
1 Recap

• Elementary row matrices.

• Determinant definition.

2 Determinants

Uniqueness theorem: Suppose d is a determinant function and f is an alternatng multilin-
ear function. Then f(v1, . . . , vn) = d(v1, . . . , vn)f(e1, . . . , en). So if f is also a determinant
function, then f = d.
Proof: Let vi =

∑
j cijej. Then f(

∑
j1
c1j1ej1 ,

∑
j2
c2j2ej2 , . . .) =

∑
c1j1c2j2 . . . f(ej1 , ej2 , . . .).

If any of the ji coincide, that term will be 0. So we may assume that all the ji are differ-
ent, i.e., j1, j2, . . . , jn is a permutation of 1, 2, . . . , n.
We can prove by induction on n that any permutation can be obtained by a finite number
of interchanges. Indeed, it is trivial for n = 1. One of ji corresponds to n. Suppose it is
jk. Now [1, 2, . . . , n−1]→ [j1, . . . , jk−1, jn, jk+1, . . . , jn−1] is a permutation of n−1 things.
By the induction hypothesis, it can be obtained using a finite number of interchanges.
That is, [1, 2 . . . , n] → [j1, . . . , jk−1, jn, jk+1, . . . , jn−1, jk = n] can be obtained that way.
Now interchange jk with jn to get the desired permutation.
Using the above result we see that d(ej1 , . . . , ejn) = (−1)Kd(e1, . . . , en) = (−1)K and
f(ej1 , . . . , ejn) = (−1)Kf(e1, . . . , en) = d(ej1 , . . . , ejn)f(e1, . . . , en). Thus f(v1, . . . , vn) =∑

c1j1 . . . d(ej1 , . . . , ejn)f(e1, . . . , en) = d(v1, . . . , vn)f(e1, . . . , en).

Assuming existence: 2 × 2 determinants: Consider
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which can be column-transformed to = ad

∣∣∣∣ 1 0
0 1

∣∣∣∣+ bc

∣∣∣∣ 0 1
1 0

∣∣∣∣ which equals ad− bc.

Assuming existence: Upper triangular matrices: We want to compute det(U) where

U =


u11 u12 . . . u1n

0 u22 . . . u2n
...

...
. . .

...
0 0 . . . unn

. We claim that det(U) = u11u22 . . .. We shall prove this

claim by induction on n. For n = 1, we are done. Assume truth for n − 1. By
scaling, det(U) = u11 det(U ′) where U ′ has e1 in the first column. By multilinear-
ity, i.e., column transformations, we can “clear” the first row. Now det(e1, v2, . . .) =∑

J cj22cj33 . . . det(e1, ej2 , . . .). Suppose we need KJ interchanges of columns to permute
j2, j3, . . . to 2, 3, . . . n − 1. Then det(e1, v2, . . .) =

∑
J cj22cj33 . . . (−1)KJ det(e1, e2, . . .)

which is
∑

J cj22 . . . (−1)KJ = det(v2, . . .). Thus det(U) = u11 det(U ′′) where U ′′ is the
(n− 1)× (n− 1) matrix obtained by deleting the first row and first column. It is upper
triangular. We are done by the induction hypothesis.

Assuming existence: A crucial property (Expansion along the first column): Note
that det(v1, . . . , vn) = det(

∑
j cj1ej, v2, . . . , vn) =

∑
j cj1 det(ej, v2, . . . , vn).

Property: If we define n − 1-dimensional new columns/vectors ṽ2,j, ṽ3,j, . . . by simply
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deleting the ej components from v2, . . . and replacing ej+1 with ej, ej+2 with ej+1 etc,
then det(v1, . . .) =

∑
j cj1(−1)j+1 det(ṽ2,j, ṽ3,j, . . .). Such an (n−1)× (n−1) determinant

is called a minor. Note that by interchanging columns a similar property holds for any
column ( if we prove it for the first column).
Proof: Fix j and neglect the j subscript in ṽ2,j, . . .. By interchanges, det(ej, v2, . . .) =
(−1)j+1 det(v2, . . . , vj−1, ej, vj+1, . . .). Claim: det(v2, . . . , vj−1, ej, vj+1, . . .) = det(ṽ2, . . . , ṽj−1, ṽj+1, . . .).
This claim is enough to complete the proof. Proof of claim: Note that det(ṽ2, . . . , ṽj−1, ṽj+1, . . .) =∑

I c̃i12 . . . det(ei1 , ei2 , . . .) where i1, i2, . . . is a permutation of 1, 2, . . .. If we need K inter-
changes to bring i1, . . . , in ascending order, then det(ei1 , ei2 , . . .) = (−1)K . If the i1, i2, . . .
are in ascending order, then we are done with the claim and the proof of the property
(why?).
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