
1 Recap

• Non-rectangular domains. Fubini. Triple integrals.

2 Non-rectangular domains

Examples:

• Example 3: Calculate
∫ ∫

[−1,1]×[0,2]

√
|y − x2|dA. We integrate over y first:

∫ 1

−1(
∫ x2
0

√
x2 − ydy+∫ 2

x2

√
y − x2dy). Since x is a constant, we can easily integrate to get 2

3
x3+2

3
(2− x2)3/2.

The second term can be evaluated by trigonometric substitution. So we get 4
3

+ π
2
.

Note that first integrating over x would have made life worse.

3 What should an FTC look like?

We want to formulate a fundamental theorem of calculus. In 1-D, recall that it is∫ b
a
f ′(x)dx = f(b) − f(a). In other words, “the integral of a derivative over a region

boils down to its boundary”. So in 2D, there are a few questions: What regions must we
consider? If f(x, y) is a scalar field, what “derivative” must we integrate? and since the
boundary is a curve, what must the integral boil down to ( presumably a line integral
on the boundary)? For the first question, we must choose a domain whose boundary
is a piecewise C1 regular curve ( to make sense of line integrals). Furthermore, the re-
gion must not have “holes” because then the boundary can be more than one curve (
such regions are called simply connected). It turns out that every simple closed curve di-
vides R2 into two regions the interior region is simply connected ( Jordan curve theorem).

Theorem: Let P,Q be C1 scalar fields on a simply connected closed set S whose bound-
ary is a piecewise C1 regular curve. Then

∫
C

(Pdx + Qdy) taken in the anti-clockwise

direction equals
∫ ∫

S

(
∂Q
∂x
− ∂P

∂y

)
dA.

The proof is quite painful and is frankly, beyond the scope of this course. However, let us
look at a special case of a rectangle: The boundary is piecewise C1 and is parametrised as
(t, c) a ≤ t ≤ b, (b, t) c ≤ t ≤ d, (−t, d) −b ≤ t ≤ −a, and (a,−t) −d ≤ t ≤ −c. Thus the

line integral is
∫ b
a
P (t, c)dt−

∫ −a
−b P (−t, d)dt+

∫ d
c
Q(b, t)dt−

∫ −c
−d Q(a,−t)dt. By the usual

FTC, this equals the other side of Green’s theorem. It is not hard to do the same thing
for Type-III domains (HW). In the general case, one approximates the boundary by a
many-sided polygon and breaks the interior of this polygon up into a bunch of rectangles
and triangles ( all Type-III). Then one applies the above proof to each and adds.

Examples:

• Find the area of the circle x2+y2 = 1. The area is
∫ ∫

dxdy. Choose Q = x, P = −y
and use Green: 2×Area =

∫
C

(xdy−ydx). Parametrise C as x = cos(t), y = sin(t).
Thus xdy − ydx = dt. Thus Area = π. ( A device called the planimeter works on
this principle!)
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• Consider
∫

ydx−xdy
x2+y2

over the circle of radius r centred at (0, 0). Parametrise it as

(r cos(t), r sin(t)), 0 ≤ t ≤ 2π. Then the integral is −2π. However, naively applying
the Green theorem, we get 0 !! What is going wrong? The point is that the domain
of P,Q is actually the disc minus the origin, i.e., it has a hole. So Green is not
applicable! ( This way of deducing the shape of regions by what kind of calculus
one can do on them is a big thing. It is called “Differential Topology”.)

Change of variables (a digression from FTCs): In one-variable calculus, recall that if
u : [a, b] → [c, d] is a 1 − 1 onto C1 map such that du

dx
6= 0 for all x ( except possibly at

a, b), and f : [c, d]→ R is continuous function, then
∫ u−1(b)

u−1(a)
f(u(x))u′(x)dx =

∫ d
c
f(u)du.

Examples: Take
∫ 2

0
u2du with u = 2x to get

∫ 1

0
8x2dx. But with u = 2 − 2x,

∫ 2

0
u2du =

−
∫ 0

1
8(1− x)2dx = 2

∫ 1

0
4(1− x)2dx. If we want to use only [0, 2] and [0, 1] instead of the

upper and lower limits, then in the second example,
∫
[0,2]

u2du =
∫
[0,1]

4(1−x)2|du
dx
|dx. We

want a generalisation for multiple integrals. ( Indeed, if we have cylindrical or spherical
symmetry, it makes sense to choose other coordinates systems like polar coordinates.)
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