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Recap

Defined local and global extrema in more than one variable.

Defined critical points and proved the first derivative test.

Did an example of global extrema.

Defined saddle points.

Proved the second-order Taylor theorem.
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Second-derivative test

Let ~a be a critical point of a scalar field f that is C 3 in a
neighbourhood of ~a. Then if

∑
i ,j

∂2f
∂xi∂xj

(~a)hihj > 0 for all

~h 6= ~0, i.e., the symmetric matrix H(~a) (the Hessian) given by

Hij(~a) = ∂2f
∂xi∂xj

(~a) is positive-definite, then ~a is a local

minimum. If H(~a) is negative-definite, then ~a is a local
maximum. If H is invertible but neither positive nor negative
definite, then ~a is a saddle point. (If H is not invertible, pray
to the flying spaghetti monster.)
This result raises the question “How does one figure out if a
Hermitian matrix H is positive-definite or not?”
Answer: Since H is Hermitian, it is diagonalisable as
H = U†DU for some unitary U. Thus
hTHh̄ = hTU†DUh̄ =

∑
i λi |(Uh̄)i |2 =

∑
i |yi |2λi where

y = Uh̄. Thus this expression is positive for all h if and only if
it is so for all y if and only λi > 0 for all i . Likewise, H is
negative-definite if and only if all the eigenvalues are negative.
It is invertible if and only if all of them are non-zero.
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Proof of the second-derivative test (slightly painful)

From the second-order Taylor expansion,
|f (~a + ~h)− f (~a)− 1

2h
TH(~a)h| ≤ C‖~h‖3.

As above, diagonalise H = ODO. Now
hTH(~a)h =

∑
i (Oh)2i λi . Thus, 1

2

∑
i |(Oh)i |2λi − C‖~h‖3 ≤

f (~a + ~h)− f (~a) ≤ 1
2

∑
i |(Oh)i |2λi + C‖~h‖3.

If H(~a) is positive-definite, then λi > 0. Let λi > c > 0 for all
i . Thus, f (~a + ~h)− f (~a) ≥ c

2‖~h‖
2 − C‖~h‖3. (Indeed,∑

i (Oh)2i = hTOTOh = hTh = ‖~h‖2.) If ‖h‖ < c
4C , then

f (~a +~h) ≥ f (~a). Thus it is a local min. Likewise for local max
and saddle points (HW).
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An example and concluding words

Find all local extrema of f (x , y) = x2 − xy − 2y2 on
x2 + y2 ≤ 16.

∇f = (2x − y ,−x − 4y) = (0, 0) precisely when
(x , y) = (0, 0). The second derivatives at (0, 0) are
fxx(0, 0) = 2, fyy (0, 0) = −4, fxy (0, 0) = fyx(0, 0) = −1. Thus

the Hessian matrix H is

[
2 −1
−1 −4

]
.

Its eigenvalues can be computed to be −1±
√

10 and hence it
is a saddle point. That is, there are no local extrema in the
region.

Ideally, we’d like to develop a method to handle local/global
extrema when constraints are imposed. This method is called
Lagrange’s multipliers. However, we shall postpone/skip it for
now.
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Line integrals

Suppose a force ~F field (like an electric field) is acting in a
region. What is the work done by this force to move a particle
along a path ~r(t) from ~r(0) to ~r(1)?

Naively, in time dt, the particle moves by ~dr = ~r ′(t)dt and
hence the work is dW = 〈~F , ~dr〉 = 〈~F (~r(t)), ~r ′(t)〉dt. The
corresponding integral is the total work done.

We want to put all of this on a rigorous footing.

Def: A continuous path in Rn is a continuous function
~α(t) : [a, b]→ Rn. A C 1 path is one where ~α(t) is C 1. A
piecewise C 1 path is one for which [a, b] can be partitioned
into finitely many sub-intervals such that ~α(t) is C 1 on each
of them.
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Line integrals

Def: Let ~α(t) be a piecewise C 1 path on J = [a, b] in Rn. Let
~F be a vector field defined on the image of ~α and is bounded.
The line integral of ~F along ~α is defined as∫
〈~F , d~α〉 =

∫ b
a 〈~F (~α(t)), d~αdt 〉dt whenever the integral exists.

In R3 it is also denoted as
∫
~α(F1dx + F2dy + F3dz).

Example: Let ~F =
√
y î + (x3 + y)ĵ for all (x , y) with y ≥ 0.

Calculate the line integral of ~F from (0, 0) to (1, 1) along each
of the two paths: ~α1(t) = (t, t), ~α2(t) = (t2, t3) where
0 ≤ t ≤ 1.

Firstly, ~F is continuous on its domain and ~αi are C 1. Hence
the integral exists. d~α

dt 1
(t) = (1, 1), d~α

dt 2
(t) = (2t, 3t2).

Moreover, ~F (~α1(t)) = (
√
t, t3 + t) and

~F (~α2(t)) = (t3/2, t6 + t3). Thus the integrals are∫ 1
0 (
√
t + t3 + t)dt = 17

12 and
∫ 1
0 (2t5/2 + (t6 + t3)3t2)dt = 59

42 .
Thus the line integral can depend on the path taken.
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y î + (x3 + y)ĵ for all (x , y) with y ≥ 0.

Calculate the line integral of ~F

from (0, 0) to (1, 1) along each
of the two paths: ~α1(t) = (t, t), ~α2(t) = (t2, t3) where
0 ≤ t ≤ 1.

Firstly, ~F is continuous on its domain and ~αi are C 1. Hence
the integral exists. d~α

dt 1
(t) = (1, 1), d~α

dt 2
(t) = (2t, 3t2).

Moreover, ~F (~α1(t)) = (
√
t, t3 + t) and

~F (~α2(t)) = (t3/2, t6 + t3). Thus the integrals are∫ 1
0 (
√
t + t3 + t)dt = 17

12 and
∫ 1
0 (2t5/2 + (t6 + t3)3t2)dt = 59

42 .
Thus the line integral can depend on the path taken.

Vamsi Pritham Pingali Lecture 32 7/10



Line integrals

Def: Let ~α(t) be a piecewise C 1 path on J = [a, b] in Rn. Let
~F be a vector field defined on the image of ~α and is bounded.
The line integral of ~F along ~α is defined as∫
〈~F , d~α〉 =

∫ b
a 〈~F (~α(t)), d~αdt 〉dt whenever the integral exists.

In R3 it is also denoted as
∫
~α(F1dx + F2dy + F3dz).

Example: Let ~F =
√
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dt 1
(t) = (1, 1), d~α

dt 2
(t) = (2t, 3t2).
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√
t, t3 + t) and
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0 (
√
t + t3 + t)dt = 17

12 and
∫ 1
0 (2t5/2 + (t6 + t3)3t2)dt = 59

42 .
Thus the line integral can depend on the path taken.
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y î + (x3 + y)ĵ for all (x , y) with y ≥ 0.

Calculate the line integral of ~F from (0, 0) to (1, 1) along each
of the two paths: ~α1(t) = (t, t), ~α2(t) = (t2, t3) where
0 ≤ t ≤ 1.

Firstly, ~F is continuous on its domain and ~αi are C 1. Hence
the integral exists. d~α

dt 1
(t) = (1, 1), d~α

dt 2
(t) = (2t, 3t2).

Moreover, ~F (~α1(t)) = (
√
t, t3 + t) and

~F (~α2(t)) = (t3/2, t6 + t3). Thus the integrals are

∫ 1
0 (
√
t + t3 + t)dt = 17

12 and
∫ 1
0 (2t5/2 + (t6 + t3)3t2)dt = 59

42 .
Thus the line integral can depend on the path taken.

Vamsi Pritham Pingali Lecture 32 7/10



Line integrals

Def: Let ~α(t) be a piecewise C 1 path on J = [a, b] in Rn. Let
~F be a vector field defined on the image of ~α and is bounded.
The line integral of ~F along ~α is defined as∫
〈~F , d~α〉 =

∫ b
a 〈~F (~α(t)), d~αdt 〉dt whenever the integral exists.

In R3 it is also denoted as
∫
~α(F1dx + F2dy + F3dz).

Example: Let ~F =
√
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Properties of Line integrals

What if we choose ~β(t) = (t2, t2)? Then d ~β
dt = (2t, 2t) and

hence the integral is∫ 1
0 (t, t6 + t2).(2t, 2t)dt =

∫ 1
0 2t2 + 2t7 + 2t3dt = 17

12 which is
precisely the integral over ~α1! This suggests that the line
integral may be invariant under reparametrisation.

The line integral satisfies linearity:∫
(a~F + b ~G ).d~α = a

∫
~F .d~α + b

∫
~G .d~α and additivity:∫

~α
~F .d~r =

∫
~α1

~F .d~r +
∫
~α2

~F .d~r if ~α(t) = ~α1 for t ∈ [a, c] and
~α(t) = ~α2 for t ∈ [c , b]. The proofs are easy.

Let u(t) : [a, b]→ [c , d ] be a C 1 function such that u′(t) 6= 0
for all t ∈ [a, b]. u is 1− 1 because either u′(t) > 0 for all t
or u′(t) < 0 for all t. So t is a function of u and it turns out
that t is C 1 in u. Such a u is called a change of parameter. If
u′ > 0 for all t, u is said to preserve orientation and reverse
orientation if u′ < 0 for all t.
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Reparametrisation

The paths ~α(u) : [c , d ]→ Rn and ~β(t) : [a, b]→ Rn related
by ~β(t) = ~α(u(t)) are said to be reparametrisations of each
other. Moreover, their ranges/images are the same geometric
object in Rn. That is, they are two paths parametrising the
same curve C . If u is orientation-preserving, then ~α, ~β are said
to trace out the curve C in the same direction as opposed to
the opposite direction for orientation-reversing u.
Theorem: Let ~α, ~β be piecewise C 1 paths that are
reparametrisations of each other. Then

∫
C
~F .d~α =

∫
C
~F .d ~β if

they trace out C in the same direction and∫
C
~F .d~α = −

∫
C
~F .d ~β if they do so in the opposite direction.

Proof: It is enough to prove it for C 1 paths by additivity. If
u′ > 0, then u(a) = c , u(b) = d . Thus, by substitution in the

integral
∫ d
c
~F (~α(u)).d~αdt (u)du we get∫ b

a
~F (~β(t)).d~α(u(t))u′(t)dt. By the chain rule,

d ~β
dt (t) = d~α

dt (u(t))u′(t). Thus we are done. If u′ < 0, the sign
changes because u(a) = d , u(b) = c .
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Back to Work

In the example above, the Work done seemed to depend on
the curve connecting the points. Its sign actually also depends
on the parametrisation used for the curve.

Forces for which the work is independent of the path taken
(as long as they trace out the same direction) are called
conservative forces. The example above is not conservative.

Paths for which ~α(a) = ~α(b) are called closed. Paths that are
1− 1 are called simple.

Work-Energy Theorem: The work done is equal to the change
in the Kinetic energy. Proof: ~F = m~r ′′. Thus,
~F .d~rdt = 1

2m
d
dt ‖~v‖

2. Integrating on both sides, we get the
result.
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dt ‖~v‖

2. Integrating on both sides,

we get the
result.
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Back to Work
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