1 Recap

- Powers of matrices are important.
- Defined eigenvalues, eigenvectors, diagonalisability, and eigenspaces. Did examples.
- Characteristic polynomial.

2 Diagonalisability

Since not every matrix is diagonalisable, it is natural to wonder when a matrix is so. Theorem: Let u_1, \ldots, u_k be eigenvectors of a linear map $T: V \to V$ such that the corresponding eigenvalues are distinct. Then the eigenvectors u_1, \ldots, u_k are linearly independent. As a consequence, if V is f.d. of dim n, and all n eigenvalues of T are distinct then T is diagonalisable. Proof of Theorem: We induct on k. For k = 1 it is by definition. Assume truth for $1, 2, \ldots, k-1$. Suppose $\sum_i c_i u_i = 0$. Then $\sum_i c_i T(u_i) = 0$. Hence $\sum_i c_i \lambda_i u_i = 0$. Eliminate c_1 by multiplying the first equation by λ_1 and subtracting to get $c_2(\lambda_2 - \lambda_1)u_2 + \ldots = 0$. By the induction hypothesis $c_2 = c_3 = \ldots = 0$. Thus, so is c_1 .

Given two square matrices A and B when are they similar? This question is not easy to answer. But there are necessary (but NOT sufficient) conditions that A and B must satisfy. Assume $A = P^{-1}BP$. Then $\det(\lambda I - A) = \det(\lambda P^{-1}P - P^{-1}BP) = \det(\lambda I - B)$. So their eigenvalues must be equal! In particular, $\det(A) = \det(B)$. Moreover, we define $tr(A) = \sum_i A_{ii}$. The coefficient of λ^{n-1} is -tr(A). Thus $tr(A) = \sum_i \lambda_i$. Hence tr(A) =tr(B) if A and B are similar. As a part of HW you will prove that tr(AB) = tr(BA).

1. Calculate the eigenvalues and eigenspaces of $T = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 3 & 4 \\ -1 & -1 & -2 \end{bmatrix}$ over \mathbb{C} . The relevant polynomial for us here is $\det(\lambda I - T) = \begin{vmatrix} \lambda - 2 & -1 & -1 \\ -2 & \lambda - 3 & -4 \\ 1 & 1 & \lambda + 2 \end{vmatrix}$. $C_2 \rightarrow$

 $\begin{array}{l} C_2 - C_3, \ R_3 \rightarrow R_3 + R_2 \ \text{and expanding along the second column yields } p_T(\lambda) = \\ (\lambda + 1)(\lambda - 1)(\lambda - 3). \ \text{So the eigenvalues are } -1, 1, 3. \ \text{They are distinct and hence} \\ \text{the matrix is diagonalisable. So we find the eigenspaces by solving } Tv = \lambda v. \ \text{For} \\ \lambda = 1 \ \text{and } v = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} \text{ we need to solve } (I - T)v = 0. \ \text{Let's do row operations to the} \\ \text{augmented matrix } [I - T|0]. \ R_3 \rightarrow R_3 + R_1, \ R_2 \rightarrow R_2 - 2R_1 \text{ yield } 2v_3 = 0 = -2v_3 = \\ -v_1 - v_2 - v_3. \ \text{Hence } v_3 = 0, v_2 = -v_1. \ \text{Thus every eigenvector corresponding to} \\ \lambda = 1 \ \text{is of the form } t(1, -1, 0) \ \text{where } t \neq 0 \ \text{is any complex number. Likewise, the} \\ \text{eigenspace of } \lambda = -1 \ \text{is spanned by } (0, 1, -1) \ \text{and that of } \lambda = 3 \ \text{is spanned by} \\ (2, 3, -1). \ \text{To find a matrix } P \ \text{such that } P^{-1}TP \ \text{is } D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{bmatrix}, \ \text{note that} \\ P^{-1}TPe_1 = De_1 = \lambda_1e_1 = e_1. \ \text{Thus the first column of } P \ \text{must be an eigenvector} \end{array}$

corresponding to $\lambda = 1$, i.e., $\begin{array}{c} 1 \\ -1 \\ 0 \end{array}$ will do. Likewise for the other columns. Thus P

is $\begin{bmatrix} 1 & 0 & 2 \\ -1 & 1 & 3 \\ 0 & -1 & -1 \end{bmatrix}$. More generally, if we have a basis of eigenvectors then $P^{-1}TP$

is diagonal where the columns of P are the eigenvectors. So $T = PDP^{-1}$.

2.
$$T = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 3 & 4 \end{bmatrix}$$
. $\det(\lambda I - T) = (\lambda - 1)^2(\lambda - 7)$ by $C_2 \to C_2 - C_1, R_3 \to R_3 + R_2$

and expanding along the second column. For $\lambda = 1$, consider [I - T|0] and do $R_2 \to R_2 - 2R_1, R_3 \to R_3 - 3R_1$ to get $-v_1 - v_2 - v_3 = 0$. Hence (1, 0, -1), (0, 1, -1) span the eigenspace of $\lambda = 1$. Likewise, (1, 2, 3) spans the eigenspace of $\lambda = 7$. Thus $P^{-1}TP = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ where $P = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \end{bmatrix}$

$$P^{-1}TP = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 7 \end{bmatrix} \text{ where } P = \begin{bmatrix} 0 & 1 & 2 \\ -1 & -1 & 3 \end{bmatrix}$$

3. $T = \begin{bmatrix} 2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3 \end{bmatrix}$. $\det(\lambda I - T) = (\lambda - 2)^2(\lambda - 4)$. For $\lambda = 2$, the eigenspace is

1-dimensional and is spanned by (-1, 1, 1). For $\lambda = 4$, it is spanned by (1, -1, 1). Hence T is NOT diagonalisable.