1 Recap

- Elementary row matrices.
- Determinant definition.

2 Determinants

Uniqueness theorem: Suppose d is a determinant function and f is an alternatng multilinear function. Then $f\left(v_{1}, \ldots, v_{n}\right)=d\left(v_{1}, \ldots, v_{n}\right) f\left(e_{1}, \ldots, e_{n}\right)$. So if f is also a determinant function, then $f=d$.
Proof: Let $v_{i}=\sum_{j} c_{i j} e_{j}$. Then $f\left(\sum_{j_{1}} c_{1 j_{1}} e_{j_{1}}, \sum_{j_{2}} c_{2 j_{2}} e_{j_{2}}, \ldots\right)=\sum c_{1 j_{1}} c_{2 j_{2}} \ldots f\left(e_{j_{1}}, e_{j_{2}}, \ldots\right)$. If any of the j_{i} coincide, that term will be 0 . So we may assume that all the j_{i} are different, i.e., $j_{1}, j_{2}, \ldots, j_{n}$ is a permutation of $1,2, \ldots, n$.
We can prove by induction on n that any permutation can be obtained by a finite number of interchanges. Indeed, it is trivial for $n=1$. One of j_{i} corresponds to n. Suppose it is j_{k}. Now $[1,2, \ldots, n-1] \rightarrow\left[j_{1}, \ldots, j_{k-1}, j_{n}, j_{k+1}, \ldots, j_{n-1}\right]$ is a permutation of $n-1$ things. By the induction hypothesis, it can be obtained using a finite number of interchanges. That is, $[1,2 \ldots, n] \rightarrow\left[j_{1}, \ldots, j_{k-1}, j_{n}, j_{k+1}, \ldots, j_{n-1}, j_{k}=n\right]$ can be obtained that way. Now interchange j_{k} with j_{n} to get the desired permutation.
Using the above result we see that $d\left(e_{j_{1}}, \ldots, e_{j_{n}}\right)=(-1)^{K} d\left(e_{1}, \ldots, e_{n}\right)=(-1)^{K}$ and $f\left(e_{j_{1}}, \ldots, e_{j_{n}}\right)=(-1)^{K} f\left(e_{1}, \ldots, e_{n}\right)=d\left(e_{j_{1}}, \ldots, e_{j_{n}}\right) f\left(e_{1}, \ldots, e_{n}\right)$. Thus $f\left(v_{1}, \ldots, v_{n}\right)=$ $\sum c_{1 j_{1}} \ldots d\left(e_{j_{1}}, \ldots, e_{j_{n}}\right) f\left(e_{1}, \ldots, e_{n}\right)=d\left(v_{1}, \ldots, v_{n}\right) f\left(e_{1}, \ldots, e_{n}\right)$.

Assuming existence: 2×2 determinants: Consider $\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=a\left|\begin{array}{ll}1 & b \\ 0 & d\end{array}\right|+c\left|\begin{array}{ll}0 & b \\ 1 & d\end{array}\right|$ which can be column-transformed to $=a d\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right|+b c\left|\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right|$ which equals $a d-b c$.

Assuming existence: Upper triangular matrices: We want to compute $\operatorname{det}(U)$ where $U=\left[\begin{array}{cccc}u_{11} & u_{12} & \ldots & u_{1 n} \\ 0 & u_{22} & \ldots & u_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & u_{n n}\end{array}\right]$.
claim by induction on n. For $n=1$, we are done. Assume truth for $n-1$. By scaling, $\operatorname{det}(U)=u_{11} \operatorname{det}\left(U^{\prime}\right)$ where U^{\prime} has e_{1} in the first column. By multilinearity, i.e., column transformations, we can "clear" the first row. Now $\operatorname{det}\left(e_{1}, v_{2}, \ldots\right)=$ $\sum_{J} c_{j_{2} 2} c_{j_{3} 3} \ldots \operatorname{det}\left(e_{1}, e_{j_{2}}, \ldots\right)$. Suppose we need K_{J} interchanges of columns to permute j_{2}, j_{3}, \ldots to $2,3, \ldots n-1$. Then $\operatorname{det}\left(e_{1}, v_{2}, \ldots\right)=\sum_{J} c_{j_{2} 2} c_{j_{3} 3} \ldots(-1)^{K_{J}} \operatorname{det}\left(e_{1}, e_{2}, \ldots\right)$ which is $\sum_{J} c_{j_{2} 2} \ldots(-1)^{K_{J}}=\operatorname{det}\left(v_{2}, \ldots\right)$. Thus $\operatorname{det}(U)=u_{11} \operatorname{det}\left(U^{\prime \prime}\right)$ where $U^{\prime \prime}$ is the $(n-1) \times(n-1)$ matrix obtained by deleting the first row and first column. It is upper triangular. We are done by the induction hypothesis.

Assuming existence: A crucial property (Expansion along the first column): Note that $\operatorname{det}\left(v_{1}, \ldots, v_{n}\right)=\operatorname{det}\left(\sum_{j} c_{j 1} e_{j}, v_{2}, \ldots, v_{n}\right)=\sum_{j} c_{j 1} \operatorname{det}\left(e_{j}, v_{2}, \ldots, v_{n}\right)$.
Property: If we define n-1-dimensional new columns/vectors $\tilde{v}_{2, j}, \tilde{v}_{3, j}, \ldots$ by simply
deleting the e_{j} components from v_{2}, \ldots and replacing e_{j+1} with e_{j}, e_{j+2} with e_{j+1} etc, then $\operatorname{det}\left(v_{1}, \ldots\right)=\sum_{j} c_{j 1}(-1)^{j+1} \operatorname{det}\left(\tilde{v}_{2, j}, \tilde{v}_{3, j}, \ldots\right)$. Such an $(n-1) \times(n-1)$ determinant is called a minor. Note that by interchanging columns a similar property holds for any column (if we prove it for the first column).
Proof: Fix j and neglect the j subscript in $\tilde{v}_{2, j}, \ldots$. By interchanges, $\operatorname{det}\left(e_{j}, v_{2}, \ldots\right)=$ $(-1)^{j+1} \operatorname{det}\left(v_{2}, \ldots, v_{j-1}, e_{j}, v_{j+1}, \ldots\right)$. Claim: $\operatorname{det}\left(v_{2}, \ldots, v_{j-1}, e_{j}, v_{j+1}, \ldots\right)=\operatorname{det}\left(\tilde{v}_{2}, \ldots, \tilde{v}_{j-1}, \tilde{v}_{j+1}, \ldots\right)$. This claim is enough to complete the proof. Proof of claim: Note that $\operatorname{det}\left(\tilde{v}_{2}, \ldots, \tilde{v}_{j-1}, \tilde{v}_{j+1}, \ldots\right)=$ $\sum_{I} \tilde{c}_{i_{1}} \ldots \operatorname{det}\left(e_{i_{1}}, e_{i_{2}}, \ldots\right)$ where i_{1}, i_{2}, \ldots is a permutation of $1,2, \ldots$. If we need K interchanges to bring i_{1}, \ldots, in ascending order, then $\operatorname{det}\left(e_{i_{1}}, e_{i_{2}}, \ldots\right)=(-1)^{K}$. If the i_{1}, i_{2}, \ldots are in ascending order, then we are done with the claim and the proof of the property (why?).

