Lecture 22 - UM 102 (Spring 2021)

Vamsi Pritham Pingali

IISc

Recap

Recap

- Defined exterior points,

Recap

- Defined exterior points, boundary points, and

Recap

- Defined exterior points, boundary points, and closed sets.
- Defined exterior points, boundary points, and closed sets.
- Defined limits and continuity.
- Defined exterior points, boundary points, and closed sets.
- Defined limits and continuity.
- Gave examples (
- Defined exterior points, boundary points, and closed sets.
- Defined limits and continuity.
- Gave examples (using
- Defined exterior points, boundary points, and closed sets.
- Defined limits and continuity.
- Gave examples (using the Sandwich law for instance) and
- Defined exterior points, boundary points, and closed sets.
- Defined limits and continuity.
- Gave examples (using the Sandwich law for instance) and non-examples (
- Defined exterior points, boundary points, and closed sets.
- Defined limits and continuity.
- Gave examples (using the Sandwich law for instance) and non-examples (using different paths).

Limit and Continuity laws

Limit and Continuity laws

- Assume that $\vec{f}, \vec{g}: S \rightarrow \mathbb{R}^{n}$ are two functions.

Limit and Continuity laws

- Assume that $\vec{f}, \vec{g}: S \rightarrow \mathbb{R}^{n}$ are two functions.
- Suppose $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{b}$ and $\lim _{\vec{x} \rightarrow \vec{a}} \vec{g}(\vec{x})=\vec{c}$.

Limit and Continuity laws

- Assume that $\vec{f}, \vec{g}: S \rightarrow \mathbb{R}^{n}$ are two functions.
- Suppose $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{b}$ and $\lim _{\vec{x} \rightarrow \vec{a}} \vec{g}(\vec{x})=\vec{c}$.
- $\lim _{\vec{x} \rightarrow \vec{a}}(\vec{f}(\vec{x})+\vec{g}(\vec{x}))$ exists and

Limit and Continuity laws

- Assume that $\vec{f}, \vec{g}: S \rightarrow \mathbb{R}^{n}$ are two functions.
- Suppose $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{b}$ and $\lim _{\vec{x} \rightarrow \vec{a}} \vec{g}(\vec{x})=\vec{c}$.
- $\lim _{\vec{x} \rightarrow \vec{a}}(\vec{f}(\vec{x})+\vec{g}(\vec{x}))$ exists and equals $\vec{b}+\vec{c}$.

Limit and Continuity laws

- Assume that $\vec{f}, \vec{g}: S \rightarrow \mathbb{R}^{n}$ are two functions.
- Suppose $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{b}$ and $\lim _{\vec{x} \rightarrow \vec{a}} \vec{g}(\vec{x})=\vec{c}$.
- $\lim _{\vec{x} \rightarrow \vec{a}}(\vec{f}(\vec{x})+\vec{g}(\vec{x}))$ exists and equals $\vec{b}+\vec{c}$.
- $\lim _{\vec{x} \rightarrow \vec{a}} \lambda \vec{f}(\vec{x})=\lambda \vec{b}$.

Limit and Continuity laws

- Assume that $\vec{f}, \vec{g}: S \rightarrow \mathbb{R}^{n}$ are two functions.
- Suppose $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{b}$ and $\lim _{\vec{x} \rightarrow \vec{a}} \vec{g}(\vec{x})=\vec{c}$.
- $\lim _{\vec{x} \rightarrow \vec{a}}(\vec{f}(\vec{x})+\vec{g}(\vec{x}))$ exists and equals $\vec{b}+\vec{c}$.
- $\lim _{\vec{x} \rightarrow \vec{a}} \lambda \vec{f}(\vec{x})=\lambda \vec{b}$.
- $\lim _{\vec{x} \rightarrow \vec{a}}(\vec{f}(\vec{x}) \cdot \vec{g}(\vec{x}))$ exists and

Limit and Continuity laws

- Assume that $\vec{f}, \vec{g}: S \rightarrow \mathbb{R}^{n}$ are two functions.
- Suppose $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{b}$ and $\lim _{\vec{x} \rightarrow \vec{a}} \vec{g}(\vec{x})=\vec{c}$.
- $\lim _{\vec{x} \rightarrow \vec{a}}(\vec{f}(\vec{x})+\vec{g}(\vec{x}))$ exists and equals $\vec{b}+\vec{c}$.
- $\lim _{\vec{x} \rightarrow \vec{a}} \lambda \vec{f}(\vec{x})=\lambda \vec{b}$.
- $\lim _{\vec{x} \rightarrow \vec{a}}(\vec{f}(\vec{x}) \cdot \vec{g}(\vec{x}))$ exists and equals $\vec{b} \cdot \vec{c}$.

Limit and Continuity laws

- Assume that $\vec{f}, \vec{g}: S \rightarrow \mathbb{R}^{n}$ are two functions.
- Suppose $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{b}$ and $\lim _{\vec{x} \rightarrow \vec{a}} \vec{g}(\vec{x})=\vec{c}$.
- $\lim _{\vec{x} \rightarrow \vec{a}}(\vec{f}(\vec{x})+\vec{g}(\vec{x}))$ exists and equals $\vec{b}+\vec{c}$.
- $\lim _{\vec{x} \rightarrow \vec{a}} \lambda \vec{f}(\vec{x})=\lambda \vec{b}$.
- $\lim _{\vec{x} \rightarrow \vec{a}}(\vec{f}(\vec{x}) \cdot \vec{g}(\vec{x}))$ exists and equals $\vec{b} \cdot \vec{c}$.
- $\lim _{\vec{x} \rightarrow \vec{a}}\|\vec{f}(\vec{x})\|$ exists and

Limit and Continuity laws

- Assume that $\vec{f}, \vec{g}: S \rightarrow \mathbb{R}^{n}$ are two functions.
- Suppose $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{b}$ and $\lim _{\vec{x} \rightarrow \vec{a}} \vec{g}(\vec{x})=\vec{c}$.
- $\lim _{\vec{x} \rightarrow \vec{a}}(\vec{f}(\vec{x})+\vec{g}(\vec{x}))$ exists and equals $\vec{b}+\vec{c}$.
- $\lim _{\vec{x} \rightarrow \vec{a}} \lambda \vec{f}(\vec{x})=\lambda \vec{b}$.
- $\lim _{\vec{x} \rightarrow \vec{a}}(\vec{f}(\vec{x}) \cdot \vec{g}(\vec{x}))$ exists and equals $\vec{b} \cdot \vec{c}$.
- $\lim _{\vec{x} \rightarrow \vec{a}}\|\vec{f}(\vec{x})\|$ exists and equals $\|\vec{b}\|$.

Limit and Continuity laws

- Assume that $\vec{f}, \vec{g}: S \rightarrow \mathbb{R}^{n}$ are two functions.
- Suppose $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{b}$ and $\lim _{\vec{x} \rightarrow \vec{a}} \vec{g}(\vec{x})=\vec{c}$.
- $\lim _{\vec{x} \rightarrow \vec{a}}(\vec{f}(\vec{x})+\vec{g}(\vec{x}))$ exists and equals $\vec{b}+\vec{c}$.
- $\lim _{\vec{x} \rightarrow \vec{a}} \lambda \vec{f}(\vec{x})=\lambda \vec{b}$.
- $\lim _{\vec{x} \rightarrow \vec{a}}(\vec{f}(\vec{x}) \cdot \vec{g}(\vec{x}))$ exists and equals $\vec{b} \cdot \vec{c}$.
- $\lim _{\vec{x} \rightarrow \vec{a}}\|\vec{f}(\vec{x})\|$ exists and equals $\|\vec{b}\|$.
- If \vec{f}, \vec{g} are scalar-valued,

Limit and Continuity laws

- Assume that $\vec{f}, \vec{g}: S \rightarrow \mathbb{R}^{n}$ are two functions.
- Suppose $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{b}$ and $\lim _{\vec{x} \rightarrow \vec{a}} \vec{g}(\vec{x})=\vec{c}$.
- $\lim _{\vec{x} \rightarrow \vec{a}}(\vec{f}(\vec{x})+\vec{g}(\vec{x}))$ exists and equals $\vec{b}+\vec{c}$.
- $\lim _{\vec{x} \rightarrow \vec{a}} \lambda \vec{f}(\vec{x})=\lambda \vec{b}$.
- $\lim _{\vec{x} \rightarrow \vec{a}}(\vec{f}(\vec{x}) \cdot \vec{g}(\vec{x}))$ exists and equals $\vec{b} \cdot \vec{c}$.
- $\lim _{\vec{x} \rightarrow \vec{a}}\|\vec{f}(\vec{x})\|$ exists and equals $\|\vec{b}\|$.
- If \vec{f}, \vec{g} are scalar-valued, $\vec{g}(\vec{x})$ is not zero

Limit and Continuity laws

- Assume that $\vec{f}, \vec{g}: S \rightarrow \mathbb{R}^{n}$ are two functions.
- Suppose $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{b}$ and $\lim _{\vec{x} \rightarrow \vec{a}} \vec{g}(\vec{x})=\vec{c}$.
- $\lim _{\vec{x} \rightarrow \vec{a}}(\vec{f}(\vec{x})+\vec{g}(\vec{x}))$ exists and equals $\vec{b}+\vec{c}$.
- $\lim _{\vec{x} \rightarrow \vec{a}} \lambda \vec{f}(\vec{x})=\lambda \vec{b}$.
- $\lim _{\vec{x} \rightarrow \vec{a}}(\vec{f}(\vec{x}) \cdot \vec{g}(\vec{x}))$ exists and equals $\vec{b} \cdot \vec{c}$.
- $\lim _{\vec{x} \rightarrow \vec{a}}\|\vec{f}(\vec{x})\|$ exists and equals $\|\vec{b}\|$.
- If \vec{f}, \vec{g} are scalar-valued, $\vec{g}(\vec{x})$ is not zero in a neighbourhood of \vec{a} (intersected with S),

Limit and Continuity laws

- Assume that $\vec{f}, \vec{g}: S \rightarrow \mathbb{R}^{n}$ are two functions.
- Suppose $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{b}$ and $\lim _{\vec{x} \rightarrow \vec{a}} \vec{g}(\vec{x})=\vec{c}$.
- $\lim _{\vec{x} \rightarrow \vec{a}}(\vec{f}(\vec{x})+\vec{g}(\vec{x}))$ exists and equals $\vec{b}+\vec{c}$.
- $\lim _{\vec{x} \rightarrow \vec{a}} \lambda \vec{f}(\vec{x})=\lambda \vec{b}$.
- $\lim _{\vec{x} \rightarrow \vec{a}}(\vec{f}(\vec{x}) \cdot \vec{g}(\vec{x}))$ exists and equals $\vec{b} \cdot \vec{c}$.
- $\lim _{\vec{x} \rightarrow \vec{a}}\|\vec{f}(\vec{x})\|$ exists and equals $\|\vec{b}\|$.
- If \vec{f}, \vec{g} are scalar-valued, $\vec{g}(\vec{x})$ is not zero in a neighbourhood of \vec{a} (intersected with S), and $c \neq 0$, then

Limit and Continuity laws

- Assume that $\vec{f}, \vec{g}: S \rightarrow \mathbb{R}^{n}$ are two functions.
- Suppose $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{b}$ and $\lim _{\vec{x} \rightarrow \vec{a}} \vec{g}(\vec{x})=\vec{c}$.
- $\lim _{\vec{x} \rightarrow \vec{a}}(\vec{f}(\vec{x})+\vec{g}(\vec{x}))$ exists and equals $\vec{b}+\vec{c}$.
- $\lim _{\vec{x} \rightarrow \vec{a}} \lambda \vec{f}(\vec{x})=\lambda \vec{b}$.
- $\lim _{\vec{x} \rightarrow \vec{a}}(\vec{f}(\vec{x}) \cdot \vec{g}(\vec{x}))$ exists and equals $\vec{b} \cdot \vec{c}$.
- $\lim _{\vec{x} \rightarrow \vec{a}}\|\vec{f}(\vec{x})\|$ exists and equals $\|\vec{b}\|$.
- If \vec{f}, \vec{g} are scalar-valued, $\vec{g}(\vec{x})$ is not zero in a neighbourhood of \vec{a} (intersected with S), and $c \neq 0$, then $\lim _{\vec{x} \rightarrow \vec{a}} \frac{f}{g}=\frac{b}{c}$.

Limit and Continuity laws

- Assume that $\vec{f}, \vec{g}: S \rightarrow \mathbb{R}^{n}$ are two functions.
- Suppose $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{b}$ and $\lim _{\vec{x} \rightarrow \vec{a}} \vec{g}(\vec{x})=\vec{c}$.
- $\lim _{\vec{x} \rightarrow \vec{a}}(\vec{f}(\vec{x})+\vec{g}(\vec{x}))$ exists and equals $\vec{b}+\vec{c}$.
- $\lim _{\vec{x} \rightarrow \vec{a}} \lambda \vec{f}(\vec{x})=\lambda \vec{b}$.
- $\lim _{\vec{x} \rightarrow \vec{a}}(\vec{f}(\vec{x}) \cdot \vec{g}(\vec{x}))$ exists and equals $\vec{b} \cdot \vec{c}$.
- $\lim _{\vec{x} \rightarrow \vec{a}}\|\vec{f}(\vec{x})\|$ exists and equals $\|\vec{b}\|$.
- If \vec{f}, \vec{g} are scalar-valued, $\vec{g}(\vec{x})$ is not zero in a neighbourhood of \vec{a} (intersected with S), and $c \neq 0$, then $\lim _{\vec{x} \rightarrow \vec{a}} \frac{f}{g}=\frac{b}{c}$.
- The same laws

Limit and Continuity laws

- Assume that $\vec{f}, \vec{g}: S \rightarrow \mathbb{R}^{n}$ are two functions.
- Suppose $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{b}$ and $\lim _{\vec{x} \rightarrow \vec{a}} \vec{g}(\vec{x})=\vec{c}$.
- $\lim _{\vec{x} \rightarrow \vec{a}}(\vec{f}(\vec{x})+\vec{g}(\vec{x}))$ exists and equals $\vec{b}+\vec{c}$.
- $\lim _{\vec{x} \rightarrow \vec{a}} \lambda \vec{f}(\vec{x})=\lambda \vec{b}$.
- $\lim _{\vec{x} \rightarrow \vec{a}}(\vec{f}(\vec{x}) \cdot \vec{g}(\vec{x}))$ exists and equals $\vec{b} \cdot \vec{c}$.
- $\lim _{\vec{x} \rightarrow \vec{a}}\|\vec{f}(\vec{x})\|$ exists and equals $\|\vec{b}\|$.
- If \vec{f}, \vec{g} are scalar-valued, $\vec{g}(\vec{x})$ is not zero in a neighbourhood of \vec{a} (intersected with S), and $c \neq 0$, then $\lim _{\vec{x} \rightarrow \vec{a}} \frac{f}{g}=\frac{b}{c}$.
- The same laws hold for continuity too.

Proofs of 1,2,3

Proofs of $1,2,3$

- Choose $\delta>0$ so small

Proofs of 1,2,3

- Choose $\delta>0$ so small that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S,\|\vec{f}(\vec{x})-\vec{b}\|<\frac{\epsilon}{2}$ and $\|\vec{g}(\vec{x})-\vec{c}\|<\frac{\epsilon}{2}$.

Proofs of 1,2,3

- Choose $\delta>0$ so small that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S,\|\vec{f}(\vec{x})-\vec{b}\|<\frac{\epsilon}{2}$ and $\|\vec{g}(\vec{x})-\vec{c}\|<\frac{\epsilon}{2}$. Thus $\|\vec{f}(\vec{x})+\vec{g}(\vec{x})-\vec{b}-\vec{c}\|<\epsilon$ by the triangle inequality.

Proofs of 1,2,3

- Choose $\delta>0$ so small that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S,\|\vec{f}(\vec{x})-\vec{b}\|<\frac{\epsilon}{2}$ and $\|\vec{g}(\vec{x})-\vec{c}\|<\frac{\epsilon}{2}$. Thus $\|\vec{f}(\vec{x})+\vec{g}(\vec{x})-\vec{b}-\vec{c}\|<\epsilon$ by the triangle inequality.
- Without loss of generality

Proofs of 1,2,3

- Choose $\delta>0$ so small that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S,\|\vec{f}(\vec{x})-\vec{b}\|<\frac{\epsilon}{2}$ and $\|\vec{g}(\vec{x})-\vec{c}\|<\frac{\epsilon}{2}$. Thus $\|\vec{f}(\vec{x})+\vec{g}(\vec{x})-\vec{b}-\vec{c}\|<\epsilon$ by the triangle inequality.
- Without loss of generality assume that $\lambda \neq 0$ (why?).

Proofs of 1,2,3

- Choose $\delta>0$ so small that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S,\|\vec{f}(\vec{x})-\vec{b}\|<\frac{\epsilon}{2}$ and $\|\vec{g}(\vec{x})-\vec{c}\|<\frac{\epsilon}{2}$. Thus $\|\vec{f}(\vec{x})+\vec{g}(\vec{x})-\vec{b}-\vec{c}\|<\epsilon$ by the triangle inequality.
- Without loss of generality assume that $\lambda \neq 0$ (why?). Choose $\delta>0$ so small

Proofs of 1,2,3

- Choose $\delta>0$ so small that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S,\|\vec{f}(\vec{x})-\vec{b}\|<\frac{\epsilon}{2}$ and $\|\vec{g}(\vec{x})-\vec{c}\|<\frac{\epsilon}{2}$. Thus $\|\vec{f}(\vec{x})+\vec{g}(\vec{x})-\vec{b}-\vec{c}\|<\epsilon$ by the triangle inequality.
- Without loss of generality assume that $\lambda \neq 0$ (why?). Choose $\delta>0$ so small that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S$, $\|\vec{f}(\vec{x})-\vec{b}\|<\frac{\epsilon}{|\lambda|}$.

Proofs of 1,2,3

- Choose $\delta>0$ so small that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S,\|\vec{f}(\vec{x})-\vec{b}\|<\frac{\epsilon}{2}$ and $\|\vec{g}(\vec{x})-\vec{c}\|<\frac{\epsilon}{2}$. Thus $\|\vec{f}(\vec{x})+\vec{g}(\vec{x})-\vec{b}-\vec{c}\|<\epsilon$ by the triangle inequality.
- Without loss of generality assume that $\lambda \neq 0$ (why?). Choose $\delta>0$ so small that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S$, $\|\vec{f}(\vec{x})-\vec{b}\|<\frac{\epsilon}{|\lambda|}$. Thus we are done.

Proofs of 1,2,3

- Choose $\delta>0$ so small that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S,\|\vec{f}(\vec{x})-\vec{b}\|<\frac{\epsilon}{2}$ and $\|\vec{g}(\vec{x})-\vec{c}\|<\frac{\epsilon}{2}$. Thus $\|\vec{f}(\vec{x})+\vec{g}(\vec{x})-\vec{b}-\vec{c}\|<\epsilon$ by the triangle inequality.
- Without loss of generality assume that $\lambda \neq 0$ (why?). Choose $\delta>0$ so small that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S$, $\|\vec{f}(\vec{x})-\vec{b}\|<\frac{\epsilon}{|\lambda|}$. Thus we are done.
- Let $\vec{f}(\vec{x})-\vec{b}=\vec{h}_{1}$ and $\vec{g}(\vec{x})-\vec{c}=\vec{h}_{2}$.

Proofs of 1,2,3

- Choose $\delta>0$ so small that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S,\|\vec{f}(\vec{x})-\vec{b}\|<\frac{\epsilon}{2}$ and $\|\vec{g}(\vec{x})-\vec{c}\|<\frac{\epsilon}{2}$. Thus $\|\vec{f}(\vec{x})+\vec{g}(\vec{x})-\vec{b}-\vec{c}\|<\epsilon$ by the triangle inequality.
- Without loss of generality assume that $\lambda \neq 0$ (why?). Choose $\delta>0$ so small that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S$, $\|\vec{f}(\vec{x})-\vec{b}\|<\frac{\epsilon}{|\lambda|}$. Thus we are done.
- Let $\vec{f}(\vec{x})-\vec{b}=\vec{h}_{1}$ and $\vec{g}(\vec{x})-\vec{c}=\vec{h}_{2}$.
$\mid \vec{f}(\vec{x}) \cdot \vec{g}(\vec{x}))-\vec{b} \cdot \vec{c}\left|\leq\left|\left(\vec{h}_{1}+\vec{b}\right) \cdot\left(\vec{h}_{2}+\vec{c}\right)-\vec{b} \cdot \vec{c}\right|\right.$.

Proofs of 1,2,3

- Choose $\delta>0$ so small that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S,\|\vec{f}(\vec{x})-\vec{b}\|<\frac{\epsilon}{2}$ and $\|\vec{g}(\vec{x})-\vec{c}\|<\frac{\epsilon}{2}$. Thus $\|\vec{f}(\vec{x})+\vec{g}(\vec{x})-\vec{b}-\vec{c}\|<\epsilon$ by the triangle inequality.
- Without loss of generality assume that $\lambda \neq 0$ (why?). Choose $\delta>0$ so small that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S$, $\|\vec{f}(\vec{x})-\vec{b}\|<\frac{\epsilon}{|\lambda|}$. Thus we are done.
- Let $\vec{f}(\vec{x})-\vec{b}=\vec{h}_{1}$ and $\vec{g}(\vec{x})-\vec{c}=\vec{h}_{2}$.
$\mid \vec{f}(\vec{x}) \cdot \vec{g}(\vec{x}))-\vec{b} \cdot \vec{c}\left|\leq\left|\left(\vec{h}_{1}+\vec{b}\right) \cdot\left(\vec{h}_{2}+\vec{c}\right)-\vec{b} \cdot \vec{c}\right|\right.$. Now we use the triangle inequality

Proofs of 1,2,3

- Choose $\delta>0$ so small that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S,\|\vec{f}(\vec{x})-\vec{b}\|<\frac{\epsilon}{2}$ and $\|\vec{g}(\vec{x})-\vec{c}\|<\frac{\epsilon}{2}$. Thus $\|\vec{f}(\vec{x})+\vec{g}(\vec{x})-\vec{b}-\vec{c}\|<\epsilon$ by the triangle inequality.
- Without loss of generality assume that $\lambda \neq 0$ (why?). Choose $\delta>0$ so small that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S$, $\|\vec{f}(\vec{x})-\vec{b}\|<\frac{\epsilon}{|\lambda|}$. Thus we are done.
- Let $\vec{f}(\vec{x})-\vec{b}=\vec{h}_{1}$ and $\vec{g}(\vec{x})-\vec{c}=\vec{h}_{2}$. $\mid \vec{f}(\vec{x}) \cdot \vec{g}(\vec{x}))-\vec{b} \cdot \vec{c}\left|\leq\left|\left(\vec{h}_{1}+\vec{b}\right) \cdot\left(\vec{h}_{2}+\vec{c}\right)-\vec{b} \cdot \vec{c}\right|\right.$. Now we use the triangle inequality to see that it is less than
- Choose $\delta>0$ so small that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S,\|\vec{f}(\vec{x})-\vec{b}\|<\frac{\epsilon}{2}$ and $\|\vec{g}(\vec{x})-\vec{c}\|<\frac{\epsilon}{2}$. Thus $\|\vec{f}(\vec{x})+\vec{g}(\vec{x})-\vec{b}-\vec{c}\|<\epsilon$ by the triangle inequality.
- Without loss of generality assume that $\lambda \neq 0$ (why?). Choose $\delta>0$ so small that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S$, $\|\vec{f}(\vec{x})-\vec{b}\|<\frac{\epsilon}{|\lambda|}$. Thus we are done.
- Let $\vec{f}(\vec{x})-\vec{b}=\vec{h}_{1}$ and $\vec{g}(\vec{x})-\vec{c}=\vec{h}_{2}$.
$\mid \vec{f}(\vec{x}) \cdot \vec{g}(\vec{x}))-\vec{b} \cdot \vec{c}\left|\leq\left|\left(\vec{h}_{1}+\vec{b}\right) \cdot\left(\vec{h}_{2}+\vec{c}\right)-\vec{b} \cdot \vec{c}\right|\right.$. Now we use the triangle inequality to see that it is less than $\left|\vec{h}_{1} \cdot \vec{h}_{2}\right|+\left|\vec{h}_{1} \cdot \vec{c}\right|+\left|\vec{h}_{2} \cdot \vec{b}\right|$.

Proofs of 1,2,3

- Choose $\delta>0$ so small that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S,\|\vec{f}(\vec{x})-\vec{b}\|<\frac{\epsilon}{2}$ and $\|\vec{g}(\vec{x})-\vec{c}\|<\frac{\epsilon}{2}$. Thus $\|\vec{f}(\vec{x})+\vec{g}(\vec{x})-\vec{b}-\vec{c}\|<\epsilon$ by the triangle inequality.
- Without loss of generality assume that $\lambda \neq 0$ (why?). Choose $\delta>0$ so small that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S$, $\|\vec{f}(\vec{x})-\vec{b}\|<\frac{\epsilon}{|\lambda|}$. Thus we are done.
- Let $\vec{f}(\vec{x})-\vec{b}=\vec{h}_{1}$ and $\vec{g}(\vec{x})-\vec{c}=\vec{h}_{2}$.
$\mid \vec{f}(\vec{x}) \cdot \vec{g}(\vec{x}))-\vec{b} \cdot \vec{c}\left|\leq\left|\left(\vec{h}_{1}+\vec{b}\right) \cdot\left(\vec{h}_{2}+\vec{c}\right)-\vec{b} \cdot \vec{c}\right|\right.$. Now we use the triangle inequality to see that it is less than $\left|\vec{h}_{1} \cdot \vec{h}_{2}\right|+\left|\vec{h}_{1} \cdot \vec{c}\right|+\left|\vec{h}_{2} \cdot \vec{b}\right|$. By the Cauchy-Schwarz inequality

Proofs of 1,2,3

- Choose $\delta>0$ so small that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S,\|\vec{f}(\vec{x})-\vec{b}\|<\frac{\epsilon}{2}$ and $\|\vec{g}(\vec{x})-\vec{c}\|<\frac{\epsilon}{2}$. Thus $\|\vec{f}(\vec{x})+\vec{g}(\vec{x})-\vec{b}-\vec{c}\|<\epsilon$ by the triangle inequality.
- Without loss of generality assume that $\lambda \neq 0$ (why?). Choose $\delta>0$ so small that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S$, $\|\vec{f}(\vec{x})-\vec{b}\|<\frac{\epsilon}{|\lambda|}$. Thus we are done.
- Let $\vec{f}(\vec{x})-\vec{b}=\vec{h}_{1}$ and $\vec{g}(\vec{x})-\vec{c}=\vec{h}_{2}$. $\mid \vec{f}(\vec{x}) \cdot \vec{g}(\vec{x}))-\vec{b} \cdot \vec{c}\left|\leq\left|\left(\vec{h}_{1}+\vec{b}\right) \cdot\left(\vec{h}_{2}+\vec{c}\right)-\vec{b} \cdot \vec{c}\right|\right.$. Now we use the triangle inequality to see that it is less than $\left|\vec{h}_{1} \cdot \vec{h}_{2}\right|+\left|\vec{h}_{1} \cdot \vec{c}\right|+\left|\vec{h}_{2} \cdot \vec{b}\right|$. By the Cauchy-Schwarz inequality it is less than
- Choose $\delta>0$ so small that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S,\|\vec{f}(\vec{x})-\vec{b}\|<\frac{\epsilon}{2}$ and $\|\vec{g}(\vec{x})-\vec{c}\|<\frac{\epsilon}{2}$. Thus $\|\vec{f}(\vec{x})+\vec{g}(\vec{x})-\vec{b}-\vec{c}\|<\epsilon$ by the triangle inequality.
- Without loss of generality assume that $\lambda \neq 0$ (why?). Choose $\delta>0$ so small that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S$, $\|\vec{f}(\vec{x})-\vec{b}\|<\frac{\epsilon}{|\lambda|}$. Thus we are done.
- Let $\vec{f}(\vec{x})-\vec{b}=\vec{h}_{1}$ and $\vec{g}(\vec{x})-\vec{c}=\vec{h}_{2}$.
$\mid \vec{f}(\vec{x}) \cdot \vec{g}(\vec{x}))-\vec{b} \cdot \vec{c}\left|\leq\left|\left(\vec{h}_{1}+\vec{b}\right) \cdot\left(\vec{h}_{2}+\vec{c}\right)-\vec{b} \cdot \vec{c}\right|\right.$. Now we use the triangle inequality to see that it is less than $\left|\vec{h}_{1} \cdot \vec{h}_{2}\right|+\left|\vec{h}_{1} \cdot \vec{C}\right|+\left|\vec{h}_{2} \cdot \vec{b}\right|$. By the Cauchy-Schwarz inequality it is less than $\left\|\vec{h}_{1}\right\|\left\|\vec{h}_{2}\right\|+\left\|\vec{h}_{1}\right\|\|\vec{c}\|+\left\|\vec{h}_{2}\right\|\|\vec{b}\|$.
- Choose $\delta>0$ so small that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S,\|\vec{f}(\vec{x})-\vec{b}\|<\frac{\epsilon}{2}$ and $\|\vec{g}(\vec{x})-\vec{c}\|<\frac{\epsilon}{2}$. Thus $\|\vec{f}(\vec{x})+\vec{g}(\vec{x})-\vec{b}-\vec{c}\|<\epsilon$ by the triangle inequality.
- Without loss of generality assume that $\lambda \neq 0$ (why?). Choose $\delta>0$ so small that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S$, $\|\vec{f}(\vec{x})-\vec{b}\|<\frac{\epsilon}{|\lambda|}$. Thus we are done.
- Let $\vec{f}(\vec{x})-\vec{b}=\vec{h}_{1}$ and $\vec{g}(\vec{x})-\vec{c}=\vec{h}_{2}$.
$\mid \vec{f}(\vec{x}) \cdot \vec{g}(\vec{x}))-\vec{b} \cdot \vec{c}\left|\leq\left|\left(\vec{h}_{1}+\vec{b}\right) \cdot\left(\vec{h}_{2}+\vec{c}\right)-\vec{b} \cdot \vec{c}\right|\right.$. Now we use the triangle inequality to see that it is less than $\left|\vec{h}_{1} \cdot \vec{h}_{2}\right|+\left|\vec{h}_{1} \cdot \vec{c}\right|+\left|\vec{h}_{2} \cdot \vec{b}\right|$. By the Cauchy-Schwarz inequality it is less than $\left\|\vec{h}_{1}\right\|\left\|\vec{h}_{2}\right\|+\left\|\vec{h}_{1}\right\|\|\vec{c}\|+\left\|\vec{h}_{2}\right\|\|\vec{b}\|$. We want to make
- Choose $\delta>0$ so small that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S,\|\vec{f}(\vec{x})-\vec{b}\|<\frac{\epsilon}{2}$ and $\|\vec{g}(\vec{x})-\vec{c}\|<\frac{\epsilon}{2}$. Thus $\|\vec{f}(\vec{x})+\vec{g}(\vec{x})-\vec{b}-\vec{c}\|<\epsilon$ by the triangle inequality.
- Without loss of generality assume that $\lambda \neq 0$ (why?). Choose $\delta>0$ so small that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S$, $\|\vec{f}(\vec{x})-\vec{b}\|<\frac{\epsilon}{|\lambda|}$. Thus we are done.
- Let $\vec{f}(\vec{x})-\vec{b}=\vec{h}_{1}$ and $\vec{g}(\vec{x})-\vec{c}=\vec{h}_{2}$.
$\mid \vec{f}(\vec{x}) \cdot \vec{g}(\vec{x}))-\vec{b} \cdot \vec{c}\left|\leq\left|\left(\vec{h}_{1}+\vec{b}\right) \cdot\left(\vec{h}_{2}+\vec{c}\right)-\vec{b} \cdot \vec{c}\right|\right.$. Now we use the triangle inequality to see that it is less than $\left|\vec{h}_{1} \cdot \vec{h}_{2}\right|+\left|\vec{h}_{1} \cdot \vec{c}\right|+\left|\vec{h}_{2} \cdot \vec{b}\right|$. By the Cauchy-Schwarz inequality it is less than $\left\|\vec{h}_{1}\right\|\left\|\vec{h}_{2}\right\|+\left\|\vec{h}_{1}\right\|\|\vec{c}\|+\left\|\vec{h}_{2}\right\|\|\vec{b}\|$. We want to make each term less than
- Choose $\delta>0$ so small that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S,\|\vec{f}(\vec{x})-\vec{b}\|<\frac{\epsilon}{2}$ and $\|\vec{g}(\vec{x})-\vec{c}\|<\frac{\epsilon}{2}$. Thus $\|\vec{f}(\vec{x})+\vec{g}(\vec{x})-\vec{b}-\vec{c}\|<\epsilon$ by the triangle inequality.
- Without loss of generality assume that $\lambda \neq 0$ (why?). Choose $\delta>0$ so small that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S$, $\|\vec{f}(\vec{x})-\vec{b}\|<\frac{\epsilon}{|\lambda|}$. Thus we are done.
- Let $\vec{f}(\vec{x})-\vec{b}=\vec{h}_{1}$ and $\vec{g}(\vec{x})-\vec{c}=\vec{h}_{2}$. $\mid \vec{f}(\vec{x}) \cdot \vec{g}(\vec{x}))-\vec{b} \cdot \vec{c}\left|\leq\left|\left(\vec{h}_{1}+\vec{b}\right) \cdot\left(\vec{h}_{2}+\vec{c}\right)-\vec{b} \cdot \vec{c}\right|\right.$. Now we use the triangle inequality to see that it is less than $\left|\vec{h}_{1} \cdot \vec{h}_{2}\right|+\left|\vec{h}_{1} \cdot \vec{c}\right|+\left|\vec{h}_{2} \cdot \vec{b}\right|$. By the Cauchy-Schwarz inequality it is less than $\left\|\vec{h}_{1}\right\|\left\|\vec{h}_{2}\right\|+\left\|\vec{h}_{1}\right\|\|\vec{c}\|+\left\|\vec{h}_{2}\right\|\|\vec{b}\|$. We want to make each term less than $\frac{\epsilon}{3}$ by choosing
- Choose $\delta>0$ so small that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S,\|\vec{f}(\vec{x})-\vec{b}\|<\frac{\epsilon}{2}$ and $\|\vec{g}(\vec{x})-\vec{c}\|<\frac{\epsilon}{2}$. Thus $\|\vec{f}(\vec{x})+\vec{g}(\vec{x})-\vec{b}-\vec{c}\|<\epsilon$ by the triangle inequality.
- Without loss of generality assume that $\lambda \neq 0$ (why?). Choose $\delta>0$ so small that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S$, $\|\vec{f}(\vec{x})-\vec{b}\|<\frac{\epsilon}{|\lambda|}$. Thus we are done.
- Let $\vec{f}(\vec{x})-\vec{b}=\vec{h}_{1}$ and $\vec{g}(\vec{x})-\vec{c}=\vec{h}_{2}$.
$\mid \vec{f}(\vec{x}) \cdot \vec{g}(\vec{x}))-\vec{b} \cdot \vec{c}\left|\leq\left|\left(\vec{h}_{1}+\vec{b}\right) \cdot\left(\vec{h}_{2}+\vec{c}\right)-\vec{b} \cdot \vec{c}\right|\right.$. Now we use the triangle inequality to see that it is less than $\left|\vec{h}_{1} \cdot \vec{h}_{2}\right|+\left|\vec{h}_{1} \cdot \vec{c}\right|+\left|\vec{h}_{2} \cdot \vec{b}\right|$. By the Cauchy-Schwarz inequality it is less than $\left\|\vec{h}_{1}\right\|\left\|\vec{h}_{2}\right\|+\left\|\vec{h}_{1}\right\|\|\vec{c}\|+\left\|\vec{h}_{2}\right\|\|\vec{b}\|$. We want to make each term less than $\frac{\epsilon}{3}$ by choosing δ small enough.
- Choose $\delta>0$ so small that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S,\|\vec{f}(\vec{x})-\vec{b}\|<\frac{\epsilon}{2}$ and $\|\vec{g}(\vec{x})-\vec{c}\|<\frac{\epsilon}{2}$. Thus $\|\vec{f}(\vec{x})+\vec{g}(\vec{x})-\vec{b}-\vec{c}\|<\epsilon$ by the triangle inequality.
- Without loss of generality assume that $\lambda \neq 0$ (why?). Choose $\delta>0$ so small that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S$, $\|\vec{f}(\vec{x})-\vec{b}\|<\frac{\epsilon}{|\lambda|}$. Thus we are done.
- Let $\vec{f}(\vec{x})-\vec{b}=\vec{h}_{1}$ and $\vec{g}(\vec{x})-\vec{c}=\vec{h}_{2}$. $\mid \vec{f}(\vec{x}) \cdot \vec{g}(\vec{x}))-\vec{b} \cdot \vec{c}\left|\leq\left|\left(\vec{h}_{1}+\vec{b}\right) \cdot\left(\vec{h}_{2}+\vec{c}\right)-\vec{b} \cdot \vec{c}\right|\right.$. Now we use the triangle inequality to see that it is less than $\left|\vec{h}_{1} \cdot \vec{h}_{2}\right|+\left|\vec{h}_{1} \cdot \vec{C}\right|+\left|\vec{h}_{2} \cdot \vec{b}\right|$. By the Cauchy-Schwarz inequality it is less than $\left\|\vec{h}_{1}\right\|\left\|\vec{h}_{2}\right\|+\left\|\vec{h}_{1}\right\|\|\vec{c}\|+\left\|\vec{h}_{2}\right\|\|\vec{b}\|$. We want to make each term less than $\frac{\epsilon}{3}$ by choosing δ small enough. This can be done
- Choose $\delta>0$ so small that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S,\|\vec{f}(\vec{x})-\vec{b}\|<\frac{\epsilon}{2}$ and $\|\vec{g}(\vec{x})-\vec{c}\|<\frac{\epsilon}{2}$. Thus $\|\vec{f}(\vec{x})+\vec{g}(\vec{x})-\vec{b}-\vec{c}\|<\epsilon$ by the triangle inequality.
- Without loss of generality assume that $\lambda \neq 0$ (why?). Choose $\delta>0$ so small that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S$, $\|\vec{f}(\vec{x})-\vec{b}\|<\frac{\epsilon}{|\lambda|}$. Thus we are done.
- Let $\vec{f}(\vec{x})-\vec{b}=\vec{h}_{1}$ and $\vec{g}(\vec{x})-\vec{c}=\vec{h}_{2}$. $\mid \vec{f}(\vec{x}) \cdot \vec{g}(\vec{x}))-\vec{b} \cdot \vec{c}\left|\leq\left|\left(\vec{h}_{1}+\vec{b}\right) \cdot\left(\vec{h}_{2}+\vec{c}\right)-\vec{b} \cdot \vec{c}\right|\right.$. Now we use the triangle inequality to see that it is less than $\left|\vec{h}_{1} \cdot \vec{h}_{2}\right|+\left|\vec{h}_{1} \cdot \vec{C}\right|+\left|\vec{h}_{2} \cdot \vec{b}\right|$. By the Cauchy-Schwarz inequality it is less than $\left\|\vec{h}_{1}\right\|\left\|\vec{h}_{2}\right\|+\left\|\vec{h}_{1}\right\|\|\vec{c}\|+\left\|\vec{h}_{2}\right\|\|\vec{b}\|$. We want to make each term less than $\frac{\epsilon}{3}$ by choosing δ small enough. This can be done for the last two terms
- Choose $\delta>0$ so small that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S,\|\vec{f}(\vec{x})-\vec{b}\|<\frac{\epsilon}{2}$ and $\|\vec{g}(\vec{x})-\vec{c}\|<\frac{\epsilon}{2}$. Thus $\|\vec{f}(\vec{x})+\vec{g}(\vec{x})-\vec{b}-\vec{c}\|<\epsilon$ by the triangle inequality.
- Without loss of generality assume that $\lambda \neq 0$ (why?). Choose $\delta>0$ so small that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S$, $\|\vec{f}(\vec{x})-\vec{b}\|<\frac{\epsilon}{|\lambda|}$. Thus we are done.
- Let $\vec{f}(\vec{x})-\vec{b}=\vec{h}_{1}$ and $\vec{g}(\vec{x})-\vec{c}=\vec{h}_{2}$. $\mid \vec{f}(\vec{x}) \cdot \vec{g}(\vec{x}))-\vec{b} \cdot \vec{c}\left|\leq\left|\left(\vec{h}_{1}+\vec{b}\right) \cdot\left(\vec{h}_{2}+\vec{c}\right)-\vec{b} \cdot \vec{c}\right|\right.$. Now we use the triangle inequality to see that it is less than $\left|\vec{h}_{1} \cdot \vec{h}_{2}\right|+\left|\vec{h}_{1} \cdot \vec{c}\right|+\left|\vec{h}_{2} \cdot \vec{b}\right|$. By the Cauchy-Schwarz inequality it is less than $\left\|\vec{h}_{1}\right\|\left\|\vec{h}_{2}\right\|+\left\|\vec{h}_{1}\right\|\|\vec{c}\|+\left\|\vec{h}_{2}\right\|\|\vec{b}\|$. We want to make each term less than $\frac{\epsilon}{3}$ by choosing δ small enough. This can be done for the last two terms almost by assumption.
- Choose $\delta>0$ so small that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S,\|\vec{f}(\vec{x})-\vec{b}\|<\frac{\epsilon}{2}$ and $\|\vec{g}(\vec{x})-\vec{c}\|<\frac{\epsilon}{2}$. Thus $\|\vec{f}(\vec{x})+\vec{g}(\vec{x})-\vec{b}-\vec{c}\|<\epsilon$ by the triangle inequality.
- Without loss of generality assume that $\lambda \neq 0$ (why?). Choose $\delta>0$ so small that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S$, $\|\vec{f}(\vec{x})-\vec{b}\|<\frac{\epsilon}{|\lambda|}$. Thus we are done.
- Let $\vec{f}(\vec{x})-\vec{b}=\vec{h}_{1}$ and $\vec{g}(\vec{x})-\vec{c}=\vec{h}_{2}$. $\mid \vec{f}(\vec{x}) \cdot \vec{g}(\vec{x}))-\vec{b} \cdot \vec{c}\left|\leq\left|\left(\vec{h}_{1}+\vec{b}\right) \cdot\left(\vec{h}_{2}+\vec{c}\right)-\vec{b} \cdot \vec{c}\right|\right.$. Now we use the triangle inequality to see that it is less than $\left|\vec{h}_{1} \cdot \vec{h}_{2}\right|+\left|\vec{h}_{1} \cdot \vec{C}\right|+\left|\vec{h}_{2} \cdot \vec{b}\right|$. By the Cauchy-Schwarz inequality it is less than $\left\|\vec{h}_{1}\right\|\left\|\vec{h}_{2}\right\|+\left\|\vec{h}_{1}\right\|\|\vec{c}\|+\left\|\vec{h}_{2}\right\|\|\vec{b}\|$. We want to make each term less than $\frac{\epsilon}{3}$ by choosing δ small enough. This can be done for the last two terms almost by assumption. For the first term,
- Choose $\delta>0$ so small that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S,\|\vec{f}(\vec{x})-\vec{b}\|<\frac{\epsilon}{2}$ and $\|\vec{g}(\vec{x})-\vec{c}\|<\frac{\epsilon}{2}$. Thus $\|\vec{f}(\vec{x})+\vec{g}(\vec{x})-\vec{b}-\vec{c}\|<\epsilon$ by the triangle inequality.
- Without loss of generality assume that $\lambda \neq 0$ (why?). Choose $\delta>0$ so small that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S$, $\|\vec{f}(\vec{x})-\vec{b}\|<\frac{\epsilon}{|\lambda|}$. Thus we are done.
- Let $\vec{f}(\vec{x})-\vec{b}=\vec{h}_{1}$ and $\vec{g}(\vec{x})-\vec{c}=\vec{h}_{2}$. $\mid \vec{f}(\vec{x}) \cdot \vec{g}(\vec{x}))-\vec{b} \cdot \vec{c}\left|\leq\left|\left(\vec{h}_{1}+\vec{b}\right) \cdot\left(\vec{h}_{2}+\vec{c}\right)-\vec{b} \cdot \vec{c}\right|\right.$. Now we use the triangle inequality to see that it is less than $\left|\vec{h}_{1} \cdot \vec{h}_{2}\right|+\left|\vec{h}_{1} \cdot \vec{C}\right|+\left|\vec{h}_{2} \cdot \vec{b}\right|$. By the Cauchy-Schwarz inequality it is less than $\left\|\vec{h}_{1}\right\|\left\|\vec{h}_{2}\right\|+\left\|\vec{h}_{1}\right\|\|\vec{c}\|+\left\|\vec{h}_{2}\right\|\|\vec{b}\|$. We want to make each term less than $\frac{\epsilon}{3}$ by choosing δ small enough. This can be done for the last two terms almost by assumption. For the first term, if necessary, shrink δ
- Choose $\delta>0$ so small that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S,\|\vec{f}(\vec{x})-\vec{b}\|<\frac{\epsilon}{2}$ and $\|\vec{g}(\vec{x})-\vec{c}\|<\frac{\epsilon}{2}$. Thus $\|\vec{f}(\vec{x})+\vec{g}(\vec{x})-\vec{b}-\vec{c}\|<\epsilon$ by the triangle inequality.
- Without loss of generality assume that $\lambda \neq 0$ (why?). Choose $\delta>0$ so small that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S$, $\|\vec{f}(\vec{x})-\vec{b}\|<\frac{\epsilon}{|\lambda|}$. Thus we are done.
- Let $\vec{f}(\vec{x})-\vec{b}=\vec{h}_{1}$ and $\vec{g}(\vec{x})-\vec{c}=\vec{h}_{2}$.
$\mid \vec{f}(\vec{x}) \cdot \vec{g}(\vec{x}))-\vec{b} \cdot \vec{c}\left|\leq\left|\left(\vec{h}_{1}+\vec{b}\right) \cdot\left(\vec{h}_{2}+\vec{c}\right)-\vec{b} \cdot \vec{c}\right|\right.$. Now we use the triangle inequality to see that it is less than $\left|\vec{h}_{1} \cdot \vec{h}_{2}\right|+\left|\vec{h}_{1} \cdot \vec{C}\right|+\left|\vec{h}_{2} \cdot \vec{b}\right|$. By the Cauchy-Schwarz inequality it is less than $\left\|\vec{h}_{1}\right\|\left\|\vec{h}_{2}\right\|+\left\|\vec{h}_{1}\right\|\|\vec{c}\|+\left\|\vec{h}_{2}\right\|\|\vec{b}\|$. We want to make each term less than $\frac{\epsilon}{3}$ by choosing δ small enough. This can be done for the last two terms almost by assumption. For the first term, if necessary, shrink δ so that $\left\|\vec{h}_{i}\right\|<\frac{\sqrt{\epsilon}}{\sqrt{3}}$.

Proofs of 4,5

Proofs of 4,5

- $|\|\vec{f}(\vec{x})\|-\|\vec{b}\|| \leq\|\vec{f}(\vec{x})-\vec{b}\|$ by the triangle inequality.

Proofs of 4,5

- $\mid\|\vec{f}(\vec{x})\|-\|\vec{b}\| \leq\|\vec{f}(\vec{x})-\vec{b}\|$ by the triangle inequality. We are done.

Proofs of 4,5

- $|\|\vec{f}(\vec{x})\|-\|\vec{b}\|| \leq\|\vec{f}(\vec{x})-\vec{b}\|$ by the triangle inequality. We are done.
- We may assume

Proofs of 4,5

- $\|\mid \vec{f}(\vec{x})\|-\|\vec{b}\| \leq \leq\|\vec{f}(\vec{x})-\vec{b}\|$ by the triangle inequality. We are done.
- We may assume that $f=1$ without loss of generality (why?).

Proofs of 4,5

- $\|\mid \vec{f}(\vec{x})\|-\|\vec{b}\| \leq \leq\|\vec{f}(\vec{x})-\vec{b}\|$ by the triangle inequality. We are done.
- We may assume that $f=1$ without loss of generality (why?). $\left|\frac{1}{g}-\frac{1}{c}\right|=\frac{|g(\vec{x})-c|}{|c||g(\vec{x})|}$.

Proofs of 4,5

- $|\|\vec{f}(\vec{x})\|-\|\vec{b}\|| \leq\|\vec{f}(\vec{x})-\vec{b}\|$ by the triangle inequality. We are done.
- We may assume that $f=1$ without loss of generality (why?). $\left|\frac{1}{g}-\frac{1}{c}\right|=\frac{|g(\vec{x})-c|}{|c||g(\vec{x})|}$. Choose δ so small that

Proofs of 4,5

- $|\|\vec{f}(\vec{x})\|-\|\vec{b}\|| \leq\|\vec{f}(\vec{x})-\vec{b}\|$ by the triangle inequality. We are done.
- We may assume that $f=1$ without loss of generality (why?). $\left|\frac{1}{g}-\frac{1}{c}\right|=\frac{|g(\vec{x})-c|}{|c||g(\vec{x})|}$. Choose δ so small that $|g(\vec{x})-c|<\frac{|c|}{2}$.

Proofs of 4,5

- $|\|\vec{f}(\vec{x})\|-\|\vec{b}\|| \leq\|\vec{f}(\vec{x})-\vec{b}\|$ by the triangle inequality. We are done.
- We may assume that $f=1$ without loss of generality (why?). $\left|\frac{1}{g}-\frac{1}{c}\right|=\frac{|g(\vec{x})-c|}{|c||g(\vec{x})|}$. Choose δ so small that $|g(\vec{x})-c|<\frac{|c|}{2}$. Thus $\frac{|c|}{2}<|g(\vec{x})|<\frac{3|c|}{2}$.

Proofs of 4,5

- || $\vec{f}(\vec{x})\|-\| \vec{b}\|\mid \leq\| \vec{f}(\vec{x})-\vec{b} \|$ by the triangle inequality. We are done.
- We may assume that $f=1$ without loss of generality (why?). $\left|\frac{1}{g}-\frac{1}{c}\right|=\frac{|g(\vec{x})-c|}{|c||g(\vec{x})|}$. Choose δ so small that $|g(\vec{x})-c|<\frac{|c|}{2}$.
Thus $\frac{|c|}{2}<|g(\vec{x})|<\frac{3|c|}{2}$. Thus $\left|\frac{1}{g}-\frac{1}{c}\right|<\frac{2|g(\vec{x})-c|}{c^{2}}<\epsilon$ when

Proofs of 4,5

- || $\vec{f}(\vec{x})\|-\| \vec{b}\|\mid \leq\| \vec{f}(\vec{x})-\vec{b} \|$ by the triangle inequality. We are done.
- We may assume that $f=1$ without loss of generality (why?). $\left|\frac{1}{g}-\frac{1}{c}\right|=\frac{|g(\vec{x})-c|}{|c| g(\vec{x}) \mid}$. Choose δ so small that $|g(\vec{x})-c|<\frac{|c|}{2}$. Thus $\frac{|c|}{2}<|g(\vec{x})|<\frac{3|c|}{2}$. Thus $\left|\frac{1}{g}-\frac{1}{c}\right|<\frac{2|g(\vec{x})-c|}{c^{2}}<\epsilon$ when δ is even smaller.

Proofs of 4,5

- || $\vec{f}(\vec{x})\|-\| \vec{b}\|\mid \leq\| \vec{f}(\vec{x})-\vec{b} \|$ by the triangle inequality. We are done.
- We may assume that $f=1$ without loss of generality (why?). $\left|\frac{1}{g}-\frac{1}{c}\right|=\frac{|g(\vec{x})-c|}{|c| g(\vec{x}) \mid}$. Choose δ so small that $|g(\vec{x})-c|<\frac{|c|}{2}$. Thus $\frac{|c|}{2}<|g(\vec{x})|<\frac{3|c|}{2}$. Thus $\left|\frac{1}{g}-\frac{1}{c}\right|<\frac{2|g(\vec{x})-c|}{c^{2}}<\epsilon$ when δ is even smaller.
- We can

Proofs of 4,5

- || $\vec{f}(\vec{x})\|-\| \vec{b}\|\mid \leq\| \vec{f}(\vec{x})-\vec{b} \|$ by the triangle inequality. We are done.
- We may assume that $f=1$ without loss of generality (why?). $\left|\frac{1}{g}-\frac{1}{c}\right|=\frac{|g(\vec{x})-c|}{|c| g(\vec{x}) \mid}$. Choose δ so small that $|g(\vec{x})-c|<\frac{|c|}{2}$. Thus $\frac{|c|}{2}<|g(\vec{x})|<\frac{3|c|}{2}$. Thus $\left|\frac{1}{g}-\frac{1}{c}\right|<\frac{2|g(\vec{x})-c|}{c^{2}}<\epsilon$ when δ is even smaller.
- We can also prove that

Proofs of 4,5

- $\||\vec{f}(\vec{x})\|-\| \vec{b}\|\mid \leq\| \vec{f}(\vec{x})-\vec{b} \|$ by the triangle inequality. We are done.
- We may assume that $f=1$ without loss of generality (why?). $\left|\frac{1}{g}-\frac{1}{c}\right|=\frac{|g(\vec{x})-c|}{|c||g(\vec{x})|}$. Choose δ so small that $|g(\vec{x})-c|<\frac{|c|}{2}$. Thus $\frac{|c|}{2}<|g(\vec{x})|<\frac{3|c|}{2}$. Thus $\left|\frac{1}{g}-\frac{1}{c}\right|<\frac{2|g(\vec{x})-c|}{c^{2}}<\epsilon$ when δ is even smaller.
- We can also prove that (HW) if $\lambda(x)$ is continuous

Proofs of 4,5

- $\||\vec{f}(\vec{x})\|-\| \vec{b}\|\mid \leq\| \vec{f}(\vec{x})-\vec{b} \|$ by the triangle inequality. We are done.
- We may assume that $f=1$ without loss of generality (why?). $\left|\frac{1}{g}-\frac{1}{c}\right|=\frac{|g(\vec{x})-c|}{|c||g(\vec{x})|}$. Choose δ so small that $|g(\vec{x})-c|<\frac{|c|}{2}$. Thus $\frac{|c|}{2}<|g(\vec{x})|<\frac{3|c|}{2}$. Thus $\left|\frac{1}{g}-\frac{1}{c}\right|<\frac{2|g(\vec{x})-c|}{c^{2}}<\epsilon$ when δ is even smaller.
- We can also prove that (HW) if $\lambda(x)$ is continuous and \vec{f} is so

Proofs of 4,5

- || $\vec{f}(\vec{x})\|-\| \vec{b}\|\mid \leq\| \vec{f}(\vec{x})-\vec{b} \|$ by the triangle inequality. We are done.
- We may assume that $f=1$ without loss of generality (why?). $\left|\frac{1}{g}-\frac{1}{c}\right|=\frac{|g(\vec{x})-c|}{|c||g(\vec{x})|}$. Choose δ so small that $|g(\vec{x})-c|<\frac{|c|}{2}$. Thus $\frac{|c|}{2}<|g(\vec{x})|<\frac{3|c|}{2}$. Thus $\left|\frac{1}{g}-\frac{1}{c}\right|<\frac{2|g(\vec{x})-c|}{c^{2}}<\epsilon$ when δ is even smaller.
- We can also prove that (HW) if $\lambda(x)$ is continuous and \vec{f} is so then so is $\lambda(x) \vec{f}$.

Examples

Examples

- Another way to

Examples

- Another way to prove that the

Examples

- Another way to prove that the components of a continuous vector-valued function

Examples

- Another way to prove that the components of a continuous vector-valued function are continuous is

Examples

- Another way to prove that the components of a continuous vector-valued function are continuous is by noting that

Examples

- Another way to prove that the components of a continuous vector-valued function are continuous is by noting that they are dot products.

Examples

- Another way to prove that the components of a continuous vector-valued function are continuous is by noting that they are dot products. The converse follows

Examples

- Another way to prove that the components of a continuous vector-valued function are continuous is by noting that they are dot products. The converse follows from the above properties.

Examples

- Another way to prove that the components of a continuous vector-valued function are continuous is by noting that they are dot products. The converse follows from the above properties.
- Since the components

Examples

- Another way to prove that the components of a continuous vector-valued function are continuous is by noting that they are dot products. The converse follows from the above properties.
- Since the components are continuous
- Another way to prove that the components of a continuous vector-valued function are continuous is by noting that they are dot products. The converse follows from the above properties.
- Since the components are continuous the identity function is so as well.
- Another way to prove that the components of a continuous vector-valued function are continuous is by noting that they are dot products. The converse follows from the above properties.
- Since the components are continuous the identity function is so as well.
- Linear maps are continuous:
- Another way to prove that the components of a continuous vector-valued function are continuous is by noting that they are dot products. The converse follows from the above properties.
- Since the components are continuous the identity function is so as well.
- Linear maps are continuous:
$\vec{f}(\vec{a}+\vec{h})=\vec{f}(\vec{a})+\vec{f}(\vec{h})=\vec{f}(\vec{a})+\sum_{i} h_{i} f\left(\vec{e}_{i}\right)$
- Another way to prove that the components of a continuous vector-valued function are continuous is by noting that they are dot products. The converse follows from the above properties.
- Since the components are continuous the identity function is so as well.
- Linear maps are continuous:
$\vec{f}(\vec{a}+\vec{h})=\vec{f}(\vec{a})+\vec{f}(\vec{h})=\vec{f}(\vec{a})+\sum_{i} h_{i} f\left(\vec{e}_{i}\right)$ which goes to $\vec{f}(\vec{a})$ as $\vec{h} \rightarrow \overrightarrow{0}$.
- Another way to prove that the components of a continuous vector-valued function are continuous is by noting that they are dot products. The converse follows from the above properties.
- Since the components are continuous the identity function is so as well.
- Linear maps are continuous:
$\vec{f}(\vec{a}+\vec{h})=\vec{f}(\vec{a})+\vec{f}(\vec{h})=\vec{f}(\vec{a})+\sum_{i} h_{i} f\left(\vec{e}_{i}\right)$ which goes to $\vec{f}(\vec{a})$ as $\vec{h} \rightarrow \overrightarrow{0}$.
- By induction,
- Another way to prove that the components of a continuous vector-valued function are continuous is by noting that they are dot products. The converse follows from the above properties.
- Since the components are continuous the identity function is so as well.
- Linear maps are continuous:
$\vec{f}(\vec{a}+\vec{h})=\vec{f}(\vec{a})+\vec{f}(\vec{h})=\vec{f}(\vec{a})+\sum_{i} h_{i} f\left(\vec{e}_{i}\right)$ which goes to $\vec{f}(\vec{a})$ as $\vec{h} \rightarrow \overrightarrow{0}$.
- By induction, polynomials are continuous.
- Another way to prove that the components of a continuous vector-valued function are continuous is by noting that they are dot products. The converse follows from the above properties.
- Since the components are continuous the identity function is so as well.
- Linear maps are continuous:
$\vec{f}(\vec{a}+\vec{h})=\vec{f}(\vec{a})+\vec{f}(\vec{h})=\vec{f}(\vec{a})+\sum_{i} h_{i} f\left(\vec{e}_{i}\right)$ which goes to $\vec{f}(\vec{a})$ as $\vec{h} \rightarrow \overrightarrow{0}$.
- By induction, polynomials are continuous.
- The above properties
- Another way to prove that the components of a continuous vector-valued function are continuous is by noting that they are dot products. The converse follows from the above properties.
- Since the components are continuous the identity function is so as well.
- Linear maps are continuous:
$\vec{f}(\vec{a}+\vec{h})=\vec{f}(\vec{a})+\vec{f}(\vec{h})=\vec{f}(\vec{a})+\sum_{i} h_{i} f\left(\vec{e}_{i}\right)$ which goes to $\vec{f}(\vec{a})$ as $\vec{h} \rightarrow \overrightarrow{0}$.
- By induction, polynomials are continuous.
- The above properties imply that
- Another way to prove that the components of a continuous vector-valued function are continuous is by noting that they are dot products. The converse follows from the above properties.
- Since the components are continuous the identity function is so as well.
- Linear maps are continuous:
$\vec{f}(\vec{a}+\vec{h})=\vec{f}(\vec{a})+\vec{f}(\vec{h})=\vec{f}(\vec{a})+\sum_{i} h_{i} f\left(\vec{e}_{i}\right)$ which goes to $\vec{f}(\vec{a})$ as $\vec{h} \rightarrow \overrightarrow{0}$.
- By induction, polynomials are continuous.
- The above properties imply that rational functions are
- Another way to prove that the components of a continuous vector-valued function are continuous is by noting that they are dot products. The converse follows from the above properties.
- Since the components are continuous the identity function is so as well.
- Linear maps are continuous:
$\vec{f}(\vec{a}+\vec{h})=\vec{f}(\vec{a})+\vec{f}(\vec{h})=\vec{f}(\vec{a})+\sum_{i} h_{i} f\left(\vec{e}_{i}\right)$ which goes to $\vec{f}(\vec{a})$ as $\vec{h} \rightarrow \overrightarrow{0}$.
- By induction, polynomials are continuous.
- The above properties imply that rational functions are continuous away
- Another way to prove that the components of a continuous vector-valued function are continuous is by noting that they are dot products. The converse follows from the above properties.
- Since the components are continuous the identity function is so as well.
- Linear maps are continuous:
$\vec{f}(\vec{a}+\vec{h})=\vec{f}(\vec{a})+\vec{f}(\vec{h})=\vec{f}(\vec{a})+\sum_{i} h_{i} f\left(\vec{e}_{i}\right)$ which goes to $\vec{f}(\vec{a})$ as $\vec{h} \rightarrow \overrightarrow{0}$.
- By induction, polynomials are continuous.
- The above properties imply that rational functions are continuous away from the zeroes of
- Another way to prove that the components of a continuous vector-valued function are continuous is by noting that they are dot products. The converse follows from the above properties.
- Since the components are continuous the identity function is so as well.
- Linear maps are continuous:
$\vec{f}(\vec{a}+\vec{h})=\vec{f}(\vec{a})+\vec{f}(\vec{h})=\vec{f}(\vec{a})+\sum_{i} h_{i} f\left(\vec{e}_{i}\right)$ which goes to $\vec{f}(\vec{a})$ as $\vec{h} \rightarrow \overrightarrow{0}$.
- By induction, polynomials are continuous.
- The above properties imply that rational functions are continuous away from the zeroes of their denominator
- Another way to prove that the components of a continuous vector-valued function are continuous is by noting that they are dot products. The converse follows from the above properties.
- Since the components are continuous the identity function is so as well.
- Linear maps are continuous:
$\vec{f}(\vec{a}+\vec{h})=\vec{f}(\vec{a})+\vec{f}(\vec{h})=\vec{f}(\vec{a})+\sum_{i} h_{i} f\left(\vec{e}_{i}\right)$ which goes to $\vec{f}(\vec{a})$ as $\vec{h} \rightarrow \overrightarrow{0}$.
- By induction, polynomials are continuous.
- The above properties imply that rational functions are continuous away from the zeroes of their denominator provided we prove that
- Another way to prove that the components of a continuous vector-valued function are continuous is by noting that they are dot products. The converse follows from the above properties.
- Since the components are continuous the identity function is so as well.
- Linear maps are continuous:
$\vec{f}(\vec{a}+\vec{h})=\vec{f}(\vec{a})+\vec{f}(\vec{h})=\vec{f}(\vec{a})+\sum_{i} h_{i} f\left(\vec{e}_{i}\right)$ which goes to $\vec{f}(\vec{a})$ as $\vec{h} \rightarrow \overrightarrow{0}$.
- By induction, polynomials are continuous.
- The above properties imply that rational functions are continuous away from the zeroes of their denominator provided we prove that if $g(\vec{a}) \neq 0$ then
- Another way to prove that the components of a continuous vector-valued function are continuous is by noting that they are dot products. The converse follows from the above properties.
- Since the components are continuous the identity function is so as well.
- Linear maps are continuous:
$\vec{f}(\vec{a}+\vec{h})=\vec{f}(\vec{a})+\vec{f}(\vec{h})=\vec{f}(\vec{a})+\sum_{i} h_{i} f\left(\vec{e}_{i}\right)$ which goes to $\vec{f}(\vec{a})$ as $\vec{h} \rightarrow \overrightarrow{0}$.
- By induction, polynomials are continuous.
- The above properties imply that rational functions are continuous away from the zeroes of their denominator provided we prove that if $g(\vec{a}) \neq 0$ then it is so
- Another way to prove that the components of a continuous vector-valued function are continuous is by noting that they are dot products. The converse follows from the above properties.
- Since the components are continuous the identity function is so as well.
- Linear maps are continuous:
$\vec{f}(\vec{a}+\vec{h})=\vec{f}(\vec{a})+\vec{f}(\vec{h})=\vec{f}(\vec{a})+\sum_{i} h_{i} f\left(\vec{e}_{i}\right)$ which goes to $\vec{f}(\vec{a})$ as $\vec{h} \rightarrow \overrightarrow{0}$.
- By induction, polynomials are continuous.
- The above properties imply that rational functions are continuous away from the zeroes of their denominator provided we prove that if $g(\vec{a}) \neq 0$ then it is so in a neighbourhood.
- Another way to prove that the components of a continuous vector-valued function are continuous is by noting that they are dot products. The converse follows from the above properties.
- Since the components are continuous the identity function is so as well.
- Linear maps are continuous:
$\vec{f}(\vec{a}+\vec{h})=\vec{f}(\vec{a})+\vec{f}(\vec{h})=\vec{f}(\vec{a})+\sum_{i} h_{i} f\left(\vec{e}_{i}\right)$ which goes to $\vec{f}(\vec{a})$ as $\vec{h} \rightarrow \overrightarrow{0}$.
- By induction, polynomials are continuous.
- The above properties imply that rational functions are continuous away from the zeroes of their denominator provided we prove that if $g(\vec{a}) \neq 0$ then it is so in a neighbourhood. But this follows from
- Another way to prove that the components of a continuous vector-valued function are continuous is by noting that they are dot products. The converse follows from the above properties.
- Since the components are continuous the identity function is so as well.
- Linear maps are continuous:
$\vec{f}(\vec{a}+\vec{h})=\vec{f}(\vec{a})+\vec{f}(\vec{h})=\vec{f}(\vec{a})+\sum_{i} h_{i} f\left(\vec{e}_{i}\right)$ which goes to $\vec{f}(\vec{a})$ as $\vec{h} \rightarrow \overrightarrow{0}$.
- By induction, polynomials are continuous.
- The above properties imply that rational functions are continuous away from the zeroes of their denominator provided we prove that if $g(\vec{a}) \neq 0$ then it is so in a neighbourhood. But this follows from continuity of $g(\vec{x})$. (Actually, as we saw, this assumption is superfluous.)

Composition

Composition

- Theorem:

Composition

- Theorem: Let $\vec{g}: U \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be a function that is

Composition

- Theorem: Let $\vec{g}: U \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be a function that is continuous at $\vec{a} \in U$.

Composition

- Theorem: Let $\vec{g}: U \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be a function that is continuous at $\vec{a} \in U$. Let $\vec{g}(U) \subset V \subset \mathbb{R}^{n}$ and

Composition

- Theorem: Let $\vec{g}: U \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be a function that is continuous at $\vec{a} \in U$. Let $\vec{g}(U) \subset V \subset \mathbb{R}^{n}$ and let $\vec{f}: V \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ be a function that is

Composition

- Theorem: Let $\vec{g}: U \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be a function that is continuous at $\vec{a} \in U$. Let $\vec{g}(U) \subset V \subset \mathbb{R}^{n}$ and let $\vec{f}: V \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ be a function that is continuous at $\vec{g}(\vec{a}) \in V$.

Composition

- Theorem: Let $\vec{g}: U \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be a function that is continuous at $\vec{a} \in U$. Let $\vec{g}(U) \subset V \subset \mathbb{R}^{n}$ and let $\vec{f}: V \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ be a function that is continuous at $\vec{g}(\vec{a}) \in V$. Then $\vec{f} \circ \vec{g}: U \rightarrow \mathbb{R}^{p}$ is continuous at \vec{a}.

Composition

- Theorem: Let $\vec{g}: U \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be a function that is continuous at $\vec{a} \in U$. Let $\vec{g}(U) \subset V \subset \mathbb{R}^{n}$ and let $\vec{f}: V \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ be a function that is continuous at $\vec{g}(\vec{a}) \in V$. Then $\vec{f} \circ \vec{g}: U \rightarrow \mathbb{R}^{p}$ is continuous at \vec{a}.
- Proof:

Composition

- Theorem: Let $\vec{g}: U \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be a function that is continuous at $\vec{a} \in U$. Let $\vec{g}(U) \subset V \subset \mathbb{R}^{n}$ and let $\vec{f}: V \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ be a function that is continuous at $\vec{g}(\vec{a}) \in V$. Then $\vec{f} \circ \vec{g}: U \rightarrow \mathbb{R}^{p}$ is continuous at \vec{a}.
- Proof: Note that $\|\vec{f}(\vec{y})-\vec{f}(\vec{g}(\vec{a}))\|<\epsilon$ whenever

Composition

- Theorem: Let $\vec{g}: U \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be a function that is continuous at $\vec{a} \in U$. Let $\vec{g}(U) \subset V \subset \mathbb{R}^{n}$ and let $\vec{f}: V \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ be a function that is continuous at $\vec{g}(\vec{a}) \in V$. Then $\vec{f} \circ \vec{g}: U \rightarrow \mathbb{R}^{p}$ is continuous at \vec{a}.
- Proof: Note that $\|\vec{f}(\vec{y})-\vec{f}(\vec{g}(\vec{a}))\|<\epsilon$ whenever $\|\vec{y}-\vec{g}(\vec{a})\|<\tilde{\delta}$ and $\vec{y} \in V$.

Composition

- Theorem: Let $\vec{g}: U \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be a function that is continuous at $\vec{a} \in U$. Let $\vec{g}(U) \subset V \subset \mathbb{R}^{n}$ and let $\vec{f}: V \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ be a function that is continuous at $\vec{g}(\vec{a}) \in V$. Then $\vec{f} \circ \vec{g}: U \rightarrow \mathbb{R}^{p}$ is continuous at \vec{a}.
- Proof: Note that $\|\vec{f}(\vec{y})-\vec{f}(\vec{g}(\vec{a}))\|<\epsilon$ whenever $\|\vec{y}-\vec{g}(\vec{a})\|<\tilde{\delta}$ and $\vec{y} \in V$. Choose δ to be so small that

Composition

- Theorem: Let $\vec{g}: U \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be a function that is continuous at $\vec{a} \in U$. Let $\vec{g}(U) \subset V \subset \mathbb{R}^{n}$ and let $\vec{f}: V \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ be a function that is continuous at $\vec{g}(\vec{a}) \in V$. Then $\vec{f} \circ \vec{g}: U \rightarrow \mathbb{R}^{p}$ is continuous at \vec{a}.
- Proof: Note that $\|\vec{f}(\vec{y})-\vec{f}(\vec{g}(\vec{a}))\|<\epsilon$ whenever $\|\vec{y}-\vec{g}(\vec{a})\|<\tilde{\delta}$ and $\vec{y} \in V$. Choose δ to be so small that $\|\vec{g}(\vec{x})-\vec{g}(\vec{a})\|<\tilde{\delta}$ whenever $\|\vec{x}-\vec{a}\|<\delta$.

Composition

- Theorem: Let $\vec{g}: U \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be a function that is continuous at $\vec{a} \in U$. Let $\vec{g}(U) \subset V \subset \mathbb{R}^{n}$ and let $\vec{f}: V \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ be a function that is continuous at $\vec{g}(\vec{a}) \in V$. Then $\vec{f} \circ \vec{g}: U \rightarrow \mathbb{R}^{p}$ is continuous at \vec{a}.
- Proof: Note that $\|\vec{f}(\vec{y})-\vec{f}(\vec{g}(\vec{a}))\|<\epsilon$ whenever $\|\vec{y}-\vec{g}(\vec{a})\|<\tilde{\delta}$ and $\vec{y} \in V$. Choose δ to be so small that $\|\vec{g}(\vec{x})-\vec{g}(\vec{a})\|<\tilde{\delta}$ whenever $\|\vec{x}-\vec{a}\|<\delta$. Thus we are done.

Composition

- Theorem: Let $\vec{g}: U \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be a function that is continuous at $\vec{a} \in U$. Let $\vec{g}(U) \subset V \subset \mathbb{R}^{n}$ and let $\vec{f}: V \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ be a function that is continuous at $\vec{g}(\vec{a}) \in V$. Then $\vec{f} \circ \vec{g}: U \rightarrow \mathbb{R}^{p}$ is continuous at \vec{a}.
- Proof: Note that $\|\vec{f}(\vec{y})-\vec{f}(\vec{g}(\vec{a}))\|<\epsilon$ whenever $\|\vec{y}-\vec{g}(\vec{a})\|<\tilde{\delta}$ and $\vec{y} \in V$. Choose δ to be so small that $\|\vec{g}(\vec{x})-\vec{g}(\vec{a})\|<\tilde{\delta}$ whenever $\|\vec{x}-\vec{a}\|<\delta$. Thus we are done.
- Thus, $\sin \left(x^{2} y\right)$,

Composition

- Theorem: Let $\vec{g}: U \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be a function that is continuous at $\vec{a} \in U$. Let $\vec{g}(U) \subset V \subset \mathbb{R}^{n}$ and let $\vec{f}: V \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ be a function that is continuous at $\vec{g}(\vec{a}) \in V$. Then $\vec{f} \circ \vec{g}: U \rightarrow \mathbb{R}^{p}$ is continuous at \vec{a}.
- Proof: Note that $\|\vec{f}(\vec{y})-\vec{f}(\vec{g}(\vec{a}))\|<\epsilon$ whenever $\|\vec{y}-\vec{g}(\vec{a})\|<\tilde{\delta}$ and $\vec{y} \in V$. Choose δ to be so small that $\|\vec{g}(\vec{x})-\vec{g}(\vec{a})\|<\tilde{\delta}$ whenever $\|\vec{x}-\vec{a}\|<\delta$. Thus we are done.
- Thus, $\sin \left(x^{2} y\right), \ln \frac{x-y}{x+y}$,

Composition

- Theorem: Let $\vec{g}: U \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be a function that is continuous at $\vec{a} \in U$. Let $\vec{g}(U) \subset V \subset \mathbb{R}^{n}$ and let $\vec{f}: V \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ be a function that is continuous at $\vec{g}(\vec{a}) \in V$. Then $\vec{f} \circ \vec{g}: U \rightarrow \mathbb{R}^{p}$ is continuous at \vec{a}.
- Proof: Note that $\|\vec{f}(\vec{y})-\vec{f}(\vec{g}(\vec{a}))\|<\epsilon$ whenever $\|\vec{y}-\vec{g}(\vec{a})\|<\tilde{\delta}$ and $\vec{y} \in V$. Choose δ to be so small that $\|\vec{g}(\vec{x})-\vec{g}(\vec{a})\|<\tilde{\delta}$ whenever $\|\vec{x}-\vec{a}\|<\delta$. Thus we are done.
- Thus, $\sin \left(x^{2} y\right), \ln \frac{x-y}{x+y}, \ln \cos ^{2}\left(x^{2}+y^{2}\right)$ etc,

Composition

- Theorem: Let $\vec{g}: U \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be a function that is continuous at $\vec{a} \in U$. Let $\vec{g}(U) \subset V \subset \mathbb{R}^{n}$ and let $\vec{f}: V \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ be a function that is continuous at $\vec{g}(\vec{a}) \in V$. Then $\vec{f} \circ \vec{g}: U \rightarrow \mathbb{R}^{p}$ is continuous at \vec{a}.
- Proof: Note that $\|\vec{f}(\vec{y})-\vec{f}(\vec{g}(\vec{a}))\|<\epsilon$ whenever $\|\vec{y}-\vec{g}(\vec{a})\|<\tilde{\delta}$ and $\vec{y} \in V$. Choose δ to be so small that $\|\vec{g}(\vec{x})-\vec{g}(\vec{a})\|<\tilde{\delta}$ whenever $\|\vec{x}-\vec{a}\|<\delta$. Thus we are done.
- Thus, $\sin \left(x^{2} y\right), \ln \frac{x-y}{x+y}, \ln \cos ^{2}\left(x^{2}+y^{2}\right)$ etc, are continuous wherever they are defined.

Derivatives of scalar fields w.r.t vectors

Derivatives of scalar fields w.r.t vectors

- Suppose we consider a

Derivatives of scalar fields w.r.t vectors

- Suppose we consider a scalar field like

Derivatives of scalar fields w.r.t vectors

- Suppose we consider a scalar field like the temperature $T(x, y, z)$ of a room.

Derivatives of scalar fields w.r.t vectors

- Suppose we consider a scalar field like the temperature $T(x, y, z)$ of a room.
- Unlike 1-variable calculus,

Derivatives of scalar fields w.r.t vectors

- Suppose we consider a scalar field like the temperature $T(x, y, z)$ of a room.
- Unlike 1-variable calculus, we can ask

Derivatives of scalar fields w.r.t vectors

- Suppose we consider a scalar field like the temperature $T(x, y, z)$ of a room.
- Unlike 1-variable calculus, we can ask "How fast does

Derivatives of scalar fields w.r.t vectors

- Suppose we consider a scalar field like the temperature $T(x, y, z)$ of a room.
- Unlike 1-variable calculus, we can ask "How fast does T change when

Derivatives of scalar fields w.r.t vectors

- Suppose we consider a scalar field like the temperature $T(x, y, z)$ of a room.
- Unlike 1-variable calculus, we can ask "How fast does T change when we move a little

Derivatives of scalar fields w.r.t vectors

- Suppose we consider a scalar field like the temperature $T(x, y, z)$ of a room.
- Unlike 1-variable calculus, we can ask "How fast does T change when we move a little in a certain direction?"

Derivatives of scalar fields w.r.t vectors

- Suppose we consider a scalar field like the temperature $T(x, y, z)$ of a room.
- Unlike 1-variable calculus, we can ask "How fast does T change when we move a little in a certain direction?" The answer can of course

Derivatives of scalar fields w.r.t vectors

- Suppose we consider a scalar field like the temperature $T(x, y, z)$ of a room.
- Unlike 1-variable calculus, we can ask "How fast does T change when we move a little in a certain direction?" The answer can of course depend on the direction.

Derivatives of scalar fields w.r.t vectors

- Suppose we consider a scalar field like the temperature $T(x, y, z)$ of a room.
- Unlike 1-variable calculus, we can ask "How fast does T change when we move a little in a certain direction?" The answer can of course depend on the direction.
- To even make

Derivatives of scalar fields w.r.t vectors

- Suppose we consider a scalar field like the temperature $T(x, y, z)$ of a room.
- Unlike 1-variable calculus, we can ask "How fast does T change when we move a little in a certain direction?" The answer can of course depend on the direction.
- To even make sense of this question,

Derivatives of scalar fields w.r.t vectors

- Suppose we consider a scalar field like the temperature $T(x, y, z)$ of a room.
- Unlike 1-variable calculus, we can ask "How fast does T change when we move a little in a certain direction?" The answer can of course depend on the direction.
- To even make sense of this question, we must be allowed

Derivatives of scalar fields w.r.t vectors

- Suppose we consider a scalar field like the temperature $T(x, y, z)$ of a room.
- Unlike 1-variable calculus, we can ask "How fast does T change when we move a little in a certain direction?" The answer can of course depend on the direction.
- To even make sense of this question, we must be allowed to move a little

Derivatives of scalar fields w.r.t vectors

- Suppose we consider a scalar field like the temperature $T(x, y, z)$ of a room.
- Unlike 1-variable calculus, we can ask "How fast does T change when we move a little in a certain direction?" The answer can of course depend on the direction.
- To even make sense of this question, we must be allowed to move a little in all directions,

Derivatives of scalar fields w.r.t vectors

- Suppose we consider a scalar field like the temperature $T(x, y, z)$ of a room.
- Unlike 1-variable calculus, we can ask "How fast does T change when we move a little in a certain direction?" The answer can of course depend on the direction.
- To even make sense of this question, we must be allowed to move a little in all directions, i.e., the point under consideration

Derivatives of scalar fields w.r.t vectors

- Suppose we consider a scalar field like the temperature $T(x, y, z)$ of a room.
- Unlike 1-variable calculus, we can ask "How fast does T change when we move a little in a certain direction?" The answer can of course depend on the direction.
- To even make sense of this question, we must be allowed to move a little in all directions, i.e., the point under consideration must be an

Derivatives of scalar fields w.r.t vectors

- Suppose we consider a scalar field like the temperature $T(x, y, z)$ of a room.
- Unlike 1-variable calculus, we can ask "How fast does T change when we move a little in a certain direction?" The answer can of course depend on the direction.
- To even make sense of this question, we must be allowed to move a little in all directions, i.e., the point under consideration must be an interior point of the domain.

Derivatives of scalar fields w.r.t vectors

- Suppose we consider a scalar field like the temperature $T(x, y, z)$ of a room.
- Unlike 1-variable calculus, we can ask "How fast does T change when we move a little in a certain direction?" The answer can of course depend on the direction.
- To even make sense of this question, we must be allowed to move a little in all directions, i.e., the point under consideration must be an interior point of the domain.
- Def:

Derivatives of scalar fields w.r.t vectors

- Suppose we consider a scalar field like the temperature $T(x, y, z)$ of a room.
- Unlike 1-variable calculus, we can ask "How fast does T change when we move a little in a certain direction?" The answer can of course depend on the direction.
- To even make sense of this question, we must be allowed to move a little in all directions, i.e., the point under consideration must be an interior point of the domain.
- Def: Given a scalar field $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$,

Derivatives of scalar fields w.r.t vectors

- Suppose we consider a scalar field like the temperature $T(x, y, z)$ of a room.
- Unlike 1-variable calculus, we can ask "How fast does T change when we move a little in a certain direction?" The answer can of course depend on the direction.
- To even make sense of this question, we must be allowed to move a little in all directions, i.e., the point under consideration must be an interior point of the domain.
- Def: Given a scalar field $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$, an interior point $\vec{a} \in U$,

Derivatives of scalar fields w.r.t vectors

- Suppose we consider a scalar field like the temperature $T(x, y, z)$ of a room.
- Unlike 1-variable calculus, we can ask "How fast does T change when we move a little in a certain direction?" The answer can of course depend on the direction.
- To even make sense of this question, we must be allowed to move a little in all directions, i.e., the point under consideration must be an interior point of the domain.
- Def: Given a scalar field $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$, an interior point $\vec{a} \in U$, and a vector $\vec{v} \in \mathbb{R}^{n}$,

Derivatives of scalar fields w.r.t vectors

- Suppose we consider a scalar field like the temperature $T(x, y, z)$ of a room.
- Unlike 1-variable calculus, we can ask "How fast does T change when we move a little in a certain direction?" The answer can of course depend on the direction.
- To even make sense of this question, we must be allowed to move a little in all directions, i.e., the point under consideration must be an interior point of the domain.
- Def: Given a scalar field $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$, an interior point $\vec{a} \in U$, and a vector $\vec{v} \in \mathbb{R}^{n}, f$ is said to

Derivatives of scalar fields w.r.t vectors

- Suppose we consider a scalar field like the temperature $T(x, y, z)$ of a room.
- Unlike 1-variable calculus, we can ask "How fast does T change when we move a little in a certain direction?" The answer can of course depend on the direction.
- To even make sense of this question, we must be allowed to move a little in all directions, i.e., the point under consideration must be an interior point of the domain.
- Def: Given a scalar field $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$, an interior point $\vec{a} \in U$, and a vector $\vec{v} \in \mathbb{R}^{n}, f$ is said to differentiable along \vec{v} if

Derivatives of scalar fields w.r.t vectors

- Suppose we consider a scalar field like the temperature $T(x, y, z)$ of a room.
- Unlike 1-variable calculus, we can ask "How fast does T change when we move a little in a certain direction?" The answer can of course depend on the direction.
- To even make sense of this question, we must be allowed to move a little in all directions, i.e., the point under consideration must be an interior point of the domain.
- Def: Given a scalar field $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$, an interior point $\vec{a} \in U$, and a vector $\vec{v} \in \mathbb{R}^{n}, f$ is said to differentiable along \vec{v} if $\lim _{h \rightarrow 0} \frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}$ exists.

Derivatives of scalar fields w.r.t vectors

- Suppose we consider a scalar field like the temperature $T(x, y, z)$ of a room.
- Unlike 1-variable calculus, we can ask "How fast does T change when we move a little in a certain direction?" The answer can of course depend on the direction.
- To even make sense of this question, we must be allowed to move a little in all directions, i.e., the point under consideration must be an interior point of the domain.
- Def: Given a scalar field $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$, an interior point $\vec{a} \in U$, and a vector $\vec{v} \in \mathbb{R}^{n}, f$ is said to differentiable along \vec{v} if $\lim _{h \rightarrow 0} \frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}$ exists. This number is

Derivatives of scalar fields w.r.t vectors

- Suppose we consider a scalar field like the temperature $T(x, y, z)$ of a room.
- Unlike 1-variable calculus, we can ask "How fast does T change when we move a little in a certain direction?" The answer can of course depend on the direction.
- To even make sense of this question, we must be allowed to move a little in all directions, i.e., the point under consideration must be an interior point of the domain.
- Def: Given a scalar field $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$, an interior point $\vec{a} \in U$, and a vector $\vec{v} \in \mathbb{R}^{n}, f$ is said to differentiable along \vec{v} if $\lim _{h \rightarrow 0} \frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}$ exists. This number is denoted as $\nabla_{\vec{v}} f$.

Derivatives of scalar fields w.r.t vectors

- Suppose we consider a scalar field like the temperature $T(x, y, z)$ of a room.
- Unlike 1-variable calculus, we can ask "How fast does T change when we move a little in a certain direction?" The answer can of course depend on the direction.
- To even make sense of this question, we must be allowed to move a little in all directions, i.e., the point under consideration must be an interior point of the domain.
- Def: Given a scalar field $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$, an interior point $\vec{a} \in U$, and a vector $\vec{v} \in \mathbb{R}^{n}, f$ is said to differentiable along \vec{v} if $\lim _{h \rightarrow 0} \frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}$ exists. This number is denoted as $\nabla_{\vec{v}} f$.
- If $\|\vec{v}\|=1$,

Derivatives of scalar fields w.r.t vectors

- Suppose we consider a scalar field like the temperature $T(x, y, z)$ of a room.
- Unlike 1-variable calculus, we can ask "How fast does T change when we move a little in a certain direction?" The answer can of course depend on the direction.
- To even make sense of this question, we must be allowed to move a little in all directions, i.e., the point under consideration must be an interior point of the domain.
- Def: Given a scalar field $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$, an interior point $\vec{a} \in U$, and a vector $\vec{v} \in \mathbb{R}^{n}, f$ is said to differentiable along \vec{v} if $\lim _{h \rightarrow 0} \frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}$ exists. This number is denoted as $\nabla_{\vec{v}} f$.
- If $\|\vec{v}\|=1$, this number is called

Derivatives of scalar fields w.r.t vectors

- Suppose we consider a scalar field like the temperature $T(x, y, z)$ of a room.
- Unlike 1-variable calculus, we can ask "How fast does T change when we move a little in a certain direction?" The answer can of course depend on the direction.
- To even make sense of this question, we must be allowed to move a little in all directions, i.e., the point under consideration must be an interior point of the domain.
- Def: Given a scalar field $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$, an interior point $\vec{a} \in U$, and a vector $\vec{v} \in \mathbb{R}^{n}, f$ is said to differentiable along \vec{v} if $\lim _{h \rightarrow 0} \frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}$ exists. This number is denoted as $\nabla_{\vec{v}} f$.
- If $\|\vec{v}\|=1$, this number is called the directional derivative

Derivatives of scalar fields w.r.t vectors

- Suppose we consider a scalar field like the temperature $T(x, y, z)$ of a room.
- Unlike 1-variable calculus, we can ask "How fast does T change when we move a little in a certain direction?" The answer can of course depend on the direction.
- To even make sense of this question, we must be allowed to move a little in all directions, i.e., the point under consideration must be an interior point of the domain.
- Def: Given a scalar field $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$, an interior point $\vec{a} \in U$, and a vector $\vec{v} \in \mathbb{R}^{n}, f$ is said to differentiable along \vec{v} if $\lim _{h \rightarrow 0} \frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}$ exists. This number is denoted as $\nabla_{\vec{v}} f$.
- If $\|\vec{v}\|=1$, this number is called the directional derivative along the direction \vec{v}.

Examples

Examples

- If $\vec{v}=0$,

Examples

- If $\vec{v}=0$, then $\nabla_{\vec{v}} f(\vec{a})=0$.

Examples

- If $\vec{v}=0$, then $\nabla_{\vec{v}} f(\vec{a})=0$. Indeed, this follows

Examples

- If $\vec{v}=0$, then $\nabla_{\vec{v}} f(\vec{a})=0$. Indeed, this follows easily from the definition.

Examples

- If $\vec{v}=0$, then $\nabla_{\vec{v}} f(\vec{a})=0$. Indeed, this follows easily from the definition.
- Suppose f is linear,

Examples

- If $\vec{v}=0$, then $\nabla_{\vec{v}} f(\vec{a})=0$. Indeed, this follows easily from the definition.
- Suppose f is linear, then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=\vec{f}(\vec{v})$ for all h

Examples

- If $\vec{v}=0$, then $\nabla_{\vec{v}} f(\vec{a})=0$. Indeed, this follows easily from the definition.
- Suppose f is linear, then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=\vec{f}(\vec{v})$ for all h and hence f

Examples

- If $\vec{v}=0$, then $\nabla_{\vec{v}} f(\vec{a})=0$. Indeed, this follows easily from the definition.
- Suppose f is linear, then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=\vec{f}(\vec{v})$ for all h and hence f is differentiable along all vectors

Examples

- If $\vec{v}=0$, then $\nabla_{\vec{v}} f(\vec{a})=0$. Indeed, this follows easily from the definition.
- Suppose f is linear, then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=\vec{f}(\vec{v})$ for all h and hence f is differentiable along all vectors with $\nabla_{\vec{v}} f(\vec{a})=f(\vec{v})$.

Examples

- If $\vec{v}=0$, then $\nabla_{\vec{v}} f(\vec{a})=0$. Indeed, this follows easily from the definition.
- Suppose f is linear, then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=\vec{f}(\vec{v})$ for all h and hence f is differentiable along all vectors with $\nabla_{\vec{v}} f(\vec{a})=f(\vec{v})$.
- The above derivative

Examples

- If $\vec{v}=0$, then $\nabla_{\vec{v}} f(\vec{a})=0$. Indeed, this follows easily from the definition.
- Suppose f is linear, then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=\vec{f}(\vec{v})$ for all h and hence f is differentiable along all vectors with $\nabla_{\vec{v}} f(\vec{a})=f(\vec{v})$.
- The above derivative can also be thought of

Examples

- If $\vec{v}=0$, then $\nabla_{\vec{v}} f(\vec{a})=0$. Indeed, this follows easily from the definition.
- Suppose f is linear, then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=\vec{f}(\vec{v})$ for all h and hence f is differentiable along all vectors with $\nabla_{\vec{v}} f(\vec{a})=f(\vec{v})$.
- The above derivative can also be thought of as a one-variable derivative.

Examples

- If $\vec{v}=0$, then $\nabla_{\vec{v}} f(\vec{a})=0$. Indeed, this follows easily from the definition.
- Suppose f is linear, then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=\vec{f}(\vec{v})$ for all h and hence f is differentiable along all vectors with $\nabla_{\vec{v}} f(\vec{a})=f(\vec{v})$.
- The above derivative can also be thought of as a one-variable derivative. Indeed, let $g(t)=f(\vec{a}+t \vec{v})$.

Examples

- If $\vec{v}=0$, then $\nabla_{\vec{v}} f(\vec{a})=0$. Indeed, this follows easily from the definition.
- Suppose f is linear, then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=\vec{f}(\vec{v})$ for all h and hence f is differentiable along all vectors with $\nabla_{\vec{v}} f(\vec{a})=f(\vec{v})$.
- The above derivative can also be thought of as a one-variable derivative. Indeed, let $g(t)=f(\vec{a}+t \vec{v})$. Then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=\frac{g(h)-g(0)}{h}$.

Examples

- If $\vec{v}=0$, then $\nabla_{\vec{v}} f(\vec{a})=0$. Indeed, this follows easily from the definition.
- Suppose f is linear, then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=\vec{f}(\vec{v})$ for all h and hence f is differentiable along all vectors with $\nabla_{\vec{v}} f(\vec{a})=f(\vec{v})$.
- The above derivative can also be thought of as a one-variable derivative. Indeed, let $g(t)=f(\vec{a}+t \vec{v})$. Then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=\frac{g(h)-g(0)}{h}$. Thus g is differentiable at 0

Examples

- If $\vec{v}=0$, then $\nabla_{\vec{v}} f(\vec{a})=0$. Indeed, this follows easily from the definition.
- Suppose f is linear, then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=\vec{f}(\vec{v})$ for all h and hence f is differentiable along all vectors with $\nabla_{\vec{v}} f(\vec{a})=f(\vec{v})$.
- The above derivative can also be thought of as a one-variable derivative. Indeed, let $g(t)=f(\vec{a}+t \vec{v})$. Then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=\frac{g(h)-g(0)}{h}$. Thus g is differentiable at 0 if and only if
- If $\vec{v}=0$, then $\nabla_{\vec{v}} f(\vec{a})=0$. Indeed, this follows easily from the definition.
- Suppose f is linear, then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=\vec{f}(\vec{v})$ for all h and hence f is differentiable along all vectors with $\nabla_{\vec{v}} f(\vec{a})=f(\vec{v})$.
- The above derivative can also be thought of as a one-variable derivative. Indeed, let $g(t)=f(\vec{a}+t \vec{v})$. Then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=\frac{g(h)-g(0)}{h}$. Thus g is differentiable at 0 if and only if $\nabla_{\vec{v}} f(\vec{a})$ exists and equals $g^{\prime}(0)$.
- If $\vec{v}=0$, then $\nabla_{\vec{v}} f(\vec{a})=0$. Indeed, this follows easily from the definition.
- Suppose f is linear, then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=\vec{f}(\vec{v})$ for all h and hence f is differentiable along all vectors with $\nabla_{\vec{v}} f(\vec{a})=f(\vec{v})$.
- The above derivative can also be thought of as a one-variable derivative. Indeed, let $g(t)=f(\vec{a}+t \vec{v})$. Then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=\frac{g(h)-g(0)}{h}$. Thus g is differentiable at 0 if and only if $\nabla_{\vec{v}} f(\vec{a})$ exists and equals $g^{\prime}(0)$.
- Moreover, $\nabla_{s \vec{v}} f(\vec{a})$ exists whenever
- If $\vec{v}=0$, then $\nabla_{\vec{v}} f(\vec{a})=0$. Indeed, this follows easily from the definition.
- Suppose f is linear, then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=\vec{f}(\vec{v})$ for all h and hence f is differentiable along all vectors with $\nabla_{\vec{v}} f(\vec{a})=f(\vec{v})$.
- The above derivative can also be thought of as a one-variable derivative. Indeed, let $g(t)=f(\vec{a}+t \vec{v})$. Then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=\frac{g(h)-g(0)}{h}$. Thus g is differentiable at 0 if and only if $\nabla_{\vec{v}} f(\vec{a})$ exists and equals $g^{\prime}(0)$.
- Moreover, $\nabla_{s \vec{v}} f(\vec{a})$ exists whenever $\nabla_{\vec{v}} f(\vec{a})$ does
- If $\vec{v}=0$, then $\nabla_{\vec{v}} f(\vec{a})=0$. Indeed, this follows easily from the definition.
- Suppose f is linear, then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=\vec{f}(\vec{v})$ for all h and hence f is differentiable along all vectors with $\nabla_{\vec{v}} f(\vec{a})=f(\vec{v})$.
- The above derivative can also be thought of as a one-variable derivative. Indeed, let $g(t)=f(\vec{a}+t \vec{v})$. Then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=\frac{g(h)-g(0)}{h}$. Thus g is differentiable at 0 if and only if $\nabla_{\vec{v}} f(\vec{a})$ exists and equals $g^{\prime}(0)$.
- Moreover, $\nabla_{s \vec{v}} f(\vec{a})$ exists whenever $\nabla_{\vec{v}} f(\vec{a})$ does and equals $s \nabla_{\vec{v}} f(\vec{a})$:
- If $\vec{v}=0$, then $\nabla_{\vec{v}} f(\vec{a})=0$. Indeed, this follows easily from the definition.
- Suppose f is linear, then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=\vec{f}(\vec{v})$ for all h and hence f is differentiable along all vectors with $\nabla_{\vec{v}} f(\vec{a})=f(\vec{v})$.
- The above derivative can also be thought of as a one-variable derivative. Indeed, let $g(t)=f(\vec{a}+t \vec{v})$. Then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=\frac{g(h)-g(0)}{h}$. Thus g is differentiable at 0 if and only if $\nabla_{\vec{v}} f(\vec{a})$ exists and equals $g^{\prime}(0)$.
- Moreover, $\nabla_{s \vec{v}} f(\vec{a})$ exists whenever $\nabla_{\vec{v}} f(\vec{a})$ does and equals $s \nabla_{\vec{v}} f(\vec{a})$: Indeed, let $h(t)=f(\vec{a}+t \vec{v})$ and
- If $\vec{v}=0$, then $\nabla_{\vec{v}} f(\vec{a})=0$. Indeed, this follows easily from the definition.
- Suppose f is linear, then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=\vec{f}(\vec{v})$ for all h and hence f is differentiable along all vectors with $\nabla_{\vec{v}} f(\vec{a})=f(\vec{v})$.
- The above derivative can also be thought of as a one-variable derivative. Indeed, let $g(t)=f(\vec{a}+t \vec{v})$. Then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=\frac{g(h)-g(0)}{h}$. Thus g is differentiable at 0 if and only if $\nabla_{\vec{v}} f(\vec{a})$ exists and equals $g^{\prime}(0)$.
- Moreover, $\nabla_{s \vec{v}} f(\vec{a})$ exists whenever $\nabla_{\vec{v}} f(\vec{a})$ does and equals $s \nabla_{\vec{v}} f(\vec{a})$: Indeed, let $h(t)=f(\vec{a}+t \vec{v})$ and $g(t)=h(s t)=f(\vec{a}+t s \vec{v})$.
- If $\vec{v}=0$, then $\nabla_{\vec{v}} f(\vec{a})=0$. Indeed, this follows easily from the definition.
- Suppose f is linear, then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=\vec{f}(\vec{v})$ for all h and hence f is differentiable along all vectors with $\nabla_{\vec{v}} f(\vec{a})=f(\vec{v})$.
- The above derivative can also be thought of as a one-variable derivative. Indeed, let $g(t)=f(\vec{a}+t \vec{v})$. Then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=\frac{g(h)-g(0)}{h}$. Thus g is differentiable at 0 if and only if $\nabla_{\vec{v}} f(\vec{a})$ exists and equals $g^{\prime}(0)$.
- Moreover, $\nabla_{s \vec{v}} f(\vec{a})$ exists whenever $\nabla_{\vec{v}} f(\vec{a})$ does and equals $s \nabla_{\vec{v}} f(\vec{a})$: Indeed, let $h(t)=f(\vec{a}+t \vec{v})$ and $g(t)=h(s t)=f(\vec{a}+t s \vec{v})$. Then by the chain rule
- If $\vec{v}=0$, then $\nabla_{\vec{v}} f(\vec{a})=0$. Indeed, this follows easily from the definition.
- Suppose f is linear, then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=\vec{f}(\vec{v})$ for all h and hence f is differentiable along all vectors with $\nabla_{\vec{v}} f(\vec{a})=f(\vec{v})$.
- The above derivative can also be thought of as a one-variable derivative. Indeed, let $g(t)=f(\vec{a}+t \vec{v})$. Then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=\frac{g(h)-g(0)}{h}$. Thus g is differentiable at 0 if and only if $\nabla_{\vec{v}} f(\vec{a})$ exists and equals $g^{\prime}(0)$.
- Moreover, $\nabla_{s \vec{v}} f(\vec{a})$ exists whenever $\nabla_{\vec{v}} f(\vec{a})$ does and equals $s \nabla_{\vec{v}} f(\vec{a})$: Indeed, let $h(t)=f(\vec{a}+t \vec{v})$ and $g(t)=h(s t)=f(\vec{a}+t s \vec{v})$. Then by the chain rule $g^{\prime}(0)$ exists and equals
- If $\vec{v}=0$, then $\nabla_{\vec{v}} f(\vec{a})=0$. Indeed, this follows easily from the definition.
- Suppose f is linear, then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=\vec{f}(\vec{v})$ for all h and hence f is differentiable along all vectors with $\nabla_{\vec{v}} f(\vec{a})=f(\vec{v})$.
- The above derivative can also be thought of as a one-variable derivative. Indeed, let $g(t)=f(\vec{a}+t \vec{v})$. Then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=\frac{g(h)-g(0)}{h}$. Thus g is differentiable at 0 if and only if $\nabla_{\vec{v}} f(\vec{a})$ exists and equals $g^{\prime}(0)$.
- Moreover, $\nabla_{s \vec{v}} f(\vec{a})$ exists whenever $\nabla_{\vec{v}} f(\vec{a})$ does and equals $s \nabla_{\vec{v}} f(\vec{a})$: Indeed, let $h(t)=f(\vec{a}+t \vec{v})$ and $g(t)=h(s t)=f(\vec{a}+t s \vec{v})$. Then by the chain rule $g^{\prime}(0)$ exists and equals $s h^{\prime}(0)=s \nabla_{\vec{v}} f(\vec{a})$.

Mean value theorem, partial derivatives

Mean value theorem, partial derivatives

- Assume that

Mean value theorem, partial derivatives

- Assume that $\nabla_{\vec{v}} f(\vec{a}+t \vec{v})$ exists for all $0 \leq t \leq 1$.

Mean value theorem, partial derivatives

- Assume that $\nabla_{\vec{v}} f(\vec{a}+t \vec{v})$ exists for all $0 \leq t \leq 1$.
- Theorem:

Mean value theorem, partial derivatives

- Assume that $\nabla_{\vec{v}} f(\vec{a}+t \vec{v})$ exists for all $0 \leq t \leq 1$.
- Theorem: Then there exists

Mean value theorem, partial derivatives

- Assume that $\nabla_{\vec{v}} f(\vec{a}+t \vec{v})$ exists for all $0 \leq t \leq 1$.
- Theorem: Then there exists a real number $\theta \in(0,1)$ such that

Mean value theorem, partial derivatives

- Assume that $\nabla_{\vec{v}} f(\vec{a}+t \vec{v})$ exists for all $0 \leq t \leq 1$.
- Theorem: Then there exists a real number $\theta \in(0,1)$ such that $f(\vec{a}+\vec{v})-f(\vec{a})=\nabla_{\vec{v}} f(a+\theta \vec{v})$.

Mean value theorem, partial derivatives

- Assume that $\nabla_{\vec{v}} f(\vec{a}+t \vec{v})$ exists for all $0 \leq t \leq 1$.
- Theorem: Then there exists a real number $\theta \in(0,1)$ such that $f(\vec{a}+\vec{v})-f(\vec{a})=\nabla_{\vec{v}} f(a+\theta \vec{v})$.
- Proof:

Mean value theorem, partial derivatives

- Assume that $\nabla_{\vec{v}} f(\vec{a}+t \vec{v})$ exists for all $0 \leq t \leq 1$.
- Theorem: Then there exists a real number $\theta \in(0,1)$ such that $f(\vec{a}+\vec{v})-f(\vec{a})=\nabla_{\vec{v}} f(a+\theta \vec{v})$.
- Proof: Let $g(t)=f(\vec{a}+t \vec{v})$.

Mean value theorem, partial derivatives

- Assume that $\nabla_{\vec{v}} f(\vec{a}+t \vec{v})$ exists for all $0 \leq t \leq 1$.
- Theorem: Then there exists a real number $\theta \in(0,1)$ such that $f(\vec{a}+\vec{v})-f(\vec{a})=\nabla_{\vec{v}} f(a+\theta \vec{v})$.
- Proof: Let $g(t)=f(\vec{a}+t \vec{v})$. Then applying the 1-dim MVT

Mean value theorem, partial derivatives

- Assume that $\nabla_{\vec{v}} f(\vec{a}+t \vec{v})$ exists for all $0 \leq t \leq 1$.
- Theorem: Then there exists a real number $\theta \in(0,1)$ such that $f(\vec{a}+\vec{v})-f(\vec{a})=\nabla_{\vec{v}} f(a+\theta \vec{v})$.
- Proof: Let $g(t)=f(\vec{a}+t \vec{v})$. Then applying the 1-dim MVT to g,

Mean value theorem, partial derivatives

- Assume that $\nabla_{\vec{v}} f(\vec{a}+t \vec{v})$ exists for all $0 \leq t \leq 1$.
- Theorem: Then there exists a real number $\theta \in(0,1)$ such that $f(\vec{a}+\vec{v})-f(\vec{a})=\nabla_{\vec{v}} f(a+\theta \vec{v})$.
- Proof: Let $g(t)=f(\vec{a}+t \vec{v})$. Then applying the 1-dim MVT to g, we see that $g(1)-g(0)=g^{\prime}(\theta)$.

Mean value theorem, partial derivatives

- Assume that $\nabla_{\vec{v}} f(\vec{a}+t \vec{v})$ exists for all $0 \leq t \leq 1$.
- Theorem: Then there exists a real number $\theta \in(0,1)$ such that $f(\vec{a}+\vec{v})-f(\vec{a})=\nabla_{\vec{v}} f(a+\theta \vec{v})$.
- Proof: Let $g(t)=f(\vec{a}+t \vec{v})$. Then applying the 1-dim MVT to g, we see that $g(1)-g(0)=g^{\prime}(\theta)$. Thus we are done.

Mean value theorem, partial derivatives

- Assume that $\nabla_{\vec{v}} f(\vec{a}+t \vec{v})$ exists for all $0 \leq t \leq 1$.
- Theorem: Then there exists a real number $\theta \in(0,1)$ such that $f(\vec{a}+\vec{v})-f(\vec{a})=\nabla_{\vec{v}} f(a+\theta \vec{v})$.
- Proof: Let $g(t)=f(\vec{a}+t \vec{v})$. Then applying the 1-dim MVT to g, we see that $g(1)-g(0)=g^{\prime}(\theta)$. Thus we are done.
- Def:

Mean value theorem, partial derivatives

- Assume that $\nabla_{\vec{v}} f(\vec{a}+t \vec{v})$ exists for all $0 \leq t \leq 1$.
- Theorem: Then there exists a real number $\theta \in(0,1)$ such that $f(\vec{a}+\vec{v})-f(\vec{a})=\nabla_{\vec{v}} f(a+\theta \vec{v})$.
- Proof: Let $g(t)=f(\vec{a}+t \vec{v})$. Then applying the 1-dim MVT to g, we see that $g(1)-g(0)=g^{\prime}(\theta)$. Thus we are done.
- Def:When $\vec{v}=e_{i}$,

Mean value theorem, partial derivatives

- Assume that $\nabla_{\vec{v}} f(\vec{a}+t \vec{v})$ exists for all $0 \leq t \leq 1$.
- Theorem: Then there exists a real number $\theta \in(0,1)$ such that $f(\vec{a}+\vec{v})-f(\vec{a})=\nabla_{\vec{v}} f(a+\theta \vec{v})$.
- Proof: Let $g(t)=f(\vec{a}+t \vec{v})$. Then applying the 1-dim MVT to g, we see that $g(1)-g(0)=g^{\prime}(\theta)$. Thus we are done.
- Def:When $\vec{v}=e_{i}, \nabla_{\vec{v}} f(\vec{a})$ if it exists

Mean value theorem, partial derivatives

- Assume that $\nabla_{\vec{v}} f(\vec{a}+t \vec{v})$ exists for all $0 \leq t \leq 1$.
- Theorem: Then there exists a real number $\theta \in(0,1)$ such that $f(\vec{a}+\vec{v})-f(\vec{a})=\nabla_{\vec{v}} f(a+\theta \vec{v})$.
- Proof: Let $g(t)=f(\vec{a}+t \vec{v})$. Then applying the 1-dim MVT to g, we see that $g(1)-g(0)=g^{\prime}(\theta)$. Thus we are done.
- Def:When $\vec{v}=e_{i}, \nabla_{\vec{v}} f(\vec{a})$ if it exists is called the

Mean value theorem, partial derivatives

- Assume that $\nabla_{\vec{v}} f(\vec{a}+t \vec{v})$ exists for all $0 \leq t \leq 1$.
- Theorem: Then there exists a real number $\theta \in(0,1)$ such that $f(\vec{a}+\vec{v})-f(\vec{a})=\nabla_{\vec{v}} f(a+\theta \vec{v})$.
- Proof: Let $g(t)=f(\vec{a}+t \vec{v})$. Then applying the 1-dim MVT to g, we see that $g(1)-g(0)=g^{\prime}(\theta)$. Thus we are done.
- Def:When $\vec{v}=e_{i}, \nabla_{\vec{v}} f(\vec{a})$ if it exists is called the partial derivative $\frac{\partial f}{\partial x_{i}}(\vec{a})$ or $f_{i}(\vec{a})$

Mean value theorem, partial derivatives

- Assume that $\nabla_{\vec{v}} f(\vec{a}+t \vec{v})$ exists for all $0 \leq t \leq 1$.
- Theorem: Then there exists a real number $\theta \in(0,1)$ such that $f(\vec{a}+\vec{v})-f(\vec{a})=\nabla_{\vec{v}} f(a+\theta \vec{v})$.
- Proof: Let $g(t)=f(\vec{a}+t \vec{v})$. Then applying the 1-dim MVT to g, we see that $g(1)-g(0)=g^{\prime}(\theta)$. Thus we are done.
- Def:When $\vec{v}=e_{i}, \nabla_{\vec{v}} f(\vec{a})$ if it exists is called the partial derivative $\frac{\partial f}{\partial x_{i}}(\vec{a})$ or $f_{i}(\vec{a})$ w.r.t x_{i}

Mean value theorem, partial derivatives

- Assume that $\nabla_{\vec{v}} f(\vec{a}+t \vec{v})$ exists for all $0 \leq t \leq 1$.
- Theorem: Then there exists a real number $\theta \in(0,1)$ such that $f(\vec{a}+\vec{v})-f(\vec{a})=\nabla_{\vec{v}} f(a+\theta \vec{v})$.
- Proof: Let $g(t)=f(\vec{a}+t \vec{v})$. Then applying the 1-dim MVT to g, we see that $g(1)-g(0)=g^{\prime}(\theta)$. Thus we are done.
- Def:When $\vec{v}=e_{i}, \nabla_{\vec{v}} f(\vec{a})$ if it exists is called the partial derivative $\frac{\partial f}{\partial x_{i}}(\vec{a})$ or $f_{i}(\vec{a})$ w.r.t x_{i} and f is said to be

Mean value theorem, partial derivatives

- Assume that $\nabla_{\vec{v}} f(\vec{a}+t \vec{v})$ exists for all $0 \leq t \leq 1$.
- Theorem: Then there exists a real number $\theta \in(0,1)$ such that $f(\vec{a}+\vec{v})-f(\vec{a})=\nabla_{\vec{v}} f(a+\theta \vec{v})$.
- Proof: Let $g(t)=f(\vec{a}+t \vec{v})$. Then applying the 1-dim MVT to g, we see that $g(1)-g(0)=g^{\prime}(\theta)$. Thus we are done.
- Def:When $\vec{v}=e_{i}, \nabla_{\vec{v}} f(\vec{a})$ if it exists is called the partial derivative $\frac{\partial f}{\partial x_{i}}(\vec{a})$ or $f_{i}(\vec{a})$ w.r.t x_{i} and f is said to be partially differentiable w.r.t x_{i}.

Mean value theorem, partial derivatives

- Assume that $\nabla_{\vec{v}} f(\vec{a}+t \vec{v})$ exists for all $0 \leq t \leq 1$.
- Theorem: Then there exists a real number $\theta \in(0,1)$ such that $f(\vec{a}+\vec{v})-f(\vec{a})=\nabla_{\vec{v}} f(a+\theta \vec{v})$.
- Proof: Let $g(t)=f(\vec{a}+t \vec{v})$. Then applying the 1-dim MVT to g, we see that $g(1)-g(0)=g^{\prime}(\theta)$. Thus we are done.
- Def:When $\vec{v}=e_{i}, \nabla_{\vec{v}} f(\vec{a})$ if it exists is called the partial derivative $\frac{\partial f}{\partial x_{i}}(\vec{a})$ or $f_{i}(\vec{a})$ w.r.t x_{i} and f is said to be partially differentiable w.r.t x_{i}.
- Spoiler alert:

Mean value theorem, partial derivatives

- Assume that $\nabla_{\vec{v}} f(\vec{a}+t \vec{v})$ exists for all $0 \leq t \leq 1$.
- Theorem: Then there exists a real number $\theta \in(0,1)$ such that $f(\vec{a}+\vec{v})-f(\vec{a})=\nabla_{\vec{v}} f(a+\theta \vec{v})$.
- Proof: Let $g(t)=f(\vec{a}+t \vec{v})$. Then applying the 1-dim MVT to g, we see that $g(1)-g(0)=g^{\prime}(\theta)$. Thus we are done.
- Def:When $\vec{v}=e_{i}, \nabla_{\vec{v}} f(\vec{a})$ if it exists is called the partial derivative $\frac{\partial f}{\partial x_{i}}(\vec{a})$ or $f_{i}(\vec{a})$ w.r.t x_{i} and f is said to be partially differentiable w.r.t x_{i}.
- Spoiler alert: All known laws of nature

Mean value theorem, partial derivatives

- Assume that $\nabla_{\vec{v}} f(\vec{a}+t \vec{v})$ exists for all $0 \leq t \leq 1$.
- Theorem: Then there exists a real number $\theta \in(0,1)$ such that $f(\vec{a}+\vec{v})-f(\vec{a})=\nabla_{\vec{v}} f(a+\theta \vec{v})$.
- Proof: Let $g(t)=f(\vec{a}+t \vec{v})$. Then applying the 1-dim MVT to g, we see that $g(1)-g(0)=g^{\prime}(\theta)$. Thus we are done.
- Def:When $\vec{v}=e_{i}, \nabla_{\vec{v}} f(\vec{a})$ if it exists is called the partial derivative $\frac{\partial f}{\partial x_{i}}(\vec{a})$ or $f_{i}(\vec{a})$ w.r.t x_{i} and f is said to be partially differentiable w.r.t x_{i}.
- Spoiler alert: All known laws of nature are Partial Differential Equations (PDE)

Mean value theorem, partial derivatives

- Assume that $\nabla_{\vec{v}} f(\vec{a}+t \vec{v})$ exists for all $0 \leq t \leq 1$.
- Theorem: Then there exists a real number $\theta \in(0,1)$ such that $f(\vec{a}+\vec{v})-f(\vec{a})=\nabla_{\vec{v}} f(a+\theta \vec{v})$.
- Proof: Let $g(t)=f(\vec{a}+t \vec{v})$. Then applying the 1-dim MVT to g, we see that $g(1)-g(0)=g^{\prime}(\theta)$. Thus we are done.
- Def:When $\vec{v}=e_{i}, \nabla_{\vec{v}} f(\vec{a})$ if it exists is called the partial derivative $\frac{\partial f}{\partial x_{i}}(\vec{a})$ or $f_{i}(\vec{a})$ w.r.t x_{i} and f is said to be partially differentiable w.r.t x_{i}.
- Spoiler alert: All known laws of nature are Partial Differential Equations (PDE) for something or the other (

Mean value theorem, partial derivatives

- Assume that $\nabla_{\vec{v}} f(\vec{a}+t \vec{v})$ exists for all $0 \leq t \leq 1$.
- Theorem: Then there exists a real number $\theta \in(0,1)$ such that $f(\vec{a}+\vec{v})-f(\vec{a})=\nabla_{\vec{v}} f(a+\theta \vec{v})$.
- Proof: Let $g(t)=f(\vec{a}+t \vec{v})$. Then applying the 1-dim MVT to g, we see that $g(1)-g(0)=g^{\prime}(\theta)$. Thus we are done.
- Def:When $\vec{v}=e_{i}, \nabla_{\vec{v}} f(\vec{a})$ if it exists is called the partial derivative $\frac{\partial f}{\partial x_{i}}(\vec{a})$ or $f_{i}(\vec{a})$ w.r.t x_{i} and f is said to be partially differentiable w.r.t x_{i}.
- Spoiler alert: All known laws of nature are Partial Differential Equations (PDE) for something or the other (not necessarily for scalar fields).

