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@ Limit and continuity laws (including composition).

@ Motivated the consideration of interior points
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@ Limit and continuity laws (including composition).

@ Motivated the consideration of interior points for talking of
derivatives.
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Derivatives of scalar fields w.r.t vectors
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@ Def:
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Derivatives of scalar fields w.r.t vectors

@ Def: Given a scalar field f : U C R" — R,
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Derivatives of scalar fields w.r.t vectors

@ Def: Given a scalar field f : U C R" — R, an interior point
ge U,
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Derivatives of scalar fields w.r.t vectors

@ Def: Given a scalar field f : U C R" — R, an interior point
a e U, and a vector v € R",
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Derivatives of scalar fields w.r.t vectors

@ Def: Given a scalar field f : U C R" — R, an interior point
g€ U, and a vector v € R", f is said to
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Derivatives of scalar fields w.r.t vectors

@ Def: Given a scalar field f : U C R" — R, an interior point

ae€ U, and a vector vV € R", f is said to differentiable along v
if
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Derivatives of scalar fields w.r.t vectors

@ Def: Given a scalar field f : U C R" — R, an interior point
ae€ U, and a vector vV € R", f is said to differentiable along v

if limp_0 w exists.

Vamsi Pritham Pingali Lecture 23 3/8



Derivatives of scalar fields w.r.t vectors

@ Def: Given a scalar field f : U C R" — R, an interior point
ae€ U, and a vector vV € R", f is said to differentiable along v

if limp_0 w exists. This number is
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Derivatives of scalar fields w.r.t vectors

@ Def: Given a scalar field f : U C R" — R, an interior point
ae€ U, and a vector vV € R", f is said to differentiable along v

if limp_o w exists. This number is denoted as Vf.
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Derivatives of scalar fields w.r.t vectors

@ Def: Given a scalar field f : U C R" — R, an interior point
ae€ U, and a vector vV € R", f is said to differentiable along v

if limp_o w exists. This number is denoted as Vf.

o If V] =1,
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Derivatives of scalar fields w.r.t vectors

@ Def: Given a scalar field f : U C R" — R, an interior point

ae€ U, and a vector vV € R", f is said to differentiable along v

if limp_o w exists. This number is denoted as Vf.

o If [|V]| = 1, this number is called
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Derivatives of scalar fields w.r.t vectors

@ Def: Given a scalar field f : U C R" — R, an interior point

ae€ U, and a vector vV € R", f is said to differentiable along v

if limp_o w exists. This number is denoted as Vf.

e If ||V]] =1, this number is called the directional derivative
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Derivatives of scalar fields w.r.t vectors

@ Def: Given a scalar field f : U C R" — R, an interior point
ae€ U, and a vector vV € R", f is said to differentiable along v

if limp_o w exists. This number is denoted as Vf.

e If ||V]] =1, this number is called the directional derivative
along the direction V.
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o If v=0,
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o If V=0, then V;f(a) = 0.
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o If V=0, then V;f(a) = 0. Indeed, this follows
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o If V=0, then V;f(a) = 0. Indeed, this follows easily from
the definition.
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o If V=0, then V;f(a) = 0. Indeed, this follows easily from
the definition.

@ Suppose f is linear,
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o If V=0, then V;f(a) = 0. Indeed, this follows easily from
the definition.

@ Suppose f is linear, then w = f(V) for all h
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o If V=0, then V;f(a) = 0. Indeed, this follows easily from
the definition.

@ Suppose f is linear, then w = f(V) for all h and
hence f
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o If V=0, then V;f(a) = 0. Indeed, this follows easily from
the definition.

@ Suppose f is linear, then w = f(V) for all h and
hence f is differentiable along all vectors
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o If V=0, then V;f(a) = 0. Indeed, this follows easily from
the definition.

@ Suppose f is linear, then w = f(V) for all h and
hence f is differentiable along all vectors with V;f(3) = f(V).
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o If V=0, then V;f(a) = 0. Indeed, this follows easily from
the definition.

@ Suppose f is linear, then w = f(V) for all h and
hence f is differentiable along all vectors with V;f(3) = f(V).

@ The above derivative
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o If V=0, then V;f(a) = 0. Indeed, this follows easily from
the definition.

@ Suppose f is linear, then w = f(V) for all h and
hence f is differentiable along all vectors with V;f(3) = f(V).

@ The above derivative can also be thought of
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o If V=0, then V;f(a) = 0. Indeed, this follows easily from
the definition.

@ Suppose f is linear, then w = f(V) for all h and
hence f is differentiable along all vectors with V;f(3) = f(V).

@ The above derivative can also be thought of as a one-variable
derivative.
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o If V=0, then V;f(a) = 0. Indeed, this follows easily from
the definition.

@ Suppose f is linear, then w = f(V) for all h and
hence f is differentiable along all vectors with V;f(3) = f(V).

@ The above derivative can also be thought of as a one-variable
derivative. Indeed, let g(t) = f(a+ tv).
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o If V=0, then V;f(a) = 0. Indeed, this follows easily from
the definition.

@ Suppose f is linear, then w = f(V) for all h and
hence f is differentiable along all vectors with V;f(3) = f(V).

@ The above derivative can also be thought of as a one-variable

derivative. Indeed, let g(t) = f(a+ tV). Then
f(5+h\f7)—f(3) — g(h);g(o)_
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o If V=0, then V;f(a) = 0. Indeed, this follows easily from
the definition.

@ Suppose f is linear, then w = f(V) for all h and
hence f is differentiable along all vectors with V;f(3) = f(V).

@ The above derivative can also be thought of as a one-variable
derivative. Indeed, let g(t) = f(a+ tV). Then
f(a+h‘;7)_f(3) = g(h);g(o). Thus g is differentiable at 0
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o If V=0, then V;f(a) = 0. Indeed, this follows easily from
the definition.

@ Suppose f is linear, then w = f(V) for all h and
hence f is differentiable along all vectors with V;f(3) = f(V).

@ The above derivative can also be thought of as a one-variable
derivative. Indeed, let g(t) = f(a+ tV). Then
f(a+h‘;7)_f(3) = g(h);g(o). Thus g is differentiable at 0 if and
only if
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o If V=0, then V;f(a) = 0. Indeed, this follows easily from
the definition.

@ Suppose f is linear, then w = f(V) for all h and
hence f is differentiable along all vectors with V;f(3) = f(V).

@ The above derivative can also be thought of as a one-variable
derivative. Indeed, let g(t) = f(a+ tV). Then
f(a+h‘;7)_f(3) = g(h);g(o). Thus g is differentiable at 0 if and
only if Vf(3) exists and equals g’(0).
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o If V=0, then V;f(a) = 0. Indeed, this follows easily from
the definition.

@ Suppose f is linear, then w = f(V) for all h and
hence f is differentiable along all vectors with V;f(3) = f(V).

@ The above derivative can also be thought of as a one-variable
derivative. Indeed, let g(t) = f(a+ tV). Then
f(a+h‘;7)_f(3) = g(h);g(o). Thus g is differentiable at 0 if and
only if Vf(3) exists and equals g’(0).

@ Moreover, V;f(3) exists whenever
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o If V=0, then V;f(a) = 0. Indeed, this follows easily from
the definition.

@ Suppose f is linear, then w = f(V) for all h and
hence f is differentiable along all vectors with V;f(3) = f(V).

@ The above derivative can also be thought of as a one-variable
derivative. Indeed, let g(t) = f(a+ tV). Then
f(a+h‘;7)_f(3) = g(h);g(o). Thus g is differentiable at 0 if and
only if Vf(3) exists and equals g’(0).

@ Moreover, V;f(a) exists whenever V;f(a) does
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o If V=0, then V;f(a) = 0. Indeed, this follows easily from
the definition.

@ Suppose f is linear, then w = f(V) for all h and
hence f is differentiable along all vectors with V;f(3) = f(V).

@ The above derivative can also be thought of as a one-variable
derivative. Indeed, let g(t) = f(a+ tV). Then
f(a+h‘;7)_f(5) = g(h);g(o). Thus g is differentiable at 0 if and
only if Vf(3) exists and equals g’(0).

@ Moreover, V;f(3) exists whenever V;f(3) does and equals
sVyf(a):
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o If V=0, then V;f(a) = 0. Indeed, this follows easily from
the definition.

@ Suppose f is linear, then w = f(V) for all h and
hence f is differentiable along all vectors with V;f(3) = f(V).

@ The above derivative can also be thought of as a one-variable
derivative. Indeed, let g(t) = f(a+ tV). Then
f(a+h‘;7)_f(5) = g(h);g(o). Thus g is differentiable at 0 if and
only if Vf(3) exists and equals g’(0).

@ Moreover, V;f(3) exists whenever V;f(3) does and equals
sVyf(3): Indeed, let h(t) = f(3+ tV) and
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o If V=0, then V;f(a) = 0. Indeed, this follows easily from
the definition.

@ Suppose f is linear, then w = f(V) for all h and
hence f is differentiable along all vectors with V;f(3) = f(V).

@ The above derivative can also be thought of as a one-variable
derivative. Indeed, let g(t) = f(a+ tV). Then
f(a+h‘;7)_f(5) = g(h);g(o). Thus g is differentiable at 0 if and
only if Vf(3) exists and equals g’(0).

@ Moreover, V;f(3) exists whenever V;f(3) does and equals
sVyf(3): Indeed, let h(t) = f(3+ tV) and
g(t) = h(st) = (3 + tsv).
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o If V=0, then V;f(a) = 0. Indeed, this follows easily from
the definition.

@ Suppose f is linear, then w = f(V) for all h and
hence f is differentiable along all vectors with V;f(3) = f(V).

@ The above derivative can also be thought of as a one-variable
derivative. Indeed, let g(t) = f(a+ tV). Then
f(a+h‘;7)_f(5) = g(h);g(o). Thus g is differentiable at 0 if and
only if Vf(3) exists and equals g’(0).

@ Moreover, V;f(3) exists whenever V;f(3) does and equals
sVyf(3): Indeed, let h(t) = f(3+ tV) and
g(t) = h(st) = f(a+ tsv). Then by the chain rule
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o If V=0, then V;f(a) = 0. Indeed, this follows easily from
the definition.

@ Suppose f is linear, then w = f(V) for all h and
hence f is differentiable along all vectors with V;f(3) = f(V).

@ The above derivative can also be thought of as a one-variable
derivative. Indeed, let g(t) = f(a+ tV). Then
f(a+h‘;7)_f(5) = g(h);g(o). Thus g is differentiable at 0 if and
only if Vf(3) exists and equals g’(0).

@ Moreover, V;f(3) exists whenever V;f(3) does and equals
sVyf(3): Indeed, let h(t) = f(3+ tV) and
g(t) = h(st) = f(a+ tsV). Then by the chain rule g’(0)
exists and equals
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o If V=0, then V;f(a) = 0. Indeed, this follows easily from
the definition.

@ Suppose f is linear, then w = f(V) for all h and
hence f is differentiable along all vectors with V;f(3) = f(V).

@ The above derivative can also be thought of as a one-variable
derivative. Indeed, let g(t) = f(a+ tV). Then
f(a+h‘;7)_f(5) = g(h);g(o). Thus g is differentiable at 0 if and
only if Vf(3) exists and equals g’(0).

@ Moreover, V;f(3) exists whenever V;f(3) does and equals
sVyf(3): Indeed, let h(t) = f(3+ tV) and
g(t) = h(st) = f(a+ tsV). Then by the chain rule g’(0)
exists and equals sh’(0) = sV £ (3).
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o If V=0, then V;f(a) = 0. Indeed, this follows easily from
the definition.

@ Suppose f is linear, then w = f(V) for all h and
hence f is differentiable along all vectors with V;f(3) = f(V).

@ The above derivative can also be thought of as a one-variable
derivative. Indeed, let g(t) = f(a+ tV). Then
f(a+h‘;7)_f(5) = g(h);g(o). Thus g is differentiable at 0 if and
only if Vf(3) exists and equals g’(0).

@ Moreover, V;f(3) exists whenever V;f(3) does and equals
sVyf(3): Indeed, let h(t) = f(3+ tV) and
g(t) = h(st) = f(a+ tsV). Then by the chain rule g’(0)
exists and equals sh’(0) = sV £ (3).

o If £(3) = |77,
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o If V=0, then V;f(a) = 0. Indeed, this follows easily from
the definition.

@ Suppose f is linear, then w = f(V) for all h and
hence f is differentiable along all vectors with V;f(3) = f(V).

@ The above derivative can also be thought of as a one-variable
derivative. Indeed, let g(t) = f(a+ tV). Then
f(a+h‘;7)_f(5) = g(h);g(o). Thus g is differentiable at 0 if and
only if Vf(3) exists and equals g’(0).

@ Moreover, V;f(3) exists whenever V;f(3) does and equals
sVyf(3): Indeed, let h(t) = f(3+ tV) and
g(t) = h(st) = f(a+ tsV). Then by the chain rule g’(0)
exists and equals sh’(0) = sV £ (3).

o If f(X) = ||X||?, compute Vf(3):
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o If V=0, then V;f(a) = 0. Indeed, this follows easily from
the definition.

@ Suppose f is linear, then w = f(V) for all h and
hence f is differentiable along all vectors with V;f(3) = f(V).

@ The above derivative can also be thought of as a one-variable
derivative. Indeed, let g(t) = f(a+ tV). Then
f(a+h‘;7)_f(5) = g(h);g(o). Thus g is differentiable at 0 if and
only if Vf(3) exists and equals g’(0).

e Moreover, V;f(a) exists whenever V;f(3) does and equals
sVyf(3): Indeed, let h(t) = f(3+ tV) and
g(t) = h(st) = f(&+ tsV). Then by the chain rule g’(0)
exists and equals sh’'(0) = sV ;f(3).

o If f(X) = ||X||?, compute Vf(3):
g(t) = [|al> + 2| v]]* + 2t(a, V).
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o If V=0, then V;f(a) = 0. Indeed, this follows easily from
the definition.

@ Suppose f is linear, then w = f(V) for all h and
hence f is differentiable along all vectors with V;f(3) = f(V).

@ The above derivative can also be thought of as a one-variable
derivative. Indeed, let g(t) = f(a+ tV). Then
f(a+h‘;7)_f(5) = g(h);g(o). Thus g is differentiable at 0 if and
only if Vf(3) exists and equals g’(0).

@ Moreover, V;f(3) exists whenever V;f(3) does and equals
sVyf(3): Indeed, let h(t) = f(3+ tV) and
g(t) = h(st) = f(a+ tsV). Then by the chain rule g’(0)
exists and equals sh’(0) = sV £ (3).

o If f(X) = ||X||?, compute Vf(3):
g(t) = 1|31 + 2[|V][* + 2¢(3, V). Thus g'(0) = 2(a, V).
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Mean value theorem, partial derivatives
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Mean value theorem, partial derivatives

@ Assume that
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Mean value theorem, partial derivatives

@ Assume that Vyf(a+ tV) exists for all 0 < t < 1.
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Mean value theorem, partial derivatives

@ Assume that Vyf(a+ tV) exists for all 0 < t < 1.

@ Theorem:
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Mean value theorem, partial derivatives

@ Assume that Vyf(a+ tV) exists for all 0 < t < 1.

@ Theorem: Then there exists
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Mean value theorem, partial derivatives

@ Assume that Vyf(a+ tV) exists for all 0 < t < 1.

@ Theorem: Then there exists a real number § € (0, 1) such
that
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Mean value theorem, partial derivatives

@ Assume that Vyf(a+ tV) exists for all 0 < t < 1.

@ Theorem: Then there exists a real number § € (0, 1) such
that f(a+ V) — f(a) = Vyf(a+ 0V).
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Mean value theorem, partial derivatives

@ Assume that Vyf(a+ tV) exists for all 0 < t < 1.

@ Theorem: Then there exists a real number § € (0, 1) such
that f(a+ V) — f(a) = Vyf(a+ 0V).

@ Proof:
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Mean value theorem, partial derivatives

@ Assume that Vyf(a+ tV) exists for all 0 < t < 1.

@ Theorem: Then there exists a real number § € (0, 1) such
that f(a+ V) — f(a) = Vyf(a+ 0V).
o Proof: Let g(t) = f(a+ tv).
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Mean value theorem, partial derivatives

@ Assume that Vyf(a+ tV) exists for all 0 < t < 1.

@ Theorem: Then there exists a real number § € (0, 1) such
that f(3+ V) — f(3) = Vyf(a+ 6V).
@ Proof: Let g(t) = f(a+ tV). Then applying the 1-dim MVT
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Mean value theorem, partial derivatives

@ Assume that Vyf(a+ tV) exists for all 0 < t < 1.

@ Theorem: Then there exists a real number § € (0, 1) such
that f(3+ V) — f(3) = Vyf(a+ 6V).

@ Proof: Let g(t) = f(a+ tV). Then applying the 1-dim MVT
to g,

Vamsi Pritham Pingali Lecture 23 5/8



Mean value theorem, partial derivatives

@ Assume that Vyf(a+ tV) exists for all 0 < t < 1.

@ Theorem: Then there exists a real number § € (0, 1) such
that f(3+ V) — f(3) = Vyf(a+ 6V).

@ Proof: Let g(t) = f(a+ tV). Then applying the 1-dim MVT
to g, we see that g(1) — g(0) = g’(6).
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Mean value theorem, partial derivatives

@ Assume that Vyf(a+ tV) exists for all 0 < t < 1.

@ Theorem: Then there exists a real number § € (0, 1) such
that f(3+ V) — f(3) = Vyf(a+ 6V).

@ Proof: Let g(t) = f(a+ tV). Then applying the 1-dim MVT
to g, we see that g(1) — g(0) = g’(6). Thus we are done.
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Mean value theorem, partial derivatives

@ Assume that Vyf(a+ tV) exists for all 0 < t < 1.

@ Theorem: Then there exists a real number § € (0, 1) such
that f(3+ V) — f(3) = Vyf(a+ 6V).

@ Proof: Let g(t) = f(a+ tV). Then applying the 1-dim MVT
to g, we see that g(1) — g(0) = g’(6). Thus we are done.

@ As a consequence,
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Mean value theorem, partial derivatives

@ Assume that Vyf(a+ tV) exists for all 0 < t < 1.

@ Theorem: Then there exists a real number § € (0, 1) such
that f(3+ V) — f(3) = Vyf(a+ 6V).

@ Proof: Let g(t) = f(a+ tV). Then applying the 1-dim MVT
to g, we see that g(1) — g(0) = g’(6). Thus we are done.

@ As a consequence, if f is defined on all of R”, and
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Mean value theorem, partial derivatives

@ Assume that Vyf(a+ tV) exists for all 0 < t < 1.

@ Theorem: Then there exists a real number § € (0, 1) such
that f(3+ V) — f(3) = Vyf(a+ 6V).

@ Proof: Let g(t) = f(a+ tV). Then applying the 1-dim MVT
to g, we see that g(1) — g(0) = g’(6). Thus we are done.

@ As a consequence, if f is defined on all of R”, and
Vf(d) = 0 for all
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Mean value theorem, partial derivatives

@ Assume that Vyf(a+ tV) exists for all 0 < t < 1.

@ Theorem: Then there exists a real number § € (0, 1) such
that f(3+ V) — f(3) = Vyf(a+ 6V).

@ Proof: Let g(t) = f(a+ tV). Then applying the 1-dim MVT
to g, we see that g(1) — g(0) = g’(6). Thus we are done.

@ As a consequence, if f is defined on all of R”, and
Vyf(3) =0 for all vV and &,
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Mean value theorem, partial derivatives

@ Assume that Vyf(a+ tV) exists for all 0 < t < 1.

@ Theorem: Then there exists a real number § € (0, 1) such
that f(3+ V) — f(3) = Vyf(a+ 6V).

@ Proof: Let g(t) = f(a+ tV). Then applying the 1-dim MVT
to g, we see that g(1) — g(0) = g’(6). Thus we are done.

@ As a consequence, if f is defined on all of R”, and
Vf(8) =0 for all v and &, then f is a constant.
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Mean value theorem, partial derivatives

@ Assume that Vyf(a+ tV) exists for all 0 < t < 1.

@ Theorem: Then there exists a real number § € (0, 1) such
that f(3+ V) — f(3) = Vyf(a+ 6V).

@ Proof: Let g(t) = f(a+ tV). Then applying the 1-dim MVT
to g, we see that g(1) — g(0) = g’(6). Thus we are done.

@ As a consequence, if f is defined on all of R”, and
Vf(8) =0 for all V and &, then f is a constant. Indeed, if
not,
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Mean value theorem, partial derivatives

@ Assume that Vyf(a+ tV) exists for all 0 < t < 1.

@ Theorem: Then there exists a real number § € (0, 1) such
that f(3+ V) — f(3) = Vyf(a+ 6V).

@ Proof: Let g(t) = f(a+ tV). Then applying the 1-dim MVT
to g, we see that g(1) — g(0) = g’(6). Thus we are done.

@ As a consequence, if f is defined on all of R”, and
Vf(8) =0 for all V and &, then f is a constant. Indeed, if
not, i.e., if £(3) # f(a+ V), then
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Mean value theorem, partial derivatives

@ Assume that Vyf(a+ tV) exists for all 0 < t < 1.

@ Theorem: Then there exists a real number § € (0, 1) such
that f(3+ V) — f(3) = Vyf(a+ 6V).

@ Proof: Let g(t) = f(a+ tV). Then applying the 1-dim MVT
to g, we see that g(1) — g(0) = g’(6). Thus we are done.

@ As a consequence, if f is defined on all of R”, and
Vf(8) =0 for all V and &, then f is a constant. Indeed, if
not, i.e., if £(3) # f(a+ V), then 0 # g(1) — g(0) = 0 which
is a contradiction.
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w.r.t one variable whilst keeping the others fixed (Why?).
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Partial derivatives

o Def:When vV = ¢;, Vf(d) if it exists is called the partial
derivative %’;(5) or f,(a) w.r.t x; and f is said to be partially
differentiable w.r.t x;.

@ Spoiler alert: All known laws of nature are Partial Differential
Equations (PDE) for something or the other (not necessarily
for scalar fields).

@ In effect, a partial derivative is simply the usual derivative
w.r.t one variable whilst keeping the others fixed (Why?).

@ A polynomial has directional derivatives in all directions at all
points because g(t) is a polynomial and hence differentiable.

@ More generally, f;(x;) are differentiable, then a sum of terms
of the form fi(x1)f2(x2) ... has directional derivatives in all
directions.
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Partial derivatives

@ One can easily compute partials in specific examples: For
instance, if T(P,V) = P—,¥, where R is a constant, then T is
partially differentiable w.r.t P, V.
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Partial derivatives
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partially differentiable w.r. t P, V. Its partials are g\c %,
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higher partial derivatives like f,, = a‘iafy = a%fy and

_°f
fix = 5y0%

other!). In the above example

= a%fx (which may in fact be different from each

AT —0= AT
v 9Pz — Y T pv2y
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Partial derivatives

@ One can easily compute partials in specific examples: For

instance, if T(P, V)= =, where R is a constant, then T is
partially differentiable w.r. t P, V. Its partials are g\c %,
or _ VvV

oP — R:

@ A rational function is partially diferentiable w.r.t all x;
wherever it makes sense. In fact, it has directional derivatives
also in all directions wherever it makes sense.

o If the partials w.r.t all coordinates exist then we get a
vector-valued function called the gradient of f:
Vf(x) = (fq, fx,---). One can further ask if each component
of the gradient has partial derivatives. In this manner, we get
higher partial derivatives like f,, = a‘?(afy = a%fy and

fx = 8‘?% = %ﬁ( (which may in fact be different from each
2T T
other!). In the above example, 5 =0 = 57, and
T ’T 1
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Directional derivatives and continuity

@ In one-variable calculus, differentiability at a point implied
continuity at that point. The way it works is as follows:

o [F(x + h) — f(x)| = (L= ).
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Directional derivatives and continuity

@ In one-variable calculus, differentiability at a point implied
continuity at that point. The way it works is as follows:

o |[f(x+h)—f(x)|= |M|]hl Now the definition of
differentiability implies that there exists a § so that whenever
0 < || < 8, [FCER=FCI| 1 (x)| + 1.
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Directional derivatives and continuity

@ In one-variable calculus, differentiability at a point implied
continuity at that point. The way it works is as follows:

o |[f(x+h)—f(x)|= |M|]hl Now the definition of
differentiability implies that there exists a § so that whenever

W\ < |f'(x)| + 1. Choose 4 to be

WHM < €. We are done.

@ Naively, we would expect that if f is differentiable w.r.t all v
at 3, then since the limit M exists as h — 0, we

might be able to conclude that the numerator goes to 0 and
hence f is continuous.

possibly smaller so that |

@ The problem is with the “hence” part. It isn't true that just
because the limit exists along all lines it exists in the
multivariable sense.
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