1 Recap

- Existence of determinants.
- $det(A) = det(A^T)$, row operations.
- Calculting using Gauss-Jordan.

2 The product formula

If A, B are two $n \times n$ matrices, then det(AB) = det(A) det(B). This formula is *extremely* important.

Proof: Denote the i^{th} column of B by B_i . Recall that the i^{th} column of (AB), i.e., $(AB)_i$ is AB_i . Thus $\det((AB)_1, (AB)_2, (AB)_3, \ldots) = \det(AB_1, AB_2, \ldots)$. Fix A and define $F(B_1, \ldots, B_n) = \det(AB_1, AB_2, \ldots)$. Note that F is

- 1. multilinear: $F(\ldots, tB_i + sv, \ldots) = \det(\ldots, A(tB_i + sv), \ldots) = \det(\ldots, tAB_i + sAv, \ldots)$ which is $t \det(\ldots, AB_i, \ldots) + s \det(\ldots, Av, \ldots)$ and hence $F(\ldots, tB_i + sv, \ldots) = tF(\ldots, B_i, \ldots) + sF(\ldots, v, \ldots)$.
- 2. alternating: $F(..., B_i = v, ..., B_j = v, ...) = \det(..., Av, ..., Av, ...) = 0.$

Hence by uniqueness, $F(B_1, \ldots, B_n) = \det(B_1, \ldots, B_n)F(e_1, \ldots, e_n)$. Thus $\det(AB) = \det(B) \det(A)$.

3 Invertibility and determinants

If an $n \times n$ matrix A is invertible then $AA^{-1} = I$. Thus $det(A) det(A^{-1}) = 1$ and hence $det(A) \neq 0$.

Recall that if a set of *n* vectors v_1, \ldots, v_n from \mathbb{F}^n is linearly dependent, then $\det(v_1, \ldots, v_n) = 0$. Thus, if $\det(A) \neq 0$, its columns are linearly independent and hence its column rank is full. Thus *A* is invertible.

Therefore, A is invertible if and only if $det(A) \neq 0$. Equivalently, the set v_1, \ldots, v_n is independent if and only if $det(v_1, \ldots, v_n) \neq 0$.

4 Block-diagonal matrices

Let A be an $n \times n$ matrix and D be an $m \times m$ matrix. Then the matrix $M = \begin{bmatrix} A & 0 \\ 0 & D \end{bmatrix}$ is an $(n+m) \times (n+m)$ "block diagonal" matrix. Note that $M = \begin{bmatrix} A & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} I & 0 \\ 0 & D \end{bmatrix}$. So det(M) is a product of two other determinants. The function $F(A_1, \ldots, A_n) =$ det $\begin{bmatrix} A & 0 \\ 0 & I \end{bmatrix}$ satisfies all the axioms of multilinear alternating functions and hence by uniqueness, $F(A_1, \ldots) = \det(A)F(e_1, \ldots) = \det(A)$. Likewise for D. Thus $\det(M) =$ det $(A) \det(D)$.

5 Change of basis

Given a linear map $T: V \to V$ where as always, V is a f.d vector space, how can we define its determinant?

One naive thing to do is to consider an ordered basis e_1, \ldots, e_n for both, the domain and the target. Then T is represented by a matrix [T]. We can attempt to define det(T) as det([T]). However, what happens when we change the ordered basis? Let e'_1, e'_2, \ldots be a new ordered basis. Recall that $e'_i = \sum_j P_{ji}e_j$ for some $P_{ji} \in \mathbb{F}$. Also recall that in an ordered basis the first column of the matrix associated to T is simply the component vector of $T(e'_1)$ and likewise for the other columns. Now $T(e'_i) = \sum_j P_{ji}T(e_j)$ which is $\sum P_{ji}[T]_{kj}e_k$.

$$\sum_{j,k} P_{ji}[T]_{kj} e_{j}$$

We wish to express $T(e'_i)$ in terms of the e's (as opposed to es). In your HW you will prove that P is invertible and that $[T]' = [P]^{-1}[T][P]$. Two $n \times n$ matrices A, B are said to be similar if there is an invertible matrix P such that $B = P^{-1}AP$. We just proved that if we change ordered bases using an invertible matrix P (whose columns represent the new basis) then [T] and [T]' are similar. One can prove the converse too (HW). Now one can see that $\det([T]') = \det([P]^{-1}) \det([T]) \det([P]) = \det([T])$. Hence the determinant of a linear map can be defined by choosing *any* ordered basis.