
1 Recap

• Parametrised surfaces.

• Scalar line integral (its reparametrisation invariance is left as an exercise).

2 Surface integrals

Let S = ~r(T ) be a parametrised surface and let f be a bounded scalar field on S. Then∫ ∫
S
fdA :=

∫ ∫
T
f(~r(u, v))‖~ru × ~rv‖dudv. When f = 1, we get the area. ( Akin to the

length of a regular curve in the case of line integrals.)
Centre of mass: If f is the density, then xCM =

∫ ∫
xfdA and likewise for other co-

ordinates. For instance, for a cone ~r = (v sin(α) cos(u), v sin(α) sin(u), v cos(α)) where
(u, v) ∈ [0, 2π] × [0, l], we see that dA = v sin(α)dudv. Thus if f = 1 (uniform den-

sity), then
∫ ∫

zdA =
∫ l
0

∫ 2π

0
v2 cos(α) sin(α)dudv = π

3
sin(2α). It is easy to see that

xCM = yCM = 0. Thus the centre of mass can lie outside the surface.

Let ~r(u, v) be a piecewise C1 parametrised surface defined on T ⊂ R2. Let ~G(s, t) =
(u(s, t), v(s, t)) : T ′ → T be a C1 map that is 1 − 1 onto on the interiors. Assume that

the Jacobian J of G is nowhere 0 on the interior. Then ~R(s, t) = ~r(~G(s, t)) is called a
reparametrisation.
Theorem: ~Rs × ~Rt = ~ru × ~rvJ .
Proof: By the chain rule, ~Rs = ~ruus + ~rvvs, ~Rt = ~ruut + ~rvvt. Thus ~Rs × ~Rt =
~ru × ~rv(usvt − vsut), and since J = usvt − vsut, we are done.
Theorem: The surface integral is reparametrisation invariant.
Proof:

∫ ∫
~r(T )

fdA =
∫ ∫

T
f‖~ru × ~rv‖dudv. By the change of variables formula, this inte-

gral equals
∫ ∫

T ′ f‖~ru × ~rv‖|J |dsdt. This is precisely the surface integral using the other
parametrisation.

Consider a fluid ( can be charged too) moving through space with the velocity vector

field ~V (x, y, z, t). If its density is ρ, the amount of fluid per unit area per unit time

moving along ~V is ~J = ρ~V ( the flux density or the current vector). The amount per unit

time that moves across an infinitesimal surface element ~dA is ~J. ~dA. This quantity is the
infinitesimal flux. Likewise, if ~E is the electric field, ~E. ~dA is also called flux ( roughly
measures the “number of lines of force” going through the surface element). Rigorously, if

S ⊂ R3 is a regular parametrised surface, and ~F is a bounded vector field on S, then the
flux of ~F through S is defined to be

∫ ∫
T
~F .(~ru×~rv)dudv. It is certainly not immediately

clear as to whether this quantity is reparametrisation invariant.

As before, if ~G(s, t), ~R(s, t) = ~r(~G(s, t)) are reparametrisation data , then
∫ ∫

~r(T )
~F . ~dA =∫ ∫

T
~F .(~ru × ~rv)dudv =

∫ ∫
T ′
~F .(~ru × ~rv)|J |dsdt. However, ~Rs × ~Rt = (~ru × ~rv)J . There-

fore, there is a sign discrepancy. If J > 0 throughout, then |J | = J and the flux integral
is reparametrisation invariant. If J < 0 throughout, then the flux changes sign. The
choice (outward vs inward) of normal is thus important ( akin to the vector line integral).
Let S be the unit upper hemisphere parametrised by (sin(u) cos(v), sin(u) sin(v), cos(u))
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where (u, v) ∈ T = [0, π
2
]×[0, 2π]. Then ~ru×~rv = sin(u)(sin(u) cos(v), sin(u) sin(v), cos(u)).

Let ~F = xî+ yĵ. The flux of ~F across S is
∫ 2π

0

∫ π/2
0

sin3(u)dvdu = 0.

3 Stokes’ theorem

We want to generalise Green’s theorem to integrals over surfaces.
Theorem: Let S be a C1 regular parametrised oriented surface S = ~r(T ) where T ⊂ R2

is an open set in u− v plane bounded by a regular simple closed curve I. Assume that ~r
is actually C2 on an open set containing T . Let C be the curve ~r(I). Let P,Q,R be C1

scalar fields on S. Let ~F = (P,Q,R) and ∇× ~F = (Ry−Qz, Pz −Rx, Qx−Py). Suppose
C is oriented in the following manner: The velocity of C, i.e., ~w is such that (~ru×~rv)× ~w
points “along” surface, i.e., if you travel a tiny bit along this vector, you are closer to the
surface than if you travel in the opposite direction.
Then

∫ ∫
S
(∇× ~F ). ~dA =

∫
C
~F . ~dr.

The line integral is sometimes called the circulation of ~F because if we consider ~F =
(−y, x, 0) and C as the unit circle, then the line integral is non-zero whereas for ~F =

(x, y, 0) it is zero. James Clerk Maxwell called ∇× ~F as the “curl” of ~F ( because it is
like the “circulation density”).

It is easy to see that if S is a planar surface, then Stokes=Green.
The proof of Stokes: By linearity in ~F and the symmetry of the expression, it is enough
to prove it for ~F = P î. Now ∇× ~F = (0, Pz,−Py) and hence ∇× ~F . ~dA = −Py(xuyv −
xvyu) + Pz(zuyv − zvyu) which is (Pxv)u − (Pxu)v (HW). Apply Green to

∫ ∫
T

((Pxv)u −
(Pxu)v)dudv to get

∫
C

(PXudu+ PXvdv) =
∫
C
Pdx.
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