y^{2}$ on $x^{2}+y^{2} \leq 1$. Now again let's look at critical points: $\nabla f=(-4 x,-8 y)$ which is 0 at $(0,0)$ lying in $x^{2}+y^{2} \leq 1$.
The value of f is 3 there. Let's look at the boundary $x^{2}+y^{2}=1$. There, $f(x)=3-2 x^{2}-4\left(1-x^{2}\right)=-1+2 x^{2}$ and $-1 \leq x \leq 1$. Again $f^{\prime}=4 x=0$ when $x=0 \in[-1,1]$. There $f(0)=-1$. At the end-points, $f(-1)=f(1)=1$.

An example

- Find the global extrema of $f(x, y, z)=x^{2}-y^{2}+3 z^{2}$ on $x^{2}+y^{2}+z^{2} \leq 1$.
- f is diff everywhere. Let's look at critical points first: $\nabla f=(2 x,-2 y, 6 z)$ which vanishes only at the origin (which lies in S). The value of f there is 0 .
- On the boundary of S, i.e, on the sphere $x^{2}+y^{2}+z^{2}=1$, We see that $f(x, y)=x^{2}-y^{2}+3\left(1-x^{2}-y^{2}\right)=3-2 x^{2}-4 y^{2}$ on $x^{2}+y^{2} \leq 1$. Now again let's look at critical points: $\nabla f=(-4 x,-8 y)$ which is 0 at $(0,0)$ lying in $x^{2}+y^{2} \leq 1$.
The value of f is 3 there. Let's look at the boundary $x^{2}+y^{2}=1$. There, $f(x)=3-2 x^{2}-4\left(1-x^{2}\right)=-1+2 x^{2}$ and $-1 \leq x \leq 1$. Again $f^{\prime}=4 x=0$ when $x=0 \in[-1,1]$. There $f(0)=-1$. At the end-points, $f(-1)=f(1)=1$.
- Thus the

An example

- Find the global extrema of $f(x, y, z)=x^{2}-y^{2}+3 z^{2}$ on $x^{2}+y^{2}+z^{2} \leq 1$.
- f is diff everywhere. Let's look at critical points first: $\nabla f=(2 x,-2 y, 6 z)$ which vanishes only at the origin (which lies in S). The value of f there is 0 .
- On the boundary of S, i.e, on the sphere $x^{2}+y^{2}+z^{2}=1$, We see that $f(x, y)=x^{2}-y^{2}+3\left(1-x^{2}-y^{2}\right)=3-2 x^{2}-4 y^{2}$ on $x^{2}+y^{2} \leq 1$. Now again let's look at critical points: $\nabla f=(-4 x,-8 y)$ which is 0 at $(0,0)$ lying in $x^{2}+y^{2} \leq 1$.
The value of f is 3 there. Let's look at the boundary $x^{2}+y^{2}=1$. There, $f(x)=3-2 x^{2}-4\left(1-x^{2}\right)=-1+2 x^{2}$ and $-1 \leq x \leq 1$. Again $f^{\prime}=4 x=0$ when $x=0 \in[-1,1]$. There $f(0)=-1$. At the end-points, $f(-1)=f(1)=1$.
- Thus the global max value is 3 occuring at $(0,0, \pm 1)$

An example

- Find the global extrema of $f(x, y, z)=x^{2}-y^{2}+3 z^{2}$ on $x^{2}+y^{2}+z^{2} \leq 1$.
- f is diff everywhere. Let's look at critical points first: $\nabla f=(2 x,-2 y, 6 z)$ which vanishes only at the origin (which lies in S). The value of f there is 0 .
- On the boundary of S, i.e, on the sphere $x^{2}+y^{2}+z^{2}=1$, We see that $f(x, y)=x^{2}-y^{2}+3\left(1-x^{2}-y^{2}\right)=3-2 x^{2}-4 y^{2}$ on $x^{2}+y^{2} \leq 1$. Now again let's look at critical points: $\nabla f=(-4 x,-8 y)$ which is 0 at $(0,0)$ lying in $x^{2}+y^{2} \leq 1$. The value of f is 3 there. Let's look at the boundary $x^{2}+y^{2}=1$. There, $f(x)=3-2 x^{2}-4\left(1-x^{2}\right)=-1+2 x^{2}$ and $-1 \leq x \leq 1$. Again $f^{\prime}=4 x=0$ when $x=0 \in[-1,1]$. There $f(0)=-1$. At the end-points, $f(-1)=f(1)=1$.
- Thus the global max value is 3 occuring at $(0,0, \pm 1)$ and the global min value is -1 occuring at

An example

- Find the global extrema of $f(x, y, z)=x^{2}-y^{2}+3 z^{2}$ on $x^{2}+y^{2}+z^{2} \leq 1$.
- f is diff everywhere. Let's look at critical points first: $\nabla f=(2 x,-2 y, 6 z)$ which vanishes only at the origin (which lies in S). The value of f there is 0 .
- On the boundary of S, i.e, on the sphere $x^{2}+y^{2}+z^{2}=1$, We see that $f(x, y)=x^{2}-y^{2}+3\left(1-x^{2}-y^{2}\right)=3-2 x^{2}-4 y^{2}$ on $x^{2}+y^{2} \leq 1$. Now again let's look at critical points: $\nabla f=(-4 x,-8 y)$ which is 0 at $(0,0)$ lying in $x^{2}+y^{2} \leq 1$. The value of f is 3 there. Let's look at the boundary $x^{2}+y^{2}=1$. There, $f(x)=3-2 x^{2}-4\left(1-x^{2}\right)=-1+2 x^{2}$ and $-1 \leq x \leq 1$. Again $f^{\prime}=4 x=0$ when $x=0 \in[-1,1]$. There $f(0)=-1$. At the end-points, $f(-1)=f(1)=1$.
- Thus the global max value is 3 occuring at $(0,0, \pm 1)$ and the global min value is -1 occuring at $(0, \pm 1,0)$.

Second-derivative test

Second-derivative test

- Before formulating

Second-derivative test

- Before formulating a second-derivative test

Second-derivative test

- Before formulating a second-derivative test for local extrema,

Second-derivative test

- Before formulating a second-derivative test for local extrema, note this curious phenomenon:

Second-derivative test

- Before formulating a second-derivative test for local extrema, note this curious phenomenon: Consider $f(x, y)=x^{2}-y^{2}$.

Second-derivative test

- Before formulating a second-derivative test for local extrema, note this curious phenomenon: Consider $f(x, y)=x^{2}-y^{2}$. Note that $\nabla f=(2 x,-2 y)=(0,0)$ when $(x, y)=(0,0)$.

Second-derivative test

- Before formulating a second-derivative test for local extrema, note this curious phenomenon: Consider $f(x, y)=x^{2}-y^{2}$. Note that $\nabla f=(2 x,-2 y)=(0,0)$ when $(x, y)=(0,0)$. Note that

Second-derivative test

- Before formulating a second-derivative test for local extrema, note this curious phenomenon: Consider $f(x, y)=x^{2}-y^{2}$. Note that $\nabla f=(2 x,-2 y)=(0,0)$ when $(x, y)=(0,0)$. Note that f does not

Second-derivative test

- Before formulating a second-derivative test for local extrema, note this curious phenomenon: Consider $f(x, y)=x^{2}-y^{2}$. Note that $\nabla f=(2 x,-2 y)=(0,0)$ when $(x, y)=(0,0)$. Note that f does not assume a local extremum

Second-derivative test

- Before formulating a second-derivative test for local extrema, note this curious phenomenon: Consider $f(x, y)=x^{2}-y^{2}$. Note that $\nabla f=(2 x,-2 y)=(0,0)$ when $(x, y)=(0,0)$. Note that f does not assume a local extremum at $(0,0)$.

Second-derivative test

- Before formulating a second-derivative test for local extrema, note this curious phenomenon: Consider $f(x, y)=x^{2}-y^{2}$. Note that $\nabla f=(2 x,-2 y)=(0,0)$ when $(x, y)=(0,0)$. Note that f does not assume a local extremum at $(0,0)$. This is not because

Second-derivative test

- Before formulating a second-derivative test for local extrema, note this curious phenomenon: Consider $f(x, y)=x^{2}-y^{2}$. Note that $\nabla f=(2 x,-2 y)=(0,0)$ when $(x, y)=(0,0)$. Note that f does not assume a local extremum at $(0,0)$. This is not because the second derivatives vanish.
- Before formulating a second-derivative test for local extrema, note this curious phenomenon: Consider $f(x, y)=x^{2}-y^{2}$. Note that $\nabla f=(2 x,-2 y)=(0,0)$ when $(x, y)=(0,0)$. Note that f does not assume a local extremum at $(0,0)$. This is not because the second derivatives vanish. Indeed, $f_{x x}=2, f_{y y}=-2, f_{x y}=f_{y x}=0$.
- Before formulating a second-derivative test for local extrema, note this curious phenomenon: Consider $f(x, y)=x^{2}-y^{2}$. Note that $\nabla f=(2 x,-2 y)=(0,0)$ when $(x, y)=(0,0)$. Note that f does not assume a local extremum at $(0,0)$. This is not because the second derivatives vanish. Indeed, $f_{x x}=2, f_{y y}=-2, f_{x y}=f_{y x}=0$. Rather, in some direction(s)
- Before formulating a second-derivative test for local extrema, note this curious phenomenon: Consider $f(x, y)=x^{2}-y^{2}$. Note that $\nabla f=(2 x,-2 y)=(0,0)$ when $(x, y)=(0,0)$. Note that f does not assume a local extremum at $(0,0)$. This is not because the second derivatives vanish. Indeed, $f_{x x}=2, f_{y y}=-2, f_{x y}=f_{y x}=0$. Rather, in some direction(s) that is, along $(0,1)$,
- Before formulating a second-derivative test for local extrema, note this curious phenomenon: Consider $f(x, y)=x^{2}-y^{2}$. Note that $\nabla f=(2 x,-2 y)=(0,0)$ when $(x, y)=(0,0)$. Note that f does not assume a local extremum at $(0,0)$. This is not because the second derivatives vanish. Indeed, $f_{x x}=2, f_{y y}=-2, f_{x y}=f_{y x}=0$. Rather, in some direction(s) that is, along $(0,1), f$ decreases and
- Before formulating a second-derivative test for local extrema, note this curious phenomenon: Consider $f(x, y)=x^{2}-y^{2}$. Note that $\nabla f=(2 x,-2 y)=(0,0)$ when $(x, y)=(0,0)$. Note that f does not assume a local extremum at $(0,0)$. This is not because the second derivatives vanish. Indeed, $f_{x x}=2, f_{y y}=-2, f_{x y}=f_{y x}=0$. Rather, in some direction(s) that is, along (0,1), f decreases and in some other(s)
- Before formulating a second-derivative test for local extrema, note this curious phenomenon: Consider $f(x, y)=x^{2}-y^{2}$. Note that $\nabla f=(2 x,-2 y)=(0,0)$ when $(x, y)=(0,0)$. Note that f does not assume a local extremum at $(0,0)$. This is not because the second derivatives vanish. Indeed, $f_{x x}=2, f_{y y}=-2, f_{x y}=f_{y x}=0$. Rather, in some direction(s) that is, along $(0,1), f$ decreases and in some other(s) (along $(1,0))$ it increases.
- Before formulating a second-derivative test for local extrema, note this curious phenomenon: Consider $f(x, y)=x^{2}-y^{2}$. Note that $\nabla f=(2 x,-2 y)=(0,0)$ when $(x, y)=(0,0)$. Note that f does not assume a local extremum at $(0,0)$. This is not because the second derivatives vanish. Indeed, $f_{x x}=2, f_{y y}=-2, f_{x y}=f_{y x}=0$. Rather, in some direction(s) that is, along $(0,1), f$ decreases and in some other(s) (along $(1,0))$ it increases.
- Definition:
- Before formulating a second-derivative test for local extrema, note this curious phenomenon: Consider $f(x, y)=x^{2}-y^{2}$. Note that $\nabla f=(2 x,-2 y)=(0,0)$ when $(x, y)=(0,0)$. Note that f does not assume a local extremum at $(0,0)$. This is not because the second derivatives vanish. Indeed, $f_{x x}=2, f_{y y}=-2, f_{x y}=f_{y x}=0$. Rather, in some direction(s) that is, along $(0,1), f$ decreases and in some other(s) (along $(1,0))$ it increases.
- Definition: A critical point is said to be
- Before formulating a second-derivative test for local extrema, note this curious phenomenon: Consider $f(x, y)=x^{2}-y^{2}$. Note that $\nabla f=(2 x,-2 y)=(0,0)$ when $(x, y)=(0,0)$. Note that f does not assume a local extremum at $(0,0)$. This is not because the second derivatives vanish. Indeed, $f_{x x}=2, f_{y y}=-2, f_{x y}=f_{y x}=0$. Rather, in some direction(s) that is, along $(0,1), f$ decreases and in some other(s) (along $(1,0))$ it increases.
- Definition: A critical point is said to be a saddle point
- Before formulating a second-derivative test for local extrema, note this curious phenomenon: Consider $f(x, y)=x^{2}-y^{2}$. Note that $\nabla f=(2 x,-2 y)=(0,0)$ when $(x, y)=(0,0)$. Note that f does not assume a local extremum at $(0,0)$. This is not because the second derivatives vanish. Indeed, $f_{x x}=2, f_{y y}=-2, f_{x y}=f_{y x}=0$. Rather, in some direction(s) that is, along $(0,1), f$ decreases and in some other(s) (along $(1,0))$ it increases.
- Definition: A critical point is said to be a saddle point if every
- Before formulating a second-derivative test for local extrema, note this curious phenomenon: Consider $f(x, y)=x^{2}-y^{2}$. Note that $\nabla f=(2 x,-2 y)=(0,0)$ when $(x, y)=(0,0)$. Note that f does not assume a local extremum at $(0,0)$. This is not because the second derivatives vanish. Indeed, $f_{x x}=2, f_{y y}=-2, f_{x y}=f_{y x}=0$. Rather, in some direction(s) that is, along $(0,1), f$ decreases and in some other(s) (along $(1,0))$ it increases.
- Definition: A critical point is said to be a saddle point if every open ball containing \vec{a}
- Before formulating a second-derivative test for local extrema, note this curious phenomenon: Consider $f(x, y)=x^{2}-y^{2}$. Note that $\nabla f=(2 x,-2 y)=(0,0)$ when $(x, y)=(0,0)$. Note that f does not assume a local extremum at $(0,0)$. This is not because the second derivatives vanish. Indeed, $f_{x x}=2, f_{y y}=-2, f_{x y}=f_{y x}=0$. Rather, in some direction(s) that is, along $(0,1), f$ decreases and in some other(s) (along $(1,0))$ it increases.
- Definition: A critical point is said to be a saddle point if every open ball containing \vec{a} lying completely in the domain,
- Before formulating a second-derivative test for local extrema, note this curious phenomenon: Consider $f(x, y)=x^{2}-y^{2}$. Note that $\nabla f=(2 x,-2 y)=(0,0)$ when $(x, y)=(0,0)$. Note that f does not assume a local extremum at $(0,0)$. This is not because the second derivatives vanish. Indeed, $f_{x x}=2, f_{y y}=-2, f_{x y}=f_{y x}=0$. Rather, in some direction(s) that is, along $(0,1), f$ decreases and in some other(s) (along $(1,0))$ it increases.
- Definition: A critical point is said to be a saddle point if every open ball containing \vec{a} lying completely in the domain, contains points $\overrightarrow{r_{1}}, \overrightarrow{r_{2}}$ such that
- Before formulating a second-derivative test for local extrema, note this curious phenomenon: Consider $f(x, y)=x^{2}-y^{2}$. Note that $\nabla f=(2 x,-2 y)=(0,0)$ when $(x, y)=(0,0)$. Note that f does not assume a local extremum at $(0,0)$. This is not because the second derivatives vanish. Indeed, $f_{x x}=2, f_{y y}=-2, f_{x y}=f_{y x}=0$. Rather, in some direction(s) that is, along $(0,1), f$ decreases and in some other(s) (along $(1,0))$ it increases.
- Definition: A critical point is said to be a saddle point if every open ball containing \vec{a} lying completely in the domain, contains points \vec{r}_{1}, \vec{r}_{2} such that $f\left(\overrightarrow{r_{1}}\right)>f(\vec{a})$ and $f\left(\vec{r}_{2}\right)<f(\vec{a})$.
- Before formulating a second-derivative test for local extrema, note this curious phenomenon: Consider $f(x, y)=x^{2}-y^{2}$. Note that $\nabla f=(2 x,-2 y)=(0,0)$ when $(x, y)=(0,0)$. Note that f does not assume a local extremum at $(0,0)$. This is not because the second derivatives vanish. Indeed, $f_{x x}=2, f_{y y}=-2, f_{x y}=f_{y x}=0$. Rather, in some direction(s) that is, along $(0,1), f$ decreases and in some other(s) (along $(1,0))$ it increases.
- Definition: A critical point is said to be a saddle point if every open ball containing \vec{a} lying completely in the domain, contains points $\overrightarrow{r_{1}}, \overrightarrow{r_{2}}$ such that $f\left(\overrightarrow{r_{1}}\right)>f(\vec{a})$ and $f\left(\overrightarrow{r_{2}}\right)<f(\vec{a})$. In the example above
- Before formulating a second-derivative test for local extrema, note this curious phenomenon: Consider $f(x, y)=x^{2}-y^{2}$. Note that $\nabla f=(2 x,-2 y)=(0,0)$ when $(x, y)=(0,0)$. Note that f does not assume a local extremum at $(0,0)$. This is not because the second derivatives vanish. Indeed, $f_{x x}=2, f_{y y}=-2, f_{x y}=f_{y x}=0$. Rather, in some direction(s) that is, along $(0,1), f$ decreases and in some other(s) (along $(1,0))$ it increases.
- Definition: A critical point is said to be a saddle point if every open ball containing \vec{a} lying completely in the domain, contains points $\vec{r}_{1}, \overrightarrow{r_{2}}$ such that $f\left(\overrightarrow{r_{1}}\right)>f(\vec{a})$ and $f\left(\overrightarrow{r_{2}}\right)<f(\vec{a})$. In the example above $(0,0)$ is a saddle point.

Second-order Taylor expansion

Second-order Taylor expansion

- Let \vec{a} be a critical point

Second-order Taylor expansion

- Let \vec{a} be a critical point of f. Suppose f is C^{3}

Second-order Taylor expansion

- Let \vec{a} be a critical point of f. Suppose f is C^{3} in a neighbourhood of \vec{a} (

Second-order Taylor expansion

- Let \vec{a} be a critical point of f. Suppose f is C^{3} in a neighbourhood of \vec{a} (that is, the first, second, and third partials

Second-order Taylor expansion

- Let \vec{a} be a critical point of f. Suppose f is C^{3} in a neighbourhood of \vec{a} (that is, the first, second, and third partials exist in a neighbourhood of a

Second-order Taylor expansion

- Let \vec{a} be a critical point of f. Suppose f is C^{3} in a neighbourhood of \vec{a} (that is, the first, second, and third partials exist in a neighbourhood of a and are continuous there;

Second-order Taylor expansion

- Let \vec{a} be a critical point of f. Suppose f is C^{3} in a neighbourhood of \vec{a} (that is, the first, second, and third partials exist in a neighbourhood of a and are continuous there; by Clairut, the mixed partials are equal).

Second-order Taylor expansion

- Let \vec{a} be a critical point of f. Suppose f is C^{3} in a neighbourhood of \vec{a} (that is, the first, second, and third partials exist in a neighbourhood of a and are continuous there; by Clairut, the mixed partials are equal).
- Theorem:

Second-order Taylor expansion

- Let \vec{a} be a critical point of f. Suppose f is C^{3} in a neighbourhood of \vec{a} (that is, the first, second, and third partials exist in a neighbourhood of a and are continuous there; by Clairut, the mixed partials are equal).
- Theorem: Under the above assumptions,

Second-order Taylor expansion

- Let \vec{a} be a critical point of f. Suppose f is C^{3} in a neighbourhood of \vec{a} (that is, the first, second, and third partials exist in a neighbourhood of a and are continuous there; by Clairut, the mixed partials are equal).
- Theorem: Under the above assumptions, for all \vec{h} lying in a

Second-order Taylor expansion

- Let \vec{a} be a critical point of f. Suppose f is C^{3} in a neighbourhood of \vec{a} (that is, the first, second, and third partials exist in a neighbourhood of a and are continuous there; by Clairut, the mixed partials are equal).
- Theorem: Under the above assumptions, for all \vec{h} lying in a certain neighbourhood of $\overrightarrow{0}$,

Second-order Taylor expansion

- Let \vec{a} be a critical point of f. Suppose f is C^{3} in a neighbourhood of \vec{a} (that is, the first, second, and third partials exist in a neighbourhood of a and are continuous there; by Clairut, the mixed partials are equal).
- Theorem: Under the above assumptions, for all \vec{h} lying in a certain neighbourhood of $\overrightarrow{0}$,

$$
\left|f(\vec{a}+\vec{h})-f(\vec{a})-\nabla_{\vec{h}} f(\vec{a})-\frac{1}{2} \sum_{i, j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\vec{a}) h_{i} h_{j}\right| \leq C\|h\|^{3} \text { for }
$$ some $C>0$.

Second-order Taylor expansion

- Let \vec{a} be a critical point of f. Suppose f is C^{3} in a neighbourhood of \vec{a} (that is, the first, second, and third partials exist in a neighbourhood of a and are continuous there; by Clairut, the mixed partials are equal).
- Theorem: Under the above assumptions, for all \vec{h} lying in a certain neighbourhood of $\overrightarrow{0}$,

$$
\left|f(\vec{a}+\vec{h})-f(\vec{a})-\nabla_{\vec{h}} f(\vec{a})-\frac{1}{2} \sum_{i, j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\vec{a}) h_{i} h_{j}\right| \leq C\|h\|^{3} \text { for }
$$ some $C>0$.

- Proof: Consider $u(t)=f(\vec{a}+t \vec{h})$.

Second-order Taylor expansion

- Let \vec{a} be a critical point of f. Suppose f is C^{3} in a neighbourhood of \vec{a} (that is, the first, second, and third partials exist in a neighbourhood of a and are continuous there; by Clairut, the mixed partials are equal).
- Theorem: Under the above assumptions, for all \vec{h} lying in a certain neighbourhood of $\overrightarrow{0}$,

$$
\left|f(\vec{a}+\vec{h})-f(\vec{a})-\nabla_{\vec{h}} f(\vec{a})-\frac{1}{2} \sum_{i, j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\vec{a}) h_{i} h_{j}\right| \leq C\|h\|^{3} \text { for }
$$ some $C>0$.

- Proof: Consider $u(t)=f(\vec{a}+t \vec{h})$. By any application of

Second-order Taylor expansion

- Let \vec{a} be a critical point of f. Suppose f is C^{3} in a neighbourhood of \vec{a} (that is, the first, second, and third partials exist in a neighbourhood of a and are continuous there; by Clairut, the mixed partials are equal).
- Theorem: Under the above assumptions, for all \vec{h} lying in a certain neighbourhood of $\overrightarrow{0}$,

$$
\left|f(\vec{a}+\vec{h})-f(\vec{a})-\nabla_{\vec{h}} f(\vec{a})-\frac{1}{2} \sum_{i, j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\vec{a}) h_{i} h_{j}\right| \leq C\|h\|^{3} \text { for }
$$ some $C>0$.

- Proof: Consider $u(t)=f(\vec{a}+t \vec{h})$. By any application of the chain rule and properties of

Second-order Taylor expansion

- Let \vec{a} be a critical point of f. Suppose f is C^{3} in a neighbourhood of \vec{a} (that is, the first, second, and third partials exist in a neighbourhood of a and are continuous there; by Clairut, the mixed partials are equal).
- Theorem: Under the above assumptions, for all \vec{h} lying in a certain neighbourhood of $\overrightarrow{0}$, $\left|f(\vec{a}+\vec{h})-f(\vec{a})-\nabla_{\vec{h}} f(\vec{a})-\frac{1}{2} \sum_{i, j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\vec{a}) h_{i} h_{j}\right| \leq C\|h\|^{3}$ for some $C>0$.
- Proof: Consider $u(t)=f(\vec{a}+t \vec{h})$. By any application of the chain rule and properties of continuity, we see that $u(t)$ is C^{3} in $(-\epsilon, \epsilon)$ for some $\epsilon>0$.

Second-order Taylor expansion

- Let \vec{a} be a critical point of f. Suppose f is C^{3} in a neighbourhood of \vec{a} (that is, the first, second, and third partials exist in a neighbourhood of a and are continuous there; by Clairut, the mixed partials are equal).
- Theorem: Under the above assumptions, for all \vec{h} lying in a certain neighbourhood of $\overrightarrow{0}$, $\left|f(\vec{a}+\vec{h})-f(\vec{a})-\nabla_{\vec{h}} f(\vec{a})-\frac{1}{2} \sum_{i, j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\vec{a}) h_{i} h_{j}\right| \leq C\|h\|^{3}$ for some $C>0$.
- Proof: Consider $u(t)=f(\vec{a}+t \vec{h})$. By any application of the chain rule and properties of continuity, we see that $u(t)$ is C^{3} in $(-\epsilon, \epsilon)$ for some $\epsilon>0$. Applying a precise

Second-order Taylor expansion

- Let \vec{a} be a critical point of f. Suppose f is C^{3} in a neighbourhood of \vec{a} (that is, the first, second, and third partials exist in a neighbourhood of a and are continuous there; by Clairut, the mixed partials are equal).
- Theorem: Under the above assumptions, for all \vec{h} lying in a certain neighbourhood of $\overrightarrow{0}$, $\left|f(\vec{a}+\vec{h})-f(\vec{a})-\nabla_{\vec{h}} f(\vec{a})-\frac{1}{2} \sum_{i, j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\vec{a}) h_{i} h_{j}\right| \leq C\|h\|^{3}$ for some $C>0$.
- Proof: Consider $u(t)=f(\vec{a}+t \vec{h})$. By any application of the chain rule and properties of continuity, we see that $u(t)$ is C^{3} in $(-\epsilon, \epsilon)$ for some $\epsilon>0$. Applying a precise version of the one-variable

Second-order Taylor expansion

- Let \vec{a} be a critical point of f. Suppose f is C^{3} in a neighbourhood of \vec{a} (that is, the first, second, and third partials exist in a neighbourhood of a and are continuous there; by Clairut, the mixed partials are equal).
- Theorem: Under the above assumptions, for all \vec{h} lying in a certain neighbourhood of $\overrightarrow{0}$, $\left|f(\vec{a}+\vec{h})-f(\vec{a})-\nabla_{\vec{h}} f(\vec{a})-\frac{1}{2} \sum_{i, j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\vec{a}) h_{i} h_{j}\right| \leq C\|h\|^{3}$ for some $C>0$.
- Proof: Consider $u(t)=f(\vec{a}+t \vec{h})$. By any application of the chain rule and properties of continuity, we see that $u(t)$ is C^{3} in $(-\epsilon, \epsilon)$ for some $\epsilon>0$. Applying a precise version of the one-variable Taylor theorem, it turns out that

Second-order Taylor expansion

- Let \vec{a} be a critical point of f. Suppose f is C^{3} in a neighbourhood of \vec{a} (that is, the first, second, and third partials exist in a neighbourhood of a and are continuous there; by Clairut, the mixed partials are equal).
- Theorem: Under the above assumptions, for all \vec{h} lying in a certain neighbourhood of $\overrightarrow{0}$,
$\left|f(\vec{a}+\vec{h})-f(\vec{a})-\nabla_{\vec{h}} f(\vec{a})-\frac{1}{2} \sum_{i, j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\vec{a}) h_{i} h_{j}\right| \leq C\|h\|^{3}$ for some $C>0$.
- Proof: Consider $u(t)=f(\vec{a}+t \vec{h})$. By any application of the chain rule and properties of continuity, we see that $u(t)$ is C^{3} in $(-\epsilon, \epsilon)$ for some $\epsilon>0$. Applying a precise version of the one-variable Taylor theorem, it turns out that $\left|u(t)-u(0)-u^{\prime}(0) t-\frac{u^{\prime \prime}(0)}{2} t^{2}\right| \leq C\left|t^{3}\right|$ in a neighbourhood of $t=0$

Second-order Taylor expansion

- Let \vec{a} be a critical point of f. Suppose f is C^{3} in a neighbourhood of \vec{a} (that is, the first, second, and third partials exist in a neighbourhood of a and are continuous there; by Clairut, the mixed partials are equal).
- Theorem: Under the above assumptions, for all \vec{h} lying in a certain neighbourhood of $\overrightarrow{0}$,
$\left|f(\vec{a}+\vec{h})-f(\vec{a})-\nabla_{\vec{h}} f(\vec{a})-\frac{1}{2} \sum_{i, j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\vec{a}) h_{i} h_{j}\right| \leq C\|h\|^{3}$ for some $C>0$.
- Proof: Consider $u(t)=f(\vec{a}+t \vec{h})$. By any application of the chain rule and properties of continuity, we see that $u(t)$ is C^{3} in $(-\epsilon, \epsilon)$ for some $\epsilon>0$. Applying a precise version of the one-variable Taylor theorem, it turns out that $\left|u(t)-u(0)-u^{\prime}(0) t-\frac{u^{\prime \prime}(0)}{2} t^{2}\right| \leq C\left|t^{3}\right|$ in a neighbourhood of $t=0$ and C does not depend on \vec{h}.

Second-order Taylor expansion

- Let \vec{a} be a critical point of f. Suppose f is C^{3} in a neighbourhood of \vec{a} (that is, the first, second, and third partials exist in a neighbourhood of a and are continuous there; by Clairut, the mixed partials are equal).
- Theorem: Under the above assumptions, for all \vec{h} lying in a certain neighbourhood of $\overrightarrow{0}$,
$\left|f(\vec{a}+\vec{h})-f(\vec{a})-\nabla_{\vec{h}} f(\vec{a})-\frac{1}{2} \sum_{i, j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\vec{a}) h_{i} h_{j}\right| \leq C\|h\|^{3}$ for some $C>0$.
- Proof: Consider $u(t)=f(\vec{a}+t \vec{h})$. By any application of the chain rule and properties of continuity, we see that $u(t)$ is C^{3} in $(-\epsilon, \epsilon)$ for some $\epsilon>0$. Applying a precise version of the one-variable Taylor theorem, it turns out that $\left|u(t)-u(0)-u^{\prime}(0) t-\frac{u^{\prime \prime}(0)}{2} t^{2}\right| \leq C\left|t^{3}\right|$ in a neighbourhood of $t=0$ and C does not depend on \vec{h}. Now $u^{\prime}(0)=\nabla_{\vec{h}} f(\vec{a})$.

Second-order Taylor expansion

- Let \vec{a} be a critical point of f. Suppose f is C^{3} in a neighbourhood of \vec{a} (that is, the first, second, and third partials exist in a neighbourhood of a and are continuous there; by Clairut, the mixed partials are equal).
- Theorem: Under the above assumptions, for all \vec{h} lying in a certain neighbourhood of $\overrightarrow{0}$,
$\left|f(\vec{a}+\vec{h})-f(\vec{a})-\nabla_{\vec{h}} f(\vec{a})-\frac{1}{2} \sum_{i, j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\vec{a}) h_{i} h_{j}\right| \leq C\|h\|^{3}$ for some $C>0$.
- Proof: Consider $u(t)=f(\vec{a}+t \vec{h})$. By any application of the chain rule and properties of continuity, we see that $u(t)$ is C^{3} in $(-\epsilon, \epsilon)$ for some $\epsilon>0$. Applying a precise version of the one-variable Taylor theorem, it turns out that $\left|u(t)-u(0)-u^{\prime}(0) t-\frac{u^{\prime \prime}(0)}{2} t^{2}\right| \leq C\left|t^{3}\right|$ in a neighbourhood of $t=0$ and C does not depend on \vec{h}. Now $u^{\prime}(0)=\nabla_{\vec{h}} f(\vec{a})$. In fact, $u^{\prime}(t)=\sum_{i} \frac{\partial f}{\partial x_{i}}(\vec{a}+t \vec{h}) h_{i}$.

Second-order Taylor expansion

- Let \vec{a} be a critical point of f. Suppose f is C^{3} in a neighbourhood of \vec{a} (that is, the first, second, and third partials exist in a neighbourhood of a and are continuous there; by Clairut, the mixed partials are equal).
- Theorem: Under the above assumptions, for all \vec{h} lying in a certain neighbourhood of $\overrightarrow{0}$,
$\left|f(\vec{a}+\vec{h})-f(\vec{a})-\nabla_{\vec{h}} f(\vec{a})-\frac{1}{2} \sum_{i, j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\vec{a}) h_{i} h_{j}\right| \leq C\|h\|^{3}$ for some $C>0$.
- Proof: Consider $u(t)=f(\vec{a}+t \vec{h})$. By any application of the chain rule and properties of continuity, we see that $u(t)$ is C^{3} in $(-\epsilon, \epsilon)$ for some $\epsilon>0$. Applying a precise version of the one-variable Taylor theorem, it turns out that
$\left|u(t)-u(0)-u^{\prime}(0) t-\frac{u^{\prime \prime}(0)}{2} t^{2}\right| \leq C\left|t^{3}\right|$ in a neighbourhood of $t=0$ and C does not depend on \vec{h}. Now $u^{\prime}(0)=\nabla_{\vec{h}} f(\vec{a})$. In fact, $u^{\prime}(t)=\sum_{i} \frac{\partial f}{\partial x_{i}}(\vec{a}+t \vec{h}) h_{i}$. Thus
$u^{\prime \prime}(0)=\sum_{i, j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\vec{a}) h_{i} h_{j}$.

Second-order Taylor expansion

- Let \vec{a} be a critical point of f. Suppose f is C^{3} in a neighbourhood of \vec{a} (that is, the first, second, and third partials exist in a neighbourhood of a and are continuous there; by Clairut, the mixed partials are equal).
- Theorem: Under the above assumptions, for all \vec{h} lying in a certain neighbourhood of $\overrightarrow{0}$,
$\left|f(\vec{a}+\vec{h})-f(\vec{a})-\nabla_{\vec{h}} f(\vec{a})-\frac{1}{2} \sum_{i, j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\vec{a}) h_{i} h_{j}\right| \leq C\|h\|^{3}$ for some $C>0$.
- Proof: Consider $u(t)=f(\vec{a}+t \vec{h})$. By any application of the chain rule and properties of continuity, we see that $u(t)$ is C^{3} in $(-\epsilon, \epsilon)$ for some $\epsilon>0$. Applying a precise version of the one-variable Taylor theorem, it turns out that
$\left|u(t)-u(0)-u^{\prime}(0) t-\frac{u^{\prime \prime}(0)}{2} t^{2}\right| \leq C\left|t^{3}\right|$ in a neighbourhood of $t=0$ and C does not depend on \vec{h}. Now $u^{\prime}(0)=\nabla_{\vec{h}} f(\vec{a})$. In fact, $u^{\prime}(t)=\sum_{i} \frac{\partial f}{\partial x_{i}}(\vec{a}+t \vec{h}) h_{i}$. Thus
$u^{\prime \prime}(0)=\sum_{i, j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\vec{a}) h_{i} h_{j}$. Now replace t with $|h|$ and h with

