
1 Recap

• Line integrals. Reparametrisation invariance.

2 Multiple integrals

To evaluate volumes, fluxes, areas, etc, we need to develop multivariable integration
and a fundamental theorem of calculus. Roughly speaking, if f(~r) is a scalar field on
a “rectangular” domain, [a1, b1] × [a2, b2] × . . ., the integral

∫ ∫ ∫
f(x1, . . .)dV ought to

be defined as the sum over all small rectangles. Hopefully, this definition will coincide
with the more naive definition of integrating one variable at a time ( multiple integrals vs
iterated integrals). To this end, we shall define/work with two variables, but everything
generalises word-to-word to more variables.
Def: A partition P of [a, b]× [c, d] is a subset P1×P2 such that P1 = {x0 = a, . . . , xn = b}
and P2 = {y0 = c, . . . , ym = d} are partitions of [a, b] and [c, d] respectively. A partition
gives rise to a bunch of open subrectangles. A partition P ′ is said to be finer than P if
P ⊂ P ′. Given any two partitions, their union is finer than both and is called a common
refinement.
Def: A function defined on a rectangle Q is said to be a step function if there exists a
partition on whose corresponding open subrectangles, the function is a constant.
It is easy to show that if s1, s2 are step functions on Q, then c1s1+c2s2 is a step function on
Q. Thus, step functions form a real vector space. The volume of a cuboid is Area×height.
Hence we define: Let f be a step function that takes cij on (xi−1, xi) × (yj−1, yj) ⊂ Q.
Then the double integral of f over Q is defined by

∑
i,j cij∆xi∆yj.

• As in 1-D, one can prove that this value is independent of the partition chosen. We
denote the sum as

∫ ∫
Q
f(x, y)dA and call it the double integral of f over Q. It is

easy to prove that this double integral equals the iterated integrals
∫ b

a

∫ d

c
x, y)dydx =∫ d

c

∫ b

a
f(x, y)dxdy.

• Linearity:
∫ ∫

Q
(c1s1 + c2s2)dA = c1

∫ ∫
Q
s1dA + c2

∫ ∫
Q
s2dA.

• Additivity: If Q is divided into two rectangles that intersect only in their sides,
then

∫ ∫
Q
sdA =

∫ ∫
Q1

sdA +
∫ ∫

Q2
sdA.

• Comparison: If s ≤ t on Q, then
∫ ∫

sdA ≤
∫ ∫

tdA.

Let f : Q → R be a bounded function, i.e., |f | ≤ M on Q. Clearly, there exist step
functions s, t such that s ≤ f ≤ t on Q.
Def: If there exists a unique number I such that

∫ ∫
Q
s ≤ I ≤

∫ ∫
Q
t for every pair of

step functions s, t such that s ≤ f ≤ t, then I is called the double integral of f over Q
and is denoted as

∫ ∫
Q
fdA. If such an I exists, f is said to be Riemann-integrable over

Q.
Let S be the supremum of all numbers

∫ ∫
Q
s where s is a step function such that s ≤ f ,

and likewise, T be the infimum of
∫
Q
t where f ≤ t. Then

∫ ∫
Q
s ≤ S ≤ T ≤

∫ ∫
Q
t for

all s ≤ f ≤ t.
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Thus f is R.I over Q if and only if S = T . T is called the upper integral and S the
lower integral. As in 1D, and as for step functions in 2D, the additivity, linearity, and
comparison theorems continue to hold.

Fubini theorem for rectangles: Let f : Q → R be bounded and integrable ( this as-

sumption is crucial!) Except for finitely many values, assume that g(y) =
∫ b

a
f(x, y)dx

and h(x) =
∫ d

c
f(x, y)dy exist, and are integrable over [c, d] and [a, b] respectively. Then∫ ∫

Q
fdA =

∫ b

a

∫ d

c
f(x, y)dydx =

∫ d

c

∫ b

a
f(x, y)dxdy.

Proof: Let s ≤ f ≤ t. Integrate w.r.t x on both sides ( valid by assumptions and 1D-
properties). Then integrate w.r.t y. By definition, we are done.
This theorem allows us to calculate double integrals and geometrically interpret the dou-
ble integral as the volume under a graph. Indeed, g(y) is the area of a cross-section and
its integral is the volume.
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