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Recap

Limit and continuity laws (including composition).

Motivated the consideration of interior points for talking of
derivatives.
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Derivatives of scalar fields w.r.t vectors

Def: Given a scalar field f : U ⊂ Rn → R, an interior point
~a ∈ U, and a vector ~v ∈ Rn, f is said to differentiable along ~v
if limh→0

f (~a+h~v)−f (~a)
h exists. This number is denoted as ∇~v f .

If ‖~v‖ = 1, this number is called the directional derivative
along the direction ~v .
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Examples

If ~v = 0, then ∇~v f (~a) = 0. Indeed, this follows easily from
the definition.

Suppose f is linear, then f (~a+h~v)−f (~a)
h = f (~v) for all h and

hence f is differentiable along all vectors with ∇~v f (~a) = f (~v).

The above derivative can also be thought of as a one-variable
derivative. Indeed, let g(t) = f (~a + t~v). Then
f (~a+h~v)−f (~a)

h = g(h)−g(0)
h . Thus g is differentiable at 0 if and

only if ∇~v f (~a) exists and equals g ′(0).

Moreover, ∇s~v f (~a) exists whenever ∇~v f (~a) does and equals
s∇~v f (~a): Indeed, let h(t) = f (~a + t~v) and
g(t) = h(st) = f (~a + ts~v). Then by the chain rule g ′(0)
exists and equals sh′(0) = s∇~v f (~a).

If f (~x) = ‖~x‖2, compute ∇~v f (~a):
g(t) = ‖~a‖2 + t2‖~v‖2 + 2t〈~a, ~v〉. Thus g ′(0) = 2〈~a, ~v〉.
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Mean value theorem, partial derivatives

Assume that ∇~v f (~a + t~v) exists for all 0 ≤ t ≤ 1.

Theorem: Then there exists a real number θ ∈ (0, 1) such
that f (~a + ~v)− f (~a) = ∇~v f (a + θ~v).

Proof: Let g(t) = f (~a + t~v). Then applying the 1-dim MVT
to g , we see that g(1)− g(0) = g ′(θ). Thus we are done.

As a consequence, if f is defined on all of Rn, and
∇~v f (~a) = 0 for all ~v and ~a, then f is a constant. Indeed, if
not, i.e., if f (~a) 6= f (~a + ~v), then 0 6= g(1)− g(0) = 0 which
is a contradiction.
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Partial derivatives

Def:When ~v = ei , ∇~v f (~a) if it exists is called the partial
derivative ∂f

∂xi
(~a) or fxi (~a) w.r.t xi and f is said to be partially

differentiable w.r.t xi .

Spoiler alert: All known laws of nature are Partial Differential
Equations (PDE) for something or the other (not necessarily
for scalar fields).

In effect, a partial derivative is simply the usual derivative
w.r.t one variable whilst keeping the others fixed (Why?).

A polynomial has directional derivatives in all directions at all
points because g(t) is a polynomial and hence differentiable.

More generally, fi (xi ) are differentiable, then a sum of terms
of the form f1(x1)f2(x2) . . . has directional derivatives in all
directions.
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Partial derivatives

One can easily compute partials in specific examples: For
instance, if T (P,V ) = PV

R , where R is a constant, then T is

partially differentiable w.r.t P,V . Its partials are ∂T
∂V = P

R ,
∂T
∂P = V

R .

A rational function is partially diferentiable w.r.t all xi
wherever it makes sense. In fact, it has directional derivatives
also in all directions wherever it makes sense.

If the partials w.r.t all coordinates exist then we get a
vector-valued function called the gradient of f :
∇f (x) = (fx1 , fx2 , . . .). One can further ask if each component
of the gradient has partial derivatives. In this manner, we get
higher partial derivatives like fxy = ∂2f

∂x∂y = ∂
∂x fy and

fyx = ∂2f
∂y∂x = ∂

∂y fx (which may in fact be different from each

other!). In the above example, ∂2T
∂P2 = 0 = ∂2T

∂V 2 , and
∂2T
∂P∂V = ∂2T

∂V∂P = 1
R .
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Directional derivatives and continuity

In one-variable calculus, differentiability at a point implied
continuity at that point. The way it works is as follows:

|f (x + h)− f (x)| = | f (x+h)−f (x)
h ||h|. Now the definition of

differentiability implies that there exists a δ so that whenever
0 < |h| < δ, | f (x+h)−f (x)

h | < |f ′(x)|+ 1. Choose δ to be

possibly smaller so that | f (x+h)−f (x)
h ||h| < ε. We are done.

Naively, we would expect that if f is differentiable w.r.t all ~v
at ~a, then since the limit f (~a+h~v)−f (~a)

h exists as h→ 0, we
might be able to conclude that the numerator goes to 0 and
hence f is continuous.

The problem is with the “hence” part. It isn’t true that just
because the limit exists along all lines it exists in the
multivariable sense.
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