1 Recap

- Matrices with distinct eigenvalues are diagonalisable.
- Examples. (If A is diagonalisable, then D consists of eigenvalues and $P^{-1} A P=D$ where the $i^{\text {th }}$ column of P is an eigenvector of λ_{i} such that the chosen eigenvectors are linearly independent.)

2 Diagonalisability

Three questions:

- When are the eigenvalues of a complex matrix real?
- Just by looking at certain kinds of matrices can we deduce that they are diagonalisable?
- Can we diagonalise by rotations (linear maps that preserve lengths and can be continuously deformed from one to the other)?

The answer to all three questions is "Yes" in an important special case.

3 Hermitian linear maps and matrices

Let V be a complex inner product space. Let $T: V \rightarrow V$ be linear. If v is an eigenvector of T with eigenvalue λ, then $\lambda=\frac{\langle T v, v\rangle}{\langle v, v\rangle}$ (by an easy calculation). Note that $\bar{\lambda}=\frac{\langle v, T v\rangle}{\langle v, v\rangle}$. Thus λ is real if and only if $\langle v, T v\rangle=\langle T v, v\rangle$ for that eigenvector. Likewise, it is purely imaginary if and only if $\langle v, T v\rangle=-\langle T v, v\rangle$.
Def: $T: V \rightarrow V$ is called Hermitian if $\langle T v, w\rangle=\langle v, T w\rangle$ for every $v, w \in V$. It is called skew-Hermitian if $\langle T v, w\rangle=-\langle v, T w\rangle$ for every $v, w \in V$. If V is a real vector space T is called symmetric or skew-symmetric instead.
Clearly all eigenvalues of Hermitian linear maps are real, whereas they are purely imaginary for skew-Hermitian ones.

If A is an $n \times n$ complex matrix consider $T: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ given by $T(v)=A v$. Assume that \mathbb{C}^{n} is endowed with the usual dot product. T is Hermitian if and only if $\langle T v, w\rangle=(A v)^{T} \bar{w}=v^{T} A^{T} \bar{w}$ equals $\langle v, T w\rangle=v^{T} \bar{A} \bar{w}$ for all $v, w . A^{T}=\bar{A}$, i.e., $\overline{A^{T}}=A$ Define the adjoint $A^{\dagger}:=\overline{A^{T}}$. So a Hermitian matrix satisfies $A^{\dagger}=A$ and a skewHermitian one satisfies $A^{\dagger}=-A$.
Let V be a f.d. complex inner product space and $T: V \rightarrow V$ be linear. Choose an orthonormal basis. Then $\langle v, w\rangle=v^{T} \bar{w}$. Thus the matrix of T is Hermitian if and only if T is a Hermitian linear map and likewise for skew-Hermitian.

Examples:

- Let $V=\mathcal{C}^{\infty}([0,1] ; \mathbb{C})$, with $\langle f, g\rangle=\int_{0}^{1} f(t) \bar{g}(t) d t$, and $T: V \rightarrow V$ be $T(f)=x f$. Then $\langle T f, g\rangle=\int_{0}^{1} x f(x) \bar{g}(x) d x=\langle f, T g\rangle$.
- Let $V=\mathcal{C}^{\infty}([0,1] ; \mathbb{C})$, with $\langle f, g\rangle=\int_{0}^{1} f \bar{g} d t$, and $T: V \rightarrow V$ be $T(f)=\sqrt{-1} \hbar f^{\prime}$. Then $\langle T f, g\rangle=\int_{0}^{1} \sqrt{-1} \hbar f^{\prime} \bar{g} d t=(\sqrt{-1} \hbar f \bar{g})(1)-(\sqrt{-1} \hbar f \bar{g})(0)+\int_{0}^{1} f \overline{\sqrt{-1} \hbar g^{\prime}} d t$. Thus, the map is not Hermitian in general.

4 Orthogonality

Theorem: Let $T: V \rightarrow V$ be a Hermitian/Skew-Hermitian linear map. Let $\lambda \neq \mu$ be distinct eigenvalues of T with eigenvectors v, w respectively. Then $\langle v, w\rangle=0$.
Proof: $\langle v, T w\rangle= \pm \mu\langle v, w\rangle$. But $\langle v, T w\rangle= \pm\langle T v, w\rangle= \pm \lambda\langle v, w\rangle$. Comparing these two, since $\lambda \neq \mu,\langle v, w\rangle=0$.
In other words, if a Hermitian linear map has distinct eigenvalues then it has an orthonormal basis of eigenvectors. That is, a given orthonormal basis can be "rotated" to a new orthonormal basis where the matrix of T is diagonal.

5 The Spectral Theorem

Theorem: Let V be an n-dimensional complex inner product space and $T: V \rightarrow V$ be Hermitian or skew-Hermitian. Then there exist n orthonormal eigenvectors of T forming an orthonormal basis of V.

A matrix/linear map $U: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ preserves the usual dot product, i.e., $\langle U v, U w\rangle=$ $\langle v, w\rangle$ if and only if $U^{T} \bar{U}=I$, i.e., $U^{\dagger} U=I$ and hence $U U^{\dagger}=I$. Def: A complex $n \times n$ matrix U is said to be unitary if $U U^{\dagger}=U^{\dagger} U=I$, i.e, $U^{-1}=U^{\dagger}$. A real matrix O is said to be orthogonal if $O O^{T}=O^{T} O=I$.

