1 Recap

- Matrices with distinct eigenvalues are diagonalisable.
- Examples. (If A is diagonalisable, then D consists of eigenvalues and $P^{-1}AP = D$ where the i^{th} column of P is an eigenvector of λ_i such that the chosen eigenvectors are linearly independent.)

2 Diagonalisability

Three questions:

- When are the eigenvalues of a complex matrix real?
- Just by *looking* at certain kinds of matrices can we deduce that they are diagonalisable?
- Can we diagonalise by *rotations* (linear maps that preserve lengths and can be continuously deformed from one to the other)?

The answer to all three questions is "Yes" in an important special case.

3 Hermitian linear maps and matrices

Let V be a complex inner product space. Let $T: V \to V$ be linear. If v is an eigenvector of T with eigenvalue λ , then $\lambda = \frac{\langle Tv, v \rangle}{\langle v, v \rangle}$ (by an easy calculation). Note that $\overline{\lambda} = \frac{\langle v, Tv \rangle}{\langle v, v \rangle}$. Thus λ is real if and only if $\langle v, Tv \rangle = \langle Tv, v \rangle$ for that eigenvector. Likewise, it is purely imaginary if and only if $\langle v, Tv \rangle = -\langle Tv, v \rangle$.

Def: $T: V \to V$ is called *Hermitian* if $\langle Tv, w \rangle = \langle v, Tw \rangle$ for every $v, w \in V$. It is called *skew-Hermitian* if $\langle Tv, w \rangle = -\langle v, Tw \rangle$ for every $v, w \in V$. If V is a real vector space T is called symmetric or skew-symmetric instead.

Clearly all eigenvalues of Hermitian linear maps are real, whereas they are purely imaginary for skew-Hermitian ones.

If A is an $n \times n$ complex matrix consider $T : \mathbb{C}^n \to \mathbb{C}^n$ given by T(v) = Av. Assume that \mathbb{C}^n is endowed with the usual dot product. T is Hermitian if and only if $\langle Tv, w \rangle = (Av)^T \bar{w} = v^T A^T \bar{w}$ equals $\langle v, Tw \rangle = v^T \bar{A} \bar{w}$ for all v, w. $A^T = \bar{A}$, i.e., $\overline{A^T} = A$ Define the adjoint $A^{\dagger} := \overline{A^T}$. So a Hermitian matrix satisfies $A^{\dagger} = A$ and a skew-Hermitian one satisfies $A^{\dagger} = -A$.

Let V be a f.d. complex inner product space and $T: V \to V$ be linear. Choose an orthonormal basis. Then $\langle v, w \rangle = v^T \overline{w}$. Thus the matrix of T is Hermitian if and only if T is a Hermitian linear map and likewise for skew-Hermitian.

Examples:

• Let $V = \mathcal{C}^{\infty}([0,1];\mathbb{C})$, with $\langle f,g \rangle = \int_0^1 f(t)\overline{g}(t)dt$, and $T: V \to V$ be T(f) = xf. Then $\langle Tf,g \rangle = \int_0^1 xf(x)\overline{g}(x)dx = \langle f,Tg \rangle$. • Let $V = \mathcal{C}^{\infty}([0,1];\mathbb{C})$, with $\langle f,g \rangle = \int_0^1 f\bar{g}dt$, and $T: V \to V$ be $T(f) = \sqrt{-1}\hbar f'$. Then $\langle Tf,g \rangle = \int_0^1 \sqrt{-1}\hbar f'\bar{g}dt = (\sqrt{-1}\hbar f\bar{g})(1) - (\sqrt{-1}\hbar f\bar{g})(0) + \int_0^1 f\sqrt{-1}\hbar g'dt$. Thus, the map is *not* Hermitian in general.

4 Orthogonality

Theorem: Let $T: V \to V$ be a Hermitian/Skew-Hermitian linear map. Let $\lambda \neq \mu$ be distinct eigenvalues of T with eigenvectors v, w respectively. Then $\langle v, w \rangle = 0$. Proof: $\langle v, Tw \rangle = \pm \mu \langle v, w \rangle$. But $\langle v, Tw \rangle = \pm \langle Tv, w \rangle = \pm \lambda \langle v, w \rangle$. Comparing these two, since $\lambda \neq \mu$, $\langle v, w \rangle = 0$. \Box In other words, if a Hermitian linear map has distinct eigenvalues then it has an *orthonor-mal* basis of eigenvectors. That is, a given orthonormal basis can be "rotated" to a new orthonormal basis where the matrix of T is diagonal.

5 The Spectral Theorem

Theorem: Let V be an n-dimensional complex inner product space and $T: V \to V$ be Hermitian or skew-Hermitian. Then there exist n orthonormal eigenvectors of T forming an orthonormal basis of V.

A matrix/linear map $U : \mathbb{C}^n \to \mathbb{C}^n$ preserves the usual dot product, i.e., $\langle Uv, Uw \rangle = \langle v, w \rangle$ if and only if $U^T \overline{U} = I$, i.e., $U^{\dagger}U = I$ and hence $UU^{\dagger} = I$. Def: A complex $n \times n$ matrix U is said to be unitary if $UU^{\dagger} = U^{\dagger}U = I$, i.e., $U^{-1} = U^{\dagger}$. A real matrix O is said to be orthogonal if $OO^T = O^T O = I$.