
1 Recap

• Gauss Jordan elimination

2 More on linear equations

In general, given an arbitrary row-reduced echelon matrix C, the number of non-zero
rows is called the row rank of C. It is the number of pivots in C. It is also the dimension
of the row space (HW). Bear in mind that the row space does not change under row
operations.
Using the nullity-rank theorem one can prove that the row rank of C equals its column
rank ( the dimension of the column space/the number of non-zero columns in the Column
reduced Column-echelon form/the number of non-zero rows in the RREF of AT ). Thus
we can talk unambiguously about the rank of a matrix.
Returning back to [Ã|b̃], the number of “free variables” equals the number of columns
minus the row rank.

3 Inverses of linear maps vs matrices

An n×n (square) matrix A is said to be invertible if there exists an n×n matrix B such
that BA = AB = I. B is called the inverse of A and is denoted as A−1. Recall that
A defines a linear map T : Fn → Fn as T (v) = Av and the matrix of T in the standard
basis of Fn is A. Note that the column space of A is the range of T .
Here is an important result: The linear map T is invertible if and only if A is an invertible
matrix. Moreover, the matrix associated to T−1 in the standard basis of Fn is A−1.

Proof: If T is (left-)invertible: There is a map T−1 : V → V such that T−1T =
TT−1 = I. Suppose the matrix associated to T−1 is B. By properties of composition,
BA = AB = I. Hence A is invertible and B is its inverse.
If A is (left-)invertible: There is a matrix B such that BA = I. Hence, the correspond-
ing linear map T̃ satisfies T̃ T = I. Since a left inverse is the inverse, T T̃ = I. ( As a
consequence, the left inverse of the matrix A is its right inverse.)

An n × n matrix A is invertible if and only if its (column) rank is n. ( Sometimes,
one says “the column rank is full” or “the matrix has full rank”.) Alternatively, A is
invertible if and only if Ax = 0 has a trivial solution.
Proof: If A is invertible: The linear map T : Fn → Fn defined as T (v) = Av is also
invertible. Hence, if e1, . . . , en is a basis, then so is T (e1), T (e2), . . .. Thus, the column
space is all of Fn. Hence the rank is n.
If the rank is n: The column space is all of Fn. Hence T (e1), T (e2), . . . T (en) form a basis.
Therefore T is invertible. Thus, so is A.

By nullity-rank theorem, the alternative statement is true as well.
Later on, we shall see that the rank is full if and only if a certain expression called the
‘determinant’ is non-zero.
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4 How does one compute inverses ?

The key observation is that computing an inverse is the same as solving a certain system
of linear equations. This system can of course be solved ( or proved to be inconsistent)
using the Gauss-Jordan algorithm.
Indeed, suppose A is invertible and [A−1]ij = bij. Then AB = I is equivalent to∑

k aikbkj = δij where δij = [I]ij ( the so called Kronecker delta.) In other words, for
every fixed j, we have to solve a linear system for b1j, b2j, . . .. The other way of looking
at the problem is that each column of B is an unknown vector xi satisfying Axi = ei.

Gauss-Jordan elimination to compute inverses:

• We need to form n augmented matrices [A|e1], [A|e2], . . . , [A|en].

• Unless the resulting equations are inconsistent, that is, A is not invertible, one can
bring all n augmented mat rices to their RREFs simultaneously, by the same row
operations. ( Indeed, the A part is the same for all n matrices.)

So in practice, one applies row operations to [A|I] to get [I|A−1]. ( After all, if the column
rank is full, then the RREF is I.) Note that this procedue also lets us know whether
A is invertible or not. On paper, if A is invertible, and we know the inverse A−1, any
linear system Ax = b can be solved using x = A−1b. However, in practice, computing the
inverse is inefficient and subject to rounding-off errors.

Example: Determine if A =

 2 3 4
2 1 1
−1 1 2

 is invertible. If so, find the inverse.

We must row-reduce [A|I]. R1 ↔ R3 and R1 → −R1:

 1 −1 −2 0 0 −1
2 1 1 0 1 0
2 3 4 1 0 0

.

To clear the first column, R2 → R2 − 2R1, R3 → R3 − 2R1:

 1 −1 −2 0 0 −1
0 3 5 0 1 2
0 5 8 1 0 2

.

R2 → R2/3, R3 → R3 − 5R2, R1 → R1 +R2:

 1 0 −1
3

0 1
3
−1

3

0 1 5
3

0 1
3

2
3

0 0 −1
3

1 −5
3
−4

3

.

R3 → −3R3, R2 → R2 − 5
3
R3, R1 → R1 + 1

3
R3:

 1 0 0 −1 2 1
0 1 0 5 −8 −6
0 0 1 −3 5 4

.

Hence A is invertible and A−1 is

 −1 2 1
5 −8 −6
−3 5 4

.
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