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Recap

Defined exterior points, boundary points, and closed sets.

Defined limits and continuity.

Gave examples (using the Sandwich law for instance) and
non-examples (using different paths).
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Limit and Continuity laws

Assume that ~f , ~g : S → Rn are two functions.

Suppose lim~x→~a ~f (~x) = ~b and lim~x→~a ~g(~x) = ~c .

lim~x→~a(~f (~x) + ~g(~x)) exists and equals ~b + ~c .

lim~x→~a λ~f (~x) = λ~b.

lim~x→~a(~f (~x).~g(~x)) exists and equals ~b.~c .

lim~x→~a ‖~f (~x)‖ exists and equals ‖~b‖.
If ~f , ~g are scalar-valued, ~g(~x) is not zero in a neighbourhood
of ~a (intersected with S), and c 6= 0, then lim~x→~a

f
g = b

c .

The same laws hold for continuity too.
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Proofs of 1,2,3

Choose δ > 0 so small that whenever 0 < ‖~x − ~a‖ < δ and
~x ∈ S , ‖~f (~x)− ~b‖ < ε

2 and ‖~g(~x)− ~c‖ < ε
2 . Thus

‖~f (~x) + ~g(~x)− ~b − ~c‖ < ε by the triangle inequality.

Without loss of generality assume that λ 6= 0 (why?). Choose
δ > 0 so small that whenever 0 < ‖~x − ~a‖ < δ and ~x ∈ S ,
‖~f (~x)− ~b‖ < ε

|λ| . Thus we are done.

Let ~f (~x)− ~b = ~h1 and ~g(~x)− ~c = ~h2.
|~f (~x).~g(~x))− ~b.~c | ≤ |(~h1 + ~b).(~h2 + ~c)− ~b.~c |. Now we use
the triangle inequality to see that it is less than
|~h1.~h2|+ |~h1.~c|+ |~h2.~b|. By the Cauchy-Schwarz inequality it
is less than ‖~h1‖‖~h2‖+ ‖~h1‖‖~c‖+ ‖~h2‖‖~b‖. We want to
make each term less than ε

3 by choosing δ small enough. This
can be done for the last two terms almost by assumption. For

the first term, if necessary, shrink δ so that ‖~hi‖ <
√
ε√
3

.
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Proofs of 4,5

|‖~f (~x)‖ − ‖~b‖| ≤ ‖~f (~x)− ~b‖ by the triangle inequality. We
are done.

We may assume that f = 1 without loss of generality (why?).

| 1g −
1
c | = |g(~x)−c|

|c||g(~x)| . Choose δ so small that |g(~x)− c | < |c|
2 .

Thus |c|2 < |g(~x)| < 3|c|
2 . Thus | 1g −

1
c | <

2|g(~x)−c|
c2

< ε when
δ is even smaller.

We can also prove that (HW) if λ(x) is continuous and ~f is so
then so is λ(x)~f .
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Examples

Another way to prove that the components of a continuous
vector-valued function are continuous is by noting that they
are dot products. The converse follows from the above
properties.

Since the components are continuous the identity function is
so as well.

Linear maps are continuous:
~f (~a + ~h) = ~f (~a) + ~f (~h) = ~f (~a) +

∑
i hi f (~ei ) which goes to

~f (~a) as ~h→ ~0.

By induction, polynomials are continuous.

The above properties imply that rational functions are
continuous away from the zeroes of their denominator
provided we prove that if g(~a) 6= 0 then it is so in a
neighbourhood. But this follows from continuity of g(~x).
(Actually, as we saw, this assumption is superfluous.)
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Composition

Theorem: Let ~g : U ⊂ Rm → Rn be a function that is
continuous at ~a ∈ U. Let ~g(U) ⊂ V ⊂ Rn and let
~f : V ⊂ Rn → Rp be a function that is continuous at
~g(~a) ∈ V . Then ~f ◦ ~g : U → Rp is continuous at ~a.

Proof: Note that ‖~f (~y)− ~f (~g(~a))‖ < ε whenever
‖~y − ~g(~a)‖ < δ̃ and ~y ∈ V . Choose δ to be so small that
‖~g(~x)− ~g(~a)‖ < δ̃ whenever ‖~x − ~a‖ < δ. Thus we are done.

Thus, sin(x2y), ln x−y
x+y , ln cos2(x2 + y2) etc, are continuous

wherever they are defined.
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Derivatives of scalar fields w.r.t vectors

Suppose we consider a scalar field like the temperature
T (x , y , z) of a room.

Unlike 1-variable calculus, we can ask “How fast does T
change when we move a little in a certain direction?” The
answer can of course depend on the direction.

To even make sense of this question, we must be allowed to
move a little in all directions, i.e., the point under
consideration must be an interior point of the domain.

Def: Given a scalar field f : U ⊂ Rn → R, an interior point
~a ∈ U, and a vector ~v ∈ Rn, f is said to differentiable along ~v
if limh→0

f (~a+h~v)−f (~a)
h exists. This number is denoted as ∇~v f .

If ‖~v‖ = 1, this number is called the directional derivative
along the direction ~v .
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Examples

If ~v = 0, then ∇~v f (~a) = 0. Indeed, this follows easily from
the definition.

Suppose f is linear, then f (~a+h~v)−f (~a)
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The above derivative can also be thought of as a one-variable
derivative. Indeed, let g(t) = f (~a + t~v). Then
f (~a+h~v)−f (~a)

h = g(h)−g(0)
h . Thus g is differentiable at 0 if and

only if ∇~v f (~a) exists and equals g ′(0).
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g(t) = h(st) = f (~a + ts~v). Then by the chain rule g ′(0)
exists and equals sh′(0) = s∇~v f (~a).
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Mean value theorem, partial derivatives

Assume that ∇~v f (~a + t~v) exists for all 0 ≤ t ≤ 1.

Theorem: Then there exists a real number θ ∈ (0, 1) such
that f (~a + ~v)− f (~a) = ∇~v f (a + θ~v).

Proof: Let g(t) = f (~a + t~v). Then applying the 1-dim MVT
to g , we see that g(1)− g(0) = g ′(θ). Thus we are done.

Def:When ~v = ei , ∇~v f (~a) if it exists is called the partial
derivative ∂f

∂xi
(~a) or fi (~a) w.r.t xi and f is said to be partially

differentiable w.r.t xi .

Spoiler alert: All known laws of nature are Partial Differential
Equations (PDE) for something or the other (not necessarily
for scalar fields).
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