
1 Recap

• Change of variables formula and examples.

2 Parametrisation of surfaces

Let T ⊂ R2 be a bounded region whose boundary is a piecewise C1 Jordan curve ( i.e.,
simple closed regular curve).
Def: A parametrised surface is (the range of) a piecewise C1 map ~r(u, v) : T → R3 that
is 1− 1 on the interior.
Example: ~r(u, v) = (sin(u) cos(v), sin(u) sin(v), cos(u)) where (u, v) ∈ T = [0, π]× [0, 2π].
The image is the unit sphere. The map is not 1− 1 on the boundary of T . This surface
is a “closed” surface, i.e., it has no “boundary”. On the other hand, if T = [0, π

2
]× [0, 2π]

then it is a hemisphere whose boundary is a circle.
Def: A closed parametrised surface is a set such that near every point, it can be written
as the image of a 1− 1 piecewise C1 parametrised surface from an open subset of R2 to
R3. So the sphere is a closed parametrised surface. (On the other hand, a hemisphere is
not a closed surface.)

Some more examples:

• Example: ~r(u, v) = (cos(u), sin(u), v) where (u, v) ∈ [0, 2π] × [0, 1]. It is a right-
circular cylinder with boundary being two circles. ( It is not a closed parametrised
surface.)

• Example: ~r(u, v) = (v sin(α) cos(u), v sin(α) sin(u), v cos(α)) where (u, v) ∈ [0, 2π]×
[0, 1] is a right-circular cone with cone angle α. It is a (non-closed) parametrised
surface with boundary as a circle.

Suppose dudv is an infinitesimal area element in the u− v plane. Then the parallelogram
formed in R3 has sides ~rudu = du(∂x

∂u
, ∂y
∂u
, ∂z
∂u

) and ~rvdv = dv(∂x
∂v
, ∂y
∂v
, ∂z
∂v

). The infinitesimal
area is ‖~ru × ~rv‖dudv. Just as for regular curves, we define regular surfaces as those
with ~ru × ~rv 6= 0 everywhere. Such surfaces are also called “smooth”. For a cone,
~ru = v(− sin(α) sin(u), sin(α) cos(u), 0) and ~rv = (sin(α) cos(u), sin(α) sin(u), cos(α)).
Thus ~ru × ~rv = ~0 when v = 0. The vertex of the cone is not a smooth point.
Example: Suppose z = f(x, y) where f is a C1 function, ~r(u, v) = (u, v, f(u, v)). Then
~ru = (1, 0, fu) and ~rv = (0, 1, fv). Thus ~ru × ~rv = (−fu,−fv, 1) and is hence never zero.
So the graph of a C1 function is a regular parameterised surface.
Warning: For instance, if we take z =

√
1− x2 − y2, the function is not differentiable at

x = y = 0. The problem here lies with this particular parametrisation because we already
saw the the sphere can be parametrised even near the equator as a regular surface. So
the choice of a parametrisation is important.

Proposition: ~ru × ~rv is normal to the surface.
Proof: Indeed, let (u(t), v(t)) be a C1 path on the surface passing through p. Then
d~r
dt

= ~ruu
′ + ~rvv

′. Thus ~r′ is perpendicular to ~ru × ~rv.
This is another way to study normals to regular surfaces. The same regular surface can
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be given in two ways: F (x, y, z) = 0 and as (x(u, v), y(u, v), z(u, v)). The normals are
∇F and ~ru×~rv. They point in the same direction for sure. But their magnitudes can be
different! (Indeed, if they are the same, then simply choose F to 2F and the magnitude
doubles!)
For a graph, F (x, y, z) = z − f(x, y) gives the same normal as the previous one. The in-

finitesimal area vector is d ~A = ~ru×~rvdudv. The area of a parametric surface is
∫ ∫

T
‖~ru×

~rv‖dudv. For instance, for a graph z = f(x, y), the area is
∫ ∫ √

1 + f 2
x + f 2

ydxdy.

An example and scalar line integrals: Hemisphere: ~r = (r sin(u) cos(v), r sin(u) sin(v), r cos(u))
and hence ~ru = (r cos(u) cos(v), r cos(u) sin(v),−r sin(u)), ~rv = (−r sin(u) sin(v), r sin(u) cos(v), 0).
So ‖~ru × ~rv‖ = r2 sin(v). Therefore, the area is 2πr2.
A digression: If ~γ(t) is a piecewise C1 regular path, and f(x, y, z) is a bounded function

along the path, then
∫
fds =

∫ b
a
f(γ(t))‖γ′(t)‖dt is called the scalar line integral of f

along γ. ( For instance, the charge on a wire.)
A crucial point: The scalar line integral is reparametrisation invariant: If t(τ) is a

reparametrisation, then ‖dγ
dτ
‖ = ‖γ′(t)‖| dt

dτ
|. Thus the “new” integral is

∫
[c,d]

f(γ(t(τ)))‖γ′(t)‖| dt
dτ
|dτ

which by the change of variables formula equals the “old” integral.
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