1 Recap

- Powers of matrices are important.
- Defined eigenvalues, eigenvectors, diagonalisability, and eigenspaces. Did examples.
- Characteristic polynomial.

2 Diagonalisability

Since not every matrix is diagonalisable, it is natural to wonder when a matrix is so. Theorem: Let u_{1}, \ldots, u_{k} be eigenvectors of a linear map $T: V \rightarrow V$ such that the corresponding eigenvalues are distinct. Then the eigenvectors u_{1}, \ldots, u_{k} are linearly independent. As a consequence, if V is f.d. of $\operatorname{dim} n$, and all n eigenvalues of T are distinct then T is diagonalisable. Proof of Theorem: We induct on k. For $k=1$ it is by definition. Assume truth for $1,2, \ldots, k-1$. Suppose $\sum_{i} c_{i} u_{i}=0$. Then $\sum_{i} c_{i} T\left(u_{i}\right)=0$. Hence $\sum_{i} c_{i} \lambda_{i} u_{i}=0$. Eliminate c_{1} by multiplying the first equation by λ_{1} and subtracting to get $c_{2}\left(\lambda_{2}-\lambda_{1}\right) u_{2}+\ldots=0$. By the induction hypothesis $c_{2}=c_{3}=\ldots=0$. Thus, so is c_{1}.
Given two square matrices A and B when are they similar? This question is not easy to answer. But there are necessary (but NOT sufficient) conditions that A and B must satisfy. Assume $A=P^{-1} B P$. Then $\operatorname{det}(\lambda I-A)=\operatorname{det}\left(\lambda P^{-1} P-P^{-1} B P\right)=\operatorname{det}(\lambda I-B)$. So their eigenvalues must be equal! In particular, $\operatorname{det}(A)=\operatorname{det}(B)$. Moreover, we define $\operatorname{tr}(A)=\sum_{i} A_{i i}$. The coefficient of λ^{n-1} is $-\operatorname{tr}(A)$. Thus $\operatorname{tr}(A)=\sum_{i} \lambda_{i}$. Hence $\operatorname{tr}(A)=$ $\operatorname{tr}(B)$ if A and B are similar. As a part of HW you will prove that $\operatorname{tr}(A B)=\operatorname{tr}(B A)$.

1. Calculate the eigenvalues and eigenspaces of $T=\left[\begin{array}{ccc}2 & 1 & 1 \\ 2 & 3 & 4 \\ -1 & -1 & -2\end{array}\right]$ over \mathbb{C}. The relevant polynomial for us here is $\operatorname{det}(\lambda I-T)=\left|\begin{array}{ccc}\lambda-2 & -1 & -1 \\ -2 & \lambda-3 & -4 \\ 1 & 1 & \lambda+2\end{array}\right| . C_{2} \rightarrow$ $C_{2}-C_{3}, R_{3} \rightarrow R_{3}+R_{2}$ and expanding along the second column yields $p_{T}(\lambda)=$ $(\lambda+1)(\lambda-1)(\lambda-3)$. So the eigenvalues are $-1,1,3$. They are distinct and hence the matrix is diagonalisable. So we find the eigenspaces by solving $T v=\lambda v$. For $\lambda=1$ and $v=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]$ we need to solve $(I-T) v=0$. Let's do row operations to the augmented matrix $[I-T \mid 0] . R_{3} \rightarrow R_{3}+R_{1}, R_{2} \rightarrow R_{2}-2 R_{1}$ yield $2 v_{3}=0=-2 v_{3}=$ $-v_{1}-v_{2}-v_{3}$. Hence $v_{3}=0, v_{2}=-v_{1}$. Thus every eigenvector corresponding to $\lambda=1$ is of the form $t(1,-1,0)$ where $t \neq 0$ is any complex number. Likewise, the eigenspace of $\lambda=-1$ is spanned by $(0,1,-1)$ and that of $\lambda=3$ is spanned by $(2,3,-1)$. To find a matrix P such that $P^{-1} T P$ is $D=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3\end{array}\right]$, note that $P^{-1} T P e_{1}=D e_{1}=\lambda_{1} e_{1}=e_{1}$. Thus the first column of P must be an eigenvector
corresponding to $\lambda=1$, i.e., -1 will do. Likewise for the other columns. Thus P 0 is $\left[\begin{array}{ccc}1 & 0 & 2 \\ -1 & 1 & 3 \\ 0 & -1 & -1\end{array}\right]$. More generally, if we have a basis of eigenvectors then $P^{-1} T P$ is diagonal where the columns of P are the eigenvectors. So $T=P D P^{-1}$.
2. $T=\left[\begin{array}{lll}2 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 3 & 4\end{array}\right] \cdot \operatorname{det}(\lambda I-T)=(\lambda-1)^{2}(\lambda-7)$ by $C_{2} \rightarrow C_{2}-C_{1}, R_{3} \rightarrow R_{3}+R_{2}$ and expanding along the second column. For $\lambda=1$, consider $[I-T \mid 0]$ and do $R_{2} \rightarrow R_{2}-2 R_{1}, R_{3} \rightarrow R_{3}-3 R_{1}$ to get $-v_{1}-v_{2}-v_{3}=0$. Hence $(1,0,-1),(0,1,-1)$ span the eigenspace of $\lambda=1$. Likewise, $(1,2,3)$ spans the eigenspace of $\lambda=7$. Thus $P^{-1} T P=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 7\end{array}\right]$ where $P=\left[\begin{array}{ccc}1 & 0 & 1 \\ 0 & 1 & 2 \\ -1 & -1 & 3\end{array}\right]$.
3. $T=\left[\begin{array}{ccc}2 & -1 & 1 \\ 0 & 3 & -1 \\ 2 & 1 & 3\end{array}\right] \cdot \operatorname{det}(\lambda I-T)=(\lambda-2)^{2}(\lambda-4)$. For $\lambda=2$, the eigenspace is 1 -dimensional and is spanned by $(-1,1,1)$. For $\lambda=4$, it is spanned by $(1,-1,1)$. Hence T is NOT diagonalisable.
