Lecture 23 - UM 102 (Spring 2021)

Vamsi Pritham Pingali

IISc

Recap

Recap

- Limit and continuity laws (

Recap

- Limit and continuity laws (including composition).
- Limit and continuity laws (including composition).
- Motivated the consideration
- Limit and continuity laws (including composition).
- Motivated the consideration of interior points
- Limit and continuity laws (including composition).
- Motivated the consideration of interior points for talking of derivatives.

Derivatives of scalar fields w.r.t vectors

Derivatives of scalar fields w.r.t vectors

- Def:

Derivatives of scalar fields w.r.t vectors

- Def: Given a scalar field $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$,

Derivatives of scalar fields w.r.t vectors

- Def: Given a scalar field $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$, an interior point $\vec{a} \in U$,

Derivatives of scalar fields w.r.t vectors

- Def: Given a scalar field $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$, an interior point $\vec{a} \in U$, and a vector $\vec{v} \in \mathbb{R}^{n}$,

Derivatives of scalar fields w.r.t vectors

- Def: Given a scalar field $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$, an interior point $\vec{a} \in U$, and a vector $\vec{v} \in \mathbb{R}^{n}, f$ is said to

Derivatives of scalar fields w.r.t vectors

- Def: Given a scalar field $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$, an interior point $\vec{a} \in U$, and a vector $\vec{v} \in \mathbb{R}^{n}, f$ is said to differentiable along \vec{v} if

Derivatives of scalar fields w.r.t vectors

- Def: Given a scalar field $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$, an interior point $\vec{a} \in U$, and a vector $\vec{v} \in \mathbb{R}^{n}, f$ is said to differentiable along \vec{v} if $\lim _{h \rightarrow 0} \frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}$ exists.

Derivatives of scalar fields w.r.t vectors

- Def: Given a scalar field $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$, an interior point $\vec{a} \in U$, and a vector $\vec{v} \in \mathbb{R}^{n}, f$ is said to differentiable along \vec{v} if $\lim _{h \rightarrow 0} \frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}$ exists. This number is

Derivatives of scalar fields w.r.t vectors

- Def: Given a scalar field $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$, an interior point $\vec{a} \in U$, and a vector $\vec{v} \in \mathbb{R}^{n}, f$ is said to differentiable along \vec{v} if $\lim _{h \rightarrow 0} \frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}$ exists. This number is denoted as $\nabla_{\vec{v}} f$.

Derivatives of scalar fields w.r.t vectors

- Def: Given a scalar field $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$, an interior point $\vec{a} \in U$, and a vector $\vec{v} \in \mathbb{R}^{n}, f$ is said to differentiable along \vec{v} if $\lim _{h \rightarrow 0} \frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}$ exists. This number is denoted as $\nabla_{\vec{v}} f$.
- If $\|\vec{v}\|=1$,

Derivatives of scalar fields w.r.t vectors

- Def: Given a scalar field $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$, an interior point $\vec{a} \in U$, and a vector $\vec{v} \in \mathbb{R}^{n}, f$ is said to differentiable along \vec{v} if $\lim _{h \rightarrow 0} \frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}$ exists. This number is denoted as $\nabla_{\vec{v}} f$.
- If $\|\vec{v}\|=1$, this number is called

Derivatives of scalar fields w.r.t vectors

- Def: Given a scalar field $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$, an interior point $\vec{a} \in U$, and a vector $\vec{v} \in \mathbb{R}^{n}, f$ is said to differentiable along \vec{v} if $\lim _{h \rightarrow 0} \frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}$ exists. This number is denoted as $\nabla_{\vec{v}} f$.
- If $\|\vec{v}\|=1$, this number is called the directional derivative

Derivatives of scalar fields w.r.t vectors

- Def: Given a scalar field $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$, an interior point $\vec{a} \in U$, and a vector $\vec{v} \in \mathbb{R}^{n}, f$ is said to differentiable along \vec{v} if $\lim _{h \rightarrow 0} \frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}$ exists. This number is denoted as $\nabla_{\vec{v}} f$.
- If $\|\vec{v}\|=1$, this number is called the directional derivative along the direction \vec{v}.

Examples

Examples

- If $\vec{v}=0$,

Examples

- If $\vec{v}=0$, then $\nabla_{\vec{v}} f(\vec{a})=0$.

Examples

- If $\vec{v}=0$, then $\nabla_{\vec{v}} f(\vec{a})=0$. Indeed, this follows

Examples

- If $\vec{v}=0$, then $\nabla_{\vec{v}} f(\vec{a})=0$. Indeed, this follows easily from the definition.

Examples

- If $\vec{v}=0$, then $\nabla_{\vec{v}} f(\vec{a})=0$. Indeed, this follows easily from the definition.
- Suppose f is linear,

Examples

- If $\vec{v}=0$, then $\nabla_{\vec{v}} f(\vec{a})=0$. Indeed, this follows easily from the definition.
- Suppose f is linear, then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=f(\vec{v})$ for all h

Examples

- If $\vec{v}=0$, then $\nabla_{\vec{v}} f(\vec{a})=0$. Indeed, this follows easily from the definition.
- Suppose f is linear, then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=f(\vec{v})$ for all h and hence f

Examples

- If $\vec{v}=0$, then $\nabla_{\vec{v}} f(\vec{a})=0$. Indeed, this follows easily from the definition.
- Suppose f is linear, then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=f(\vec{v})$ for all h and hence f is differentiable along all vectors

Examples

- If $\vec{v}=0$, then $\nabla_{\vec{v}} f(\vec{a})=0$. Indeed, this follows easily from the definition.
- Suppose f is linear, then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=f(\vec{v})$ for all h and hence f is differentiable along all vectors with $\nabla_{\vec{v}} f(\vec{a})=f(\vec{v})$.

Examples

- If $\vec{v}=0$, then $\nabla_{\vec{v}} f(\vec{a})=0$. Indeed, this follows easily from the definition.
- Suppose f is linear, then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=f(\vec{v})$ for all h and hence f is differentiable along all vectors with $\nabla_{\vec{v}} f(\vec{a})=f(\vec{v})$.
- The above derivative

Examples

- If $\vec{v}=0$, then $\nabla_{\vec{v}} f(\vec{a})=0$. Indeed, this follows easily from the definition.
- Suppose f is linear, then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=f(\vec{v})$ for all h and hence f is differentiable along all vectors with $\nabla_{\vec{v}} f(\vec{a})=f(\vec{v})$.
- The above derivative can also be thought of

Examples

- If $\vec{v}=0$, then $\nabla_{\vec{v}} f(\vec{a})=0$. Indeed, this follows easily from the definition.
- Suppose f is linear, then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=f(\vec{v})$ for all h and hence f is differentiable along all vectors with $\nabla_{\vec{v}} f(\vec{a})=f(\vec{v})$.
- The above derivative can also be thought of as a one-variable derivative.

Examples

- If $\vec{v}=0$, then $\nabla_{\vec{v}} f(\vec{a})=0$. Indeed, this follows easily from the definition.
- Suppose f is linear, then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=f(\vec{v})$ for all h and hence f is differentiable along all vectors with $\nabla_{\vec{v}} f(\vec{a})=f(\vec{v})$.
- The above derivative can also be thought of as a one-variable derivative. Indeed, let $g(t)=f(\vec{a}+t \vec{v})$.

Examples

- If $\vec{v}=0$, then $\nabla_{\vec{v}} f(\vec{a})=0$. Indeed, this follows easily from the definition.
- Suppose f is linear, then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=f(\vec{v})$ for all h and hence f is differentiable along all vectors with $\nabla_{\vec{v}} f(\vec{a})=f(\vec{v})$.
- The above derivative can also be thought of as a one-variable derivative. Indeed, let $g(t)=f(\vec{a}+t \vec{v})$. Then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=\frac{g(h)-g(0)}{h}$.

Examples

- If $\vec{v}=0$, then $\nabla_{\vec{v}} f(\vec{a})=0$. Indeed, this follows easily from the definition.
- Suppose f is linear, then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=f(\vec{v})$ for all h and hence f is differentiable along all vectors with $\nabla_{\vec{v}} f(\vec{a})=f(\vec{v})$.
- The above derivative can also be thought of as a one-variable derivative. Indeed, let $g(t)=f(\vec{a}+t \vec{v})$. Then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=\frac{g(h)-g(0)}{h}$. Thus g is differentiable at 0

Examples

- If $\vec{v}=0$, then $\nabla_{\vec{v}} f(\vec{a})=0$. Indeed, this follows easily from the definition.
- Suppose f is linear, then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=f(\vec{v})$ for all h and hence f is differentiable along all vectors with $\nabla_{\vec{v}} f(\vec{a})=f(\vec{v})$.
- The above derivative can also be thought of as a one-variable derivative. Indeed, let $g(t)=f(\vec{a}+t \vec{v})$. Then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=\frac{g(h)-g(0)}{h}$. Thus g is differentiable at 0 if and only if

Examples

- If $\vec{v}=0$, then $\nabla_{\vec{v}} f(\vec{a})=0$. Indeed, this follows easily from the definition.
- Suppose f is linear, then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=f(\vec{v})$ for all h and hence f is differentiable along all vectors with $\nabla_{\vec{v}} f(\vec{a})=f(\vec{v})$.
- The above derivative can also be thought of as a one-variable derivative. Indeed, let $g(t)=f(\vec{a}+t \vec{v})$. Then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=\frac{g(h)-g(0)}{h}$. Thus g is differentiable at 0 if and only if $\nabla_{\vec{v}} f(\vec{a})$ exists and equals $g^{\prime}(0)$.

Examples

- If $\vec{v}=0$, then $\nabla_{\vec{v}} f(\vec{a})=0$. Indeed, this follows easily from the definition.
- Suppose f is linear, then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=f(\vec{v})$ for all h and hence f is differentiable along all vectors with $\nabla_{\vec{v}} f(\vec{a})=f(\vec{v})$.
- The above derivative can also be thought of as a one-variable derivative. Indeed, let $g(t)=f(\vec{a}+t \vec{v})$. Then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=\frac{g(h)-g(0)}{h}$. Thus g is differentiable at 0 if and only if $\nabla_{\vec{v}} f(\vec{a})$ exists and equals $g^{\prime}(0)$.
- Moreover, $\nabla_{s \vec{v}} f(\vec{a})$ exists whenever

Examples

- If $\vec{v}=0$, then $\nabla_{\vec{v}} f(\vec{a})=0$. Indeed, this follows easily from the definition.
- Suppose f is linear, then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=f(\vec{v})$ for all h and hence f is differentiable along all vectors with $\nabla_{\vec{v}} f(\vec{a})=f(\vec{v})$.
- The above derivative can also be thought of as a one-variable derivative. Indeed, let $g(t)=f(\vec{a}+t \vec{v})$. Then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=\frac{g(h)-g(0)}{h}$. Thus g is differentiable at 0 if and only if $\nabla_{\vec{v}} f(\vec{a})$ exists and equals $g^{\prime}(0)$.
- Moreover, $\nabla_{s \vec{v}} f(\vec{a})$ exists whenever $\nabla_{\vec{v}} f(\vec{a})$ does

Examples

- If $\vec{v}=0$, then $\nabla_{\vec{v}} f(\vec{a})=0$. Indeed, this follows easily from the definition.
- Suppose f is linear, then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=f(\vec{v})$ for all h and hence f is differentiable along all vectors with $\nabla_{\vec{v}} f(\vec{a})=f(\vec{v})$.
- The above derivative can also be thought of as a one-variable derivative. Indeed, let $g(t)=f(\vec{a}+t \vec{v})$. Then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=\frac{g(h)-g(0)}{h}$. Thus g is differentiable at 0 if and only if $\nabla_{\vec{v}} f(\vec{a})$ exists and equals $g^{\prime}(0)$.
- Moreover, $\nabla_{s \vec{v}} f(\vec{a})$ exists whenever $\nabla_{\vec{v}} f(\vec{a})$ does and equals $s \nabla_{\vec{v}} f(\vec{a}):$

Examples

- If $\vec{v}=0$, then $\nabla_{\vec{v}} f(\vec{a})=0$. Indeed, this follows easily from the definition.
- Suppose f is linear, then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=f(\vec{v})$ for all h and hence f is differentiable along all vectors with $\nabla_{\vec{v}} f(\vec{a})=f(\vec{v})$.
- The above derivative can also be thought of as a one-variable derivative. Indeed, let $g(t)=f(\vec{a}+t \vec{v})$. Then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=\frac{g(h)-g(0)}{h}$. Thus g is differentiable at 0 if and only if $\nabla_{\vec{v}} f(\vec{a})$ exists and equals $g^{\prime}(0)$.
- Moreover, $\nabla_{s \vec{v}} f(\vec{a})$ exists whenever $\nabla_{\vec{v}} f(\vec{a})$ does and equals $s \nabla_{\vec{v}} f(\vec{a})$: Indeed, let $h(t)=f(\vec{a}+t \vec{v})$ and

Examples

- If $\vec{v}=0$, then $\nabla_{\vec{v}} f(\vec{a})=0$. Indeed, this follows easily from the definition.
- Suppose f is linear, then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=f(\vec{v})$ for all h and hence f is differentiable along all vectors with $\nabla_{\vec{v}} f(\vec{a})=f(\vec{v})$.
- The above derivative can also be thought of as a one-variable derivative. Indeed, let $g(t)=f(\vec{a}+t \vec{v})$. Then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=\frac{g(h)-g(0)}{h}$. Thus g is differentiable at 0 if and only if $\nabla_{\vec{v}} f(\vec{a})$ exists and equals $g^{\prime}(0)$.
- Moreover, $\nabla_{s \vec{v}} f(\vec{a})$ exists whenever $\nabla_{\vec{v}} f(\vec{a})$ does and equals $s \nabla_{\vec{v}} f(\vec{a})$: Indeed, let $h(t)=f(\vec{a}+t \vec{v})$ and $g(t)=h(s t)=f(\vec{a}+t s \vec{v})$.

Examples

- If $\vec{v}=0$, then $\nabla_{\vec{v}} f(\vec{a})=0$. Indeed, this follows easily from the definition.
- Suppose f is linear, then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=f(\vec{v})$ for all h and hence f is differentiable along all vectors with $\nabla_{\vec{v}} f(\vec{a})=f(\vec{v})$.
- The above derivative can also be thought of as a one-variable derivative. Indeed, let $g(t)=f(\vec{a}+t \vec{v})$. Then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=\frac{g(h)-g(0)}{h}$. Thus g is differentiable at 0 if and only if $\nabla_{\vec{v}} f(\vec{a})$ exists and equals $g^{\prime}(0)$.
- Moreover, $\nabla_{s \vec{v}} f(\vec{a})$ exists whenever $\nabla_{\vec{v}} f(\vec{a})$ does and equals $s \nabla_{\vec{v}} f(\vec{a})$: Indeed, let $h(t)=f(\vec{a}+t \vec{v})$ and $g(t)=h(s t)=f(\vec{a}+t s \vec{v})$. Then by the chain rule
- If $\vec{v}=0$, then $\nabla_{\vec{v}} f(\vec{a})=0$. Indeed, this follows easily from the definition.
- Suppose f is linear, then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=f(\vec{v})$ for all h and hence f is differentiable along all vectors with $\nabla_{\vec{v}} f(\vec{a})=f(\vec{v})$.
- The above derivative can also be thought of as a one-variable derivative. Indeed, let $g(t)=f(\vec{a}+t \vec{v})$. Then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=\frac{g(h)-g(0)}{h}$. Thus g is differentiable at 0 if and only if $\nabla_{\vec{v}} f(\vec{a})$ exists and equals $g^{\prime}(0)$.
- Moreover, $\nabla_{s \vec{v}} f(\vec{a})$ exists whenever $\nabla_{\vec{v}} f(\vec{a})$ does and equals $s \nabla_{\vec{v}} f(\vec{a})$: Indeed, let $h(t)=f(\vec{a}+t \vec{v})$ and $g(t)=h(s t)=f(\vec{a}+t s \vec{v})$. Then by the chain rule $g^{\prime}(0)$ exists and equals
- If $\vec{v}=0$, then $\nabla_{\vec{v}} f(\vec{a})=0$. Indeed, this follows easily from the definition.
- Suppose f is linear, then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=f(\vec{v})$ for all h and hence f is differentiable along all vectors with $\nabla_{\vec{v}} f(\vec{a})=f(\vec{v})$.
- The above derivative can also be thought of as a one-variable derivative. Indeed, let $g(t)=f(\vec{a}+t \vec{v})$. Then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=\frac{g(h)-g(0)}{h}$. Thus g is differentiable at 0 if and only if $\nabla_{\vec{v}} f(\vec{a})$ exists and equals $g^{\prime}(0)$.
- Moreover, $\nabla_{s \vec{v}} f(\vec{a})$ exists whenever $\nabla_{\vec{v}} f(\vec{a})$ does and equals $s \nabla_{\vec{v}} f(\vec{a})$: Indeed, let $h(t)=f(\vec{a}+t \vec{v})$ and $g(t)=h(s t)=f(\vec{a}+t s \vec{v})$. Then by the chain rule $g^{\prime}(0)$ exists and equals $s h^{\prime}(0)=s \nabla_{\vec{v}} f(\vec{a})$.
- If $\vec{v}=0$, then $\nabla_{\vec{v}} f(\vec{a})=0$. Indeed, this follows easily from the definition.
- Suppose f is linear, then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=f(\vec{v})$ for all h and hence f is differentiable along all vectors with $\nabla_{\vec{v}} f(\vec{a})=f(\vec{v})$.
- The above derivative can also be thought of as a one-variable derivative. Indeed, let $g(t)=f(\vec{a}+t \vec{v})$. Then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=\frac{g(h)-g(0)}{h}$. Thus g is differentiable at 0 if and only if $\nabla_{\vec{v}} f(\vec{a})$ exists and equals $g^{\prime}(0)$.
- Moreover, $\nabla_{s \vec{v}} f(\vec{a})$ exists whenever $\nabla_{\vec{v}} f(\vec{a})$ does and equals $s \nabla_{\vec{v}} f(\vec{a})$: Indeed, let $h(t)=f(\vec{a}+t \vec{v})$ and $g(t)=h(s t)=f(\vec{a}+t s \vec{v})$. Then by the chain rule $g^{\prime}(0)$ exists and equals $s h^{\prime}(0)=s \nabla_{\vec{v}} f(\vec{a})$.
- If $f(\vec{x})=\|\vec{x}\|^{2}$,
- If $\vec{v}=0$, then $\nabla_{\vec{v}} f(\vec{a})=0$. Indeed, this follows easily from the definition.
- Suppose f is linear, then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=f(\vec{v})$ for all h and hence f is differentiable along all vectors with $\nabla_{\vec{v}} f(\vec{a})=f(\vec{v})$.
- The above derivative can also be thought of as a one-variable derivative. Indeed, let $g(t)=f(\vec{a}+t \vec{v})$. Then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=\frac{g(h)-g(0)}{h}$. Thus g is differentiable at 0 if and only if $\nabla_{\vec{v}} f(\vec{a})$ exists and equals $g^{\prime}(0)$.
- Moreover, $\nabla_{s \vec{v}} f(\vec{a})$ exists whenever $\nabla_{\vec{v}} f(\vec{a})$ does and equals $s \nabla_{\vec{v}} f(\vec{a})$: Indeed, let $h(t)=f(\vec{a}+t \vec{v})$ and $g(t)=h(s t)=f(\vec{a}+t s \vec{v})$. Then by the chain rule $g^{\prime}(0)$ exists and equals $s h^{\prime}(0)=s \nabla_{\vec{v}} f(\vec{a})$.
- If $f(\vec{x})=\|\vec{x}\|^{2}$, compute $\nabla_{\vec{v}} f(\vec{a})$:
- If $\vec{v}=0$, then $\nabla_{\vec{v}} f(\vec{a})=0$. Indeed, this follows easily from the definition.
- Suppose f is linear, then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=f(\vec{v})$ for all h and hence f is differentiable along all vectors with $\nabla_{\vec{v}} f(\vec{a})=f(\vec{v})$.
- The above derivative can also be thought of as a one-variable derivative. Indeed, let $g(t)=f(\vec{a}+t \vec{v})$. Then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=\frac{g(h)-g(0)}{h}$. Thus g is differentiable at 0 if and only if $\nabla_{\vec{v}} f(\vec{a})$ exists and equals $g^{\prime}(0)$.
- Moreover, $\nabla_{s \vec{v}} f(\vec{a})$ exists whenever $\nabla_{\vec{v}} f(\vec{a})$ does and equals $s \nabla_{\vec{v}} f(\vec{a})$: Indeed, let $h(t)=f(\vec{a}+t \vec{v})$ and $g(t)=h(s t)=f(\vec{a}+t s \vec{v})$. Then by the chain rule $g^{\prime}(0)$ exists and equals $s h^{\prime}(0)=s \nabla_{\vec{v}} f(\vec{a})$.
- If $f(\vec{x})=\|\vec{x}\|^{2}$, compute $\nabla_{\vec{v}} f(\vec{a})$:
$g(t)=\|\vec{a}\|^{2}+t^{2}\|\vec{v}\|^{2}+2 t\langle\vec{a}, \vec{v}\rangle$.
- If $\vec{v}=0$, then $\nabla_{\vec{v}} f(\vec{a})=0$. Indeed, this follows easily from the definition.
- Suppose f is linear, then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=f(\vec{v})$ for all h and hence f is differentiable along all vectors with $\nabla_{\vec{v}} f(\vec{a})=f(\vec{v})$.
- The above derivative can also be thought of as a one-variable derivative. Indeed, let $g(t)=f(\vec{a}+t \vec{v})$. Then $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}=\frac{g(h)-g(0)}{h}$. Thus g is differentiable at 0 if and only if $\nabla_{\vec{v}} f(\vec{a})$ exists and equals $g^{\prime}(0)$.
- Moreover, $\nabla_{s \vec{v}} f(\vec{a})$ exists whenever $\nabla_{\vec{v}} f(\vec{a})$ does and equals $s \nabla_{\vec{v}} f(\vec{a})$: Indeed, let $h(t)=f(\vec{a}+t \vec{v})$ and $g(t)=h(s t)=f(\vec{a}+t s \vec{v})$. Then by the chain rule $g^{\prime}(0)$ exists and equals $s h^{\prime}(0)=s \nabla_{\vec{v}} f(\vec{a})$.
- If $f(\vec{x})=\|\vec{x}\|^{2}$, compute $\nabla_{\vec{v}} f(\vec{a})$:
$g(t)=\|\vec{a}\|^{2}+t^{2}\|\vec{v}\|^{2}+2 t\langle\vec{a}, \vec{v}\rangle$. Thus $g^{\prime}(0)=2\langle\vec{a}, \vec{v}\rangle$.

Mean value theorem, partial derivatives

Mean value theorem, partial derivatives

- Assume that

Mean value theorem, partial derivatives

- Assume that $\nabla_{\vec{v}} f(\vec{a}+t \vec{v})$ exists for all $0 \leq t \leq 1$.

Mean value theorem, partial derivatives

- Assume that $\nabla_{\vec{v}} f(\vec{a}+t \vec{v})$ exists for all $0 \leq t \leq 1$.
- Theorem:

Mean value theorem, partial derivatives

- Assume that $\nabla_{\vec{v}} f(\vec{a}+t \vec{v})$ exists for all $0 \leq t \leq 1$.
- Theorem: Then there exists

Mean value theorem, partial derivatives

- Assume that $\nabla_{\vec{v}} f(\vec{a}+t \vec{v})$ exists for all $0 \leq t \leq 1$.
- Theorem: Then there exists a real number $\theta \in(0,1)$ such that

Mean value theorem, partial derivatives

- Assume that $\nabla_{\vec{v}} f(\vec{a}+t \vec{v})$ exists for all $0 \leq t \leq 1$.
- Theorem: Then there exists a real number $\theta \in(0,1)$ such that $f(\vec{a}+\vec{v})-f(\vec{a})=\nabla_{\vec{v}} f(a+\theta \vec{v})$.

Mean value theorem, partial derivatives

- Assume that $\nabla_{\vec{v}} f(\vec{a}+t \vec{v})$ exists for all $0 \leq t \leq 1$.
- Theorem: Then there exists a real number $\theta \in(0,1)$ such that $f(\vec{a}+\vec{v})-f(\vec{a})=\nabla_{\vec{v}} f(a+\theta \vec{v})$.
- Proof:

Mean value theorem, partial derivatives

- Assume that $\nabla_{\vec{v}} f(\vec{a}+t \vec{v})$ exists for all $0 \leq t \leq 1$.
- Theorem: Then there exists a real number $\theta \in(0,1)$ such that $f(\vec{a}+\vec{v})-f(\vec{a})=\nabla_{\vec{v}} f(a+\theta \vec{v})$.
- Proof: Let $g(t)=f(\vec{a}+t \vec{v})$.

Mean value theorem, partial derivatives

- Assume that $\nabla_{\vec{v}} f(\vec{a}+t \vec{v})$ exists for all $0 \leq t \leq 1$.
- Theorem: Then there exists a real number $\theta \in(0,1)$ such that $f(\vec{a}+\vec{v})-f(\vec{a})=\nabla_{\vec{v}} f(a+\theta \vec{v})$.
- Proof: Let $g(t)=f(\vec{a}+t \vec{v})$. Then applying the 1-dim MVT

Mean value theorem, partial derivatives

- Assume that $\nabla_{\vec{v}} f(\vec{a}+t \vec{v})$ exists for all $0 \leq t \leq 1$.
- Theorem: Then there exists a real number $\theta \in(0,1)$ such that $f(\vec{a}+\vec{v})-f(\vec{a})=\nabla_{\vec{v}} f(a+\theta \vec{v})$.
- Proof: Let $g(t)=f(\vec{a}+t \vec{v})$. Then applying the 1-dim MVT to g,

Mean value theorem, partial derivatives

- Assume that $\nabla_{\vec{v}} f(\vec{a}+t \vec{v})$ exists for all $0 \leq t \leq 1$.
- Theorem: Then there exists a real number $\theta \in(0,1)$ such that $f(\vec{a}+\vec{v})-f(\vec{a})=\nabla_{\vec{v}} f(a+\theta \vec{v})$.
- Proof: Let $g(t)=f(\vec{a}+t \vec{v})$. Then applying the 1-dim MVT to g, we see that $g(1)-g(0)=g^{\prime}(\theta)$.

Mean value theorem, partial derivatives

- Assume that $\nabla_{\vec{v}} f(\vec{a}+t \vec{v})$ exists for all $0 \leq t \leq 1$.
- Theorem: Then there exists a real number $\theta \in(0,1)$ such that $f(\vec{a}+\vec{v})-f(\vec{a})=\nabla_{\vec{v}} f(a+\theta \vec{v})$.
- Proof: Let $g(t)=f(\vec{a}+t \vec{v})$. Then applying the 1-dim MVT to g, we see that $g(1)-g(0)=g^{\prime}(\theta)$. Thus we are done.

Mean value theorem, partial derivatives

- Assume that $\nabla_{\vec{v}} f(\vec{a}+t \vec{v})$ exists for all $0 \leq t \leq 1$.
- Theorem: Then there exists a real number $\theta \in(0,1)$ such that $f(\vec{a}+\vec{v})-f(\vec{a})=\nabla_{\vec{v}} f(a+\theta \vec{v})$.
- Proof: Let $g(t)=f(\vec{a}+t \vec{v})$. Then applying the 1-dim MVT to g, we see that $g(1)-g(0)=g^{\prime}(\theta)$. Thus we are done.
- As a consequence,

Mean value theorem, partial derivatives

- Assume that $\nabla_{\vec{v}} f(\vec{a}+t \vec{v})$ exists for all $0 \leq t \leq 1$.
- Theorem: Then there exists a real number $\theta \in(0,1)$ such that $f(\vec{a}+\vec{v})-f(\vec{a})=\nabla_{\vec{v}} f(a+\theta \vec{v})$.
- Proof: Let $g(t)=f(\vec{a}+t \vec{v})$. Then applying the 1-dim MVT to g, we see that $g(1)-g(0)=g^{\prime}(\theta)$. Thus we are done.
- As a consequence, if f is defined on all of \mathbb{R}^{n}, and

Mean value theorem, partial derivatives

- Assume that $\nabla_{\vec{v}} f(\vec{a}+t \vec{v})$ exists for all $0 \leq t \leq 1$.
- Theorem: Then there exists a real number $\theta \in(0,1)$ such that $f(\vec{a}+\vec{v})-f(\vec{a})=\nabla_{\vec{v}} f(a+\theta \vec{v})$.
- Proof: Let $g(t)=f(\vec{a}+t \vec{v})$. Then applying the 1-dim MVT to g, we see that $g(1)-g(0)=g^{\prime}(\theta)$. Thus we are done.
- As a consequence, if f is defined on all of \mathbb{R}^{n}, and $\nabla_{\vec{v}} f(\vec{a})=0$ for all

Mean value theorem, partial derivatives

- Assume that $\nabla_{\vec{v}} f(\vec{a}+t \vec{v})$ exists for all $0 \leq t \leq 1$.
- Theorem: Then there exists a real number $\theta \in(0,1)$ such that $f(\vec{a}+\vec{v})-f(\vec{a})=\nabla_{\vec{v}} f(a+\theta \vec{v})$.
- Proof: Let $g(t)=f(\vec{a}+t \vec{v})$. Then applying the 1-dim MVT to g, we see that $g(1)-g(0)=g^{\prime}(\theta)$. Thus we are done.
- As a consequence, if f is defined on all of \mathbb{R}^{n}, and $\nabla_{\vec{v}} f(\vec{a})=0$ for all \vec{v} and \vec{a},

Mean value theorem, partial derivatives

- Assume that $\nabla_{\vec{v}} f(\vec{a}+t \vec{v})$ exists for all $0 \leq t \leq 1$.
- Theorem: Then there exists a real number $\theta \in(0,1)$ such that $f(\vec{a}+\vec{v})-f(\vec{a})=\nabla_{\vec{v}} f(a+\theta \vec{v})$.
- Proof: Let $g(t)=f(\vec{a}+t \vec{v})$. Then applying the 1-dim MVT to g, we see that $g(1)-g(0)=g^{\prime}(\theta)$. Thus we are done.
- As a consequence, if f is defined on all of \mathbb{R}^{n}, and $\nabla_{\vec{v}} f(\vec{a})=0$ for all \vec{v} and \vec{a}, then f is a constant.

Mean value theorem, partial derivatives

- Assume that $\nabla_{\vec{v}} f(\vec{a}+t \vec{v})$ exists for all $0 \leq t \leq 1$.
- Theorem: Then there exists a real number $\theta \in(0,1)$ such that $f(\vec{a}+\vec{v})-f(\vec{a})=\nabla_{\vec{v}} f(a+\theta \vec{v})$.
- Proof: Let $g(t)=f(\vec{a}+t \vec{v})$. Then applying the 1-dim MVT to g, we see that $g(1)-g(0)=g^{\prime}(\theta)$. Thus we are done.
- As a consequence, if f is defined on all of \mathbb{R}^{n}, and $\nabla_{\vec{v}} f(\vec{a})=0$ for all \vec{v} and \vec{a}, then f is a constant. Indeed, if not,

Mean value theorem, partial derivatives

- Assume that $\nabla_{\vec{v}} f(\vec{a}+t \vec{v})$ exists for all $0 \leq t \leq 1$.
- Theorem: Then there exists a real number $\theta \in(0,1)$ such that $f(\vec{a}+\vec{v})-f(\vec{a})=\nabla_{\vec{v}} f(a+\theta \vec{v})$.
- Proof: Let $g(t)=f(\vec{a}+t \vec{v})$. Then applying the 1-dim MVT to g, we see that $g(1)-g(0)=g^{\prime}(\theta)$. Thus we are done.
- As a consequence, if f is defined on all of \mathbb{R}^{n}, and $\nabla_{\vec{v}} f(\vec{a})=0$ for all \vec{v} and \vec{a}, then f is a constant. Indeed, if not, i.e., if $f(\vec{a}) \neq f(\vec{a}+\vec{v})$, then

Mean value theorem, partial derivatives

- Assume that $\nabla_{\vec{v}} f(\vec{a}+t \vec{v})$ exists for all $0 \leq t \leq 1$.
- Theorem: Then there exists a real number $\theta \in(0,1)$ such that $f(\vec{a}+\vec{v})-f(\vec{a})=\nabla_{\vec{v}} f(a+\theta \vec{v})$.
- Proof: Let $g(t)=f(\vec{a}+t \vec{v})$. Then applying the 1-dim MVT to g, we see that $g(1)-g(0)=g^{\prime}(\theta)$. Thus we are done.
- As a consequence, if f is defined on all of \mathbb{R}^{n}, and $\nabla_{\vec{v}} f(\vec{a})=0$ for all \vec{v} and \vec{a}, then f is a constant. Indeed, if not, i.e., if $f(\vec{a}) \neq f(\vec{a}+\vec{v})$, then $0 \neq g(1)-g(0)=0$ which is a contradiction.

Partial derivatives

Partial derivatives

- Def:

Partial derivatives

- Def:When $\vec{v}=e_{i}$,

Partial derivatives

- Def:When $\vec{v}=e_{i}, \nabla_{\vec{v}} f(\vec{a})$ if it exists

Partial derivatives

- Def:When $\vec{v}=e_{i}, \nabla_{\vec{v}} f(\vec{a})$ if it exists is called the

Partial derivatives

- Def:When $\vec{v}=e_{i}, \nabla_{\vec{v}} f(\vec{a})$ if it exists is called the partial derivative $\frac{\partial f}{\partial x_{i}}(\vec{a})$ or $f_{x_{i}}(\vec{a})$

Partial derivatives

- Def:When $\vec{v}=e_{i}, \nabla_{\vec{v}} f(\vec{a})$ if it exists is called the partial derivative $\frac{\partial f}{\partial x_{i}}(\vec{a})$ or $f_{x_{i}}(\vec{a})$ w.r.t x_{i}
- Def:When $\vec{v}=e_{i}, \nabla_{\vec{v}} f(\vec{a})$ if it exists is called the partial derivative $\frac{\partial f}{\partial x_{i}}(\vec{a})$ or $f_{x_{i}}(\vec{a})$ w.r.t x_{i} and f is said to be
- Def:When $\vec{v}=e_{i}, \nabla_{\vec{v}} f(\vec{a})$ if it exists is called the partial derivative $\frac{\partial f}{\partial x_{i}}(\vec{a})$ or $f_{x_{i}}(\vec{a})$ w.r.t x_{i} and f is said to be partially differentiable w.r.t x_{i}.
- Def:When $\vec{v}=e_{i}, \nabla_{\vec{v}} f(\vec{a})$ if it exists is called the partial derivative $\frac{\partial f}{\partial x_{i}}(\vec{a})$ or $f_{x_{i}}(\vec{a})$ w.r.t x_{i} and f is said to be partially differentiable w.r.t x_{i}.
- Spoiler alert:
- Def:When $\vec{v}=e_{i}, \nabla_{\vec{v}} f(\vec{a})$ if it exists is called the partial derivative $\frac{\partial f}{\partial x_{i}}(\vec{a})$ or $f_{x_{i}}(\vec{a})$ w.r.t x_{i} and f is said to be partially differentiable w.r.t x_{i}.
- Spoiler alert: All known laws of nature
- Def:When $\vec{v}=e_{i}, \nabla_{\vec{v}} f(\vec{a})$ if it exists is called the partial derivative $\frac{\partial f}{\partial x_{i}}(\vec{a})$ or $f_{x_{i}}(\vec{a})$ w.r.t x_{i} and f is said to be partially differentiable w.r.t x_{i}.
- Spoiler alert: All known laws of nature are Partial Differential Equations (PDE)
- Def:When $\vec{v}=e_{i}, \nabla_{\vec{v}} f(\vec{a})$ if it exists is called the partial derivative $\frac{\partial f}{\partial x_{i}}(\vec{a})$ or $f_{x_{i}}(\vec{a})$ w.r.t x_{i} and f is said to be partially differentiable w.r.t x_{i}.
- Spoiler alert: All known laws of nature are Partial Differential Equations (PDE) for something or the other (
- Def:When $\vec{v}=e_{i}, \nabla_{\vec{v}} f(\vec{a})$ if it exists is called the partial derivative $\frac{\partial f}{\partial x_{i}}(\vec{a})$ or $f_{x_{i}}(\vec{a})$ w.r.t x_{i} and f is said to be partially differentiable w.r.t x_{i}.
- Spoiler alert: All known laws of nature are Partial Differential Equations (PDE) for something or the other (not necessarily for scalar fields).
- Def:When $\vec{v}=e_{i}, \nabla_{\vec{v}} f(\vec{a})$ if it exists is called the partial derivative $\frac{\partial f}{\partial x_{i}}(\vec{a})$ or $f_{x_{i}}(\vec{a})$ w.r.t x_{i} and f is said to be partially differentiable w.r.t x_{i}.
- Spoiler alert: All known laws of nature are Partial Differential Equations (PDE) for something or the other (not necessarily for scalar fields).
- In effect,
- Def:When $\vec{v}=e_{i}, \nabla_{\vec{v}} f(\vec{a})$ if it exists is called the partial derivative $\frac{\partial f}{\partial x_{i}}(\vec{a})$ or $f_{x_{i}}(\vec{a})$ w.r.t x_{i} and f is said to be partially differentiable w.r.t x_{i}.
- Spoiler alert: All known laws of nature are Partial Differential Equations (PDE) for something or the other (not necessarily for scalar fields).
- In effect, a partial derivative is
- Def:When $\vec{v}=e_{i}, \nabla_{\vec{v}} f(\vec{a})$ if it exists is called the partial derivative $\frac{\partial f}{\partial x_{i}}(\vec{a})$ or $f_{x_{i}}(\vec{a})$ w.r.t x_{i} and f is said to be partially differentiable w.r.t x_{i}.
- Spoiler alert: All known laws of nature are Partial Differential Equations (PDE) for something or the other (not necessarily for scalar fields).
- In effect, a partial derivative is simply the usual derivative
- Def:When $\vec{v}=e_{i}, \nabla_{\vec{v}} f(\vec{a})$ if it exists is called the partial derivative $\frac{\partial f}{\partial x_{i}}(\vec{a})$ or $f_{x_{i}}(\vec{a})$ w.r.t x_{i} and f is said to be partially differentiable w.r.t x_{i}.
- Spoiler alert: All known laws of nature are Partial Differential Equations (PDE) for something or the other (not necessarily for scalar fields).
- In effect, a partial derivative is simply the usual derivative w.r.t one variable
- Def:When $\vec{v}=e_{i}, \nabla_{\vec{v}} f(\vec{a})$ if it exists is called the partial derivative $\frac{\partial f}{\partial x_{i}}(\vec{a})$ or $f_{x_{i}}(\vec{a})$ w.r.t x_{i} and f is said to be partially differentiable w.r.t x_{i}.
- Spoiler alert: All known laws of nature are Partial Differential Equations (PDE) for something or the other (not necessarily for scalar fields).
- In effect, a partial derivative is simply the usual derivative w.r.t one variable whilst keeping the others fixed (Why?).
- Def:When $\vec{v}=e_{i}, \nabla_{\vec{v}} f(\vec{a})$ if it exists is called the partial derivative $\frac{\partial f}{\partial x_{i}}(\vec{a})$ or $f_{x_{i}}(\vec{a})$ w.r.t x_{i} and f is said to be partially differentiable w.r.t x_{i}.
- Spoiler alert: All known laws of nature are Partial Differential Equations (PDE) for something or the other (not necessarily for scalar fields).
- In effect, a partial derivative is simply the usual derivative w.r.t one variable whilst keeping the others fixed (Why?).
- A polynomial
- Def:When $\vec{v}=e_{i}, \nabla_{\vec{v}} f(\vec{a})$ if it exists is called the partial derivative $\frac{\partial f}{\partial x_{i}}(\vec{a})$ or $f_{x_{i}}(\vec{a})$ w.r.t x_{i} and f is said to be partially differentiable w.r.t x_{i}.
- Spoiler alert: All known laws of nature are Partial Differential Equations (PDE) for something or the other (not necessarily for scalar fields).
- In effect, a partial derivative is simply the usual derivative w.r.t one variable whilst keeping the others fixed (Why?).
- A polynomial has directional derivatives
- Def:When $\vec{v}=e_{i}, \nabla_{\vec{v}} f(\vec{a})$ if it exists is called the partial derivative $\frac{\partial f}{\partial x_{i}}(\vec{a})$ or $f_{x_{i}}(\vec{a})$ w.r.t x_{i} and f is said to be partially differentiable w.r.t x_{i}.
- Spoiler alert: All known laws of nature are Partial Differential Equations (PDE) for something or the other (not necessarily for scalar fields).
- In effect, a partial derivative is simply the usual derivative w.r.t one variable whilst keeping the others fixed (Why?).
- A polynomial has directional derivatives in all directions
- Def:When $\vec{v}=e_{i}, \nabla_{\vec{v}} f(\vec{a})$ if it exists is called the partial derivative $\frac{\partial f}{\partial x_{i}}(\vec{a})$ or $f_{x_{i}}(\vec{a})$ w.r.t x_{i} and f is said to be partially differentiable w.r.t x_{i}.
- Spoiler alert: All known laws of nature are Partial Differential Equations (PDE) for something or the other (not necessarily for scalar fields).
- In effect, a partial derivative is simply the usual derivative w.r.t one variable whilst keeping the others fixed (Why?).
- A polynomial has directional derivatives in all directions at all points
- Def:When $\vec{v}=e_{i}, \nabla_{\vec{v}} f(\vec{a})$ if it exists is called the partial derivative $\frac{\partial f}{\partial x_{i}}(\vec{a})$ or $f_{x_{i}}(\vec{a})$ w.r.t x_{i} and f is said to be partially differentiable w.r.t x_{i}.
- Spoiler alert: All known laws of nature are Partial Differential Equations (PDE) for something or the other (not necessarily for scalar fields).
- In effect, a partial derivative is simply the usual derivative w.r.t one variable whilst keeping the others fixed (Why?).
- A polynomial has directional derivatives in all directions at all points because $g(t)$ is a polynomial
- Def:When $\vec{v}=e_{i}, \nabla_{\vec{v}} f(\vec{a})$ if it exists is called the partial derivative $\frac{\partial f}{\partial x_{i}}(\vec{a})$ or $f_{x_{i}}(\vec{a})$ w.r.t x_{i} and f is said to be partially differentiable w.r.t x_{i}.
- Spoiler alert: All known laws of nature are Partial Differential Equations (PDE) for something or the other (not necessarily for scalar fields).
- In effect, a partial derivative is simply the usual derivative w.r.t one variable whilst keeping the others fixed (Why?).
- A polynomial has directional derivatives in all directions at all points because $g(t)$ is a polynomial and hence differentiable.
- Def:When $\vec{v}=e_{i}, \nabla_{\vec{v}} f(\vec{a})$ if it exists is called the partial derivative $\frac{\partial f}{\partial x_{i}}(\vec{a})$ or $f_{x_{i}}(\vec{a})$ w.r.t x_{i} and f is said to be partially differentiable w.r.t x_{i}.
- Spoiler alert: All known laws of nature are Partial Differential Equations (PDE) for something or the other (not necessarily for scalar fields).
- In effect, a partial derivative is simply the usual derivative w.r.t one variable whilst keeping the others fixed (Why?).
- A polynomial has directional derivatives in all directions at all points because $g(t)$ is a polynomial and hence differentiable.
- More generally,
- Def:When $\vec{v}=e_{i}, \nabla_{\vec{v}} f(\vec{a})$ if it exists is called the partial derivative $\frac{\partial f}{\partial x_{i}}(\vec{a})$ or $f_{x_{i}}(\vec{a})$ w.r.t x_{i} and f is said to be partially differentiable w.r.t x_{i}.
- Spoiler alert: All known laws of nature are Partial Differential Equations (PDE) for something or the other (not necessarily for scalar fields).
- In effect, a partial derivative is simply the usual derivative w.r.t one variable whilst keeping the others fixed (Why?).
- A polynomial has directional derivatives in all directions at all points because $g(t)$ is a polynomial and hence differentiable.
- More generally, $f_{i}\left(x_{i}\right)$ are differentiable,
- Def:When $\vec{v}=e_{i}, \nabla_{\vec{v}} f(\vec{a})$ if it exists is called the partial derivative $\frac{\partial f}{\partial x_{i}}(\vec{a})$ or $f_{x_{i}}(\vec{a})$ w.r.t x_{i} and f is said to be partially differentiable w.r.t x_{i}.
- Spoiler alert: All known laws of nature are Partial Differential Equations (PDE) for something or the other (not necessarily for scalar fields).
- In effect, a partial derivative is simply the usual derivative w.r.t one variable whilst keeping the others fixed (Why?).
- A polynomial has directional derivatives in all directions at all points because $g(t)$ is a polynomial and hence differentiable.
- More generally, $f_{i}\left(x_{i}\right)$ are differentiable, then a sum of terms of the form
- Def:When $\vec{v}=e_{i}, \nabla_{\vec{v}} f(\vec{a})$ if it exists is called the partial derivative $\frac{\partial f}{\partial x_{i}}(\vec{a})$ or $f_{x_{i}}(\vec{a})$ w.r.t x_{i} and f is said to be partially differentiable w.r.t x_{i}.
- Spoiler alert: All known laws of nature are Partial Differential Equations (PDE) for something or the other (not necessarily for scalar fields).
- In effect, a partial derivative is simply the usual derivative w.r.t one variable whilst keeping the others fixed (Why?).
- A polynomial has directional derivatives in all directions at all points because $g(t)$ is a polynomial and hence differentiable.
- More generally, $f_{i}\left(x_{i}\right)$ are differentiable, then a sum of terms of the form $f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) \ldots$ has directional derivatives
- Def:When $\vec{v}=e_{i}, \nabla_{\vec{v}} f(\vec{a})$ if it exists is called the partial derivative $\frac{\partial f}{\partial x_{i}}(\vec{a})$ or $f_{x_{i}}(\vec{a})$ w.r.t x_{i} and f is said to be partially differentiable w.r.t x_{i}.
- Spoiler alert: All known laws of nature are Partial Differential Equations (PDE) for something or the other (not necessarily for scalar fields).
- In effect, a partial derivative is simply the usual derivative w.r.t one variable whilst keeping the others fixed (Why?).
- A polynomial has directional derivatives in all directions at all points because $g(t)$ is a polynomial and hence differentiable.
- More generally, $f_{i}\left(x_{i}\right)$ are differentiable, then a sum of terms of the form $f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) \ldots$ has directional derivatives in all directions.

Partial derivatives

Partial derivatives

- One can easily

Partial derivatives

- One can easily compute partials

Partial derivatives

- One can easily compute partials in specific examples:

Partial derivatives

- One can easily compute partials in specific examples: For instance, if $T(P, V)=\frac{P V}{R}$, where R is a constant,

Partial derivatives

- One can easily compute partials in specific examples: For instance, if $T(P, V)=\frac{P V}{R}$, where R is a constant, then T is partially differentiable

Partial derivatives

- One can easily compute partials in specific examples: For instance, if $T(P, V)=\frac{P V}{R}$, where R is a constant, then T is partially differentiable w.r.t P, V.
- One can easily compute partials in specific examples: For instance, if $T(P, V)=\frac{P V}{R}$, where R is a constant, then T is partially differentiable w.r.t P, V. Its partials are $\frac{\partial T}{\partial V}=\frac{P}{R}$, $\frac{\partial T}{\partial P}=\frac{V}{R}$.
- One can easily compute partials in specific examples: For instance, if $T(P, V)=\frac{P V}{R}$, where R is a constant, then T is partially differentiable w.r.t P, V. Its partials are $\frac{\partial T}{\partial V}=\frac{P}{R}$, $\frac{\partial T}{\partial P}=\frac{V}{R}$.
- A rational function
- One can easily compute partials in specific examples: For instance, if $T(P, V)=\frac{P V}{R}$, where R is a constant, then T is partially differentiable w.r.t P, V. Its partials are $\frac{\partial T}{\partial V}=\frac{P}{R}$, $\frac{\partial T}{\partial P}=\frac{V}{R}$.
- A rational function is partially diferentiable w.r.t
- One can easily compute partials in specific examples: For instance, if $T(P, V)=\frac{P V}{R}$, where R is a constant, then T is partially differentiable w.r.t P, V. Its partials are $\frac{\partial T}{\partial V}=\frac{P}{R}$, $\frac{\partial T}{\partial P}=\frac{V}{R}$.
- A rational function is partially diferentiable w.r.t all x_{i} wherever it makes sense.
- One can easily compute partials in specific examples: For instance, if $T(P, V)=\frac{P V}{R}$, where R is a constant, then T is partially differentiable w.r.t P, V. Its partials are $\frac{\partial T}{\partial V}=\frac{P}{R}$, $\frac{\partial T}{\partial P}=\frac{V}{R}$.
- A rational function is partially diferentiable w.r.t all x_{i} wherever it makes sense. In fact, it has directional derivatives
- One can easily compute partials in specific examples: For instance, if $T(P, V)=\frac{P V}{R}$, where R is a constant, then T is partially differentiable w.r.t P, V. Its partials are $\frac{\partial T}{\partial V}=\frac{P}{R}$, $\frac{\partial T}{\partial P}=\frac{V}{R}$.
- A rational function is partially diferentiable w.r.t all x_{i} wherever it makes sense. In fact, it has directional derivatives also in all directions
- One can easily compute partials in specific examples: For instance, if $T(P, V)=\frac{P V}{R}$, where R is a constant, then T is partially differentiable w.r.t P, V. Its partials are $\frac{\partial T}{\partial V}=\frac{P}{R}$, $\frac{\partial T}{\partial P}=\frac{V}{R}$.
- A rational function is partially diferentiable w.r.t all x_{i} wherever it makes sense. In fact, it has directional derivatives also in all directions wherever it makes sense.
- One can easily compute partials in specific examples: For instance, if $T(P, V)=\frac{P V}{R}$, where R is a constant, then T is partially differentiable w.r.t P, V. Its partials are $\frac{\partial T}{\partial V}=\frac{P}{R}$, $\frac{\partial T}{\partial P}=\frac{V}{R}$.
- A rational function is partially diferentiable w.r.t all x_{i} wherever it makes sense. In fact, it has directional derivatives also in all directions wherever it makes sense.
- If the partials w.r.t
- One can easily compute partials in specific examples: For instance, if $T(P, V)=\frac{P V}{R}$, where R is a constant, then T is partially differentiable w.r.t P, V. Its partials are $\frac{\partial T}{\partial V}=\frac{P}{R}$, $\frac{\partial T}{\partial P}=\frac{V}{R}$.
- A rational function is partially diferentiable w.r.t all x_{i} wherever it makes sense. In fact, it has directional derivatives also in all directions wherever it makes sense.
- If the partials w.r.t all coordinates exist
- One can easily compute partials in specific examples: For instance, if $T(P, V)=\frac{P V}{R}$, where R is a constant, then T is partially differentiable w.r.t P, V. Its partials are $\frac{\partial T}{\partial V}=\frac{P}{R}$, $\frac{\partial T}{\partial P}=\frac{V}{R}$.
- A rational function is partially diferentiable w.r.t all x_{i} wherever it makes sense. In fact, it has directional derivatives also in all directions wherever it makes sense.
- If the partials w.r.t all coordinates exist then we get a
- One can easily compute partials in specific examples: For instance, if $T(P, V)=\frac{P V}{R}$, where R is a constant, then T is partially differentiable w.r.t P, V. Its partials are $\frac{\partial T}{\partial V}=\frac{P}{R}$, $\frac{\partial T}{\partial P}=\frac{V}{R}$.
- A rational function is partially diferentiable w.r.t all x_{i} wherever it makes sense. In fact, it has directional derivatives also in all directions wherever it makes sense.
- If the partials w.r.t all coordinates exist then we get a vector-valued function
- One can easily compute partials in specific examples: For instance, if $T(P, V)=\frac{P V}{R}$, where R is a constant, then T is partially differentiable w.r.t P, V. Its partials are $\frac{\partial T}{\partial V}=\frac{P}{R}$, $\frac{\partial T}{\partial P}=\frac{V}{R}$.
- A rational function is partially diferentiable w.r.t all x_{i} wherever it makes sense. In fact, it has directional derivatives also in all directions wherever it makes sense.
- If the partials w.r.t all coordinates exist then we get a vector-valued function called the gradient of f :
- One can easily compute partials in specific examples: For instance, if $T(P, V)=\frac{P V}{R}$, where R is a constant, then T is partially differentiable w.r.t P, V. Its partials are $\frac{\partial T}{\partial V}=\frac{P}{R}$, $\frac{\partial T}{\partial P}=\frac{V}{R}$.
- A rational function is partially diferentiable w.r.t all x_{i} wherever it makes sense. In fact, it has directional derivatives also in all directions wherever it makes sense.
- If the partials w.r.t all coordinates exist then we get a vector-valued function called the gradient of f :
$\nabla f(x)=\left(f_{x_{1}}, f_{x_{2}}, \ldots\right)$.
- One can easily compute partials in specific examples: For instance, if $T(P, V)=\frac{P V}{R}$, where R is a constant, then T is partially differentiable w.r.t P, V. Its partials are $\frac{\partial T}{\partial V}=\frac{P}{R}$, $\frac{\partial T}{\partial P}=\frac{V}{R}$.
- A rational function is partially diferentiable w.r.t all x_{i} wherever it makes sense. In fact, it has directional derivatives also in all directions wherever it makes sense.
- If the partials w.r.t all coordinates exist then we get a vector-valued function called the gradient of f : $\nabla f(x)=\left(f_{x_{1}}, f_{x_{2}}, \ldots\right)$. One can further ask
- One can easily compute partials in specific examples: For instance, if $T(P, V)=\frac{P V}{R}$, where R is a constant, then T is partially differentiable w.r.t P, V. Its partials are $\frac{\partial T}{\partial V}=\frac{P}{R}$, $\frac{\partial T}{\partial P}=\frac{V}{R}$.
- A rational function is partially diferentiable w.r.t all x_{i} wherever it makes sense. In fact, it has directional derivatives also in all directions wherever it makes sense.
- If the partials w.r.t all coordinates exist then we get a vector-valued function called the gradient of f : $\nabla f(x)=\left(f_{x_{1}}, f_{x_{2}}, \ldots\right)$. One can further ask if each component of the gradient
- One can easily compute partials in specific examples: For instance, if $T(P, V)=\frac{P V}{R}$, where R is a constant, then T is partially differentiable w.r.t P, V. Its partials are $\frac{\partial T}{\partial V}=\frac{P}{R}$, $\frac{\partial T}{\partial P}=\frac{V}{R}$.
- A rational function is partially diferentiable w.r.t all x_{i} wherever it makes sense. In fact, it has directional derivatives also in all directions wherever it makes sense.
- If the partials w.r.t all coordinates exist then we get a vector-valued function called the gradient of f : $\nabla f(x)=\left(f_{x_{1}}, f_{x_{2}}, \ldots\right)$. One can further ask if each component of the gradient has partial derivatives.
- One can easily compute partials in specific examples: For instance, if $T(P, V)=\frac{P V}{R}$, where R is a constant, then T is partially differentiable w.r.t P, V. Its partials are $\frac{\partial T}{\partial V}=\frac{P}{R}$, $\frac{\partial T}{\partial P}=\frac{V}{R}$.
- A rational function is partially diferentiable w.r.t all x_{i} wherever it makes sense. In fact, it has directional derivatives also in all directions wherever it makes sense.
- If the partials w.r.t all coordinates exist then we get a vector-valued function called the gradient of f : $\nabla f(x)=\left(f_{x_{1}}, f_{x_{2}}, \ldots\right)$. One can further ask if each component of the gradient has partial derivatives. In this manner,
- One can easily compute partials in specific examples: For instance, if $T(P, V)=\frac{P V}{R}$, where R is a constant, then T is partially differentiable w.r.t P, V. Its partials are $\frac{\partial T}{\partial V}=\frac{P}{R}$, $\frac{\partial T}{\partial P}=\frac{V}{R}$.
- A rational function is partially diferentiable w.r.t all x_{i} wherever it makes sense. In fact, it has directional derivatives also in all directions wherever it makes sense.
- If the partials w.r.t all coordinates exist then we get a vector-valued function called the gradient of f : $\nabla f(x)=\left(f_{x_{1}}, f_{x_{2}}, \ldots\right)$. One can further ask if each component of the gradient has partial derivatives. In this manner, we get higher partial derivatives
- One can easily compute partials in specific examples: For instance, if $T(P, V)=\frac{P V}{R}$, where R is a constant, then T is partially differentiable w.r.t P, V. Its partials are $\frac{\partial T}{\partial V}=\frac{P}{R}$, $\frac{\partial T}{\partial P}=\frac{V}{R}$.
- A rational function is partially diferentiable w.r.t all x_{i} wherever it makes sense. In fact, it has directional derivatives also in all directions wherever it makes sense.
- If the partials w.r.t all coordinates exist then we get a vector-valued function called the gradient of f : $\nabla f(x)=\left(f_{x_{1}}, f_{x_{2}}, \ldots\right)$. One can further ask if each component of the gradient has partial derivatives. In this manner, we get higher partial derivatives like $f_{x y}=\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial}{\partial x} f_{y}$ and $f_{y x}=\frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial}{\partial y} f_{x}($
- One can easily compute partials in specific examples: For instance, if $T(P, V)=\frac{P V}{R}$, where R is a constant, then T is partially differentiable w.r.t P, V. Its partials are $\frac{\partial T}{\partial V}=\frac{P}{R}$, $\frac{\partial T}{\partial P}=\frac{V}{R}$.
- A rational function is partially diferentiable w.r.t all x_{i} wherever it makes sense. In fact, it has directional derivatives also in all directions wherever it makes sense.
- If the partials w.r.t all coordinates exist then we get a vector-valued function called the gradient of f : $\nabla f(x)=\left(f_{x_{1}}, f_{x_{2}}, \ldots\right)$. One can further ask if each component of the gradient has partial derivatives. In this manner, we get higher partial derivatives like $f_{x y}=\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial}{\partial x} f_{y}$ and $f_{y x}=\frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial}{\partial y} f_{x}$ (which may in fact
- One can easily compute partials in specific examples: For instance, if $T(P, V)=\frac{P V}{R}$, where R is a constant, then T is partially differentiable w.r.t P, V. Its partials are $\frac{\partial T}{\partial V}=\frac{P}{R}$, $\frac{\partial T}{\partial P}=\frac{V}{R}$.
- A rational function is partially diferentiable w.r.t all x_{i} wherever it makes sense. In fact, it has directional derivatives also in all directions wherever it makes sense.
- If the partials w.r.t all coordinates exist then we get a vector-valued function called the gradient of f : $\nabla f(x)=\left(f_{x_{1}}, f_{x_{2}}, \ldots\right)$. One can further ask if each component of the gradient has partial derivatives. In this manner, we get higher partial derivatives like $f_{x y}=\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial}{\partial x} f_{y}$ and $f_{y x}=\frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial}{\partial y} f_{x}$ (which may in fact be different from each other!).
- One can easily compute partials in specific examples: For instance, if $T(P, V)=\frac{P V}{R}$, where R is a constant, then T is partially differentiable w.r.t P, V. Its partials are $\frac{\partial T}{\partial V}=\frac{P}{R}$, $\frac{\partial T}{\partial P}=\frac{V}{R}$.
- A rational function is partially diferentiable w.r.t all x_{i} wherever it makes sense. In fact, it has directional derivatives also in all directions wherever it makes sense.
- If the partials w.r.t all coordinates exist then we get a vector-valued function called the gradient of f : $\nabla f(x)=\left(f_{x_{1}}, f_{x_{2}}, \ldots\right)$. One can further ask if each component of the gradient has partial derivatives. In this manner, we get higher partial derivatives like $f_{x y}=\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial}{\partial x} f_{y}$ and $f_{y x}=\frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial}{\partial y} f_{x}$ (which may in fact be different from each other!). In the above example,
- One can easily compute partials in specific examples: For instance, if $T(P, V)=\frac{P V}{R}$, where R is a constant, then T is partially differentiable w.r.t P, V. Its partials are $\frac{\partial T}{\partial V}=\frac{P}{R}$, $\frac{\partial T}{\partial P}=\frac{V}{R}$.
- A rational function is partially diferentiable w.r.t all x_{i} wherever it makes sense. In fact, it has directional derivatives also in all directions wherever it makes sense.
- If the partials w.r.t all coordinates exist then we get a vector-valued function called the gradient of f : $\nabla f(x)=\left(f_{x_{1}}, f_{x_{2}}, \ldots\right)$. One can further ask if each component of the gradient has partial derivatives. In this manner, we get higher partial derivatives like $f_{x y}=\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial}{\partial x} f_{y}$ and $f_{y x}=\frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial}{\partial y} f_{x}$ (which may in fact be different from each other!). In the above example, $\frac{\partial^{2} T}{\partial P^{2}}=0=\frac{\partial^{2} T}{\partial V^{2}}$,
- One can easily compute partials in specific examples: For instance, if $T(P, V)=\frac{P V}{R}$, where R is a constant, then T is partially differentiable w.r.t P, V. Its partials are $\frac{\partial T}{\partial V}=\frac{P}{R}$, $\frac{\partial T}{\partial P}=\frac{V}{R}$.
- A rational function is partially diferentiable w.r.t all x_{i} wherever it makes sense. In fact, it has directional derivatives also in all directions wherever it makes sense.
- If the partials w.r.t all coordinates exist then we get a vector-valued function called the gradient of f : $\nabla f(x)=\left(f_{x_{1}}, f_{x_{2}}, \ldots\right)$. One can further ask if each component of the gradient has partial derivatives. In this manner, we get higher partial derivatives like $f_{x y}=\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial}{\partial x} f_{y}$ and $f_{y x}=\frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial}{\partial y} f_{x}$ (which may in fact be different from each other!). In the above example, $\frac{\partial^{2} T}{\partial P^{2}}=0=\frac{\partial^{2} T}{\partial V^{2}}$, and $\frac{\partial^{2} T}{\partial P \partial V}=\frac{\partial^{2} T}{\partial V \partial P}=\frac{1}{R}$.

Directional derivatives and continuity

Directional derivatives and continuity

- In one-variable calculus,

Directional derivatives and continuity

- In one-variable calculus, differentiability at a point

Directional derivatives and continuity

- In one-variable calculus, differentiability at a point implied continuity

Directional derivatives and continuity

- In one-variable calculus, differentiability at a point implied continuity at that point.

Directional derivatives and continuity

- In one-variable calculus, differentiability at a point implied continuity at that point. The way it works

Directional derivatives and continuity

- In one-variable calculus, differentiability at a point implied continuity at that point. The way it works is as follows:

Directional derivatives and continuity

- In one-variable calculus, differentiability at a point implied continuity at that point. The way it works is as follows:
- $|f(x+h)-f(x)|=\left|\frac{f(x+h)-f(x)}{h} \| h\right|$.

Directional derivatives and continuity

- In one-variable calculus, differentiability at a point implied continuity at that point. The way it works is as follows:
- $|f(x+h)-f(x)|=\left|\frac{f(x+h)-f(x)}{h} \| h\right|$. Now the definition of

Directional derivatives and continuity

- In one-variable calculus, differentiability at a point implied continuity at that point. The way it works is as follows:
- $|f(x+h)-f(x)|=\left|\frac{f(x+h)-f(x)}{h} \| h\right|$. Now the definition of differentiability implies that

Directional derivatives and continuity

- In one-variable calculus, differentiability at a point implied continuity at that point. The way it works is as follows:
- $|f(x+h)-f(x)|=\left|\frac{f(x+h)-f(x)}{h} \| h\right|$. Now the definition of differentiability implies that there exists a δ so that

Directional derivatives and continuity

- In one-variable calculus, differentiability at a point implied continuity at that point. The way it works is as follows:
- $|f(x+h)-f(x)|=\left|\frac{f(x+h)-f(x)}{h} \| h\right|$. Now the definition of differentiability implies that there exists a δ so that whenever $0<|h|<\delta$,

Directional derivatives and continuity

- In one-variable calculus, differentiability at a point implied continuity at that point. The way it works is as follows:
- $|f(x+h)-f(x)|=\left|\frac{f(x+h)-f(x)}{h} \| h\right|$. Now the definition of differentiability implies that there exists a δ so that whenever $0<|h|<\delta,\left|\frac{f(x+h)-f(x)}{h}\right|<\left|f^{\prime}(x)\right|+1$.

Directional derivatives and continuity

- In one-variable calculus, differentiability at a point implied continuity at that point. The way it works is as follows:
- $|f(x+h)-f(x)|=\left|\frac{f(x+h)-f(x)}{h} \| h\right|$. Now the definition of differentiability implies that there exists a δ so that whenever $0<|h|<\delta,\left|\frac{f(x+h)-f(x)}{h}\right|<\left|f^{\prime}(x)\right|+1$. Choose δ to be possibly smaller

Directional derivatives and continuity

- In one-variable calculus, differentiability at a point implied continuity at that point. The way it works is as follows:
- $|f(x+h)-f(x)|=\left|\frac{f(x+h)-f(x)}{h} \| h\right|$. Now the definition of differentiability implies that there exists a δ so that whenever $0<|h|<\delta,\left|\frac{f(x+h)-f(x)}{h}\right|<\left|f^{\prime}(x)\right|+1$. Choose δ to be possibly smaller so that $\left|\frac{f(x+h)-f(x)}{h}\right||h|<\epsilon$.

Directional derivatives and continuity

- In one-variable calculus, differentiability at a point implied continuity at that point. The way it works is as follows:
- $|f(x+h)-f(x)|=\left|\frac{f(x+h)-f(x)}{h} \| h\right|$. Now the definition of differentiability implies that there exists a δ so that whenever $0<|h|<\delta,\left|\frac{f(x+h)-f(x)}{h}\right|<\left|f^{\prime}(x)\right|+1$. Choose δ to be possibly smaller so that $\left|\frac{f(x+h)-f(x)}{h}\right||h|<\epsilon$. We are done.

Directional derivatives and continuity

- In one-variable calculus, differentiability at a point implied continuity at that point. The way it works is as follows:
- $|f(x+h)-f(x)|=\left|\frac{f(x+h)-f(x)}{h} \| h\right|$. Now the definition of differentiability implies that there exists a δ so that whenever $0<|h|<\delta,\left|\frac{f(x+h)-f(x)}{h}\right|<\left|f^{\prime}(x)\right|+1$. Choose δ to be possibly smaller so that $\left|\frac{f(x+h)-f(x)}{h} \| h\right|<\epsilon$. We are done.
- Naively,

Directional derivatives and continuity

- In one-variable calculus, differentiability at a point implied continuity at that point. The way it works is as follows:
- $|f(x+h)-f(x)|=\left|\frac{f(x+h)-f(x)}{h} \| h\right|$. Now the definition of differentiability implies that there exists a δ so that whenever $0<|h|<\delta,\left|\frac{f(x+h)-f(x)}{h}\right|<\left|f^{\prime}(x)\right|+1$. Choose δ to be possibly smaller so that $\left|\frac{f(x+h)-f(x)}{h} \| h\right|<\epsilon$. We are done.
- Naively, we would expect that

Directional derivatives and continuity

- In one-variable calculus, differentiability at a point implied continuity at that point. The way it works is as follows:
- $|f(x+h)-f(x)|=\left|\frac{f(x+h)-f(x)}{h} \| h\right|$. Now the definition of differentiability implies that there exists a δ so that whenever $0<|h|<\delta,\left|\frac{f(x+h)-f(x)}{h}\right|<\left|f^{\prime}(x)\right|+1$. Choose δ to be possibly smaller so that $\left|\frac{f(x+h)-f(x)}{h}\right||h|<\epsilon$. We are done.
- Naively, we would expect that if f is differentiable w.r.t

Directional derivatives and continuity

- In one-variable calculus, differentiability at a point implied continuity at that point. The way it works is as follows:
- $|f(x+h)-f(x)|=\left|\frac{f(x+h)-f(x)}{h} \| h\right|$. Now the definition of differentiability implies that there exists a δ so that whenever $0<|h|<\delta,\left|\frac{f(x+h)-f(x)}{h}\right|<\left|f^{\prime}(x)\right|+1$. Choose δ to be possibly smaller so that $\left|\frac{f(x+h)-f(x)}{h}\right||h|<\epsilon$. We are done.
- Naively, we would expect that if f is differentiable w.r.t all \vec{v} at \vec{a},

Directional derivatives and continuity

- In one-variable calculus, differentiability at a point implied continuity at that point. The way it works is as follows:
- $|f(x+h)-f(x)|=\left|\frac{f(x+h)-f(x)}{h} \| h\right|$. Now the definition of differentiability implies that there exists a δ so that whenever $0<|h|<\delta,\left|\frac{f(x+h)-f(x)}{h}\right|<\left|f^{\prime}(x)\right|+1$. Choose δ to be possibly smaller so that $\left|\frac{f(x+h)-f(x)}{h}\right||h|<\epsilon$. We are done.
- Naively, we would expect that if f is differentiable w.r.t all \vec{v} at \vec{a}, then since the limit $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}$ exists

Directional derivatives and continuity

- In one-variable calculus, differentiability at a point implied continuity at that point. The way it works is as follows:
- $|f(x+h)-f(x)|=\left|\frac{f(x+h)-f(x)}{h} \| h\right|$. Now the definition of differentiability implies that there exists a δ so that whenever $0<|h|<\delta,\left|\frac{f(x+h)-f(x)}{h}\right|<\left|f^{\prime}(x)\right|+1$. Choose δ to be possibly smaller so that $\left|\frac{f(x+h)-f(x)}{h}\right||h|<\epsilon$. We are done.
- Naively, we would expect that if f is differentiable w.r.t all \vec{v} at \vec{a}, then since the limit $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}$ exists as $h \rightarrow 0$,

Directional derivatives and continuity

- In one-variable calculus, differentiability at a point implied continuity at that point. The way it works is as follows:
- $|f(x+h)-f(x)|=\left|\frac{f(x+h)-f(x)}{h} \| h\right|$. Now the definition of differentiability implies that there exists a δ so that whenever $0<|h|<\delta,\left|\frac{f(x+h)-f(x)}{h}\right|<\left|f^{\prime}(x)\right|+1$. Choose δ to be possibly smaller so that $\left|\frac{f(x+h)-f(x)}{h}\right||h|<\epsilon$. We are done.
- Naively, we would expect that if f is differentiable w.r.t all \vec{v} at \vec{a}, then since the limit $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}$ exists as $h \rightarrow 0$, we might be able

Directional derivatives and continuity

- In one-variable calculus, differentiability at a point implied continuity at that point. The way it works is as follows:
- $|f(x+h)-f(x)|=\left|\frac{f(x+h)-f(x)}{h} \| h\right|$. Now the definition of differentiability implies that there exists a δ so that whenever $0<|h|<\delta,\left|\frac{f(x+h)-f(x)}{h}\right|<\left|f^{\prime}(x)\right|+1$. Choose δ to be possibly smaller so that $\left|\frac{f(x+h)-f(x)}{h}\right||h|<\epsilon$. We are done.
- Naively, we would expect that if f is differentiable w.r.t all \vec{v} at \vec{a}, then since the limit $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}$ exists as $h \rightarrow 0$, we might be able to conclude that the numerator

Directional derivatives and continuity

- In one-variable calculus, differentiability at a point implied continuity at that point. The way it works is as follows:
- $|f(x+h)-f(x)|=\left|\frac{f(x+h)-f(x)}{h} \| h\right|$. Now the definition of differentiability implies that there exists a δ so that whenever $0<|h|<\delta,\left|\frac{f(x+h)-f(x)}{h}\right|<\left|f^{\prime}(x)\right|+1$. Choose δ to be possibly smaller so that $\left|\frac{f(x+h)-f(x)}{h}\right||h|<\epsilon$. We are done.
- Naively, we would expect that if f is differentiable w.r.t all \vec{v} at \vec{a}, then since the limit $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}$ exists as $h \rightarrow 0$, we might be able to conclude that the numerator goes to 0 and

Directional derivatives and continuity

- In one-variable calculus, differentiability at a point implied continuity at that point. The way it works is as follows:
- $|f(x+h)-f(x)|=\left|\frac{f(x+h)-f(x)}{h} \| h\right|$. Now the definition of differentiability implies that there exists a δ so that whenever $0<|h|<\delta,\left|\frac{f(x+h)-f(x)}{h}\right|<\left|f^{\prime}(x)\right|+1$. Choose δ to be possibly smaller so that $\left|\frac{f(x+h)-f(x)}{h}\right||h|<\epsilon$. We are done.
- Naively, we would expect that if f is differentiable w.r.t all \vec{v} at \vec{a}, then since the limit $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}$ exists as $h \rightarrow 0$, we might be able to conclude that the numerator goes to 0 and hence f is continuous.

Directional derivatives and continuity

- In one-variable calculus, differentiability at a point implied continuity at that point. The way it works is as follows:
- $|f(x+h)-f(x)|=\left|\frac{f(x+h)-f(x)}{h}\right||h|$. Now the definition of differentiability implies that there exists a δ so that whenever $0<|h|<\delta,\left|\frac{f(x+h)-f(x)}{h}\right|<\left|f^{\prime}(x)\right|+1$. Choose δ to be possibly smaller so that $\left|\frac{f(x+h)-f(x)}{h}\right||h|<\epsilon$. We are done.
- Naively, we would expect that if f is differentiable w.r.t all \vec{v} at \vec{a}, then since the limit $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}$ exists as $h \rightarrow 0$, we might be able to conclude that the numerator goes to 0 and hence f is continuous.
- The problem is with

Directional derivatives and continuity

- In one-variable calculus, differentiability at a point implied continuity at that point. The way it works is as follows:
- $|f(x+h)-f(x)|=\left|\frac{f(x+h)-f(x)}{h}\right||h|$. Now the definition of differentiability implies that there exists a δ so that whenever $0<|h|<\delta,\left|\frac{f(x+h)-f(x)}{h}\right|<\left|f^{\prime}(x)\right|+1$. Choose δ to be possibly smaller so that $\left|\frac{f(x+h)-f(x)}{h}\right||h|<\epsilon$. We are done.
- Naively, we would expect that if f is differentiable w.r.t all \vec{v} at \vec{a}, then since the limit $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}$ exists as $h \rightarrow 0$, we might be able to conclude that the numerator goes to 0 and hence f is continuous.
- The problem is with the "hence" part.

Directional derivatives and continuity

- In one-variable calculus, differentiability at a point implied continuity at that point. The way it works is as follows:
- $|f(x+h)-f(x)|=\left|\frac{f(x+h)-f(x)}{h}\right||h|$. Now the definition of differentiability implies that there exists a δ so that whenever $0<|h|<\delta,\left|\frac{f(x+h)-f(x)}{h}\right|<\left|f^{\prime}(x)\right|+1$. Choose δ to be possibly smaller so that $\left|\frac{f(x+h)-f(x)}{h}\right||h|<\epsilon$. We are done.
- Naively, we would expect that if f is differentiable w.r.t all \vec{v} at \vec{a}, then since the limit $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}$ exists as $h \rightarrow 0$, we might be able to conclude that the numerator goes to 0 and hence f is continuous.
- The problem is with the "hence" part. It isn't true that

Directional derivatives and continuity

- In one-variable calculus, differentiability at a point implied continuity at that point. The way it works is as follows:
- $|f(x+h)-f(x)|=\left|\frac{f(x+h)-f(x)}{h} \| h\right|$. Now the definition of differentiability implies that there exists a δ so that whenever $0<|h|<\delta,\left|\frac{f(x+h)-f(x)}{h}\right|<\left|f^{\prime}(x)\right|+1$. Choose δ to be possibly smaller so that $\left|\frac{f(x+h)-f(x)}{h}\right||h|<\epsilon$. We are done.
- Naively, we would expect that if f is differentiable w.r.t all \vec{v} at \vec{a}, then since the limit $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}$ exists as $h \rightarrow 0$, we might be able to conclude that the numerator goes to 0 and hence f is continuous.
- The problem is with the "hence" part. It isn't true that just because the limit

Directional derivatives and continuity

- In one-variable calculus, differentiability at a point implied continuity at that point. The way it works is as follows:
- $|f(x+h)-f(x)|=\left|\frac{f(x+h)-f(x)}{h} \| h\right|$. Now the definition of differentiability implies that there exists a δ so that whenever $0<|h|<\delta,\left|\frac{f(x+h)-f(x)}{h}\right|<\left|f^{\prime}(x)\right|+1$. Choose δ to be possibly smaller so that $\left|\frac{f(x+h)-f(x)}{h}\right||h|<\epsilon$. We are done.
- Naively, we would expect that if f is differentiable w.r.t all \vec{v} at \vec{a}, then since the limit $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}$ exists as $h \rightarrow 0$, we might be able to conclude that the numerator goes to 0 and hence f is continuous.
- The problem is with the "hence" part. It isn't true that just because the limit exists along all lines

Directional derivatives and continuity

- In one-variable calculus, differentiability at a point implied continuity at that point. The way it works is as follows:
- $|f(x+h)-f(x)|=\left|\frac{f(x+h)-f(x)}{h} \| h\right|$. Now the definition of differentiability implies that there exists a δ so that whenever $0<|h|<\delta,\left|\frac{f(x+h)-f(x)}{h}\right|<\left|f^{\prime}(x)\right|+1$. Choose δ to be possibly smaller so that $\left|\frac{f(x+h)-f(x)}{h}\right||h|<\epsilon$. We are done.
- Naively, we would expect that if f is differentiable w.r.t all \vec{v} at \vec{a}, then since the limit $\frac{f(\vec{a}+h \vec{v})-f(\vec{a})}{h}$ exists as $h \rightarrow 0$, we might be able to conclude that the numerator goes to 0 and hence f is continuous.
- The problem is with the "hence" part. It isn't true that just because the limit exists along all lines it exists in the multivariable sense.

