
1 Recap

• Powers of matrices are important.

• Defined eigenvalues, eigenvectors, diagonalisability, and eigenspaces. Did examples.

• Characteristic polynomial.

2 Diagonalisability

Since not every matrix is diagonalisable, it is natural to wonder when a matrix is so.
Theorem: Let u1, . . . , uk be eigenvectors of a linear map T : V → V such that the
corresponding eigenvalues are distinct. Then the eigenvectors u1, . . . , uk are linearly in-
dependent. As a consequence, if V is f.d. of dim n, and all n eigenvalues of T are distinct
then T is diagonalisable. Proof of Theorem: We induct on k. For k = 1 it is by defini-
tion. Assume truth for 1, 2, . . . , k−1. Suppose

∑
i ciui = 0. Then

∑
i ciT (ui) = 0. Hence∑

i ciλiui = 0. Eliminate c1 by multiplying the first equation by λ1 and subtracting to
get c2(λ2 − λ1)u2 + . . . = 0. By the induction hypothesis c2 = c3 = . . . = 0. Thus, so is
c1.
Given two square matrices A and B when are they similar? This question is not easy
to answer. But there are necessary (but NOT sufficient) conditions that A and B must
satisfy. Assume A = P−1BP . Then det(λI−A) = det(λP−1P −P−1BP ) = det(λI−B).
So their eigenvalues must be equal! In particular, det(A) = det(B). Moreover, we define
tr(A) =

∑
iAii. The coefficient of λn−1 is −tr(A). Thus tr(A) =

∑
i λi. Hence tr(A) =

tr(B) if A and B are similar. As a part of HW you will prove that tr(AB) = tr(BA).

1. Calculate the eigenvalues and eigenspaces of T =

 2 1 1
2 3 4
−1 −1 −2

 over C. The

relevant polynomial for us here is det(λI − T ) =

∣∣∣∣∣∣
λ− 2 −1 −1
−2 λ− 3 −4
1 1 λ+ 2

∣∣∣∣∣∣. C2 →

C2 − C3, R3 → R3 + R2 and expanding along the second column yields pT (λ) =
(λ+ 1)(λ− 1)(λ− 3). So the eigenvalues are −1, 1, 3. They are distinct and hence
the matrix is diagonalisable. So we find the eigenspaces by solving Tv = λv. For

λ = 1 and v =

 v1
v2
v3

 we need to solve (I−T )v = 0. Let’s do row operations to the

augmented matrix [I−T |0]. R3 → R3+R1, R2 → R2−2R1 yield 2v3 = 0 = −2v3 =
−v1 − v2 − v3. Hence v3 = 0, v2 = −v1. Thus every eigenvector corresponding to
λ = 1 is of the form t(1,−1, 0) where t 6= 0 is any complex number. Likewise, the
eigenspace of λ = −1 is spanned by (0, 1,−1) and that of λ = 3 is spanned by

(2, 3,−1). To find a matrix P such that P−1TP is D =

 1 0 0
0 −1 0
0 0 3

, note that

P−1TPe1 = De1 = λ1e1 = e1. Thus the first column of P must be an eigenvector

1



corresponding to λ = 1, i.e.,
1
−1
0

will do. Likewise for the other columns. Thus P

is

 1 0 2
−1 1 3
0 −1 −1

. More generally, if we have a basis of eigenvectors then P−1TP

is diagonal where the columns of P are the eigenvectors. So T = PDP−1.

2. T =

 2 1 1
2 3 2
3 3 4

. det(λI − T ) = (λ− 1)2(λ− 7) by C2 → C2 −C1, R3 → R3 +R2

and expanding along the second column. For λ = 1, consider [I − T |0] and do
R2 → R2−2R1, R3 → R3−3R1 to get −v1−v2−v3 = 0. Hence (1, 0,−1), (0, 1,−1)
span the eigenspace of λ = 1. Likewise, (1, 2, 3) spans the eigenspace of λ = 7. Thus

P−1TP =

 1 0 0
0 1 0
0 0 7

 where P =

 1 0 1
0 1 2
−1 −1 3

.

3. T =

 2 −1 1
0 3 −1
2 1 3

. det(λI − T ) = (λ− 2)2(λ− 4). For λ = 2, the eigenspace is

1-dimensional and is spanned by (−1, 1, 1). For λ = 4, it is spanned by (1,−1, 1).
Hence T is NOT diagonalisable.

2


	Recap
	Diagonalisability

