1 Recap

- Existence of determinants.
- $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$, row operations.
- Calculting using Gauss-Jordan.

2 The product formula

If A, B are two $n \times n$ matrices, then $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$. This formula is extremely important.
Proof: Denote the $i^{\text {th }}$ column of of B by B_{i}. Recall that the $i^{\text {th }}$ column of $(A B)$, i.e., $(A B)_{i}$ is $A B_{i}$. Thus $\operatorname{det}\left((A B)_{1},(A B)_{2},(A B)_{3}, \ldots\right)=\operatorname{det}\left(A B_{1}, A B_{2}, \ldots\right)$. Fix A and define $F\left(B_{1}, \ldots, B_{n}\right)=\operatorname{det}\left(A B_{1}, A B_{2}, \ldots\right)$. Note that F is

1. multilinear: $F\left(\ldots, t B_{i}+s v, \ldots\right)=\operatorname{det}\left(\ldots, A\left(t B_{i}+s v\right), \ldots\right)=\operatorname{det}\left(\ldots, t A B_{i}+\right.$ $s A v, \ldots)$ which is $t \operatorname{det}\left(\ldots, A B_{i}, \ldots\right)+s \operatorname{det}(\ldots, A v, \ldots)$ and hence $F\left(\ldots, t B_{i}+\right.$ $s v, \ldots)=t F\left(\ldots, B_{i}, \ldots\right)+s F(\ldots, v, \ldots)$.
2. alternating: $F\left(\ldots, B_{i}=v, \ldots, B_{j}=v, \ldots\right)=\operatorname{det}(\ldots, A v, \ldots, A v, \ldots)=0$.

Hence by uniqueness, $F\left(B_{1}, \ldots, B_{n}\right)=\operatorname{det}\left(B_{1}, \ldots, B_{n}\right) F\left(e_{1}, \ldots, e_{n}\right)$. Thus $\operatorname{det}(A B)=$ $\operatorname{det}(B) \operatorname{det}(A)$.

3 Invertibility and determinants

If an $n \times n$ matrix A is invertible then $A A^{-1}=I$. Thus $\operatorname{det}(A) \operatorname{det}\left(A^{-1}\right)=1$ and hence $\operatorname{det}(A) \neq 0$.
Recall that if a set of n vectors v_{1}, \ldots, v_{n} from \mathbb{F}^{n} is linearly dependent, then $\operatorname{det}\left(v_{1}, \ldots, v_{n}\right)=$ 0 . Thus, if $\operatorname{det}(A) \neq 0$, its columns are linearly independent and hence its column rank is full. Thus A is invertible.
Therefore, A is invertible if and only if $\operatorname{det}(A) \neq 0$. Equivalently, the set v_{1}, \ldots, v_{n} is independent if and only if $\operatorname{det}\left(v_{1}, \ldots, v_{n}\right) \neq 0$.

4 Block-diagonal matrices

Let A be an $n \times n$ matrix and D be an $m \times m$ matrix. Then the matrix $M=\left[\begin{array}{cc}A & 0 \\ 0 & D\end{array}\right]$.
is an $(n+m) \times(n+m)$ "block diagonal" matrix. Note that $M=\left[\begin{array}{cc}A & 0 \\ 0 & I\end{array}\right]\left[\begin{array}{cc}I & 0 \\ 0 & D\end{array}\right]$. So $\operatorname{det}(M)$ is a product of two other determinants. The function $F\left(A_{1}, \ldots, A_{n}\right)=$ $\operatorname{det}\left[\begin{array}{cc}A & 0 \\ 0 & I\end{array}\right]$ satisfies all the axioms of multilinear alternating functions and hence by uniqueness, $F\left(A_{1}, \ldots\right)=\operatorname{det}(A) F\left(e_{1}, \ldots\right)=\operatorname{det}(A)$. Likewise for D. Thus $\operatorname{det}(M)=$ $\operatorname{det}(A) \operatorname{det}(D)$.

5 Change of basis

Given a linear map $T: V \rightarrow V$ where as always, V is a f.d vector space, how can we define its determinant?
One naive thing to do is to consider an ordered basis e_{1}, \ldots, e_{n} for both, the domain and the target. Then T is represented by a matrix $[T]$. We can attempt to $\operatorname{define} \operatorname{det}(T)$ as $\operatorname{det}([T])$. However, what happens when we change the ordered basis? Let $e_{1}^{\prime}, e_{2}^{\prime}, \ldots$ be a new ordered basis. Recall that $e_{i}^{\prime}=\sum_{j} P_{j i} e_{j}$ for some $P_{j i} \in \mathbb{F}$. Also recall that in an ordered basis the first column of the matrix associated to T is simply the component vector of $T\left(e_{1}^{\prime}\right)$ and likewise for the other columns. Now $T\left(e_{i}^{\prime}\right)=\sum_{j} P_{j i} T\left(e_{j}\right)$ which is $\sum_{j, k} P_{j i}[T]_{k j} e_{k}$.
We wish to express $T\left(e_{i}^{\prime}\right)$ in terms of the e^{\prime} s (as opposed to es). In your HW you will prove that P is invertible and that $[T]^{\prime}=[P]^{-1}[T][P]$. Two $n \times n$ matrices A, B are said to be similar if there is an invertible matrix P such that $B=P^{-1} A P$. We just proved that if we change ordered bases using an invertible matrix P (whose columns represent the new basis) then $[T]$ and $[T]^{\prime}$ are similar. One can prove the converse too (HW). Now one can see that $\operatorname{det}\left([T]^{\prime}\right)=\operatorname{det}\left([P]^{-1}\right) \operatorname{det}([T]) \operatorname{det}([P])=\operatorname{det}([T])$. Hence the determinant of a linear map can be defined by choosing any ordered basis.

