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Recap

Second-derivative test and an example.

Line integrals, their properties, and reparametrisation
invariance.
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Multiple integrals

To evaluate volumes, fluxes, areas, etc, we need to develop
multivariable integration and a fundamental theorem of
calculus.

Roughly speaking, if f (~r) is a scalar field on a “rectangular”
domain, [a1, b1]× [a2, b2]× . . ., the integral∫ ∫ ∫

f (x1, . . .)dV ought to be defined as the sum over all
small rectangles. Hopefully, this definition will coincide with
the more naive definition of integrating one variable at a time
(multiple integrals vs iterated integrals).

To this end, we shall define/work with two variables, but
everything generalises word-to-word to more variables.
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Double integrals of step functions

Def: A partition P of [a, b]× [c , d ] is a subset P1 × P2 such
that P1 = {x0 = a, . . . , xn = b} and
P2 = {y0 = c, . . . , ym = d} are partitions of [a, b] and [c , d ]
respectively. A partition gives rise to a bunch of open
subrectangles. A partition P ′ is said to be finer than P if
P ⊂ P ′. Given any two partitions, their union is finer than
both and is called a common refinement.

Def: A function defined on a rectangle Q is said to be a step
function if there exists a partition on whose corresponding
open subrectangles, the function is a constant.

It is easy to show that if s1, s2 are step functions on Q, then
c1s1 + c2s2 is a step function on Q. Thus, step functions form
a real vector space.

The volume of a cuboid is Area× height. Hence we define:
Let f be a step function that takes cij on
(xi−1, xi )× (yj−1, yj) ⊂ Q. Then the double integral of f over
Q is defined by

∑
i ,j cij∆xi∆yj .
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Properties (HW)

As in 1-D, one can prove that this value is independent of the
partition chosen. We denote the sum as

∫ ∫
Q f (x , y)dA and

call it the double integral of f over Q. It is easy to prove that
this double integral equals the iterated integrals∫ b
a

∫ d
c f (x , y)dydx =

∫ d
c

∫ b
a f (x , y)dxdy .

Linearity:
∫ ∫

Q(c1s1 + c2s2)dA = c1
∫ ∫

Q s1dA + c2
∫ ∫

Q s2dA.

Additivity: If Q is divided into two rectangles that intersect
only in their sides, then

∫ ∫
Q sdA =

∫ ∫
Q1

sdA +
∫ ∫

Q2
sdA.

Comparison: If s ≤ t on Q, then
∫ ∫

sdA ≤
∫ ∫

tdA.
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Double integral of general bounded functions

Let f : Q → R be a bounded function, i.e., |f | ≤ M on Q.
Clearly, there exist step functions s, t such that s ≤ f ≤ t on
Q.

Def: If there exists a unique number I such that∫ ∫
Q s ≤ I ≤

∫ ∫
Q t for every pair of step functions s, t such

that s ≤ f ≤ t, then I is called the double integral of f over
Q and is denoted as

∫ ∫
Q fdA. If such an I exists, f is said to

be Riemann-integrable over Q.

Let S be the supremum of all numbers
∫ ∫

Q s where s is a
step function such that s ≤ f , and likewise, T be the infimum
of

∫
Q t where f ≤ t. Then

∫ ∫
Q s ≤ S ≤ T ≤

∫ ∫
Q t for all

s ≤ f ≤ t.

Thus f is R.I over Q if and only if S = T . T is called the
upper integral and S the lower integral.

As in 1D, and as for step functions in 2D, the additivity,
linearity, and comparison theorems continue to hold.
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Thus f is R.I over Q if and only if S = T . T is called the
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Fubini theorem for rectangles

Let f : Q → R be bounded and integrable (this assumption is
crucial!) Except for finitely many values, assume that

g(y) =
∫ b
a f (x , y)dx and h(x) =

∫ d
c f (x , y)dy exist, and are

integrable over [c , d ] and [a, b] respectively. Then∫ ∫
Q fdA =

∫ b
a

∫ d
c f (x , y)dydx =

∫ d
c

∫ b
a f (x , y)dxdy .

Proof: Let s ≤ f ≤ t. Integrate w.r.t x on both sides (valid
by assumptions and 1D-properties). Then integrate w.r.t y .
By definition, we are done.

This theorem allows us to calculate double integrals and
geometrically interpret the double integral as the volume
under a graph. Indeed, g(y) is the area of a cross-section and
its integral is the volume.

Vamsi Pritham Pingali Lecture 34 7/9



Fubini theorem for rectangles

Let f : Q → R be bounded

and integrable (this assumption is
crucial!) Except for finitely many values, assume that

g(y) =
∫ b
a f (x , y)dx and h(x) =

∫ d
c f (x , y)dy exist, and are

integrable over [c , d ] and [a, b] respectively. Then∫ ∫
Q fdA =

∫ b
a

∫ d
c f (x , y)dydx =

∫ d
c

∫ b
a f (x , y)dxdy .

Proof: Let s ≤ f ≤ t. Integrate w.r.t x on both sides (valid
by assumptions and 1D-properties). Then integrate w.r.t y .
By definition, we are done.

This theorem allows us to calculate double integrals and
geometrically interpret the double integral as the volume
under a graph. Indeed, g(y) is the area of a cross-section and
its integral is the volume.

Vamsi Pritham Pingali Lecture 34 7/9



Fubini theorem for rectangles

Let f : Q → R be bounded and integrable (

this assumption is
crucial!) Except for finitely many values, assume that

g(y) =
∫ b
a f (x , y)dx and h(x) =

∫ d
c f (x , y)dy exist, and are

integrable over [c , d ] and [a, b] respectively. Then∫ ∫
Q fdA =

∫ b
a

∫ d
c f (x , y)dydx =

∫ d
c

∫ b
a f (x , y)dxdy .

Proof: Let s ≤ f ≤ t. Integrate w.r.t x on both sides (valid
by assumptions and 1D-properties). Then integrate w.r.t y .
By definition, we are done.

This theorem allows us to calculate double integrals and
geometrically interpret the double integral as the volume
under a graph. Indeed, g(y) is the area of a cross-section and
its integral is the volume.

Vamsi Pritham Pingali Lecture 34 7/9



Fubini theorem for rectangles

Let f : Q → R be bounded and integrable (this assumption is
crucial!)

Except for finitely many values, assume that

g(y) =
∫ b
a f (x , y)dx and h(x) =

∫ d
c f (x , y)dy exist, and are

integrable over [c , d ] and [a, b] respectively. Then∫ ∫
Q fdA =

∫ b
a

∫ d
c f (x , y)dydx =

∫ d
c

∫ b
a f (x , y)dxdy .

Proof: Let s ≤ f ≤ t. Integrate w.r.t x on both sides (valid
by assumptions and 1D-properties). Then integrate w.r.t y .
By definition, we are done.

This theorem allows us to calculate double integrals and
geometrically interpret the double integral as the volume
under a graph. Indeed, g(y) is the area of a cross-section and
its integral is the volume.

Vamsi Pritham Pingali Lecture 34 7/9



Fubini theorem for rectangles

Let f : Q → R be bounded and integrable (this assumption is
crucial!) Except for finitely many values,

assume that

g(y) =
∫ b
a f (x , y)dx and h(x) =

∫ d
c f (x , y)dy exist, and are

integrable over [c , d ] and [a, b] respectively. Then∫ ∫
Q fdA =

∫ b
a

∫ d
c f (x , y)dydx =

∫ d
c

∫ b
a f (x , y)dxdy .

Proof: Let s ≤ f ≤ t. Integrate w.r.t x on both sides (valid
by assumptions and 1D-properties). Then integrate w.r.t y .
By definition, we are done.

This theorem allows us to calculate double integrals and
geometrically interpret the double integral as the volume
under a graph. Indeed, g(y) is the area of a cross-section and
its integral is the volume.

Vamsi Pritham Pingali Lecture 34 7/9



Fubini theorem for rectangles

Let f : Q → R be bounded and integrable (this assumption is
crucial!) Except for finitely many values, assume that

g(y) =
∫ b
a f (x , y)dx and h(x) =

∫ d
c f (x , y)dy exist, and

are
integrable over [c , d ] and [a, b] respectively. Then∫ ∫

Q fdA =
∫ b
a

∫ d
c f (x , y)dydx =

∫ d
c

∫ b
a f (x , y)dxdy .

Proof: Let s ≤ f ≤ t. Integrate w.r.t x on both sides (valid
by assumptions and 1D-properties). Then integrate w.r.t y .
By definition, we are done.

This theorem allows us to calculate double integrals and
geometrically interpret the double integral as the volume
under a graph. Indeed, g(y) is the area of a cross-section and
its integral is the volume.

Vamsi Pritham Pingali Lecture 34 7/9



Fubini theorem for rectangles

Let f : Q → R be bounded and integrable (this assumption is
crucial!) Except for finitely many values, assume that

g(y) =
∫ b
a f (x , y)dx and h(x) =

∫ d
c f (x , y)dy exist, and are

integrable over [c , d ] and [a, b] respectively.

Then∫ ∫
Q fdA =

∫ b
a

∫ d
c f (x , y)dydx =

∫ d
c

∫ b
a f (x , y)dxdy .

Proof: Let s ≤ f ≤ t. Integrate w.r.t x on both sides (valid
by assumptions and 1D-properties). Then integrate w.r.t y .
By definition, we are done.

This theorem allows us to calculate double integrals and
geometrically interpret the double integral as the volume
under a graph. Indeed, g(y) is the area of a cross-section and
its integral is the volume.

Vamsi Pritham Pingali Lecture 34 7/9



Fubini theorem for rectangles

Let f : Q → R be bounded and integrable (this assumption is
crucial!) Except for finitely many values, assume that

g(y) =
∫ b
a f (x , y)dx and h(x) =

∫ d
c f (x , y)dy exist, and are

integrable over [c , d ] and [a, b] respectively. Then∫ ∫
Q fdA =

∫ b
a

∫ d
c f (x , y)dydx =

∫ d
c

∫ b
a f (x , y)dxdy .

Proof: Let s ≤ f ≤ t. Integrate w.r.t x on both sides (valid
by assumptions and 1D-properties). Then integrate w.r.t y .
By definition, we are done.

This theorem allows us to calculate double integrals and
geometrically interpret the double integral as the volume
under a graph. Indeed, g(y) is the area of a cross-section and
its integral is the volume.

Vamsi Pritham Pingali Lecture 34 7/9



Fubini theorem for rectangles

Let f : Q → R be bounded and integrable (this assumption is
crucial!) Except for finitely many values, assume that

g(y) =
∫ b
a f (x , y)dx and h(x) =

∫ d
c f (x , y)dy exist, and are

integrable over [c , d ] and [a, b] respectively. Then∫ ∫
Q fdA =

∫ b
a

∫ d
c f (x , y)dydx =

∫ d
c

∫ b
a f (x , y)dxdy .

Proof:

Let s ≤ f ≤ t. Integrate w.r.t x on both sides (valid
by assumptions and 1D-properties). Then integrate w.r.t y .
By definition, we are done.

This theorem allows us to calculate double integrals and
geometrically interpret the double integral as the volume
under a graph. Indeed, g(y) is the area of a cross-section and
its integral is the volume.

Vamsi Pritham Pingali Lecture 34 7/9



Fubini theorem for rectangles

Let f : Q → R be bounded and integrable (this assumption is
crucial!) Except for finitely many values, assume that

g(y) =
∫ b
a f (x , y)dx and h(x) =

∫ d
c f (x , y)dy exist, and are

integrable over [c , d ] and [a, b] respectively. Then∫ ∫
Q fdA =

∫ b
a

∫ d
c f (x , y)dydx =

∫ d
c

∫ b
a f (x , y)dxdy .

Proof: Let s ≤ f ≤ t.

Integrate w.r.t x on both sides (valid
by assumptions and 1D-properties). Then integrate w.r.t y .
By definition, we are done.

This theorem allows us to calculate double integrals and
geometrically interpret the double integral as the volume
under a graph. Indeed, g(y) is the area of a cross-section and
its integral is the volume.

Vamsi Pritham Pingali Lecture 34 7/9



Fubini theorem for rectangles

Let f : Q → R be bounded and integrable (this assumption is
crucial!) Except for finitely many values, assume that

g(y) =
∫ b
a f (x , y)dx and h(x) =

∫ d
c f (x , y)dy exist, and are

integrable over [c , d ] and [a, b] respectively. Then∫ ∫
Q fdA =

∫ b
a

∫ d
c f (x , y)dydx =

∫ d
c

∫ b
a f (x , y)dxdy .

Proof: Let s ≤ f ≤ t. Integrate w.r.t x on both sides (

valid
by assumptions and 1D-properties). Then integrate w.r.t y .
By definition, we are done.

This theorem allows us to calculate double integrals and
geometrically interpret the double integral as the volume
under a graph. Indeed, g(y) is the area of a cross-section and
its integral is the volume.

Vamsi Pritham Pingali Lecture 34 7/9



Fubini theorem for rectangles

Let f : Q → R be bounded and integrable (this assumption is
crucial!) Except for finitely many values, assume that

g(y) =
∫ b
a f (x , y)dx and h(x) =

∫ d
c f (x , y)dy exist, and are

integrable over [c , d ] and [a, b] respectively. Then∫ ∫
Q fdA =

∫ b
a

∫ d
c f (x , y)dydx =

∫ d
c

∫ b
a f (x , y)dxdy .

Proof: Let s ≤ f ≤ t. Integrate w.r.t x on both sides (valid
by assumptions and 1D-properties).

Then integrate w.r.t y .
By definition, we are done.

This theorem allows us to calculate double integrals and
geometrically interpret the double integral as the volume
under a graph. Indeed, g(y) is the area of a cross-section and
its integral is the volume.

Vamsi Pritham Pingali Lecture 34 7/9



Fubini theorem for rectangles

Let f : Q → R be bounded and integrable (this assumption is
crucial!) Except for finitely many values, assume that

g(y) =
∫ b
a f (x , y)dx and h(x) =

∫ d
c f (x , y)dy exist, and are

integrable over [c , d ] and [a, b] respectively. Then∫ ∫
Q fdA =

∫ b
a

∫ d
c f (x , y)dydx =

∫ d
c

∫ b
a f (x , y)dxdy .

Proof: Let s ≤ f ≤ t. Integrate w.r.t x on both sides (valid
by assumptions and 1D-properties). Then integrate w.r.t y .

By definition, we are done.

This theorem allows us to calculate double integrals and
geometrically interpret the double integral as the volume
under a graph. Indeed, g(y) is the area of a cross-section and
its integral is the volume.

Vamsi Pritham Pingali Lecture 34 7/9



Fubini theorem for rectangles

Let f : Q → R be bounded and integrable (this assumption is
crucial!) Except for finitely many values, assume that

g(y) =
∫ b
a f (x , y)dx and h(x) =

∫ d
c f (x , y)dy exist, and are

integrable over [c , d ] and [a, b] respectively. Then∫ ∫
Q fdA =

∫ b
a

∫ d
c f (x , y)dydx =

∫ d
c

∫ b
a f (x , y)dxdy .

Proof: Let s ≤ f ≤ t. Integrate w.r.t x on both sides (valid
by assumptions and 1D-properties). Then integrate w.r.t y .
By definition, we are done.

This theorem allows us to calculate double integrals and
geometrically interpret the double integral as the volume
under a graph. Indeed, g(y) is the area of a cross-section and
its integral is the volume.

Vamsi Pritham Pingali Lecture 34 7/9



Fubini theorem for rectangles

Let f : Q → R be bounded and integrable (this assumption is
crucial!) Except for finitely many values, assume that

g(y) =
∫ b
a f (x , y)dx and h(x) =

∫ d
c f (x , y)dy exist, and are

integrable over [c , d ] and [a, b] respectively. Then∫ ∫
Q fdA =

∫ b
a

∫ d
c f (x , y)dydx =

∫ d
c

∫ b
a f (x , y)dxdy .

Proof: Let s ≤ f ≤ t. Integrate w.r.t x on both sides (valid
by assumptions and 1D-properties). Then integrate w.r.t y .
By definition, we are done.

This theorem

allows us to calculate double integrals and
geometrically interpret the double integral as the volume
under a graph. Indeed, g(y) is the area of a cross-section and
its integral is the volume.

Vamsi Pritham Pingali Lecture 34 7/9



Fubini theorem for rectangles

Let f : Q → R be bounded and integrable (this assumption is
crucial!) Except for finitely many values, assume that

g(y) =
∫ b
a f (x , y)dx and h(x) =

∫ d
c f (x , y)dy exist, and are

integrable over [c , d ] and [a, b] respectively. Then∫ ∫
Q fdA =

∫ b
a

∫ d
c f (x , y)dydx =

∫ d
c

∫ b
a f (x , y)dxdy .

Proof: Let s ≤ f ≤ t. Integrate w.r.t x on both sides (valid
by assumptions and 1D-properties). Then integrate w.r.t y .
By definition, we are done.

This theorem allows us to calculate

double integrals and
geometrically interpret the double integral as the volume
under a graph. Indeed, g(y) is the area of a cross-section and
its integral is the volume.

Vamsi Pritham Pingali Lecture 34 7/9



Fubini theorem for rectangles

Let f : Q → R be bounded and integrable (this assumption is
crucial!) Except for finitely many values, assume that

g(y) =
∫ b
a f (x , y)dx and h(x) =

∫ d
c f (x , y)dy exist, and are

integrable over [c , d ] and [a, b] respectively. Then∫ ∫
Q fdA =

∫ b
a

∫ d
c f (x , y)dydx =

∫ d
c

∫ b
a f (x , y)dxdy .

Proof: Let s ≤ f ≤ t. Integrate w.r.t x on both sides (valid
by assumptions and 1D-properties). Then integrate w.r.t y .
By definition, we are done.

This theorem allows us to calculate double integrals and

geometrically interpret the double integral as the volume
under a graph. Indeed, g(y) is the area of a cross-section and
its integral is the volume.

Vamsi Pritham Pingali Lecture 34 7/9



Fubini theorem for rectangles

Let f : Q → R be bounded and integrable (this assumption is
crucial!) Except for finitely many values, assume that

g(y) =
∫ b
a f (x , y)dx and h(x) =

∫ d
c f (x , y)dy exist, and are

integrable over [c , d ] and [a, b] respectively. Then∫ ∫
Q fdA =

∫ b
a

∫ d
c f (x , y)dydx =

∫ d
c

∫ b
a f (x , y)dxdy .

Proof: Let s ≤ f ≤ t. Integrate w.r.t x on both sides (valid
by assumptions and 1D-properties). Then integrate w.r.t y .
By definition, we are done.

This theorem allows us to calculate double integrals and
geometrically

interpret the double integral as the volume
under a graph. Indeed, g(y) is the area of a cross-section and
its integral is the volume.

Vamsi Pritham Pingali Lecture 34 7/9



Fubini theorem for rectangles

Let f : Q → R be bounded and integrable (this assumption is
crucial!) Except for finitely many values, assume that

g(y) =
∫ b
a f (x , y)dx and h(x) =

∫ d
c f (x , y)dy exist, and are

integrable over [c , d ] and [a, b] respectively. Then∫ ∫
Q fdA =

∫ b
a

∫ d
c f (x , y)dydx =

∫ d
c

∫ b
a f (x , y)dxdy .

Proof: Let s ≤ f ≤ t. Integrate w.r.t x on both sides (valid
by assumptions and 1D-properties). Then integrate w.r.t y .
By definition, we are done.

This theorem allows us to calculate double integrals and
geometrically interpret the double integral

as the volume
under a graph. Indeed, g(y) is the area of a cross-section and
its integral is the volume.

Vamsi Pritham Pingali Lecture 34 7/9



Fubini theorem for rectangles

Let f : Q → R be bounded and integrable (this assumption is
crucial!) Except for finitely many values, assume that

g(y) =
∫ b
a f (x , y)dx and h(x) =

∫ d
c f (x , y)dy exist, and are

integrable over [c , d ] and [a, b] respectively. Then∫ ∫
Q fdA =

∫ b
a

∫ d
c f (x , y)dydx =

∫ d
c

∫ b
a f (x , y)dxdy .

Proof: Let s ≤ f ≤ t. Integrate w.r.t x on both sides (valid
by assumptions and 1D-properties). Then integrate w.r.t y .
By definition, we are done.

This theorem allows us to calculate double integrals and
geometrically interpret the double integral as the volume
under a graph.

Indeed, g(y) is the area of a cross-section and
its integral is the volume.

Vamsi Pritham Pingali Lecture 34 7/9



Fubini theorem for rectangles

Let f : Q → R be bounded and integrable (this assumption is
crucial!) Except for finitely many values, assume that

g(y) =
∫ b
a f (x , y)dx and h(x) =

∫ d
c f (x , y)dy exist, and are

integrable over [c , d ] and [a, b] respectively. Then∫ ∫
Q fdA =

∫ b
a

∫ d
c f (x , y)dydx =

∫ d
c

∫ b
a f (x , y)dxdy .

Proof: Let s ≤ f ≤ t. Integrate w.r.t x on both sides (valid
by assumptions and 1D-properties). Then integrate w.r.t y .
By definition, we are done.

This theorem allows us to calculate double integrals and
geometrically interpret the double integral as the volume
under a graph. Indeed, g(y) is the area of a cross-section and

its integral is the volume.

Vamsi Pritham Pingali Lecture 34 7/9



Fubini theorem for rectangles

Let f : Q → R be bounded and integrable (this assumption is
crucial!) Except for finitely many values, assume that

g(y) =
∫ b
a f (x , y)dx and h(x) =

∫ d
c f (x , y)dy exist, and are

integrable over [c , d ] and [a, b] respectively. Then∫ ∫
Q fdA =

∫ b
a

∫ d
c f (x , y)dydx =

∫ d
c

∫ b
a f (x , y)dxdy .

Proof: Let s ≤ f ≤ t. Integrate w.r.t x on both sides (valid
by assumptions and 1D-properties). Then integrate w.r.t y .
By definition, we are done.

This theorem allows us to calculate double integrals and
geometrically interpret the double integral as the volume
under a graph. Indeed, g(y) is the area of a cross-section and
its integral is the volume.

Vamsi Pritham Pingali Lecture 34 7/9



Continuous functions are double integrable and Fubini
holds

Sketch of proof: By the extreme value theorem, f is bounded.
Thus the lower (S) and upper (T ) integrals exist. It is enough
to come up with a sequence of “special” step functions
sn ≤ f ≤ tn so that

∫ ∫
Q sndA ≤ S ≤ T

∫ ∫
Q tndA converge

to the same quantity.

We choose a sequence of partitions Pn such that the variation
of f → 0 as n→∞ (by continuity). The special step
functions are simply the infimum and supremum functions
mn(x , y),Mn(x , y). Since fn does not vary much, mn,Mn are
close to each other and hence so are their integrals.

To prove that the integrals equal their iterated versions, it is
enough to prove that g(y) =

∫ b
a f (x , y)dx and

h(x) =
∫ d
c f (x , y)dy are continuous. This follows from some

estimates.

Vamsi Pritham Pingali Lecture 34 8/9



Continuous functions are double integrable and Fubini
holds

Sketch of proof:

By the extreme value theorem, f is bounded.
Thus the lower (S) and upper (T ) integrals exist. It is enough
to come up with a sequence of “special” step functions
sn ≤ f ≤ tn so that

∫ ∫
Q sndA ≤ S ≤ T

∫ ∫
Q tndA converge

to the same quantity.

We choose a sequence of partitions Pn such that the variation
of f → 0 as n→∞ (by continuity). The special step
functions are simply the infimum and supremum functions
mn(x , y),Mn(x , y). Since fn does not vary much, mn,Mn are
close to each other and hence so are their integrals.

To prove that the integrals equal their iterated versions, it is
enough to prove that g(y) =

∫ b
a f (x , y)dx and

h(x) =
∫ d
c f (x , y)dy are continuous. This follows from some

estimates.

Vamsi Pritham Pingali Lecture 34 8/9



Continuous functions are double integrable and Fubini
holds

Sketch of proof: By the extreme value theorem,

f is bounded.
Thus the lower (S) and upper (T ) integrals exist. It is enough
to come up with a sequence of “special” step functions
sn ≤ f ≤ tn so that

∫ ∫
Q sndA ≤ S ≤ T

∫ ∫
Q tndA converge

to the same quantity.

We choose a sequence of partitions Pn such that the variation
of f → 0 as n→∞ (by continuity). The special step
functions are simply the infimum and supremum functions
mn(x , y),Mn(x , y). Since fn does not vary much, mn,Mn are
close to each other and hence so are their integrals.

To prove that the integrals equal their iterated versions, it is
enough to prove that g(y) =

∫ b
a f (x , y)dx and

h(x) =
∫ d
c f (x , y)dy are continuous. This follows from some

estimates.

Vamsi Pritham Pingali Lecture 34 8/9



Continuous functions are double integrable and Fubini
holds

Sketch of proof: By the extreme value theorem, f is bounded.

Thus the lower (S) and upper (T ) integrals exist. It is enough
to come up with a sequence of “special” step functions
sn ≤ f ≤ tn so that

∫ ∫
Q sndA ≤ S ≤ T

∫ ∫
Q tndA converge

to the same quantity.

We choose a sequence of partitions Pn such that the variation
of f → 0 as n→∞ (by continuity). The special step
functions are simply the infimum and supremum functions
mn(x , y),Mn(x , y). Since fn does not vary much, mn,Mn are
close to each other and hence so are their integrals.

To prove that the integrals equal their iterated versions, it is
enough to prove that g(y) =

∫ b
a f (x , y)dx and

h(x) =
∫ d
c f (x , y)dy are continuous. This follows from some

estimates.

Vamsi Pritham Pingali Lecture 34 8/9



Continuous functions are double integrable and Fubini
holds

Sketch of proof: By the extreme value theorem, f is bounded.
Thus the lower (S) and upper (T ) integrals exist.

It is enough
to come up with a sequence of “special” step functions
sn ≤ f ≤ tn so that

∫ ∫
Q sndA ≤ S ≤ T

∫ ∫
Q tndA converge

to the same quantity.

We choose a sequence of partitions Pn such that the variation
of f → 0 as n→∞ (by continuity). The special step
functions are simply the infimum and supremum functions
mn(x , y),Mn(x , y). Since fn does not vary much, mn,Mn are
close to each other and hence so are their integrals.

To prove that the integrals equal their iterated versions, it is
enough to prove that g(y) =

∫ b
a f (x , y)dx and

h(x) =
∫ d
c f (x , y)dy are continuous. This follows from some

estimates.

Vamsi Pritham Pingali Lecture 34 8/9



Continuous functions are double integrable and Fubini
holds

Sketch of proof: By the extreme value theorem, f is bounded.
Thus the lower (S) and upper (T ) integrals exist. It is enough
to come up

with a sequence of “special” step functions
sn ≤ f ≤ tn so that

∫ ∫
Q sndA ≤ S ≤ T

∫ ∫
Q tndA converge

to the same quantity.

We choose a sequence of partitions Pn such that the variation
of f → 0 as n→∞ (by continuity). The special step
functions are simply the infimum and supremum functions
mn(x , y),Mn(x , y). Since fn does not vary much, mn,Mn are
close to each other and hence so are their integrals.

To prove that the integrals equal their iterated versions, it is
enough to prove that g(y) =

∫ b
a f (x , y)dx and

h(x) =
∫ d
c f (x , y)dy are continuous. This follows from some

estimates.

Vamsi Pritham Pingali Lecture 34 8/9



Continuous functions are double integrable and Fubini
holds

Sketch of proof: By the extreme value theorem, f is bounded.
Thus the lower (S) and upper (T ) integrals exist. It is enough
to come up with a sequence of “special” step functions
sn ≤ f ≤ tn

so that
∫ ∫

Q sndA ≤ S ≤ T
∫ ∫

Q tndA converge
to the same quantity.

We choose a sequence of partitions Pn such that the variation
of f → 0 as n→∞ (by continuity). The special step
functions are simply the infimum and supremum functions
mn(x , y),Mn(x , y). Since fn does not vary much, mn,Mn are
close to each other and hence so are their integrals.

To prove that the integrals equal their iterated versions, it is
enough to prove that g(y) =

∫ b
a f (x , y)dx and

h(x) =
∫ d
c f (x , y)dy are continuous. This follows from some

estimates.

Vamsi Pritham Pingali Lecture 34 8/9



Continuous functions are double integrable and Fubini
holds

Sketch of proof: By the extreme value theorem, f is bounded.
Thus the lower (S) and upper (T ) integrals exist. It is enough
to come up with a sequence of “special” step functions
sn ≤ f ≤ tn so that

∫ ∫
Q sndA ≤ S ≤ T

∫ ∫
Q tndA converge

to the same quantity.

We choose a sequence of partitions Pn such that the variation
of f → 0 as n→∞ (by continuity). The special step
functions are simply the infimum and supremum functions
mn(x , y),Mn(x , y). Since fn does not vary much, mn,Mn are
close to each other and hence so are their integrals.

To prove that the integrals equal their iterated versions, it is
enough to prove that g(y) =

∫ b
a f (x , y)dx and

h(x) =
∫ d
c f (x , y)dy are continuous. This follows from some

estimates.

Vamsi Pritham Pingali Lecture 34 8/9



Continuous functions are double integrable and Fubini
holds

Sketch of proof: By the extreme value theorem, f is bounded.
Thus the lower (S) and upper (T ) integrals exist. It is enough
to come up with a sequence of “special” step functions
sn ≤ f ≤ tn so that

∫ ∫
Q sndA ≤ S ≤ T

∫ ∫
Q tndA converge

to the same quantity.

We choose a

sequence of partitions Pn such that the variation
of f → 0 as n→∞ (by continuity). The special step
functions are simply the infimum and supremum functions
mn(x , y),Mn(x , y). Since fn does not vary much, mn,Mn are
close to each other and hence so are their integrals.

To prove that the integrals equal their iterated versions, it is
enough to prove that g(y) =

∫ b
a f (x , y)dx and

h(x) =
∫ d
c f (x , y)dy are continuous. This follows from some

estimates.

Vamsi Pritham Pingali Lecture 34 8/9



Continuous functions are double integrable and Fubini
holds

Sketch of proof: By the extreme value theorem, f is bounded.
Thus the lower (S) and upper (T ) integrals exist. It is enough
to come up with a sequence of “special” step functions
sn ≤ f ≤ tn so that

∫ ∫
Q sndA ≤ S ≤ T

∫ ∫
Q tndA converge

to the same quantity.

We choose a sequence of partitions Pn

such that the variation
of f → 0 as n→∞ (by continuity). The special step
functions are simply the infimum and supremum functions
mn(x , y),Mn(x , y). Since fn does not vary much, mn,Mn are
close to each other and hence so are their integrals.

To prove that the integrals equal their iterated versions, it is
enough to prove that g(y) =

∫ b
a f (x , y)dx and

h(x) =
∫ d
c f (x , y)dy are continuous. This follows from some

estimates.

Vamsi Pritham Pingali Lecture 34 8/9



Continuous functions are double integrable and Fubini
holds

Sketch of proof: By the extreme value theorem, f is bounded.
Thus the lower (S) and upper (T ) integrals exist. It is enough
to come up with a sequence of “special” step functions
sn ≤ f ≤ tn so that

∫ ∫
Q sndA ≤ S ≤ T

∫ ∫
Q tndA converge

to the same quantity.

We choose a sequence of partitions Pn such that the variation
of f

→ 0 as n→∞ (by continuity). The special step
functions are simply the infimum and supremum functions
mn(x , y),Mn(x , y). Since fn does not vary much, mn,Mn are
close to each other and hence so are their integrals.

To prove that the integrals equal their iterated versions, it is
enough to prove that g(y) =

∫ b
a f (x , y)dx and

h(x) =
∫ d
c f (x , y)dy are continuous. This follows from some

estimates.

Vamsi Pritham Pingali Lecture 34 8/9



Continuous functions are double integrable and Fubini
holds

Sketch of proof: By the extreme value theorem, f is bounded.
Thus the lower (S) and upper (T ) integrals exist. It is enough
to come up with a sequence of “special” step functions
sn ≤ f ≤ tn so that

∫ ∫
Q sndA ≤ S ≤ T

∫ ∫
Q tndA converge

to the same quantity.

We choose a sequence of partitions Pn such that the variation
of f → 0 as n→∞ (by continuity).

The special step
functions are simply the infimum and supremum functions
mn(x , y),Mn(x , y). Since fn does not vary much, mn,Mn are
close to each other and hence so are their integrals.

To prove that the integrals equal their iterated versions, it is
enough to prove that g(y) =

∫ b
a f (x , y)dx and

h(x) =
∫ d
c f (x , y)dy are continuous. This follows from some

estimates.

Vamsi Pritham Pingali Lecture 34 8/9



Continuous functions are double integrable and Fubini
holds

Sketch of proof: By the extreme value theorem, f is bounded.
Thus the lower (S) and upper (T ) integrals exist. It is enough
to come up with a sequence of “special” step functions
sn ≤ f ≤ tn so that

∫ ∫
Q sndA ≤ S ≤ T

∫ ∫
Q tndA converge

to the same quantity.

We choose a sequence of partitions Pn such that the variation
of f → 0 as n→∞ (by continuity). The special step
functions are simply

the infimum and supremum functions
mn(x , y),Mn(x , y). Since fn does not vary much, mn,Mn are
close to each other and hence so are their integrals.

To prove that the integrals equal their iterated versions, it is
enough to prove that g(y) =

∫ b
a f (x , y)dx and

h(x) =
∫ d
c f (x , y)dy are continuous. This follows from some

estimates.

Vamsi Pritham Pingali Lecture 34 8/9



Continuous functions are double integrable and Fubini
holds

Sketch of proof: By the extreme value theorem, f is bounded.
Thus the lower (S) and upper (T ) integrals exist. It is enough
to come up with a sequence of “special” step functions
sn ≤ f ≤ tn so that

∫ ∫
Q sndA ≤ S ≤ T

∫ ∫
Q tndA converge

to the same quantity.

We choose a sequence of partitions Pn such that the variation
of f → 0 as n→∞ (by continuity). The special step
functions are simply the infimum and supremum functions
mn(x , y),Mn(x , y).

Since fn does not vary much, mn,Mn are
close to each other and hence so are their integrals.

To prove that the integrals equal their iterated versions, it is
enough to prove that g(y) =

∫ b
a f (x , y)dx and

h(x) =
∫ d
c f (x , y)dy are continuous. This follows from some

estimates.

Vamsi Pritham Pingali Lecture 34 8/9



Continuous functions are double integrable and Fubini
holds

Sketch of proof: By the extreme value theorem, f is bounded.
Thus the lower (S) and upper (T ) integrals exist. It is enough
to come up with a sequence of “special” step functions
sn ≤ f ≤ tn so that

∫ ∫
Q sndA ≤ S ≤ T

∫ ∫
Q tndA converge

to the same quantity.

We choose a sequence of partitions Pn such that the variation
of f → 0 as n→∞ (by continuity). The special step
functions are simply the infimum and supremum functions
mn(x , y),Mn(x , y). Since fn does not vary much,

mn,Mn are
close to each other and hence so are their integrals.

To prove that the integrals equal their iterated versions, it is
enough to prove that g(y) =

∫ b
a f (x , y)dx and

h(x) =
∫ d
c f (x , y)dy are continuous. This follows from some

estimates.

Vamsi Pritham Pingali Lecture 34 8/9



Continuous functions are double integrable and Fubini
holds

Sketch of proof: By the extreme value theorem, f is bounded.
Thus the lower (S) and upper (T ) integrals exist. It is enough
to come up with a sequence of “special” step functions
sn ≤ f ≤ tn so that

∫ ∫
Q sndA ≤ S ≤ T

∫ ∫
Q tndA converge

to the same quantity.

We choose a sequence of partitions Pn such that the variation
of f → 0 as n→∞ (by continuity). The special step
functions are simply the infimum and supremum functions
mn(x , y),Mn(x , y). Since fn does not vary much, mn,Mn are
close to each other

and hence so are their integrals.

To prove that the integrals equal their iterated versions, it is
enough to prove that g(y) =

∫ b
a f (x , y)dx and

h(x) =
∫ d
c f (x , y)dy are continuous. This follows from some

estimates.

Vamsi Pritham Pingali Lecture 34 8/9



Continuous functions are double integrable and Fubini
holds

Sketch of proof: By the extreme value theorem, f is bounded.
Thus the lower (S) and upper (T ) integrals exist. It is enough
to come up with a sequence of “special” step functions
sn ≤ f ≤ tn so that

∫ ∫
Q sndA ≤ S ≤ T

∫ ∫
Q tndA converge

to the same quantity.

We choose a sequence of partitions Pn such that the variation
of f → 0 as n→∞ (by continuity). The special step
functions are simply the infimum and supremum functions
mn(x , y),Mn(x , y). Since fn does not vary much, mn,Mn are
close to each other and hence so are their integrals.

To prove that the integrals equal their iterated versions, it is
enough to prove that g(y) =

∫ b
a f (x , y)dx and

h(x) =
∫ d
c f (x , y)dy are continuous. This follows from some

estimates.

Vamsi Pritham Pingali Lecture 34 8/9



Continuous functions are double integrable and Fubini
holds

Sketch of proof: By the extreme value theorem, f is bounded.
Thus the lower (S) and upper (T ) integrals exist. It is enough
to come up with a sequence of “special” step functions
sn ≤ f ≤ tn so that

∫ ∫
Q sndA ≤ S ≤ T

∫ ∫
Q tndA converge

to the same quantity.

We choose a sequence of partitions Pn such that the variation
of f → 0 as n→∞ (by continuity). The special step
functions are simply the infimum and supremum functions
mn(x , y),Mn(x , y). Since fn does not vary much, mn,Mn are
close to each other and hence so are their integrals.

To prove that

the integrals equal their iterated versions, it is
enough to prove that g(y) =

∫ b
a f (x , y)dx and

h(x) =
∫ d
c f (x , y)dy are continuous. This follows from some

estimates.

Vamsi Pritham Pingali Lecture 34 8/9



Continuous functions are double integrable and Fubini
holds

Sketch of proof: By the extreme value theorem, f is bounded.
Thus the lower (S) and upper (T ) integrals exist. It is enough
to come up with a sequence of “special” step functions
sn ≤ f ≤ tn so that

∫ ∫
Q sndA ≤ S ≤ T

∫ ∫
Q tndA converge

to the same quantity.

We choose a sequence of partitions Pn such that the variation
of f → 0 as n→∞ (by continuity). The special step
functions are simply the infimum and supremum functions
mn(x , y),Mn(x , y). Since fn does not vary much, mn,Mn are
close to each other and hence so are their integrals.

To prove that the integrals equal their iterated versions,

it is
enough to prove that g(y) =

∫ b
a f (x , y)dx and

h(x) =
∫ d
c f (x , y)dy are continuous. This follows from some

estimates.

Vamsi Pritham Pingali Lecture 34 8/9



Continuous functions are double integrable and Fubini
holds

Sketch of proof: By the extreme value theorem, f is bounded.
Thus the lower (S) and upper (T ) integrals exist. It is enough
to come up with a sequence of “special” step functions
sn ≤ f ≤ tn so that

∫ ∫
Q sndA ≤ S ≤ T

∫ ∫
Q tndA converge

to the same quantity.

We choose a sequence of partitions Pn such that the variation
of f → 0 as n→∞ (by continuity). The special step
functions are simply the infimum and supremum functions
mn(x , y),Mn(x , y). Since fn does not vary much, mn,Mn are
close to each other and hence so are their integrals.

To prove that the integrals equal their iterated versions, it is
enough to prove that g(y) =

∫ b
a f (x , y)dx and

h(x) =
∫ d
c f (x , y)dy are continuous.

This follows from some
estimates.

Vamsi Pritham Pingali Lecture 34 8/9



Continuous functions are double integrable and Fubini
holds

Sketch of proof: By the extreme value theorem, f is bounded.
Thus the lower (S) and upper (T ) integrals exist. It is enough
to come up with a sequence of “special” step functions
sn ≤ f ≤ tn so that

∫ ∫
Q sndA ≤ S ≤ T

∫ ∫
Q tndA converge

to the same quantity.

We choose a sequence of partitions Pn such that the variation
of f → 0 as n→∞ (by continuity). The special step
functions are simply the infimum and supremum functions
mn(x , y),Mn(x , y). Since fn does not vary much, mn,Mn are
close to each other and hence so are their integrals.

To prove that the integrals equal their iterated versions, it is
enough to prove that g(y) =

∫ b
a f (x , y)dx and

h(x) =
∫ d
c f (x , y)dy are continuous. This follows from some

estimates.

Vamsi Pritham Pingali Lecture 34 8/9



Discontinuous functions

Integrals of discontinuous beasts are problematic even in 1-D.
However, if we have only finitely many discontinuities in 1D,
we can integrate.

Akin to that, if the set of discontinuities in 2D have “zero
area” (whatever that means), the function is still integrable
(proof is skipped). For instance, it turns out that (proof
skipped) a finite collection of line segments or more generally,
a finite collection of C 1 regular paths have zero area. In
particular, (x , f (x)) or (g(y), y) where f , g are C 1 have zero
area.
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