1 Recap

- Uniqueness of determinants.
- Consequences of existence (determinants of 2×2 matrices, upper-triangular matrices, and expansion along a column).

2 Determinants

Existence: The construction of a determinant is done recursively/inductively. For a 1×1 matrix, $\operatorname{define} \operatorname{det}(A)=a_{11}$. Assume that for any $k \times k$ matrix $(k \leq n-1)$, the det function exists. It is natural to try to define by expansion along the first column. However, we shall try $\operatorname{det}\left(v_{1}, \ldots, v_{n}\right):=\sum_{j} A_{1 j}(-1)^{j+1} M_{1 j}$ where the minor $M_{1 j}$ is obtained by deleting the first row and the $j^{\text {th }}$ column. (Expansion along the first row.) We simply need to check that this definition satisfies all the axioms, thus completing the induction step:

- Scaling: If $v_{i} \rightarrow t v_{i}$, for $j \neq i$ each of the $A_{1 j}$ scales by t by the induction hypothesis. For $j=i A_{1 i}$ remains unchanged by $c_{1 i}$ scales by t. Thus every term in the definition scales by t.
- Linearity: If $v_{i} \rightarrow v_{i}+w$, for $j \neq i$ as before, $A_{1 j}$ is linear. For $j=i$, as before, the coefficient is linear. We are done.
- Normalisation: $\operatorname{det}\left(e_{1}, \ldots, e_{n}\right)=A_{11}=1$ by the induction hypothesis.
- Alternating: It is enough to prove this property for adjacent columns (why?) So if $v_{i}=v_{i+1}=v$, any minor that contains v_{i} AND v_{i+1} is 0 by the induction hypothesis. The only minors that remain are $M_{1 i}, M_{1 i+1}$. So $\operatorname{det}\left(v_{1}, \ldots, v, v, \ldots\right)=$ $(-1)^{i}\left(-A_{1 i} M_{1 i}+A_{1 i+1} M_{1 i+1}\right)$. But $A_{1 i}=A_{1 i+1}$ and $M_{1 i}=M_{1 i+1}$. Hence we are done.

The transpose of a matrix A, i.e., A^{T} is obtained by interchanging the rows and the columns. It is easy to show that $(A B)^{T}=B^{T} A^{T}$.
For any $n \times n$ matrix $A \operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$. (As a consequence, row operations of the form $R_{i} \rightarrow R_{i}+c R_{j}$ keep the determinant invariant, scaling a row scales the determinant and if two rows are equal the determinant vanishes.)
Proof: We prove by induction on $n . n=1$ is trivial. Assume truth for $n-1$. For n, expand A along its first row: $\operatorname{det}(A)=\sum_{j} A_{1 j}(-1)^{1+j} M_{1 j}$. Expand A^{T} along its first column: $\operatorname{det}\left(A^{T}\right)=\sum_{j}\left(A^{T}\right)_{j 1}(-1)^{1+j} M_{j 1}^{\prime}$. But $\left(A^{T}\right)_{j 1}=A_{1 j}$ and $M_{j 1}^{\prime}=M_{1 j}$ by the induction hypothesis.

3 Computing determinants using the Gauss-Jordan technique

Since the RREF U of a square matrix A is upper-triangular (why?), and we can use Gauss-Jordan row operations to bring it to such a form, we can compute the determinant
of the matrix easily. Each time we scale a row by a constant c_{i} the determinant scales and each row-exchange leads to a -1 . So $\operatorname{det}(A)=\frac{(-1)^{p} \operatorname{det}(U)}{c_{1} c_{2} \ldots}$.

An example: Compute $\left|\begin{array}{ccc}1 & x & x^{2} \\ 1 & y & y^{2} \\ 1 & z & z^{2}\end{array}\right|$ (a Vandermonde determinant)
$R_{2} \rightarrow R_{2}-R_{1}, R_{3} \rightarrow R_{3}-R_{1}$ do not change the determinant and yield $\left|\begin{array}{ccc}1 & x & x^{2} \\ 0 & y-x & y^{2}-x^{2} \\ 0 & z-x & z^{2}-x^{2}\end{array}\right|$
Scaling gives $(y-x)(z-x)\left|\begin{array}{ccc}1 & x & x^{2} \\ 0 & 1 & x+y \\ 0 & 1 & x+z\end{array}\right|$ which is $\left(\right.$ after $\left.R_{3} \rightarrow R_{3}-R_{2}\right)(y-x)(z-$ $x)\left|\begin{array}{ccc}1 & x & x^{2} \\ 0 & 1 & x+y \\ 0 & 0 & z-y\end{array}\right|$ which is upper-triangular and hence equal to $(y-x)(z-x)(z-y)$.

