
1 Recap

• Uniqueness of determinants.

• Consequences of existence (determinants of 2× 2 matrices, upper-triangular matri-
ces, and expansion along a column).

2 Determinants

Existence: The construction of a determinant is done recursively/inductively. For a 1×1
matrix, define det(A) = a11. Assume that for any k× k matrix (k ≤ n− 1), the det func-
tion exists. It is natural to try to define by expansion along the first column. However,
we shall try det(v1, . . . , vn) :=

∑
j A1j(−1)j+1M1j where the minor M1j is obtained by

deleting the first row and the jth column. ( Expansion along the first row.) We simply
need to check that this definition satisfies all the axioms, thus completing the induction
step:

• Scaling: If vi → tvi, for j 6= i each of the A1j scales by t by the induction hypothesis.
For j = i A1i remains unchanged by c1i scales by t. Thus every term in the definition
scales by t.

• Linearity: If vi → vi +w, for j 6= i as before, A1j is linear. For j = i, as before, the
coefficient is linear. We are done.

• Normalisation: det(e1, . . . , en) = A11 = 1 by the induction hypothesis.

• Alternating: It is enough to prove this property for adjacent columns (why?) So
if vi = vi+1 = v, any minor that contains vi AND vi+1 is 0 by the induction
hypothesis. The only minors that remain are M1i,M1i+1. So det(v1, . . . , v, v, . . .) =
(−1)i(−A1iM1i + A1i+1M1i+1). But A1i = A1i+1 and M1i = M1i+1. Hence we are
done.

The transpose of a matrix A, i.e., AT is obtained by interchanging the rows and the
columns. It is easy to show that (AB)T = BTAT .
For any n × n matrix A det(A) = det(AT ). (As a consequence, row operations of the
form Ri → Ri + cRj keep the determinant invariant, scaling a row scales the determinant
and if two rows are equal the determinant vanishes.)
Proof: We prove by induction on n. n = 1 is trivial. Assume truth for n − 1. For n,
expand A along its first row : det(A) =

∑
j A1j(−1)1+jM1j. Expand AT along its first

column: det(AT ) =
∑

j(A
T )j1(−1)1+jM ′

j1. But (AT )j1 = A1j and M ′
j1 = M1j by the

induction hypothesis.

3 Computing determinants using the Gauss-Jordan

technique

Since the RREF U of a square matrix A is upper-triangular (why?), and we can use
Gauss-Jordan row operations to bring it to such a form, we can compute the determinant
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of the matrix easily. Each time we scale a row by a constant ci the determinant scales
and each row-exchange leads to a −1. So det(A) = (−1)p det(U)

c1c2...
.

An example: Compute

∣∣∣∣∣∣
1 x x2

1 y y2

1 z z2

∣∣∣∣∣∣ (a Vandermonde determinant)

R2 → R2−R1, R3 → R3−R1 do not change the determinant and yield

∣∣∣∣∣∣
1 x x2

0 y − x y2 − x2

0 z − x z2 − x2

∣∣∣∣∣∣
Scaling gives (y − x)(z − x)

∣∣∣∣∣∣
1 x x2

0 1 x + y
0 1 x + z

∣∣∣∣∣∣ which is (after R3 → R3 − R2) (y − x)(z −

x)

∣∣∣∣∣∣
1 x x2

0 1 x + y
0 0 z − y

∣∣∣∣∣∣ which is upper-triangular and hence equal to (y − x)(z − x)(z − y).
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