1 Recap

- Change of variables formula and examples.

2 Parametrisation of surfaces

Let $T \subset \mathbb{R}^{2}$ be a bounded region whose boundary is a piecewise C^{1} Jordan curve (i.e., simple closed regular curve).
Def: A parametrised surface is (the range of) a piecewise $C^{1} \operatorname{map} \vec{r}(u, v): T \rightarrow \mathbb{R}^{3}$ that is $1-1$ on the interior.
Example: $\vec{r}(u, v)=(\sin (u) \cos (v), \sin (u) \sin (v), \cos (u))$ where $(u, v) \in T=[0, \pi] \times[0,2 \pi]$. The image is the unit sphere. The map is not $1-1$ on the boundary of T. This surface is a "closed" surface, i.e., it has no "boundary". On the other hand, if $T=\left[0, \frac{\pi}{2}\right] \times[0,2 \pi]$ then it is a hemisphere whose boundary is a circle.
Def: A closed parametrised surface is a set such that near every point, it can be written as the image of a 1-1 piecewise C^{1} parametrised surface from an open subset of \mathbb{R}^{2} to \mathbb{R}^{3}. So the sphere is a closed parametrised surface. (On the other hand, a hemisphere is not a closed surface.)

Some more examples:

- Example: $\vec{r}(u, v)=(\cos (u), \sin (u), v)$ where $(u, v) \in[0,2 \pi] \times[0,1]$. It is a rightcircular cylinder with boundary being two circles. (It is not a closed parametrised surface.)
- Example: $\vec{r}(u, v)=(v \sin (\alpha) \cos (u), v \sin (\alpha) \sin (u), v \cos (\alpha))$ where $(u, v) \in[0,2 \pi] \times$ $[0,1]$ is a right-circular cone with cone angle α. It is a (non-closed) parametrised surface with boundary as a circle.

Suppose $d u d v$ is an infinitesimal area element in the $u-v$ plane. Then the parallelogram formed in \mathbb{R}^{3} has sides $\vec{r}_{u} d u=d u\left(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}, \frac{\partial z}{\partial u}\right)$ and $\vec{r}_{v} d v=d v\left(\frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}, \frac{\partial z}{\partial v}\right)$. The infinitesimal area is $\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| d u d v$. Just as for regular curves, we define regular surfaces as those with $\vec{r}_{u} \times \vec{r}_{v} \neq 0$ everywhere. Such surfaces are also called "smooth". For a cone, $\vec{r}_{u}=v(-\sin (\alpha) \sin (u), \sin (\alpha) \cos (u), 0)$ and $\vec{r}_{v}=(\sin (\alpha) \cos (u), \sin (\alpha) \sin (u), \cos (\alpha))$. Thus $\vec{r}_{u} \times \vec{r}_{v}=\overrightarrow{0}$ when $v=0$. The vertex of the cone is not a smooth point.
Example: Suppose $z=f(x, y)$ where f is a C^{1} function, $\vec{r}(u, v)=(u, v, f(u, v))$. Then $\vec{r}_{u}=\left(1,0, f_{u}\right)$ and $\vec{r}_{v}=\left(0,1, f_{v}\right)$. Thus $\vec{r}_{u} \times \vec{r}_{v}=\left(-f_{u},-f_{v}, 1\right)$ and is hence never zero. So the graph of a C^{1} function is a regular parameterised surface.
Warning: For instance, if we take $z=\sqrt{1-x^{2}-y^{2}}$, the function is not differentiable at $x=y=0$. The problem here lies with this particular parametrisation because we already saw the the sphere can be parametrised even near the equator as a regular surface. So the choice of a parametrisation is important.

Proposition: $\vec{r}_{u} \times \vec{r}_{v}$ is normal to the surface.
Proof: Indeed, let $(u(t), v(t))$ be a C^{1} path on the surface passing through p. Then $\frac{d \vec{r}}{d t}=\vec{r}_{u} u^{\prime}+\vec{r}_{v} v^{\prime}$. Thus \vec{r}^{\prime} is perpendicular to $\vec{r}_{u} \times \vec{r}_{v}$.
This is another way to study normals to regular surfaces. The same regular surface can
be given in two ways: $F(x, y, z)=0$ and as $(x(u, v), y(u, v), z(u, v))$. The normals are ∇F and $\vec{r}_{u} \times \vec{r}_{v}$. They point in the same direction for sure. But their magnitudes can be different! (Indeed, if they are the same, then simply choose F to $2 F$ and the magnitude doubles!)
For a graph, $F(x, y, z)=z-f(x, y)$ gives the same normal as the previous one. The infinitesimal area vector is $d \vec{A}=\vec{r}_{u} \times \vec{r}_{v} d u d v$. The area of a parametric surface is $\iint_{T} \| \vec{r}_{u} \times$ $\vec{r}_{v} \| d u d v$. For instance, for a graph $z=f(x, y)$, the area is $\iint \sqrt{1+f_{x}^{2}+f_{y}^{2}} d x d y$.

An example and scalar line integrals: Hemisphere: $\vec{r}=(r \sin (u) \cos (v), r \sin (u) \sin (v), r \cos (u))$ and hence $\vec{r}_{u}=(r \cos (u) \cos (v), r \cos (u) \sin (v),-r \sin (u)), \vec{r}_{v}=(-r \sin (u) \sin (v), r \sin (u) \cos (v), 0)$. So $\left\|\vec{r}_{u} \times \vec{r}_{v}\right\|=r^{2} \sin (v)$. Therefore, the area is $2 \pi r^{2}$.
A digression: If $\vec{\gamma}(t)$ is a piecewise C^{1} regular path, and $f(x, y, z)$ is a bounded function along the path, then $\int f d s=\int_{a}^{b} f(\gamma(t))\left\|\gamma^{\prime}(t)\right\| d t$ is called the scalar line integral of f along γ. (For instance, the charge on a wire.)

A crucial point: The scalar line integral is reparametrisation invariant: If $t(\tau)$ is a reparametrisation, then $\left\|\frac{d \gamma}{d \tau}\right\|=\left\|\gamma^{\prime}(t)\right\|\left|\frac{d t}{d \tau}\right|$. Thus the "new" integral is $\int_{[c, d]} f(\gamma(t(\tau)))\left\|\gamma^{\prime}(t)\right\|\left|\frac{d t}{d \tau}\right| d \tau$ which by the change of variables formula equals the "old" integral.

