
1 Recap

• Scalar surface integral.

• Vector surface integral/flux through oriented surfaces and Stokes’ theorem (Orien-
tation: (~ru × ~rv)× ~γ′(t) points “along” the surface. An easier way is: Parametrise
the boundary of the u − v region T as u(t), v(t) in the anti-clockwise direction.
Then the correct parametrisation of the boundary of the surface is ~r(u(t), v(t)).)

Example: Let ~F = (z2,−3xy, x3y3) and S be a part of z = 5−x2−y2 above z = 1 with

the upwards orientation. Calculate
∫ ∫

S
(∇× ~F ). ~dA. By the way, we did not prove that if

the same set is regularly parametrised in two different ways, then they are reparametrisa-
tions of each other. This fact is true and requires stuff that is beyond the current scope.
Parametrise S as (x, y, 5 − x2 − y2) where x2 + y2 ≤ 4. This has the right orientation.
Indeed, ~rx×~ry = (2x, 2y, 1) which points upward. The boundary is a circle x2+y2 = 4. A
correct oriented parametrisation is (2 cos(t), 2 sin(t), 1). Thus by Stokes, the desired inte-

gral is
∫ 2π

0
(4 sin2(t),−12 sin(t) cos(t), 64 sin3(t) cos3(t)).(−2 sin(t), 2 cos(t), 1)dt = 0. We

can verify Stokes by calculating the given thing directly: ∇ × ~F = (3x3y2,−(3x2y3 −
2z),−3y). Thus ∇ × ~F . ~dA = dxdy(6x4y2 − 2y(3x2y3 − 2z) − 3y) = dxdy(6x4y2 −
6x2y4 + 6y(5 − x2 − y2) − 3y). Its integral over x2 + y2 ≤ 4 is (in polar coordinates)∫ 2

0

∫ 2π

0
(3
2
r6 sin( 2θ) cos(2θ) + 27r sin(θ)− 6r3 sin(θ))dθrdr = 0.

Interpretation of curl: The curl does not simply measure how much a vector field
swirls around. For instance, if ~F = (− y

x2+y2
, x
x2+y2

, 0), then ∇ × ~F = ~0 (away from the

origin of course). However, the picture of the vector field tells a different story. Like-

wise, if ~F = (x2 − y2)(x, y, 0), despite pointing radially outward (in the x − y plane)

∇ × ~F 6= ~0. It measures the infinitesimal circulation near a point. For instance, in the
first example above, As we go outward, the vector field gets smaller at a very particular
rate. In the second example, the vector field is asymmetric in magnitude ( in x, y). If

a smooth ~F is conservative, i.e., ~F = ∇f for some smooth f , then Fi = fxi . Thus,

Fi,xj = fxjxi = fxixj = Fj,xi . In other words, in R3, ∇× ~F = ~0. So the vanishing of the
curl is a necessary condition for the vector field to be conservative.

Unfortunately, it is not sufficient. For instance, ~F = (− y
x2+y2

, x
x2+y2

) in R2 has zero

curl, but
∫
C
~F .d~r over the unit circle is 2π 6= 0. So the shape of the region is important.

In fact, it turns out that it is sufficient on simply connected regions. Akin to ∇ × ~F ,
one can naively define the “dot product”, i.e., ∇. ~F = ∂P

∂x
+ ∂Q

∂y
+ ∂R

∂z
. This quantity is

called the divergence. Indeed, if ~F = (x, y, z), then ∇. ~F = 3 whereas if ~F = (−y, x, 0),

then ∇. ~F = 0. Again, these examples are too naive. The divergence is more subtle as we
shall see later on. Just as ∇×∇f = ~0, one can easily prove (HW) that ∇.(∇× ~F ) = 0.
This “easy” observation lead Maxwell to add a corection term (called the displacement
current) to Ampere’s law. ∆f (or ∇2f) defined by ∆f = ∇.(∇f) = fxx + fyy + fzz is
called the Laplacian of f and plays a major role in electrostatics ( among other things).

Akin to Stokes’ theorem, we have a generalisation of FTC to three-space.
Theorem: Let V be a solid in R3 bounded by a closed regular surface S parametrised
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with the outward unit normal. If ~F is a C1 vector field on V , then
∫ ∫ ∫

V
∇. ~Fdxdydz =∫ ∫

S
~F .d ~A. So the flux integral can be written as a triple integral.

Proof: Again, it suffices to prove it for ~F = (P, 0, 0). However, the proof is quite tricky
in general. We shall prove it only for a cuboid. (The same proof works for Type-III

regions.)
∫ f
e

∫ d
c

∫ b
a
Pxdxdydz =

∫ ∫
(P (b, y, z) − P (a, y, z))dydz. Now ~F . ~dA = 0 for the

boundary sides that are not parallel to the y− z plane. Thus, the flux is
∫ ∫

P î.d ~A. The
boundaries are oriented in opposite directions and hence we are done.

Example: Compute the outward flux of ~F = (x, y, z) across the ellipsoid x2

a2
+ y2

b2
+

z2

c2
= 1: One way is to take (a sin(θ) cos(φ), b sin(θ) sin(φ), c cos(θ)), compute ~dA =

~rθ × ~rφdθdφ which equals (bc sin2(θ) cos(φ), ac sin2(θ) sin(φ), ab sin θ cos θ)dθdφ, compute
~F .d ~A = abc sin(θ) and integrate.

The smart way is to use the divergence theorem: ∇. ~F = 3. Hence the answer is 4πabc.
Another example: Let ~F = e−(x

2+y2+z2)6(x, y, z). Compute
∫ ∫ ∫

V
∇. ~FdV where V is

the unit ball. It is of course quite painful to do directly. However, using the divergence
theorem, it is the flux of a radial vector field over the unit sphere. Thus it is 4πe−1.

Interpretation of Divergence: The divergence is the flux density, i.e., near a point p,
∇. ~F (p) is approximately the ratio of the outward flux through a small closed surface
divided by its volume. Because of this subtle interpretation, counterintuitive things like
the following can happen:
Example: The divergence of ~F = (−y(x2 − y2), x(x2 − y2), 0) is non-zero.

Example: The divergence of ~F = 1
(x2+y2+z2)3/2

(x, y, z) is zero.
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