1 Recap

- Multiple integrals. Fubini for rectangles.

2 Multiple integrals

Continuous functions are double integrable and Fubini holds:
Sketch of proof: By the extreme value theorem, f is bounded. Thus the lower (S) and upper (T) integrals exist. It is enough to come up with a sequence of "special" step functions $s_{n} \leq f \leq t_{n}$ so that $\iint_{Q} s_{n} d A \leq S \leq T \iint_{Q} t_{n} d A$ converge to the same quantity. We choose a sequence of partitions P_{n} such that the variation of $f \rightarrow 0$ as $n \rightarrow \infty$ (by continuity). The special step functions are simply the infimum and supremum functions $m_{n}(x, y), M_{n}(x, y)$. Since f_{n} does not vary much, m_{n}, M_{n} are close to each other and hence so are their integrals.
To prove that the integrals equal their iterated versions, it is enough to prove that $g(y)=\int_{a}^{b} f(x, y) d x$ and $h(x)=\int_{c}^{d} f(x, y) d y$ are continuous. This follows from some estimates.

Discontinuous functions: Integrals of discontinuous beasts are problematic even in 1-D. However, if we have only finitely many discontinuities in 1D, we can integrate.

Akin to that, if the set of discontinuities in $2 D$ have "zero area" (whatever that means), the function is still integrable (proof is skipped). For instance, it turns out that (proof skipped) a finite collection of line segments or more generally, a finite collection of C^{1} regular paths have zero area. In particular, $(x, f(x))$ or $(g(y), y)$ where f, g are C^{1} have zero area.

3 Non-rectangular domains

If Ω is a bounded region, i.e., it is contained in some rectangle Q, then extend f to \tilde{f} on Q by setting it to 0 outside Ω.
Def: A bounded function f is said to be integrable over Ω if $\iint_{\Omega} f d A:=\iint_{Q} \tilde{f} d A$ exists. One can prove that this definition makes sense, i.e., a different choice of Q does not change anything. The real problem is whether one can prove that continuous functions f are integrable and whether Fubini holds. For this, it is crucial that the boundary of Ω (the place where \tilde{f} can be discontinuous) is of zero area. Surely this is the case for Type-I domains: $a \leq x \leq b, \phi_{1}(x) \leq y \leq \phi_{2}(x)$ where ϕ_{1}, ϕ_{2} are C^{1} on [$\left.a, b\right]$, and Type-II domains: $c \leq y \leq d, \psi_{1}(y) \leq x \leq \psi_{2}(y)$ where ψ_{1}, ψ_{2} are C^{1} on $[c, d]$.

Let S be a Type-I region, i.e., $a \leq x \leq b, \phi_{1}(x) \leq y \leq \phi_{2}(x)$. Assume that $f: S \rightarrow \mathbb{R}$ is bounded and continuous on the interior. Then $\iint_{S} f$ exists and equals $\int_{a}^{b} \int_{\phi_{1}(x)}^{\phi_{2}(x)} f(x, y) d y d x$. (Likewise, for Type-II. If it is both of Type-I and Type-II, it is sometimes called Type-III and in that case, the iterated integrals are equal.)
Proof: Recall that the boundary of a Type-I domain has zero area. Thus the extension \tilde{f} to $[a, b] \times[c, d]$ is integrable. Moreover, for each $x, \int_{c}^{d} \tilde{f}(x, y) d y$ is integrable because there
are at most two discontinuities. Thus by Fubini, $\iint_{S} f:=\iint_{Q} \tilde{f}=\int_{a}^{b} \int_{c}^{d} \tilde{f}(x, y) d y d x=$ $\int_{a}^{b} \int_{\phi_{1}(x)}^{\phi_{2}(x)} f(x, y) d y d x$.

Examples:

- Firstly, if S is a Type-I domain, then $\iint_{S} d A=\int_{a}^{b}\left(\phi_{2}(x)-\phi_{1}(x)\right) d x$ is indeed the Area. Likewise, $\iiint_{S} d V$ is the volume of a Type-I domain in 3-D. The same results hold for Type-II domains as well.
- Example 1: Calculate the volume of an ellipsoid: $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$. An ellipsoid is a Type-I domain in 3-D: $-c \sqrt{1-x^{2} / a^{2}-y^{2} / b^{2}} \leq z \leq c \sqrt{1-x^{2} / a^{2}-y^{2} / b^{2}}$. Thus the volume is $\iiint d V=2 c \iint \sqrt{1-x^{2} / a^{2}-y^{2} / b^{2}} d A$ over $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} \leq 1$. Now the latter is a Type-I domain in $2 D:-b \sqrt{1-x^{2} / a^{2}} \leq y \leq b \sqrt{1-x^{2} / a^{2}}$. Thus the volume is $2 b c \int_{-a}^{a} \int_{-b \sqrt{1-x^{2} / a^{2}}}^{b \sqrt{1-a^{2}}} \sqrt{1-x^{2} / a^{2}-y^{2} / b^{2}} d y d x$. Now $A(x)=$ $\int_{-b \sqrt{1-x^{2} / a^{2}}}^{b \sqrt{1-x^{2} / a^{2}}} \sqrt{1-x^{2} / a^{2}-y^{2} / b^{2}} d y$ can be evaluated easily by substitution (or by geometry) and found to be $b \frac{\pi}{2}\left(1-\frac{x^{2}}{a^{2}}\right)$. Now the final volume is $b c \int_{-a}^{a} \pi\left(1-\frac{x^{2}}{a^{2}}\right) d x=$ $\frac{4}{3} \pi a b c$.
- Example 2: Suppose f is continuous on a bounded region S and $\iint_{S} f d A=$ $\int_{0}^{3} \int_{4 y / 3}^{\sqrt{25-y^{2}}} f(x, y) d x d y$. then sketch S and interchange the order of integration: $\frac{4 y}{3} \leq x \leq \sqrt{25-y^{2}}$. Hence it is the region between a circle and a line passing through the centre. $x=\frac{4 y}{3}$ and $x=\sqrt{25-y^{2}}$ intersect at $(4,3)$. Thus we have two regions $0 \leq y \leq \frac{3 x}{4}$ in $0 \leq x \leq 4$ and $0 \leq x \leq \sqrt{25-y^{2}}$ in $4 \leq x \leq 5$. So the integral is $\int_{0}^{4} \int_{0}^{3 x / 4} f d y d x+\int_{4}^{5} \int_{0}^{\sqrt{25-y^{2}}} f d y d x$.

