
1 Recap

• Green’s theorem and examples.

2 What should an FTC look like?

Change of variables (a digression from FTCs): Suppose we change coordinates (u, v) →
(x(u, v), y(u, v)). Then, the infinitesimal area element dA in (x, y) is a small parallelogram
with vertices (x(u, v), y(u, v)), (x(u+du, v), y(u+du, v)) = (x(u, v)+ ∂x

∂u
du, y(u, v)+ ∂y

∂u
du),

etc. The tiny side-vectors of the parallelogram are du(∂x
∂u
, ∂y
∂u

) and dv(∂x
∂v
, ∂y
∂v

). Thus the
area is dA = dudv|~ru×~rv| which is dudv|J(u, v)| where J(u, v) is called the Jacobian and
is the determinant of the derivative matrix. Note that one takes the modulus of J and
thus no sign appears. The region’s shape of course changes in new coordinates. Another
important point is that none of the infinitesimal parallelogram’s should be “crushed”
to lines or points because we want change-of-variables to “preserve” information. Thus,
morally, we expect J 6= 0 to be a natural assumption.

Let Ω, Ω̃ ⊂ R2 be bounded open sets. Let f : Ω̃→ R be a continuous bounded func-
tion. Let (x(u, v), y(u, v)) : Ω→ Ω̃ be a C1 1−1 onto map such that J(x(u, v), y(u, v)) 6= 0
everywhere. Then

∫ ∫
Ω
f(x(u, v), y(u, v))|J(u, v)|dudv =

∫ ∫
Ω
f(x, y)dxdy. A similar

statement holds in higher dimensions too.
The proof is surprisingly complicated. We shall prove a special case later on. Calculate∫ ∫

R2 e
−(x2+y2)dxdy (I am cheating by using improper integrals). Choose polar coordi-

nates x = r cos(θ), y = r sin(θ). J = det

[
∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

]
= r. Thus

∫∞
0

∫ 2π

0
e−r

2
rdθdr =

2π
∫∞

0
e−r

2
rdr = π. Let I =

∫∞
−∞ e

−x2dx and hence I2 = π. This is the easiest way
to evaluate the Gaussian integral. (One way to justify these things is to say I =
lima→∞

∫ a
−a e

−x2dx = lima→∞
∫ a
−a e

−y2dy and hence I2 = lima→∞
∫ a
−a

∫ a
−a e

−(x2+y2)dxdy
by limit laws. Now using an easy inequality we can prove that the difference between
this integral and the integral over a disc over radius a goes to 0 as a→∞. Hence we use
change of variables and conclude that I2 = lim

∫ a
0

∫ 2π

0
e−r

2
rdrdθ and so on.)

Let S be the triangle bounded by x+y = 2 and the axes. Evaluate
∫ ∫

S
e(y−x)/(y+x)dxdy

(cheating again by improper integrals). Let u = y − x, v = y + x. Then the triangle is
bounded between u+ v = 0 = u− v, v = 2. The modulus of the Jacobian is |J | = 1

2
. So

we integrate 1
2

∫ 2

0

∫ v
−v e

u/vdudv which is 1
2

∫ 2

0
v(e− e−1)dv = e− e−1.

Proof in a special case: Assuming the change of variables is C2, we shall prove∫ ∫
R
dxdy =

∫ ∫
R̃
|J |dudv i.e. when f = 1, and Ω̃ = R̃ is a rectangle using Green’s

theorem. Assume WLOG that J > 0.
∫ ∫

R
dxdy =

∫
C
xdy. Likewise, note that the

RHS is
∫ ∫

R̃
∂
∂u

(x∂y
∂v

)− ∂
∂v

(x ∂y
∂u

). Thus by Green it is
∫ ∫

C̃
(x∂y

∂v
)du+ x∂y

∂v
dv). Suppose we

parametrise C̃ as (u(t), v(t)). Then (x(u(t), v(t)), y(u(t), v(t))) is a parametrisation for
the rectangle. Its velocity is (xuu

′+xvv
′, yuu

′+yvv
′). Using the change of parametrisation

formula, we are done. One can use this special case to prove the general case.
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Calculate the volume Vn(a) of an n-dimensional ball x2
1 + x2

2 ≤ +x2
n ≤ a2.

Firstly, we prove that Vn(a) = anVn(1): Let x = au where u is a part of a unit ball. Then
J = an and the change of variables formula does the trick. As for Vn(1), it equals the

iterated integral

∫
x2n−1+x2n≤1

∫ ∫
. . .

∫
x21+x22+...x2n−2≤1−x2n−1−x2n

dx1 . . . dxn−2dxn−1dxn. Now

the inner integrand is Vn(
√

1− x2
n−1 − x2

n) = (1−x2
n−1−x2

n)(n−2)/2Vn−2(1). Thus Vn(1) =

Vn−2(1)
∫ ∫

D
(1 − x2 − y2)(n−2)/2dxdy = 2πVn−2(1)

∫ 1

0
(1 − r2)(n−2)/2rdr = Vn−2(1)2π

n
. We

can calculate using this formula.
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