1 Recap

- Row rank, column rank.
- Inverses of matrices using Gauss-Jordan.

2 Elementary row matrices

Each of the row operations is linear, i.e., a linear map from the row space to itself. An interesting observation is: If $C=A B$, the rows of C are linear combinations of the rows of B and the columns of C are linear combinations of the columns of A. So we expect an elementary row operation on an $m \times n$ matrix A to be equivalent to left-multiplying with an $m \times m$ matrix. Indeed, these matrices exist and are called elementary row matrices.

- $R_{i} \leftrightarrow R_{j}: B=E_{1} A$ where E_{1} is the matrix obtained by interchanging the rows of $I_{m \times m}$. It is invertible with the inverse being itself.
- $R_{i} \rightarrow c R_{i}(c \neq 0): B=E_{2} A$ where E_{2} is again obtained the same way. Its $i^{\text {th }}$ row has c instead of 1 . Its inverse has $\frac{1}{c}$ instead of 1 .
- $R_{i} \rightarrow R_{i}+c R_{j}: B=E_{3} A$ where E_{3} is obtained similarly. Its inverse is obtained by replacing c with $-c$.

So row-reduction is equivalent to left-multiplying with a product of elementary row matrices. So if row-reduction leads to I, , then $E A=I$ and hence $A^{-1}=E$.

3 Determinants - motivation and definition

Suppose we consider $a x+b y=e, c x+d y=f$. We can easily solve to get $(a d-b c) x=$ $e d-b f,(a d-b c) y=a f-c e$. Thus if $a d-b c=0$ then unless $e d-b f=0, a f-c e=0$, we cannot solve the equations. If $a d-b c \neq 0$, we have a unique solution. By our criterion for invertibility, the coefficient matrix is invertible if and only if $a d-b c \neq 0$.
Solving the above linear system is equivalent to finding the intersection set of two lines (Actually, if $a=b=e=0$, then it is just one line and if $a=b=e=c=d=f=0$, it is all of \mathbb{R}^{2} !)
Either they intersect at a single point or they are parallel and do not intersect or they intersect in a line or they are all of \mathbb{R}^{2}. Indeed, if $a d-b c=0, e d-b f=0, a f-c e=0$, they coincide. If they intersect non-trivially the area of the "obvious" parallelogram is not zero. The (signed) area is $\vec{v} \times \vec{w}=(a d-b c) \hat{k}$.

For 3×3 systems, clearly a unique solution implies that the (signed) volume of a parallelopiped is non-zero. This volume is $(\vec{u} \times \vec{v}) \cdot \vec{w}$. (The "scalar triple product".)
By analogy, the (signed) volume in n-dimensions ought to be some complicated polynomial expression in the components. This quantity shall be called the determinant of the square matrix formed by the n vectors.

Note that the (signed) volume of n-vectors in $\mathbb{R}^{n}, v_{1}, \ldots, v_{n}$ must

- scale with each vector,
- be 1 for the standard basis,
- vanish if two vectors are equal, and
- Since the only operations in a general vector space are linear combinations, we must check how the 2, 3-dimensional volumes behave. $\left(\vec{v}_{1}+\vec{v}_{2}\right) \times \vec{w}=\vec{v}_{1} \times \vec{w}+\vec{v}_{2} \times \vec{w}$ and likewise for the triple product. So we hope that the signed volume in higher dimensions obeys this multi-linearity property as well. To prove such a statement, we need to resort to integration in more than one variable.

Let $v_{1}, v_{2}, \ldots, v_{n}$ be an ordered collection of n vectors in \mathbb{F}^{n}. A function F that takes this tuple to \mathbb{F} is called a determinant function if it satisfies the following axioms.

- Scaling: If v_{k} is replaced with $t v_{k}$ (and the other v_{i} s are left intact), then F gets scaled by t.
- Additivity: $F\left(\ldots, v_{k}+w, \ldots\right)=F\left(\ldots, v_{k}, \ldots\right)+F(\ldots, w, \ldots)$. A function that satisfies the first two properties is said to be multilinear.
- Alternating: $F(\ldots, v, \ldots, v, \ldots)=0$.
- Normalisation: $F\left(e_{1}, \ldots, e_{n}\right)=1$.

4 Properties of an alternating (not necessarily normalised) multilinear function

- Linearity with more than one vector: $F\left(\ldots, v_{k}+c_{1} w_{1}+c_{2} w_{2}+\ldots+c_{m} w_{m}, \ldots\right)=$ $F\left(\ldots, v_{k}, \ldots\right)+c_{1} F\left(\ldots, w_{1}, \ldots\right)+\ldots$ (HW).
- It vanishes if some vector is $0: F(\ldots, 0, \ldots)=0 F(\ldots, 0, \ldots)=0$.
- (Antisymmetry) If $v_{i} \leftrightarrow v_{j} F$ changes sign: $F\left(\ldots, v_{i}+v_{j}, \ldots, v_{i}+v_{j}, \ldots\right)=0$ and hence $F\left(\ldots, v_{i}, \ldots, v_{i}+v_{j}, \ldots\right)=-F\left(\ldots, v_{j}, \ldots, v_{i}+v_{j}, \ldots\right)$. Thus $0+$ $F\left(\ldots, v_{i}, \ldots v_{j}, \ldots\right)=-F\left(\ldots, v_{j}, \ldots, v_{i}, \ldots\right)+0$.
- If the vectors are linearly dependent then F vanishes: Suppose $\sum_{i} c_{i} v_{i}=0$ with $c_{k} \neq$ 0. Then $F=\frac{1}{c_{k}} F\left(\ldots, c_{k} v_{k}, \ldots\right)$ which is $\frac{1}{c_{k}} F\left(\ldots,-\sum_{i \neq k} c_{i} v_{i}\right)=\sum_{i \neq k} \frac{-c_{i}}{c_{k}} F\left(\ldots, v_{i}, \ldots, v_{i}, \ldots\right)=$ 0.

