HW 2

1. Prove that an onto function $T: V \rightarrow W$ has a left inverse if and only if it is $1-1$.
2. Let W be a vector space over a field \mathbb{F}. Let V be a finite-dimensional vector space over \mathbb{F} with $\operatorname{dim}(V)=n$, and $T: V \rightarrow W$ be an onto linear map. Then prove that the following statements are equivalent to one another.
(a) T is $1-1$.
(b) If e_{1}, \ldots, e_{p} are linearly independent in V, then $T\left(e_{1}\right), \ldots, T\left(e_{p}\right)$ are so in W.
(c) $\operatorname{dim}(W)=n$.
(d) If e_{1}, \ldots, e_{n} is a basis for V, then $T\left(e_{1}\right), \ldots, T\left(e_{n}\right)$ is so for W.
3. Let V be a vector space and $S \subseteq V$ be a subset. Prove that S^{\perp} is a subspace.
4. Consider \mathbb{R}^{3} with the usual inner product. Find an orthonormal basis for the subspace spanned by $u=(1,1,1), v=(1,0,-1), w=(3,2,1)$.
5. Consider the real vector space of real-valued continuous functions on $[-1,1]$. Define the inner product $\langle f, g\rangle=\int_{-1}^{1} x^{2} f(x) g(x) d x$.
(a) Consider the subspace S spanned by the set $\left\{1, x, x^{2}, x^{2}+x\right\}$. Find an orthonormal basis for S.
(b) Find the best approximation of e^{x} from S.
